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Ab initio calculation of real solids via neural
network ansatz

Xiang Li 1 , Zhe Li 1 & Ji Chen 2

Neural networks have been applied to tackle many-body electron correlations
for small molecules and physical models in recent years. Here we propose an
architecture that extends molecular neural networks with the inclusion of
periodic boundary conditions to enable ab initio calculation of real solids. The
accuracy of our approach is demonstrated in four different types of systems,
namely the one-dimensional periodic hydrogen chain, the two-dimensional
graphene, the three-dimensional lithium hydride crystal, and the homo-
geneous electron gas, where the obtained results, e.g. total energies, dis-
sociation curves, and cohesive energies, reach a competitive level with many
traditional ab initio methods. Moreover, electron densities of typical systems
are also calculated to provide physical intuition of various solids. Our method
of extending a molecular neural network to periodic systems can be easily
integrated into other neural network structures, highlighting a promising
future of ab initio solution of more complex solid systems using neural net-
work ansatz, and more generally endorsing the application of machine learn-
ing in materials simulation and condensed matter physics.

Solving themany-body electronic structure of real solids from ab initio
is one of the grand challenges in condensed matter physics and
materials science1. More accurate ab initio solutions can push the limit
of our understanding of many fundamental and mysterious emergent
phenomena, such as superconductivity, light–matter interaction, and
heterogeneous catalysis, to name just a few2. The current workhorse
method is density functional theory (DFT), whose accuracy depends
quite sensitively on the choice of the so-called exchange-correlation
functional and unfortunately there lacks a systematic routine towards
the exact3,4. Other commonly used ab initio quantum chemistry
methods, such as the coupled-cluster and configuration interaction
theories5, can provide more accurate solutions for molecules but face
severe difficulty when applied to solid systems due to their high
computational complexity. Recently, several breakthroughs have been
made in applying these quantum chemistry methods on solids6,7,
driving the study of solid systems towards a new frontier.

Meanwhile, in the last few years, many attempts to tackle the
correlatedwavefunction problem inmolecules ormodel Hamiltonians

using neural network-based approaches have been reported by dif-
ferent groups8–16. The key idea is to use the neural network as the
wavefunction ansatz in quantumMonte Carlo (QMC) simulations. The
stochastic nature of QMC enables a considerably economical time
scaling and efficient parallelization6,17–19. The universal approximation
theorem behind neural network-based ansatz significantly improves
the accuracy of the traditional QMC method. This strategy has been
proved successful in studying small molecules10–13 in the first and
secondquantization, and solids in the secondquantization14. However,
how to apply such neural network ansatz for real solids in continuous
space, andwhether it candescribe the long-rangeelectron correlations
in extended systems remain as open questions.

Here we propose a powerful periodic neural network ansatz for
solids, which combines periodic distance features20 with existing
molecule neural networks10. Based on that, we develop a highly effi-
cient QMC method for ab initio calculation of real solid and general
periodic systemswith high accuracy.We apply ourmethod to periodic
hydrogen chains, graphene, lithium hydride (LiH) crystals, and
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homogeneous electron gas. These systems cover a wide range of
interests, including materials dimension from one to three, electronic
structures from metallic to insulating, and bonding types from cova-
lent to ionic. Standard techniques are employed to reduce finite-size
errors. The calculated dissociation curve, cohesive energy and corre-
lation energy, can be compared satisfactorily with available experi-
mental values and other state-of-the-art computational approaches.
Electron densities of typical systems are further calculated to test our
neural network and explore the underlying physics. All the results
demonstrate that our method can achieve accurate electronic struc-
ture calculations of solid/periodic systems. In parallel to ourwork, refs.
21, 22 also developed periodic versions of neural networks to study the
homogeneous electrongas systemandobtainedhigh-accuracy results.
A more detailed comparison is discussed in the following sections.

Results
Neural network for a solid system
Periodicity and anti-symmetry are two fundamental properties of the
wavefunction of a solid system. The anti-symmetry can be ensured by
the Slater determinant, which has been commonly used as the basic
block in molecular neural networks. We also approximate the wave-
function by two Slater determinants of one spin-up channel and one
spin-down channel,

ψðrÞ=Det" eik�r"u"
molðdÞ

h i
Det# eik�r#u#

molðdÞ
h i

: ð1Þ

In this regard, our ansatz resembles the structure of FermiNet10,11,
whereas other neural network wavefunction ansatz may include extra
terms in addition to the Slater determinants12. Eachdeterminant is then
constructed from a set of periodic orbitals, which inherits the physics
captured by the generalized collective Bloch function formed by a
product of phase factor eik⋅r and collective molecular orbital umol. The
generalized many-body Bloch function incorporates electron correla-
tions and goes beyond single-electron approximation18.

Figure 1 displays more details on the structure of our neural net-
work. Building an efficient and accurate periodic ansatz is the key step
in developing ab initio methods for solids. Here we have followed the

recently proposed scheme of Whitehead et al. to construct a set of
periodic distance features d(r)20 using lattice vectors in real and reci-
procal space (ai,bi),

dðrÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AMAT

p
2π

,A= ða1,a2, a3Þ,

Mij = f 2ðωiÞδij + gðωiÞgðωjÞð1� δijÞ,ωi = r � bi:

ð2Þ

The periodicmetricmatrixM is constructed by periodic functions
f, g, which retain ordinary distances at the origin and regulate them to
periodic ones at far distances, ensuring asymptotic cusp form, con-
tinuity, and periodicity requirement at the same time.

The constructed periodic distance features d(r) can then be fed
into molecular neural networks to form collective orbitals umol. Spe-
cifically, in this work, we represent the molecular networks with
FermiNet10, which incorporates electron–electron interactions. The
inclusion of all-electron features promotes the traditional single-
particle orbitals to the collective ones, and hence the description of
wavefunction and correlation effects can be improved while fewer
Slater determinants are required. In addition, thewavefunctionof solid
systems is necessarily complex-valued, and we introduce two sets of
molecular orbitals to represent the real and imaginary parts of the
solid wavefunction, respectively. The plane-wave phase factors eik⋅r in
Fig. 1 are used to construct the Bloch function-like orbitals, and the
corresponding k points are selected to minimize the Hartree–Fock
(HF) energy.

Based on the variational principle, our neural network is trained
using the variational Monte Carlo (VMC) approach. To efficiently
optimize the network, a Kronecker-factored curvature estimator
(KFAC) optimizer23 implemented by DeepMind team24 is modified and
adopted, which significantly outperforms traditional energy mini-
mization algorithms. Calculations are also ensured by efficient and
massive parallelization on multiple nodes of high-performance GPUs.
More details on the theories,methods, and computations are included
in the Methods section and the supplementary information.

Fig. 1 | Sketch of neural network architecture. The electron coordinates ri are
passed to two channels. In the first one, they build the periodic distance features
d(r) using the periodic metric matrix M and the lattice vectors a, and then d(r)
features are fed into two molecular neural networks, that represent separately the

real and the imaginary part of the wavefunction. In the second channel, ri con-
structs the plane-wave phase factors on a selected set of crystal momentum vec-
tors. The total wavefunctions of solids are constructed by the two channels
following the expression of Eq. (1).
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Hydrogen chain
Hydrogen chain is one of the simplest models in condensed matter
research. Despite its simplicity, thehydrogen chain is a challenging and
interesting system, serving as a benchmark system for electronic
structure methods and featuring intriguing correlated phenomena25.
The calculated energy of the periodic H10 chain as a function of the
bond length is shown in Fig. 2a. The results from lattice-regularized
diffusion Monte Carlo (LR-DMC) and traditional VMC are also plotted
for comparison25. We can see that our results nearly coincide with the
LR-DMC results and significantly outperform traditional VMC (see
Supplementary Table 3). In Fig. 2b, the energy of hydrogen chains of
different atom numbers are calculated for extrapolation to the ther-
modynamic limit (TDL). The shaded bar in Fig. 2b illustrates the
extrapolated energy of the periodic hydrogen chain at TDL from
auxiliary field quantum Monte Carlo (AFQMC), which is considered as
the current state-of-the-art along with LR-DMC. Our TDL result is
comparable with both AFQMC and LR-DMC (see Supplementary
Table 4).

Graphene
Graphene is arguably the most famous two-dimensional system
(Fig. 2c) receiving broad attention in the past two decades for its
mechanical, electronic, and chemical applications26. Here we carry out
simulations to estimate its cohesive energy, which measures the
strength of C-C chemical bonding and long-range dispersion interac-
tions. The calculations are performed on a 2 × 2 supercell of graphene
using twist average boundary condition (TABC)27 in conjunction with
structure factor S(k) correction28 (see Supplementary Fig. 3) to reduce
the finite-size error. The calculated results are plotted in Fig. 2d along
with the experimental value29, and it shows thatour neural network can
dealwith graphene verywell, producing a cohesive energy of graphene
within 0.1 eV/atom to the experimental reference (see Supplementary
Table 6). We also plotted the results with periodic boundary condi-
tions (PBC), namely the Γ point-only result, which deviates from the
experiment data by 1.25 eV/atom.

Lithium hydride crystal
For a three-dimensional system, we consider the LiH crystal with a
rock-salt structure (Fig. 2e), another benchmark system for accurate ab
initio methods6,30,31. Despite consisting of only simple elements, LiH
represents typical ionic and covalent bonds upon changing the lattice
constants. Using our neural network, we first simulate the equation of
the state of LiH on a 2 × 2 × 2 supercell, as shown in Fig. 2f. In addition,
we employ a standard finite-size correction based on Hartree–Fock
calculations of a large supercell (see Supplementary Fig. 5). In Fig. 2fwe
also show the Birch–Murnaghan fitting to the equation of state, based
on which we can obtain thermodynamic quantities such as the cohe-
sive energy, the bulk modulus, and the equilibrium lattice constant of
LiH. As shown in the inset, our results on the thermodynamic quan-
tities agree very well with experimental data30 (see Supplementary
Table 8, 9).

For further validation, we have also computed directly the
3 × 3 × 3 supercell of LiH at its equilibrium length of 4.061Å, which
contains 108 electrons. To the best of our knowledge, this is the largest
electronic system computed using a high-quality neural network
ansatz. The 3 × 3 × 3 supercell calculation predicts the total energy per
unit cell of LiH is −8.160Hartree and the cohesive energy per unit cell is
−4.770 eV after thefinite-size correction (see SupplementaryTable 10),
which is also very close to the experimental value −4.759 eV30.

Homogeneous electron gas
In addition to the solids containing nuclei, our computational frame-
work can also apply straightforwardly to model systems such as
homogeneous electron gas (HEG). HEG has been studied for a long
time to understand the fundamental behavior ofmetals and electronic
phase transitions32. Several seminal ab initio works have reported the
energy of HEG at different densities21,22,32–35. Recently two other works
have extended neural network ansatz to study HEG21,22. Although our
computational framework is independently designed for solids, the
network structure between this work and refs. 21, 22 employ similar
ideas. Different physics-inspired envelope functions and periodic

a

b

c

d

e

f

g

h

Fig. 2 | Calculated results of neural network. Our results are all labeled as Net.
Statistical errors are negligible for the presented data. a H10 dissociation curve is
plotted. b energy of different hydrogen chain sizes N, the bond length of the
hydrogen chain is fixed at 1.8 Bohr. LR-DMC and VMC both use the cc-pVTZ basis
set, and the one-body Jastrow function uses orbitals from LDA calculations. AFQMC
is pushed to complete the basis limit. All the comparison results are taken from ref.
25. c Structure of graphene. d the cohesive energy per atom of Γ point and finite-
size error corrected result is plotted. Experiment cohesive energy is from ref. 29.
Graphene is calculated at its equilibrium length 1.421Å. e Structure of rock-salt

lithium hydride crystal. f Equation of state of LiH crystal is plotted, fitted
Birch–Murnaghanparameters and experimental data are also given. HF corrections
are calculated using cc-pVDZ basis, and EHF

1 is approximated by EHF
N=8. The arrows

denote the corresponding HF corrections. g Plot of homogeneous electron gas
system. h Correlation error of 54-electrons HEG systems at different rs. Correlation
error is defined as [1 − (E − EHF)/(Eref − EHF)] × 100%, and EHF is taken from ref. 33.
DCD, BF-VMC, and TC-FCIQMC results are displayed for comparison, and BF-DMC
data were used as reference33,34.
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features are used in these works, which suit the features of solids and
homogeneous electron gas respectively. We make comparisons
between these networks and ours on HEG, and observe consistent
performance, which further proves the effectiveness of neural
network-based QMC works. In this section, we present the results
calculated on a simple cubic cell containing 54 electrons in a closed-
shell configuration, the largest HEG system studied in this work
(Fig. 2g). More results and comparisons with other works on smaller
systems are discussed in the section “Network comparison” and Sup-
plementary Table 13.

Figure 2h shows our calculated correlation error on the 54-
electrons HEG at six different densities from rs = 0.5 Bohr to 20.0 Bohr.
The state-of-the-art results, namely VMC with backflow correlation
(BF)33, distinguishable cluster with double excitations (DCD)34, and
transcorrelated full configuration interaction quantum Monte Carlo
(TC-FCIQMC)35 are also plotted for comparison, and BF-DMC result is
often used as the reference energy of correlation error. Overall, our
neural network performs very well, with an error of less than 1% in a
wide range of density (see Supplementary Table 14). Generally, the
correlation error increases as the density of HEG decreases when the
correlation effects become larger, which also appears in DCD
calculations.

Electron density
Besides the total energy of solid systems, the electron density is also a
key quantity to be calculated. For example, the electron density is
crucial for characterizing different solids, such as the difference
between insulators and conductors, and the distinct nature of ionic
and covalent crystals. In DFT the one-to-one correspondence between
many-body wavefunction and electron density proved by Hohenberg
and Kohn in 1964 suggests that electron density is a fundamental
quantity of materials. However, an interesting survey found that while
new functionals in DFT improve the energy calculation the obtained
density somehowcan deviate from the exact36. Here, with our accurate
neural network wavefunction, we can also obtain accurate electron
density of solids and provide a valuable benchmark and guidance for
method development.

A conductor features free-moving electrons, which would have
macroscopic movements under external electric fields. In contrast,
electrons are localized and constrained in insulators and cause con-
siderable electron resistance. In Fig. 3, as an example, we show the
calculated electron density of the hydrogen chain at two different
bond lengths. As we can see, for the compressed hydrogen chain (L = 2
Bohr), the electrondensity is rather uniformandhas smallfluctuations.
As the chain is stretched, the electrons are more localized and the
density profile has larger variations. The observation is consistent with
the well-known insulator-conductor transition on the hydrogen chain
by varying the bond length. To measure the transition more

quantitatively, we further calculate the complex polarization Z as the
order parameter for insulator-conductor transition37. A conducting
state is characterized by a vanishing complex polarizationmodulus ∣Z∣
~0, while an insulating state has a finite ∣Z∣ ~1. We can see that the
insulator-conductor transition bond length of the hydrogen chain is
around 3 Bohr according to the calculated results, which is also con-
sistent with the previous studies37.

Ionic and covalent bonds are the most fundamental chemical
bonds in solids. While the physical pictures of these two types of
bonding are very different, they both lie in the behavior of electrons
as the “quantum glue" and electron density distribution is a simple
way to visualize different bonding types. Here we choose to calcu-
late the electron density of the diamond-structured Si, rock-salt
NaCl and LiH crystals at their equilibrium position. They are
representative of covalent and ionic crystals, and have also been
investigated by other high-level wavefunction methods, e.g.,
AFQMC38. Note that in the calculations of NaCl and Si, correlation-
consistent effective core potential (ccECP) is employed to reduce
the cost, which removes the inertia of core electrons and keeps the
behavior of active valence electrons15,39.

The electron density of diamond-structured Si in its ð01�1Þ plane is
plotted in Fig. 4b. We can see that valence electrons are shared by the
nearest Si atoms, forming apparent Si-Si covalent bonds. In contrast,
valence electrons are located around atoms in NaCl crystal as Fig. 4c
shows. All the valence electrons are attracted around Cl atoms, form-
ing effective Na+ and Cl− ions in the crystal. Moreover, the electron
density of LiH crystal is also calculated and plotted in Fig. 4d. LiH
crystal is a moderate system between a typical ionic and covalent
crystal. According to the result, the electrons are nearly equally dis-
tributed near Li and H atoms for our network. Detailed Bader charge
analysis40 manifests the atoms in the crystal become Li0.67+ and H0.67−

ions, respectively (resolution ~0.015Å), which slightly deviates from
the stable closed-shell configuration (see Supplementary Note 7 for
more details).

Network comparison
In refs. 21, 22, neural networks are also used to simulate homo-
geneous electron gas system, employing a different choice of per-
iodic feature function. In Fig. 5 we plot the correlation error
computed on the 14-electrons HEG system, which can be compared
with the results of other works. We can see that all three networks
can go beyond the BF-DMC level for high-density systems. For all
systems tested, our correlation errors are about 2% with the TC-
FCIQMC result as the reference35, whereas the results of refs. 21, 22
are within 1%. It is understandable that the networks of refs. 21, 22
are specially designed for HEG systems, so slightly better accuracy
can be achieved than our network. In their works, multiple phase
factors eik⋅r are used in the constructed orbitals, which improve the
expressiveness of the network. In comparison, our network con-
tains an additional exponential decay term, which simulates the
attraction between atoms and electrons in solids containing nuclei
(see Methods section for more details). Furthermore, the choice of
periodic distance, as well as the domains of the constructed wave-
function (complex or real-valued), are also different in these three
works, which may add differences to their performance. In the
future, it would be interesting to combine the insights learned from
these three works and design a better network ansatz for periodic
systems.

Metallic lithium
We have also carried out preliminary calculations on metallic lithium.
The real metal system remains a notoriously difficult task for accurate
wavefunction approaches7,41–44. The zero gap of metal leads to a dis-
continuity in the Brillouin zone integral. As a consequence, a sig-
nificantly larger simulation cell is required formetals than insulators to

Fig. 3 | Electron density of H10 chains. The horizontal axis is scaled by the cor-
responding bond length. Complex polarization modulus ∣Z∣ as a function of bond
length is plotted in the inset.
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reach the thermodynamic limit. Shortcut approaches to simulate
metals are proposed via employing a special twist angle7,43, whichhelps
to reduce the simulation size and finite-size error. Herewe employ our
network to simulate lithium with a body-centered cubic (bcc) struc-
ture, which is a typicalmetalwith zero gap. A 2 × 2 × 2 conventional cell
of bcc-Li at Γ point is employed (see Supplementary Table 11). In
Supplementary Table 12, we list the total energy and the cohesive
energy computed. As expected, the error in cohesive energy of lithium
with such a limited supercell is larger than in non-metallic solids such
as LiH, and further developments are desired to treat the large finite-
size errors in metal.

Discussion
The construction of a wavefunction for solid systems is a crucial but
unsolved problem in the neural network community. The core
mechanism of our neural network is the use of the periodic distance
feature, which promotes molecule neural networks elegantly to the
corresponding periodic ones and avoids time-consuming lattice
summation. Considering the high-accuracy results obtained in this
work, our neural network canbe further applied to studymore delicate
physics andmaterials problems, such as the phase transitions of solids,
surfaces, interfaces, and disordered systems, to name just a few. Our
ansatz also offers a flexible extension to other neural networks and an
easy integration into traditional computational techniques. The natu-
rally evolved many-body wavefunction from the neural network may
provide more physical and chemical insights into emergent phenom-
ena of complex materials.

For further development of neural network-based QMC, the
most crucial task is to enlarge its simulation size while retaining a

reasonable accuracy, which allows a more accurate simulation of
metals and high-temperature superconductors. Employing pseu-
dopotential is helpful to enlarge the simulation size15, while a better
solution is a more efficient neural network, and related works are
under progress.

Methods
Supercell approximation
Simulating a solid system requires solving the Schrödinger equation of
many electrons within a large bulk. Supercell approximation is usually
adopted to simplify the problem, considering a finite number of
electrons and nuclei with periodic boundary conditions, whose
Hamiltonian reads

ĤS =
X
i

� 1
2
Δi +

1
2

X0
LS ,i,j

1
∣ri � rj +LS∣

�
X
LS ,i,I

Z I

∣ri � RI +LS∣
+
1
2

X0
LS ,I,J

Z IZ J

∣RI � RJ +LS∣
,

ð3Þ

where ri denotes the spatial position of ith electron in the supercell.RI,
ZI are the spatial position and charge of the Ith nucleus and {LS} is the
set of supercell lattice vectors, which is usually a subset of primitive
cell lattice vectors {Lp}. In order to simulate the real environments of
electrons in solids, the interactions between the particles and their
images are also included in ĤS, and the prime symbol in summation
means i = j terms are omitted for LS =0.

Supercell Hamiltonian ĤS is invariant under the translation of
any electron by a vector in {LS} as well as a simultaneous translation of

Si

NaCl

LiH

a b

c d

Fig. 4 | Electron density of solids. a Structures of solids, where the lattice planes
for plotting electron densities are indicated. b Electron density of diamond-
structured Si in its (01�1) plane, ccECP[Ne] is employed, and the bond length of Si

equals 5.42Å. c Electron density of NaCl crystal in its xy-plane, ccECP[Ne] is
employed, and the bond length of NaCl equals 5.7Å. d, the electron density of LiH
crystal in its xy-plane, and the bond length of LiH equals 4.0Å.
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all-electrons by a vector in {Lp}. As a consequence, two periodic con-
ditions are required for the ground-state wavefunction ψ45,

ψðr1 +Lp, . . . , rN +LpÞ= expðikp � LpÞψðr1, . . . , rNÞ,
ψðr1 +LS, . . . , rNÞ= expðikS � LSÞψðr1, . . . , rNÞ,

ð4Þ

where kS, kp denote the momentum vectors reduced in the first Bril-
louin zone of the supercell and the primitive cell, respectively. Eq. (4)
and the anti-symmetry condition together form the fundamental
requirements for ψ. As the size of the supercell increases, simulation
results gradually converge to the thermodynamic limit of a real solid
system.

Wavefunction ansatz
In conventional QMC simulation of solids, Hartree–Fock type wave-
function ansatz composed of Bloch functions is often used, which
reads

ψHF
kS ,kp

ðrÞ=Det

eik1 �r1uk1
ðr1Þ � � � eikN �r1ukN

ðr1Þ
� �
� �
� �

eik1 �rN uk1
ðrNÞ � � � eikN �rN ukN

ðrNÞ

������������

������������
: ð5Þ

In order to satisfy Eq. (4), ki in the determinant should lie on the
grid of supercell reciprocal lattice vectors {GS} offset by kS within the
first Brillouin zone of the primitive cell. Moreover, uk functions in Eq.
(5) should satisfy the translation invariant condition by the primitive
cell lattice vectors,

ukðr+LpÞ=ukðrÞ: ð6Þ

Following the strategy of FermiNet10, Bloch functions in Eq. (5) can
be promoted with collective distances,

eik�ri ukðriÞ ! eik�ri ukðri; r≠iÞ, ð7Þ

where r≠i denotes all the electron coordinates except ri. These col-
lective orbitals are constructed to achieve the equivalence of electron
permutations P,

Pi,juki
ðrj ; r≠jÞ=ukj

ðri; r≠iÞ, ð8Þ

which combined with the Slater determinant ensures the anti-
symmetry nature of electrons. Moreover, we use the periodic distance
features d(r) in Eq. (2) to substitute ordinary ∣r∣ in themolecular neural

network. The periodic functions f, g used in Eq. (2) read

f ðωÞ = ∣ω∣ 1� ∣ω=π∣3

4

 !
,

gðωÞ = ω 1� 3
2
∣ω=π∣+

1
2
∣ω=π∣2

� �
,

ð9Þ

and their arguments ω are reduced into [−π, π]. Eq. (6) can then
be satisfied without causing discontinuity20. The constructed
periodic features {∑ig(ωi)ai, d(r)} are substituted into FermiNet10

to build a periodic wavefunction. Specifically, electron-atom
features he and electron–electron features he,e0 are constructed
as follows,

he = Σ3
i= 1gðωi

e,I Þ api ,dðωe,I Þ
n o

,

he,e0 = Σ3
i= 1gðωi

e,e0 Þ aSi ,dðωe,e0 Þ
n o

,
ð10Þ

where ωe,I ,ωe,e0 are defined as

ωe,I = ðre � RI Þ � bp
1 ,b

p
2,b

p
3

� �
,

ωe,e0 = ðre � re0 Þ � bS
1 ,b

S
2,b

S
3

n o
,

ð11Þ

and superscripts p, S denote the primitive cell and supercell respec-
tively. A permutation equivalent feature fαe are further constructed
from he,he,e0 ,

fαe = concatðhe,g
",g#,gα,"

e ,gα,#
e Þ, ð12Þ

where α denotes the spin index (↑, ↓). g↑, g↓ and gα,"
e ,gα,#

e read

ðg",g#Þ = 1
n"
X
e

h"
e ,

1
n#
X
e

h#
e

 !
,

ðgα,"
e ,gα,#

e Þ = 1
n"
X
e0

hα,"
e,e0 ,

1
n#
X
e0

hα,#
e,e0

 !
:

ð13Þ

fαe and he,e0 are subsequently substituted into a series of fully
connected layers recursively

hl + 1,α
e = tanhðVl � f l,αe +blÞ +hl,α

e ,

hl + 1,α,β
e,e0 = tanhðWl � hl,α,β

e,e0 + clÞ +hl,α,β
e,e0 ,

ð14Þ

where l denotes the number of layers, and {Vl, bl}, {Wl, cl} denote
corresponding weight and bias of l-layer.

Functions u in Eq. (7) are built using the hL
e from the last L-layer,

u=OrbRe � hL
e + i×Orb

Im � hL
e , ð15Þ

where OrbRe,Im denote the weight parameters of the real part and the
imaginary part respectively.

Moreover, u function is multiplied by an additional phase factor
expðik � rÞ, whichmimics Bloch functions and encodes the occupied k-
point information from HF calculation. Inspired by the tight-binding
model in solid physics, a periodic-generalized envelope term
exp½�dðrÞ� is also added to the molecule orbitals, which considers an
attractive interaction effect between atoms and electrons. The final
molecule orbitals ϕ reads

ϕðri; r≠iÞ= expðik � riÞ exp½�dðriÞ�uðri; r≠iÞ: ð16Þ

For an overall sketch of the neural network, see sec-
tion “Pseudocode of network”. Note that the distance between elec-
trons and nuclei is omitted for the HEG system since it does not
contain any nucleus. Specific hyperparameters of each system are lis-
ted in Supplementary Note 1.

Fig. 5 | Correlation error of 14-electrons HEG system at different rs. Correlation
error is defined as [1 − (E − EHF)/(Eref − EHF)] × 100%. WAP-Net refers to ref. 21 and
FermiNet-HEG refers to ref. 22. BF-DMC results33,34 are displayed for comparison,
and TC-FCIQMC data were used as reference35.
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Pseudocode of network
For clarity, the pseudocode of network reads below:

Require: electron positions fr"1 , � � � , r"n" , r
#
1 , � � � , r#n# g

Require: nuclear positions {RI} in the primitive cell
Require: lattice vector fap,S1 , ap,S2 , ap,S3 g of primitive cell and
supercell
Require: reciprocal lattice vector fbp,S

1 ,bp,S
2 ,bp,S

3 g of primitive cell
and supercell
Require: occupied {ki} points offered by Hartree–Fock method
For each electron e, atom I:

ωe,I = ðre � RI Þ � fbp
1 ,b

p
2,b

p
3g

ωe,e0 = ðre � re0 Þ � fbS
1 ,b

S
2,b

S
3g

End For
For each electron e:

he = fΣ3
i= 1gðωi

e,I Þapi ,dðωe,I Þg
he,e0 = fΣ3

i = 1gðωi
e,e0 ÞaSi ,dðωe,e0 Þg

End For
For each layer l:

gl," = 1
n"
P

eh
l,"
e

gl,# = 1
n#
P

eh
l,#
e

For each electron e, spin α:
gl,α,"
e = 1

n"
P

e0h
l,α,"
e,e0

gl,α,#
e = 1

n#
P

e0h
l,α,#
e,e0

f l,αe = concatðhl,α
e ,gl,",gl,#,gl,α,"

e ,gl,α,#
e Þ

hl + 1,α
e = tanhðVl � f l,αe +blÞ+hl,α

e
hl + 1,α,β
e,e0 = tanhðWl � hl,α,β

e,e0 + clÞ+hl,α,β
e,e0

End For
End For
For each orbital i:

For each electron e, spin α:
uα
i,e =Orb

Re
i,α � hL

e + i×Orb
Im
i,α � hL

e
pα
i,e = expðiki � rαe Þ

enveαi,e =
P

Iπ
I,α
i exp½�σI,α

i dðωe,I Þ�
ϕα

i,e =p
α
i,eu

α
i,eenve

α
i,e

End For
End For
ψ=Det½ϕ"�Det½ϕ#�

Neural network optimization
Parameters θ within the neural network can be optimized to minimize
the energy expectation value 〈El〉, and the gradient ∇θ〈El〉 reads

∇θhEli=Re½hEl∇θ lnψ*i � hElih∇θ lnψ
*i�,

El =ψ
�1ĤSψ,

ð17Þ

where El denotes the local energy of neural network ansatz ψ. Besides
energy minimization, stochastic reconfiguration optimization46 has
also been widely adopted and proved to be much more efficient,
whose gradient reads

Grad= F�1∇θhEli,

Fij = Re
∂ lnψ*

∂θi

∂ lnψ
∂θj

* +
� ∂ lnψ*

∂θi

* +
∂ lnψ
∂θj

* +" #
:

ð18Þ

In thiswork,weadopt amodifiedKFACoptimizer, which approximates
F as

F = Re
∂ lnψ*

∂vecðWlÞ
∂ lnψT

∂vecðWlÞ

* +
� ∂ lnψ*

∂vecðWlÞ

* +
∂ lnψT

∂vecðWlÞ

* +" #

= Re hðal � e*l Þðal � elÞT i � hðal � e*l Þihðal � elÞiT
h i

≈Re hala
T
l i � he*l eTl i

� 	
,

ð19Þ

where Wl denotes the weight parameters of layer l, and vec means
vectorized form. al, el denote the activation and sensitivity of layer l
respectively. Note that activation al is always real-valued, which
explains the absence of conjugation of al in the second line. The first
term in the bracket of Eq. (19) is approximated as the Kronecker pro-
duct of the expectation values, and the second term is omitted for
simplification.

Twist average boundary condition
TABC is a conventional technique to reduce the finite-size error due to
the constrained size of the supercell27. It averages the contributions
from different periodic images of the supercell and improves the
convergence of the total energy. The formula reads

ETABC =
ΩS

ð2πÞ3
Z

1:B:Z:
d3kS

ψ*
kS
ĤSψkS

ψ*
kS
ψkS

, ð20Þ

where 1.B.Z. denotes the first Brillouin zone of supercell and the inte-
gral is practically approximated by a discrete sumof aMonkhorst-Pack
mesh (see Supplementary Note 3.2 for more details).

Structure factor correction
Finite-size error can be further reduced via the structure factor S(k)
correction28, which is usually calculated to correct the exchange-
correlation potential Vxc and the formula reads

ΔV xc

Ne
=

2π
ΩS

lim
k!0

SðkÞ
k2 ,

SðkÞ= 1
Ne



hρðkÞρ*ðkÞi � hρðkÞihρ*ðkÞi

�
,

ð21Þ

where limk!0 is practically estimated via interpolation (see Supple-
mentary Note 3.4 for more details).

Empirical correction formula
Empirical formulas are also commonly employed to reduce the finite-
size error18, one of which reads

E1 = ENet
N + EHF

1 � EHF
N

� 
: ð22Þ

The simulation size of high-accuracy methods is usually limited
due to high computational costs. Hence methods with a much more
practical time scale, such as HF, is usually used to give a posterior
estimation of the finite-size error. All the results of LiH are corrected
using this empirical formula with HF results in a cc-pVDZ basis (see
Supplementary Note 4.3 for more details).

Electron density analysis
Electron density ρ(r) is defined as

ρðrÞ=N
Z

d3r2 � � �d3rN ∣ψðr,r2, � � � ,rNÞ∣2, ð23Þ

and it’s practically evaluated by accumulating Monte Carlo samples of
electrons on auniformgridover the simulation cell. As for the complex
polarization Z, it is defined as37

Z = exp i
X
i

2π
L

rki

 !* +
, ð24Þ

where r∥ denotes the projection of electron coordinate along the chain
direction. Moreover, Bader charge is employed to estimate the charge
partition on each atom40. The convergence test of Bader charge is
shown in the Supplementary Fig. 8.
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Workflow and computational details
This work is developed upon open-source FermiNet47 and PyQMC48 on
Github, deep learning framework JAX49 is used which supports flexible
and powerful complex number calculation. Ground-state energy cal-
culations are performed with all-electrons. Diamond-structured Si and
NaCl crystal are simulated with ccECP[Ne]39. The neural network is
pretrainedbyHartree–Fock ansatz, obtainedwith PySCF software50. All
the used k points are the occupied k points from Hartree–Fock cal-
culation usingMonkhorst-Packmesh offset by kS in cc-pVDZbasis, and
themesh size is the sameas the supercell. All the expectation values for
distribution ∣ψ∣2 are evaluated via the Monte Carlo approach, and then
the energy and wavefunction is optimized using the modified KFAC
optimizer24 (see Supplementary Figs. 1, 2, 4, 6, 7). The Ewald summa-
tion technique is implemented for the lattice summation in energy
calculation. After training is converged, energy is calculated in a
separate inference phase.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in the Supplementary
Information.

Code availability
The concrete code of thiswork is developed onGithub (https://github.
com/bytedance/DeepSolid).
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