
Article https://doi.org/10.1038/s41467-022-35628-0

Self-powered high-sensitivity all-in-one
vertical tribo-transistor device for
multi-sensing-memory-computing

Yaqian Liu1,2, Di Liu1,3, Changsong Gao1,3, Xianghong Zhang 1,3, Rengjian Yu1,3,
Xiumei Wang1,3, Enlong Li1,3, Yuanyuan Hu4, Tailiang Guo1,3 &
Huipeng Chen 1,3

Devices with sensing-memory-computing capability for the detection, recog-
nition and memorization of real time sensory information could simplify data
conversion, transmission, storage, and operations between different blocks in
conventional chips, which are invaluable and sought-after to offer critical
benefits of accomplishing diverse functions, simple design, and efficient
computing simultaneously in the internet of things (IOT) era. Here, wedevelop
a self-powered vertical tribo-transistor (VTT) based on MXenes for multi-
sensing-memory-computing function and multi-task emotion recognition,
which integrates triboelectric nanogenerator (TENG) and transistor in a single
device with the simple configuration of vertical organic field effect transistor
(VOFET). The tribo-potential is found to be able to tune ionic migration in
insulating layer and Schottky barrier height at the MXene/semiconductor
interface, and thus modulate the conductive channel between MXene and
drain electrode. Meanwhile, the sensing sensitivity can be significantly
improved by 711 times over the single TENG device, and the VTT exhibits
excellent multi-sensing-memory-computing function. Importantly, based on
this function, the multi-sensing integration and multi-model emotion recog-
nition are constructed, which improves the emotion recognition accuracy up
to 94.05% with reliability. This simple structure and self-powered VTT device
exhibits high sensitivity, high efficiency and high accuracy, which provides
application prospects in future human-mechanical interaction, IOT and high-
level intelligence.

With the upsurge of artificial intelligence applications and the rapid
development of internet of things (IOT), the time-efficient sensing
information acquisition, energy-efficient data memorizing and pro-
cessing capabilities of terminal electronic systems are indispensable1.
However, in conventional chips, the separated sensing, storage, and

processing units always need to collect signals by external sensors,
convert signals intodigital format data subsequently, and then transfer
the date to memory units and processors for subsequent processing
tasks, which limits the data conversion and movement and results in
low computing efficiency and huge power consumption2. Thus,
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benefiting from in-memory-computing device3, which can both store
data and compute simultaneously by device physics or other physical
laws, an integrated sensing-memory-computing (SMC) system with
high-efficiency perception, storage and calculation functions could
greatly simplify transmission operations, decrease hardware bulk, and
increase efficiency in comparison to the traditional chips1,4–8.

Meanwhile, most creatures possess multiple sensory organs with
which they can simultaneously perceive a wide variety of physical
changes in the environment9–16. Thus, SMC systems that can integrate
and organize various sensory information (multi-sensing-memory-
computing (MSMC)) are fundamental to effective perception and
cognitive function1,4,11,17–20. Noticeably, MSMC system desires various
numbers of sensory receptors and processing nodes (tactile, auditory,
and visual, etc) to keep producing multi-sensing raw data and pro-
cessing different types of sensory information, respectively15,21–28.
However, the increased number of receptors slows down the working
speed due to the subsequent data transmission and processing, and
the separated sensory receptors and processing nodes also lead to
transmission speed discrepancy, which would further limit the con-
version speed and increase energy consumption24–26. Therefore,
developing a single device integrated with the function of MSMC is of
great significance to address the above-mentioned challenges and
improve sensory perceptual efficiency in current electronic devices.

Noticeably, triboelectric nanogenerator (TENG) is energy har-
vesting device that can convert various forms of energy such as human
motion, sound vibration, and light energy into electric power29–36. The
native advantages of TENG render it a promising power supply device
as well as a multisensory receptor33,37–42. Meanwhile, vertical organic
field effect transistors (VOFETs) composed of vertically stacked gate/
source/drain electrodes and promising short channel possess small
subthreshold swing (SS), high working frequency, and promising
mechanical stability, ensuring their great practical applications in
memory and computing devices43–46. Thus, the inherent vertically
stacked electrodes of VOFETs are suitable to integrate with TENG,
which possibly provides an effective approach for achieving multi-
functional all-in-one-devicewith sensing-memory-computing function.

Hence, in this work, we develop a vertical tribo-transistor (VTT)
device based on TENG and VOFET to implement the multi-sensing-
memory-computing function and the interaction of multisensory
integration. This VTT is based on a simple configuration of VOFET
without any redundant layers, and MXenes function as the top elec-
trode of TENG, source electrode of transistor, and the light collection
layer of multisensory, simultaneously. The VTT allows electrostatic
induction and tribo-potential to tune ionic migration and Schottky
barrier, and thus the triboelectrification sensory information can be
amplified to the source-drain current in a self-energy transducing
manner, which improves the sensitivity by 711 times over a single
TENG. Meanwhile, processing functions of different sensory percep-
tion and multisensory interaction in brain superior colliculus are
achieved based on the individual VTT device. Furthermore, artificial
conscious response is generated by the integration of robot hand with
VTT device, and the open angle of robot hand is successfully con-
trolled with different sensory stimulation, demonstrating that this
system can straightforward enhance the accuracy of relevant event.
Finally, a multi-model emotion recognition system is constructed to
detect and distinguish typical mood. The self-powered VTT device
shows great potential in next-generation high-performance in-sensor-
memory-computing artificial intelligent system and human-computer
interaction interface applications.

Results
Self-powered vertical tribo-transistor with multi-sensing
function
A schematic diagram of biological multisensory integration nervous
system is illustrated in Fig. 1a. The system is composed of several

sensing units for perception, transmission pathways for transfer
information, and brain for memory and computing. Here, a vertical
tribo-transistor (VTT) device based on TENG (Fig. 1b) and VOFET
(Fig. 1c) is fabricated to implement the multi-sensing-memory-
computing function, as illustrated in Fig. 1d. Clearly, this VTT inte-
grates the function of a TENG and a VOFET. It is based on a VOFET
configuration without any redundant layer, which is attributed to the
fact that both TENG device and VOFET device share the vertical
structure. The VTT composes removable Kapton substrate, removable
Au gate electrode, ion-gel insulating layer, MXenes network source
electrode, PDVT-10 channel layer, and Au source/drain electrode.
Meanwhile, the detailed fabrication process of VTT is shown in Sup-
plementary Fig. 1, and the cross-section SEM is depicted in Supple-
mentary Figure 2. Noticeably, MXenes, which possess regulated work
function, outstanding mechanical and optical properties, have raises
significant interest for optoelectronic, energy storage and Schottky-
barrier based devices. Thus, MXenes are promising alternative elec-
trode of TENG and network source electrode of VTT here. The sensing
abilities, touchandhearing perception are emulatedbymoving of gate
electrode and vibration of VTT, respectively, and the visual perception
is achieved by the light-sensitive Ti3C2Tx MXenes electrode.

The scanning electron microscope (SEM) image of MXenes net-
work is presented in Fig. 1e, which clearly shows that the MXenes are
interconnected with each other and form a network structure. Mean-
while, the transmission electronmicroscope (TEM) ofMXenes is shown
in Fig. 1f, whereMxenes exhibit nanosheets structure, and the thickness
of MXenes network source electrode is about 1 nm. Fig 1g shows the
high-resolution TEM image, and the corresponding lattice spacing in
this layer is 0.3 nm45. The electrostatic induction and triboelectrification
between gate electrode and insulating layer would induce the
electrode-double-layer effects, which manifests in a transient channel
current, thus realizing the multi-sensing-memory-computing function.

We first investigated the sensing function of this VTT device, and
the equivalent circuit of VTT is demonstrated in Fig. 2a. The gate elec-
trode in Fig. 2a can bemoved, and the distance between gate electrode
and insulating layer is defined as d. Compared with traditional plane
transistor integrated with TENG (Supplementary Fig. 3a, 3b), this VTT
not only enhances the device integration level, but also simplifies
the equivalent circuit (Supplementary Fig. 3). Clearly, VTT can achieve
the function of TENGby only leading out the gate and source electrode,
while if external voltage is applied to the source-drain electrodes, it can
function as VOFET. The output performance of individual TENG is
shown in Fig. 2b. With the increase of the distance between gate elec-
trode and insulating layer from 0 to 1000 μm, the open-circuit voltage
(VOC) increases from 0 to 1.71 V. The working mechanism of TENG is
illustrated in Supplementary Fig. 4. Here, ion-gel is employed as the
triboelectric material in TENG. The Au electrode andMXenes electrode
are employed as the bottom electrode and top electrode in TENG,
respectively. When the distance between bottom electrode and tribo-
electric layer changes, and the confined charges in ion-gel attract the
counterions. In theoriginal state, thebottomelectrode and ion-gel layer
are not in contact with each other, and then when bottom electrode is
fully contactedwith ion-gel layer (IL), electrons flow to the IL because of
the triboelectric effect.When bottomelectrode ismoved away, positive
and negative ions in the IL accumulate at the air/ion-gel and ion-gel/top
electrode interfaces, respectively, forming an electrical double layer
(EDL). Accordingly, an output voltage is recorded with the electrons
flowing from top electrode to bottom electrode. It is noteworthy that
the high capacitance of EDL can remarkably improve the performance
of TENG (as illustrated in Supplementary Note 1)37,45,46.

Then, we investigated the property of the devices as a VOFET.
The typical transfer curve of VOFET is illustrated in Fig. 2c, where gate
voltage is modulated through external voltage, and the gate electrode
is contacted with the insulating layer (Supplementary Fig. 5). From the
transfer characteristics of VOFET43, the subthreshold swing (SS) of
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91.8mV/dec is extracted, while lower SS would result in higher ΔI
(IDS1-IDS2) at sameΔV (VGS1-VGS2), which shows the greatpotential of the
device in achieving high sensitivity sensory perception. Noticeably, the
VOC of TENG can be considered as a gate-source voltage and then
convert into a transient channel current. Figure 2d and Fig. 2e show the
transfer and output curve of VTT under different VOC from TENG,
respectively.When the distance between gate electrode and insulating
layer increases from 0 to 1000μm (Fig. 2d), the VTT exhibits p-type
transistor behavior, and the drain-source current (IDS) increases by
nearly 4 orders. Moreover, the on-state current density is greater than
5mA/cm2 (Fig. 2e), providing sufficient current density to drive
organic electronic devices. This high output current density of VTT is
mainly ascribed to its ultrashort channel length. For comparison, the
transfer curve of planar transistor is depicted in Fig. 2c left, which
shows a higher SS compared with vertical transistor.

Furthermore, we investigated the sensitivity of these two devices
individually when they are used for mimicking different sensory per-
ception. Fig 2f, g show the tactile sensitivity of an individual TENG and
VTT, respectively. The tactile sensitivity of TENG is defined as equ. 1:

S = ðΔV=VminÞ=Δd ð1Þ

where ΔV is the change of open-circuit Voc (V-V0), Vmin is the minimum
Voc, and Δd is the changed distance (d) between gate electrode and
insulating layer. When d is increased from 0μm to 450μm, the
sensitivity is calculated tobe0.0334μm−1, and then a lower sensitivity of
0.0038μm−1 is estimated when the d increases from 450μm to
1000μm. In comparison, the tactile sensitivity of VTT is defined as eq. 2:

S = ðΔI=IminÞ=Δd ð2Þ

Fig. 1 | Schematic diagram of multi-sensing-memory-computing system, the
device structure of VTT and its morphology characteristics. a The biological
multi-sensing-memory-computing system. The sensory receptors collect sensory
data and transmitted the data to human brain for further memory and computing.

b–d Schematic illustration the structure of TENG, vertical transistor, and VTT,
respectively. e SEM images of MXenes network source electrode. f SEM images of
MXenes network source electrode. g High-resolution TEM image of MXenes net-
work source electrode.
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where ΔI is the change of drain-source current ΔIDS (I-I0), Imin is the
minimum Isc, and Δd is the changed distance (d) between gate
electrode and insulating layer. As depicted in Fig. 2g, the VTT initially
exhibits a sensitivity of 2.2059μm−1, and then, when the d is increased
from 75μm to 400μm, the sensitivity (S2) is calculated to be
23.7503μm−1, which is 711 times higher than that of the individual
TENG. Finally, with the d exceeding 400μm,which corresponds with a
saturated IDS and a lower ΔI, a rapid decrease of the sensitivity to
1.1648μm−1 is observed. Thus, different distance between gate
electrode and insulating layer would result in different charge
distribution, Voc, IDS, and sensitivity.

Besides, we characterized the auditory and visual stimuli trans-
duction sensitivity of individual TENG and VTT, respectively. For the
auditory stimuli transduction sensitivity, a loudspeaker with tunable
soundpressure level (SPL) and frequency is usedas the acoustic source
to trigger the VTT. The auditory sensitivity is defined as eq. 3:

S = ðΔVðΔIÞ=VminðIminÞÞ=ΔSPL ð3Þ

whereΔSPL is the changed sound pressure level of the loudspeaker. As
the sound pressure level increases from 40 to 90dB, the individual
TENG device exhibits a nearly linear response and a SPL sensitivity of
0.0098 dB−1 (Fig. 2h).Meanwhile, the dependence of sensitivity of VTT

on SPL is shown in Fig. 2i, and the highest sensitivity is 0.6524 dB−1 in
the range from60 to 80 dB. Furthermore, the absorbance ofMXenes is
presented in Supplementary Fig. 6, which exhibits particularly high
absorption intensity in ultraviolet (UV) region, and the wavelength
light source used is 325 nm next. The photosensitive MXenes function
as the top electrode of TENG, source electrode of transistor, and the
light collection layer of multisensory, simultaneously, and the visual
sensitivity of individualTENGandVTTare illustrated in Supplementary
Fig. 7. Clearly, VTT exhibits higher sensitivity than the individual TENG
for each sensory perception, and the higher sensitivity of VTT is
attributed to the amplification, low SS and high on/off ratio of VOFET.
Moreover, the function of each material/layer in VTT with different
sensing is shown in Supplementary Fig. 8, which further indicates that
this VTT is beneficial to achieve multi-sensing function.

The working mechanism of self-powered vertical tribo-
transistor (VTT)
Based on the above results, the working mechanism of VTT unit for
tactile signal is illustrated in Fig. 3. In the initial state, the gate electrode
is separatedwith the IL, and then theVTT is set to theoriginal state (the
process was depicted Supplementary Fig. 9). As the gate electrode is
fully contacted with IL, positive charges and negative charges accu-
mulated on the surface of gate electrode and IL interface because of

Fig. 2 | The electrical output and sensing properties of TENG and VTT.
a Equivalent circuit of the VTT device. b The TENG output voltage versus distance.
c The SS of VTT with external gate voltage. d, e Transfer curve and output curve of
VTT with TENG. f, g The tactile sensitivity of single TENG and VTT with different

distance. h, i The auditory sensitivity of single TENG and VTT with different sound
pressure level. The error bars in f-i means the values of V/Vmin or I/Imin within 10
cycles.
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the electrostatic induction and triboelectrification, respectively, as
depict in Fig. 3a. Noticeably, the identical positive charges and nega-
tive charges lead to the off state of VTT, and there is no current
recorded when a source-drain voltage is applied. The corresponding
band diagram of this state is illustrates in Fig. 3b. It is clear that energy
band bending would occur at MXenes/PDVT-10 interface when
MXenes come into contact with PDVT-10 semiconductor. The high
Schottky barrier height between theMXenes andPDVT-10 causes small
source-drain current. Next, when the gate electrode and IL are sepa-
rated, the tribo-potential would regulate the ionic migration of ion-gel
layer, and positive ions in the IL are induced based on the charge
balance effect (Fig. 3c). Simultaneously, an EDL is gradually generated
at the IL, where the number of negative ions balanced the positive
charges. Accordingly, temporary holes are accumulated near IL/PDVT-
10 interface, which would decrease Schottky barrier height between
the IL and PDVT-10, and then a conductive channel from MXene to
drain electrode is formed (Fig. 3d). Finally, when gate electrode and IL
are further separated, the EDL is entirely generated at the IL becauseof

the tribo-potential, as shown in Fig. 3e. At this stage, massive holes
accumulate at the IL/PDVT-10 interface, and thus the width of the
Schottky barrier between the HOMO energy level of PDVT-10 and
MXenes work function is narrowed, as shown in Fig. 3f, which enables
the holes to easily flow into the semiconductor layer. Thus, holes are
injected into PDVT-10 semiconductor from MXenes-network source
electrode under the source/drain voltage and then are vertically
transferred fromPDVT-10 channel layer to drain electrode, resulting in
the formation of drain-source current (on state).

To further understand the working mechanism and charge
transport in VTT, a 2D cross-section simulation model is exploited to
demonstrate the electrical field distributions and electrical potential
during the aforementioned three states, as depicted in Fig. 3g–l.
Notably, the drain-source current of VTT is dependent on the distance
between gate electrode and IL, and different distances would result in
different gate voltage. Thus, the structure of VTT in COMSOL Multi-
physics is simply considered as a typical VOFET with varied gate vol-
tage, as depicted in Supplementary Fig. 10. Figure 3g–i show the

Fig. 3 | Theworkingmechanismofmulti-sensing VTTunit. aCharge distribution
of the source/channel/drain layers when gate is in contact with the IL layer.
bCorresponding band diagramof each layer at contact state. cCharge distribution
of the source/channel/drain layers when gate is separated from the IL layer.
d Corresponding band diagram of the source/channel/drain layers when gate is

separated from the IL layer. e Charge distribution of each layer at separation state.
f Corresponding band diagram of each layer at separation state. g–i The electrical
field distributions of VTT under three different states. j–l Potential distribution at
MXenes electrode.
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electrical field distributions of VTT under three different states, which
indicates that the distance between gate electrode and IL could
effectively control the charge behavior at the IL/PDVT-10 interface.
Furthermore, Fig. 3j–l show the 1D potential distribution of MXenes
electrode position (Supplementary Fig. 10). It is observed that the
potential becomesmore negative as the distance increased, indicating
stronger band-bending at the Mxene/semiconductor interface, which
is favorable for the injection of holes into the PDVT-10 channel.
Moreover, the working mechanism of acoustic signal into electrical
signal is illustrated in Supplementary Fig. S11.

Self-powered vertical tribo-transistor with multi-sensing-
memory function
Furthermore, the multi-sensing-memory function of our VTT is
demonstrated. Note that EDL effect is generated at ion-gel layer, which
is accompanied with retentive effects and the ion transport in EDL,
resulting in synaptic behaviors of VTT. In our sensing-memory-
computing system, the sensory transduction process can be regar-
ded as the presynaptic process, and the memory-computing process
can be regarded as the postsynaptic process, as depicts in Fig. 4a. We
first study the synaptic plasticity of the VTT with different tactile,
auditory, and visual input signals. Fig 4b, c show the tactile responseof
this VTT, where the gate voltage is controlled by the distance between
gate electrode and IL, and the drain-source voltage is fixed at a

constant value of −0.5 V. With the distance increased from 25μm to
250μm, the equivalent gate voltage is increased from 0.5 V to 1.5 V,
and the post-synaptic current amplitude of IDS is augmented from
0.1μA to 8μA, as shown in Fig. 4b. Meanwhile, the EPSC peak as a
function of pulse time with a fixed distance of 25μm is depicted in
Supplementary Fig. 12. The EPSC firstly shows a linear enhancement
when the pulse time is below 300ms and then becomes saturated
when the pulse time increases from 300ms to 1000ms. Supplemen-
tary Fig. 13 shows the responding time and decay time of the tactile
EPSC, and the responding time is increased from 5ms to 40ms with
the distance increased from 25μm to 250μm. Clearly, larger distance
will result in longer time of gate electrode and ion-gel insulating layer
to contact with each other and then induce more ions and carries.
Moreover, paired-pulse facilitation (PPF) is also presented in Supple-
mentaryFig. 14. As the interval timeof two continuouspluses is shorter
than the ion transfer time, an obvious increase of the second EPSC
amplitude can be observed. Thus, we further investigated the EPSC
amplitude under different pulse frequencies. As illustrated in Fig. 4c,
with the frequency changed from 1Hz to 10Hz, Imax/Imin (Imax is the
10th EPSC amplitude, Imin is the 1st EPSC amplitude) increases from 1.2
to 40, which is critical for future neuromorphic computing such as
dynamic high-pass filter.

Additionally, for the auditory response, the EPSCs of the VTTwith
a sound pressure level ranging from 40dB to 80 dB are shown in

Fig. 4 | Synapse response of tactile, auditory, and visual. a The sensory trans-
duction and memory-computing process. The tactile response of our VTT: b The
EPSC with different distance and c Imax/Imin with different pulse frequencies. The
error bar in cmeans the value of Imax/Imin within ten cycles. The auditory response
of our VTT:d EPSCs of VTTwith sound pressure level ranging from 40dB to 80dB.

e EPSCs of VTT with different sound frequencies. f Recorded TENG output, pre-
synaptic voltage and corresponding post-synaptic current. gThe visual response of
our VTT Normalization EPSCs with different light intensity. h EPSC amplitudes with
two successive light pluses with different interval time.
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Fig. 4d. When the auditory pulse (100ms) is applied to VTT, the EPSC
rapidly reaches a peak value and then gradually decays to resting
current. Meanwhile, the magnitude of EPSC increases from 0.5 μA to
3.2μA when the sound pressure level increases from 40dB to 80 dB,
and the responding time and decay time of EPSC is also increased with
the sound pressure level increased (Supplementary Fig. 12). Moreover,
the effect of different sound frequencies (100ms) on the EPSCs of the
VTT is depicted in Fig. 4e. The EPSC amplitudes first increases and then
decreases with the frequencies ranging from 500Hz to 3000Hz, and
the EPSC reaches its peak at the frequency of 1000Hz. Fig 4f shows the
Voc of TENG, transferred pre-synaptic voltage, and corresponding
post-synaptic current is driven by two different voice signals. Clearly,
different voice signals can be distinguished with different post-
synaptic currents.

Furthermore, the visual response of VTT is illustrated in Fig. 4hg.
The temporal response of normalized EPSCs as function of light
intensity is demonstrated in Fig. 4h, and the inset shows a typical EPSC
response with the intensity of 0.1mW/cm2. The amplitudes of EPSC
increase almost linearly within a small light intensity range below
0.1mW/cm2, and then a saturated EPSC would be recorded with fur-
ther increase of the light intensity. Meanwhile, the responding time
and decay time are also shown in Supplementary Fig. 12. The working
mechanism of VTT under light is shown in Supplementary Fig. 15.

Figure 4g illustrates the application of two successive light pulses with
different interval time (5 s, 1 s, and 0.5 s), where the second EPSC peak
increases with the decreases of the interval time. The increased EPSC
value after the first light pulse and the second (consecutive) light pulse
are denoted as EPSC1 and EPSC2, respectively. Supplementary Fig. 16
depicts the ratio of EPSC2/ EPSC1 as a function of interval time, which is
an indicator of enhancement of synaptic connections. The increased
ratio suggests that the ion transport-mitigating layer contribute
notably to maintain synaptic connections. Furthermore, VTT shows
high endurance and stability with several cycles and days, respectively,
as shows in Supplementary Fig. 17. These multi-sensing synaptic
functions of our VTT lay foundation for realizing artificial intelligence
system with sensing-memory-computing ability.

Self-powered vertical tribo-transistor with multi-sensing-
memory-computing (MSMC) function
Importantly, the function of MSMC in the human brain can associate
and learn crossmodal information. Inspired by this fact, we then
investigated the MSMC function of our VTT device. Figure 5a depicts
the traditional digit MSMC system, which contains several compo-
nents, such as the signal acquisition part (receptors), the power supply
part, the preliminary processing parts, and the processing unit. How-
ever, the separated analog-digital hybrid circuit, memory, computing,

Fig. 5 | Multi-sensing-memory-computing model and mimicking superior col-
liculus. a External stimuli of our environment and traditional sensing-memory-
computing block, which consists of power supply unit, receptor unit, preliminary
processing unit, and processing unit. b Equivalent multi-sensing-memory-
computing of our VTT and corresponding cross-correlation functions between
single sensing-memory-computing and multi-sensing-memory-computing. c EPSC

with different stimuli, which can bewell-fitted by cross-correlation functions.d The
change of A and B with increased external sensing pulses (single voice pulses, and
light pulses; or voice+light pulses). e Single sensory stimuli and multisensory sti-
muli with different sensory strength. The error bar in (e)means the stimuli of single
sensory and multisensory within ten cycles. f The %change from superadditive,
additive, to subadditive.
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convolution computation and other hardware result in slow proces-
sing speed andhighpower consumption. Our self-powered VTTdevice
is illustrated in Fig. 5b, the TENG component in VTT is regarded as the
sensor of the MSMC system, and VTT is regarded as the preliminary
and processing unit. Since the working mechanism of VTT under
mechanical and optical stimuli is different, such device is attractive for
processing multi-sensing information without an extra preliminary
processing unit. Here, the output current (IDS) of VTT is depicted as
IDS = A×IDS1 + B×IDS2 +… +N×IDSn, where IDS1, IDS2, and IDSn are the EPSC
with different external stimuli (visual, auditory, tactile, etc.). Mean-
while, the expression of IDS is depicted as eq. (4):

Fðx,y, . . . zÞ=A×hðxÞ+B×gðyÞ+ . . . +N×wðzÞ ð4Þ

where h (x), g (x), and w (z) are IDS1, IDS2, and IDSn of VTT, respectively,
A, B, and N are constants. For example, as shown in Fig. 5c, the EPSC of
VTT under auditory stimuli is fitted as h(x) = −6.5 × exp × (−x/65.9) +
4.9, and the EPSC of VTT under optical stimuli is fitted as g(y) = −6.5 ×
exp × (−y/32.5) + 5.4. Based on the change of EPSC amplitude, the
response under auditory and optical stimuli simultaneously can be
fitted as F (x,y) = A × h (x) + B × g (y). Noticeably, with the increases of
stimuli pluses, the constant of A decreases, while B increases, as illu-
strated in Fig. 5d. We further investigate the MSMC function of VTT
with tactile and visual response simultaneously, as illustrated in Sup-
plementary Fig. 18. This phenomenon further demonstrates that our
artificial multisensory device with the MSMC function could facilitate
the parallel processing of large amounts of external stimuli informa-
tion, which decreases the data exchange between storage and com-
putation, increases working speed, and decreases power consumption
compared with traditional CMOS architecture.

Furthermore, considering that multisensory integration is a cri-
tical and ongoing determinant of human behavior. Noticeably, inputs
from different sensory neurons are converged on cells in the superior
colliculus, and then result in multisensory integration. Here, we
mimicked the response of superior colliculus in the human brain upon
the approaching of a dog to demonstrate themultisensory integration
(as illustrated in Supplementary Fig. 19). As the dog became closer, the
individual information (visual and auditory) shows higher impulses,
while VA responses became proportionately weaker (Fig. 5e). In addi-
tion, the change between single sensory and multi-sensory is defined
as VA/(Vmax, Amax)×100% (%change). Clearly, the %change is
enhanced with the dog being closer, as illustrated in Fig. 5f. The neural
computation involved in their integration is changed from super-
additive to additive and then to subadditive, and the detailed illus-
trations are provided in Supplementary Note 2. Moreover, as
multisensory integration could enhance the single sensory signal and
thebehaviors thatdependon them,we further constructed anartificial
stimulus-response system to further prove the multisensory
enhancement concept. The robot hand system supported by our VTT
is also illustrated in Supplementary Note 3.

Self-powered vertical tribo-transistor with MSMC function for
multi-mode emotion recognition
All of the above characterizations and analyses imply that our VTT
exhibits excellentMSMC function in a single device. Thus, basedon the
MSMC function, we construct a multi-model emotion recognition
system to further demonstrate the capability of VTT in extending
artificial intelligent boundary. Noticeably, the emotion is tightly
entangled with behavior of human, while the complete emotion
information cannot be obtained only through visual or auditory per-
ception. Thus, combining the characteristic information and extracted
feature information from the two perceptions would improve the
emotion recognition accuracy and reliability. As depicts in Fig. 6,
through single VTT device, we achieve the multi-model emotion
recognition. Noticeably, the effective features are extracted from

visual and auditory mode by our devices (the EPSC with different light
intensity is been separated into 16 states, and each state corresponds
to 16 numerical values of colorful images, as depicted in Supplemen-
tary Fig. 22), and then the information is transferred to input layer for
further processing, as indicates in Fig. 6a and Supplementary Fig. 23.
Here, the select fusion model is data-level fusion, which directly
combines themost original data collect by our devices without special
processing to construct a group of new data. Then the several basic
discrete emotions, such as sadness, fear, disgust, surprise, excitement
and anger can be recognized by operation methods to compute and
process data from multiple data sources.

We first demonstrate themotion recognition accuracy with visual
model, auditory model, and multi-model, respectively, as illustrates in
Figs. 6b–f. Several images are selected from a video without sound
information, sound wave, or visual information, and the recognition
accuracyof six emotions is summarized at Figs. 6c, e, and 6f. Note that,
the accuracy of multi-model emotion recognition is significantly
higher than that of a single model, which further indicates that our
multi-model emotion recognition system is suitable for recognizing
the complex emotional category through a certain combinationmode.
Thus, the comparison of recognition accuracy between different
models is further shown in Fig. 6g. Clearly, the visual + auditorymodel
exhibits the highest recognition accuracy of 94.05% after 140 epochs,
while the accuracy of other single models is lower than that of the
multi-model system. Moreover, the accuracy is higher than the values
reported in previous works as illustrates in Table 1. These results
apparently demonstrate that MSMC VTT device can well retain the
data information on each modal sensor to avoid the loss of informa-
tion, maintain the integrity of information, and significantly enhance
the certainty of emotion.

Finally, the superiority of our self-powered multi-sensing-
memory-computing device is concluded. (i) simple structure and
self-powered device: the receptors and synapses are integrated in a
single device based on a simple configuration of VOFET without any
redundant layers, which enhances packing density, simplifies fabrica-
tion procedures and reduces chip cost, and further decreases power
consumptionwith the self-power function of TENG. (ii) high sensitivity:
The amplification, low SS (91.8mV/dec) and high current density
(5mA/cm2) of VTT ensure high sensing sensitivity (the tactile sensi-
tivity improves 711 times over individual TENG). (iii) high efficiency and
conversion speed: themulti-sensing-memory-computing function and
the interaction of multifunction integration of our VTT increases the
conversion speed, which is associated with the decreased physical
separation between sensory receptors andprocessednodes compared
with the traditional CMOS architecture. (iv) high recognition accuracy:
the multi-model emotion recognition is successfully achieved based
on the multi-sensing-memory-computing ability of our VTT, which
significantly improves the computing functionality, recognition vari-
ety and accuracy.

Discussion
In summary, we experimentally demonstrate amulti-sensing-memory-
computing device that integrated a TENG and a transistor in a single
device with the configuration of VOFET. Compared with a single TENG
device, the sensing sensitivity is significantly enhanced due to the
excellent SS andhigh current density of VTT.Meanwhile, in addition to
tactile and auditory perception, the visual perception canbemimicked
with the unique advantage and optical-sensitivity performance of
MXene electrode. By calculating the cross-correlation functions, the
memory-computing between multi-sensing is demonstrated, and the
superior colliculus function and artificial stimulus-response system is
also mimicked thanks to the multi-sensing integration property of our
VTT. Finally, a multi-model emotion recognition system based on our
VTT is achieved, which enables 94.05% recognition accuracy of emo-
tion via data-level model fusion. This proof-of-concept work realized
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tactile/auditory/visual sensing-memory-computing within a single
device, which has the potential to decrease the data movement
between sensor, memory, and computing units, and paves the way for
brain-inspired computing paradigms.

Methods
Device fabrication
The prepared ion–gel solution was spin-coated on Si substrate as the
friction layer and insulation layer of TENG and VOFET, respectively.

Fig. 6 | Multi-model emotion recognition system. a The schematic diagram of
multi-model emotion recognition system to recognize the six emotions (anger,
fear, disgust, happiness, surprise, and sadness), where the recognition process
includes information fusion, feature extract, data classification, emotion recogni-
tion. b The pictures extract from database without sound information for emotion
recognition. c The recognition accuracy of different emotion with single visual

model. d The sound extract from database without visual information for emotion
recognition. e The recognition accuracy of different emotion with single auditory
model. f The recognition accuracy of different emotion with multi-model model.
g The recognition accuracy of our multi-model emotion recognition system at
different model.

Table 1 | Accuracy of multi-modal recognition with different model

Multi-model Model Mode Device number Accuracy Ref.

Visual+Auditory Emotion Software / 90.8% 48

Visual +Auditory Emotion Software / 77.5% 49

Visual + Auditory Emotion Software / 85.9% 50

Visual+Auditory Emotion Software / 82.9% 51

Visual+Auditory Emotion Software / 80.3% 52

Visual+Tactile Digit Device Two 90% 53

Visual+Tactile Digit Device Two 86.8% 19

Visual+Tactile Alphabet Letters Device / 92% 24

Visual+Auditory Emotion Device Single 94.05% This work
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The ion–gel solutionwas obtainedbymixedPAN, [Li+TFSI−], EC, andPC
in aweight ratio of 7:1:1:1 and then themixturewasmagnetically stirred
at 500 rpm for 6 h. Then, the 2mg/ml MXenes aqueous solution was
selected as the top electrode and source network electrode of TENG
and VOFET, respectively. Next, the prepared PDVT-10 solution was
spin-coated on the electrode layer as the semiconductor layer, and
then the patterned source and drain electrodes were thermally eva-
porated through a shadow mask. Finally, the fabricated device was
transferred to the thermally evaporated gate electrode as VTT device.

Device characterization
The output performance of TENG was measured by an oscilloscope.
The electrical performance of the synaptic transistor was character-
ized by Keithley 4200. The surface morphology of MXenes was
examined by using scanning electron microscopy (SEM, Verios G4),
transmission electron microscopy (TEM, Tecnai G2 F20). The UV-Vis
absorption spectra of the films were measured by ultraviolet–visible
near infrared spectrophotometer (Shimadzu UV-3600 Plus).

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The codes used for the simulations are available in [https://github.
com/YaqianLiuFZU/NCOMMS-22-33550]47.
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