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Provably-secure quantum randomness
expansion with uncharacterised homodyne
detection

ChaoWang 1,4, IgnatiusWilliamPrimaatmaja1,2,4, Hong JieNg 1, Jing YanHaw1,
Raymond Ho1, Jianran Zhang1, Gong Zhang1 & Charles Lim 1,2,3

Quantum random number generators (QRNGs) are able to generate numbers
that are certifiably random, even to an agentwhoholds some side information.
Such systems typically require that the elements being used are precisely
calibrated and validly certified for a credible security analysis. However, this
can be experimentally challenging and result in potential side-channels which
could compromise the security of the QRNG. In this work, we propose, design
and experimentally demonstrate a QRNG protocol that completely removes
the calibration requirement for the measurement device. Moreover, our pro-
tocol is secure against quantum side information. We also take into account
the finite-size effects and remove the independent and identically distributed
requirement for the measurement side. More importantly, our QRNG scheme
features a simple implementation which uses only standard optical compo-
nents and are readily implementable on integrated-photonic platforms. To
validate the feasibility and practicability of the protocol, we set up a fibre-
optical experimental system with a home-made homodyne detector with an
effective efficiency of 91.7% at 1550 nm. The systemworks at a rate of 2.5 MHz,
and obtains a net randomness expansion rate of 4.98 kbits/s at 1010 rounds.
Our results pave the way for an integrated QRNG with self-testing feature and
provable security.

Random number generators (RNGs) are the basic building block of
many computing methods and digital solutions in use today, e.g., in
simulation, optimisation, cryptography, and gambling. Ideally, the
output of an RNG should be uniform and unpredictable. The first
property requires all outputs are equally likely and the second stipu-
lates that no observer can do better than a random guess even with
side information about the device. Indeed, the latter property is
especially importantwhen dealingwith digital technologies like secure
communications, block-chain, and digital lottery, where privacy and
information security are critical.

Quantum processes are excellent sources of randomness due to
their intrinsic probabilistic nature. In particular, by tapping on the
uncertainty of quantum measurements, one can, in principle, devise
quantum random number generators (QRNGs) which are perfectly
uniform and unpredictable1–3. The standard approach uses a model-
based approach, where the underlying probability model is based on
the certain trusted quantum measurement process. However, while
this approach presents a straightforward way to quantify the amount
of extractable randomness, it is prone to implementation deviations
(for a concrete example, we refer the reader to ref. 4). In particular, the
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model may not capture the actual physical process due to unexpected
device changes and the amount of extractable randomness can be
overestimated. Crucially, this could lead to catastrophic outcomes
when the device is used for cryptography, for example.

An elegant solution is to consider new forms of QRNGs which
provide certifiable randomness based on minimal assumptions about
the underlying quantum measurement process. This is made possible
by exploiting the unique correlations established by quantum mea-
surements on entangled systems. The best example is the Device-
Independent (DI) QRNG1,5–9. However, in view of the demanding
experimental requirements for a loophole-free observation of non-
local correlations5,7,10, it is generally believed that the first practical
application of such DI QRNGs will likely be Randomness Beacons7,8.

There are other QRNGs that make reasonable assumptions about
the system and require only a partial characterisation of the device.
These schemes provide a system performance improvement in terms
of the implementation complexity and the randomnumber generation
rate when compared to DI QRNGs. Due to the partial characterisation
feature, this class of QRNGs is often called semi-DI QRNG. A compar-
ison of different QRNG studies is listed in Table 1.

For practical semi-DI randomness generations, the following fea-
tures are highly desirable in practical applications. Firstly, the security
of the randomness generation should rely on only a few justifiable
assumptions on the systemoperation and its critical components. This
would ensure that these QRNGs remain secure even in the presence of
unexpected device changes. Secondly, it should also provide a rela-
tively high randomness generation rate. Finally, the QRNG should be
cost-effective and have small footprints. The latter would be essential
in a wide range of applications: from handheld devices to Internet-of-
Things.

In this regard, balanced homodyne detection offers distinct
advantages in practical randomness generation. Firstly, as balanced
homodyne detectors simply consist of a pair of photodiodes and some
electrical components, they are readily implementable on integrated-
photonic platforms11–14. Hence, QRNGs that are based on homodyne
detectors have a unique practical advantage in terms of the cost-
effectiveness, compactness and system stability. Secondly, homodyne
detection works at room temperature and no additional cooling is
needed. This, again, reduces the system complexity and eliminates the
extra requirement for space consumption.

Unfortunately, due to many practical limitations, real homodyne
detectors often deviate from an ideal quadrature measurement –

which is the standard theoretical model for a balanced homodyne
detection. Firstly, modelling homodyne detectors as perfect quad-
rature measurements of the input optical field requires the local
oscillator (LO) to operate at the high intensity limit15,16, which may not
be the case in the actual implementation. In addition, implementing
the perfect quadrature measurement would also require perfect pho-
ton number subtraction which is non-trivial in the presence finite
common-mode rejection ratio (CMRR) and imbalance drifts. More-
over, in contrast to perfect quadrature measurements, practical
homodyne detectors are subjected to electronic noise, LO intensity
fluctuations, finite detection range, etc. While there are theoretical
studies on how to account for these imperfections in the model (for
example, the standard theoretical treatment for electronic noise is to
model it as an independent noise17,18 with Gaussian and stationary
nature18,19), the model demands an accurate characterisation of each
imperfection. Not only is this task technically demanding, there is
actually a danger of false precision with the model-based approach as
the quality of the homodyne detector may degrade over time. In that

Table 1 | Features of our proposed QRNG protocol as compared to the features of existing protocols

On-chip Uncharacterised Uncharacterised Finite-size Remove i.i.d. Side-Information
References compatibility Categories source measurement analysis assumption considered

Refs. 56,57 ✘ TD ✘ ✘ ✘ ✘ none

Refs. 18,20,58,59 ✓ TD ✘ ✘ ✘ ✘ classical

Refs. 19,60 ✓ TD ✘ ✘ ✓ ✓a quantum

Refs. 61–63 ✓ Semi-DI ✓b ✘ ✓ ✘ quantum

Ref. 64 ✘ Semi-DI ✓ ✘ ✓ ✓ quantum

Refs. 65,66 ✓ Semi-DI ✓ ✘ ✓ ✓ quantum

Ref. 67 ✘ Semi-DI ✓b ✓ ✓ ✓ classical

Ref. 68 ✓ Semi-DI ✓b ✓ ✓ ✓ classical

Ref. 69 ✓ Semi-DI ✓b ✓ ✘ ✘ classical

Refs. 70,71 ✘ Semi-DI ✓c ✓ ✘ ✘ classical

Ref. 72 ✓ Semi-DI ✓b ✓ ✓ ✓d classical

Ref. 73 ✘ Semi-DI ✓e ✓e ✓ ✘ classical

Refs. 74–76 ✘ Semi-DI ✘ ✓ ✘ ✘ classical

Ref. 5 ✘ DI ✓ ✓ ✓ ✓ quantumf

Ref. 8 ✘ DI ✓ ✓ ✓ ✓ classical

Refs. 6,7,9 ✘ DI ✓ ✓ ✓ ✓ quantum

This work ✓ Semi-DI ✘ ✓ ✓ ✓ quantum

In this Table, protocols that are compatiblewith on-chip implementation refer to protocols which are built on photodiodes, e.g., homodyne detection, which had been implemented on the Photonic
Integrated Circuits (PICs) (for example, see refs. 11–14). On-chip single-photon detection has also been demonstrated recently80,81 but it has not beenwidely adopted yet. Moreover, cooling is typically
required in single-photon detection to achieve a desirable dark count level, which leads to additional system complexity and space usage.
Semi-DI Semi-Device-Independent scheme, DI Device-Independent scheme.
a By assuming Gaussianity and stationarity of the noisy processes.
b With additional assumption on the input energy.
c With assumption on the overlap of the states.
d With additional assumptions of i.i.d. source and channel.
e With additional assumption on the system dimension.
f The randomness certification presented in this paper contained someerrors as clarified in subsequent papers77,78. The experimentwas then re-analysed in ref. 79where itwas shown that randomness
against quantum side information was indeed attained.
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case, this would invalidate the model and hence, the randomness
generated by the homodyne detection may be overestimated.

Additionally, it has been pointed out that finite bandwidths of
practical homodyne detector may result in correlations among suc-
cessive rounds of the QRNG operation19,20. In this case, the experi-
mental rounds in practice would be unlikely to exhibit a completely
independent and identically distributed (i.i.d.) behaviour. In particular,
comparing to the quantum state generation part, the homodyne
detector with a shot-noise-limited performance generally has a more
restricted working bandwidth17,21. Therefore, it is of great interest to
devise a randomness certification that can mitigate (if not fully
remove) the i.i.d. assumption for the system operation. Moreover, as
any QRNG protocols have to be executed in a finite number of rounds,
finite-size effects (such as statistical fluctuations) should be taken into
consideration. This is especially important for semi-DI and DI QRNGs,
whose randomness certification relies on experimental statistics,
which necessarily entail statistical fluctuations.

In this work, we propose a novel semi-DI QRNGprotocol based on
homodyne detection and certify its security against quantum side
information. Given the challenges with modelling the homodyne
detector, our proposed framework treats it as a black-box quantum
measurement which sidesteps the demanding characterisation
requirement of the model-based approach. Importantly, our frame-
work does not require any i.i.d. assumption on the measurement
device which protects the security of the protocol against potential
correlations shared between different rounds. Moreover, the pro-
posed protocol is composably secure22–24, which guarantees that the
random numbers produced by our protocol can be securely used for
cryptographic applications. Furthermore, we show that our protocol
can producemore randomness than that consumed (for choosing the
settings for the devices) in the protocol. As such, our protocol is a
quantum randomness expansion (QRE) protocol.

Results
Protocol description
We shall now present our proposed randomness generation protocol.
The protocol that we consider is a prepare-and-measure (P&M) pro-
tocol with an uncharacterised measurement device. To illustrate the
protocol, it is convenient to consider a device that consists of two
parts: a trusted source of quantum states (which we assume to be
operated by Alice) and an uncharacterised measurement device
(which is operated by Bob). As such, the protocol that we consider is a
self-testing protocol in which the working of Bob’s measurement

device is not assumed a priori, but could be verified during the pro-
tocol using the spot-checking scheme in which every round is ran-
domly assigned to be a generation or test round.

To that end, suppose that during the test round, the deviceplays a
P&M game G. A P&M game can be thought of as a P&M analogue of the
more well-knownnon-local games in the context of Bell nonlocality25,26

and device-independent protocols. In a P&M game, Alice receives a
random input x from a pre-defined set X and then prepares the state
∣ψx

�
from the set of states SX . Similarly, Bob receives an input y from a

pre-defined set Y and uses it as his measurement setting. Let us sup-
pose that Alice and Bob receive those inputs with probability q(x, y)
which is fixed for a given game. For each pair of inputs x and y, the
gameG defines thewinning outcomebxy∈ {0, 1}. For a given round, the
device wins the game when Bob outputs the winning outcome;
otherwise, the device loses the game. In the Methods section, we
present a systematic method to choose the winning outcome bxy as
well as the probability of choosing each pair of inputs q(x, y).

The protocol that we propose is given in Box 1
In the experiment reported in this work, we consider

X = f0, 1, 2, 3g, the set of states SX = f∣αeixπ=2� : x 2 Xg and Y = f0, 1g.
Furthermore, the honest implementation corresponds to homodyne
detection with its LO’s phase set to φ =π/2 when y =0 and φ = 0 when
y = 1. The measurement device would then output b = 0 if the result of
thehomodynemeasurement is positive; else, itwould outputb = 1. The
quantum states in this case correspond to quadrature phase shift
keying (QPSK) modulation format, which is compatible with standard
optical modulation techniques. Remarkably, it is straightforward to
generalise the protocol to include more states or more measurement
settings, e.g. quadrature amplitude modulation (QAM).

Security framework
Weshall now consider the security of our protocol.Here, we consider a
framework in which the measurement device is uncharacterised and
hence, when analysing the security of the proposed protocol, we shall
treat Bob’s measurement as a set of abstract measurement operators.
In particular, we do not assume that Bob’s measurement device
behaves independently and identically for each round.

Likewise, we do not assume that the quantum channel faithfully
transmits the quantum states sent by Alice, nor it behaves inde-
pendaently and identically for each round. As we do not limit the
dimension of the Hilbert space of the channel output, we can model
any quantum channel by an isometry U which preserves the inner-
product of the states prepared by Alice’s trusted source.

BOX 1

Our proposed QRNG protocol
Arguments:
n—the number of rounds
γ—testing probability
X—the set of possible inputs for Alice
SX—the set of states that Alice can prepare
Y—the set of possible inputs for Bob
G= fðbxy,qðx, yÞÞ : x 2 X , y 2 Yg—the P&M game
ω—the expected probability of winning the game G
δ—the width of the confidence interval for the winning probability
Ext—a strong quantum-proof seeded extractor
S—random seed for randomness extraction
Protocol:

1. For each round i∈ [n]: do Step 2 to 4
2. Set Ci =⊥ and randomly choose Ti∈ {0, 1} such that

Pr[Ti = 1] = γ.

3. If Ti = 0, set Xi = 0 and Yi = 0. Else, set Xi = x 2 X and Yi = y∈ {0, 1}
with probability q(x, y).

4. Alice prepares the coherent state ∣ψXi
i 2 SX depending on her

input Xi. Bob sets his measurement setting to Yi and records the
outputBi∈ {0, 1}. If Ti = 1, theywould setCi = 0 ifBi ≠bXiYi

andCi = 1
if Bi =bXiYi

.
5. If ∣fi : Ci =0g∣>nγð1� ω+δÞ, then abort the protocol. Otherwise,

we accept the protocol execution and preserve the data for fur-
ther processing.

6. Apply a quantum-proof strong seeded extractor Ext using a
uniformly chosen randomseedS. Denote the outputZ = Ext(B,S).
Since a strong extractor is used, the protocol outputs the con-
catenation K = (Z,S).
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Additionally, we also allow the adversary (or any agent trying to
guess the output of the protocol), Eve, to have some pre-shared
entanglement with Bob’s uncharacterised device, but due to some
technicality regarding the method used to certify the generated ran-
domness, we assume that Eve does not obtain additional quantum side
information when the protocol is executed. This assumption can be
well justified for the setting considered inQRNGprotocolswhere Alice
and Bob are both inside the same secure location.

Finally, we also assume that the device is equipped with trusted
and private random seed that is used to choose the inputs for each
round as well as to perform seeded extraction. For a detailed discus-
sion on the assumptions we make in the randomness certification, we
refer the readers to the Methods section ‘Randomness certification’.

The security of our protocol relies on the quantum-proof strong
seeded extractor which guarantees that whenever the protocol is not
aborted, the output string is close to an ideal random bit-string that is
uniformly random and independent from any pre-shared quantum
information held by the adversary as well as the initial random seed.
Hence, we have to certify that our protocol produces enough ran-
domness (measured in terms of the conditional smooth min-entropy
of the raw string) before applying the randomness extraction. To that
end, we adopt the framework of entropy accumulation theorem
(EAT)27–30. Informally, the EAT states that when our protocol is not
aborted, the conditional smooth min-entropy of the raw string given
Eve’s side information and the random inputs is at least

nhðω, δÞ �Oð ffiffiffi
n

p Þ: ð1Þ

Importantly, the leading term which scales linearly with the
number of rounds n can be evaluated by analysing a single-round of
the protocol. The constant of proportionality h(ω, δ) as well as the
correction term Oð ffiffiffi

n
p Þ can then be computed using a semi-definite-

programming (SDP) technique introduced in ref. 31. More precisely, we
have the following theorem.

Theorem 1. (Entropy accumulation theorem (asmodified from Lemma
III.3 of ref. 30)) Let Ω denote the event in which our QRNG protocol is
not aborted and ρΩ be the final state conditioned on this. Let f(1−ν) be
an affine lower bound on the single-round conditional von Neumann
entropy for any strategy that wins the game G with probability ν. For
fixed parameters ϵs, ϵEA, β∈ (0, 1), then either our QRNG protocol
aborts with probability greater than 1−ϵEA or

Hϵs
minðB∣T,X,Y, EÞρΩ >nf ð1� ω+ δÞ � 1

β
1� 2log2ðϵEAϵsÞ
� �

� n βV ðγ, f Þ+β2Kðβ, γ, f Þ
h i

:

ð2Þ

The explicit expressions for the functions f,V,K can be found in the
“Methods” section ‘Randomness certification’.

As Theorem 1 holds for any choice of β, as we can see in the
Methods section, we can choose β / 1=

ffiffiffi
n

p
such that the correction

termwould scalewith
ffiffiffi
n

p
as claimed earlier.We refer to the parameter

ϵEA as the entropy accumulation error. As can be seen fromTheorem 1,
it quantifies our tolerance of encountering an event in which the
protocol is not aborted but the lower bound (2) on the accumulated
entropy does not hold.

Finally, with the lower bound on the conditional smooth min-
entropy being established, we can use the quantum leftover hash
lemma32,33 tofind the extractable lengthof theoutput stringZ, denoted
by ℓ. As the extractor seed S is part of the protocol output K, the
expected net randomness expansion rate rnet is then defined as

rnet : =
‘� ‘in

n
, ð3Þ

where ℓin is the expected amount of randomness used during the
protocol to choose the settings of the device.

The details of randomness certification, the estimation of the
input randomness can be found in “Methods” section ‘Randomness
certification’ and ‘Input randomness’, respectively.

Experimental implementation
In order to verify the feasibility of the proposed protocol, we set up a
fibre-optic experimental system. The schematic diagram is shown
in Fig. 1a.

Our experimental system is composed of two main parts, quan-
tum state generation and quantum state measurement. In the quan-
tum state generation, a laser diode emits continuous-wave (c.w.) laser
with a central wavelength of 1550 nm and a linewidth of 50 kHz, which
is split into twopaths, one for quantumstate preparation and the other
as Local Oscillator (LO) for homodyne detection. In the signal path, an
Intensity Modulator (IM) first curves the c.w. laser into pulses with
pulse width of 4 ns each, for defining the temporal mode of the
quantum states. Besides, the IM could also perform the intensity
modulation for QAM-16 state generation. A Phase Modulator (PM)
modulates the phase of the quantum states. Thereafter, the optical
signals are attenuated to single-photon energy level with an optical
attenuator, to finally generate the QPSK quantum states f∣αeixπ=2�g
where x∈ {0, 1, 2, 3}, whose constellation diagram is shown in Fig. 1b.

In the quantum state measurement, a homodyne detector is
deployed. To maximise the generated randomness, we developed a
high-efficiency and low-noise fibre-coupled homodyne detector. To
minimise the optical loss, we first adopt a pair of high-efficiency pho-
todiodes (PDs) for photondetection.Moreover,we apply anti-reflection
coated graded-index (GRIN) lens for the light coupling from optical
fibre to the PDs. The overall efficiency of the PD including the coupling
loss is measured to be 98.3% and 98.8%, respectively. The signal and LO
are interfered in a balanced polarisationmaintaining fibre-optical beam
splitter (BS) before detection, providing good mode matching for a
stable and efficient interference. After a careful balancing of the two
arms, the photocurrents are subtracted and then amplified by a low-
noise amplifier. The characterisation results of our homodyne detector
are shown in Fig. 1 (d, e). The 3dBbandwidthof our homodynedetector
is ~72 MHz, and the clearance (shot noise to electronic noise ratio) is
measured to be 16.94 dB with a 10 mW LO. Taking all the factors into
consideration, the total effective efficiencyof ourhomodynedetector is
characterised to be 91.7%. The details of homodyne characterisation
and modelling are provided in the “Methods” section ‘Homodyne
detector modelling and characterisation’.

In the actual experiment, the settings for quantum state pre-
paration and measurement need to be optimised for a high net ran-
domness expansion rate. For example, the randomness generation
round could be chosen for most of the time (with a small testing
probability γ) to obtain theoptimal generation rate. This raises an issue
with our AC-coupled systems such as the homodyne detector and the
amplifiers for driving the modulators, where a DC-balanced data
streams are preferred to eliminate potential signal distortions34. To
mitigate this, we apply a complementary modulation scheme in our
experiment where the protocol based on QPSK modulation is per-
formed, as shown in Fig. 2a. With our scheme, the quantum state
preparation is performed on two-mode coherent states, which are
based on the two successive temporal modes. In this case, the mod-
ulation patterns for the state preparation and LO phase setting are
naturally DC-balanced with any settings x and y. Besides, the two
temporalmodes aremodulatedwith aπphase difference, while the LO
phase settings arekept the same. As such, the expectationvalues of the
individual quadrature measurements of the two temporal modes
possess opposite values. Hence, the outputs of the homodyne detec-
tor are also naturally DC-balanced for all experimental settings. The
quadrature measurement of the two-mode coherent state in this case
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is qt =
1ffiffi
2

p ðqe � qlÞ, where qe and ql are the quadrature measurement
valueof the two individual temporalmodes. Formore details about the
two-mode coherent states, please refer to the “Methods” section ‘Two-
mode coherent state’.

To faithfully implement the QRNG protocol, a fixed phase refer-
ence between the signal and LO is required. To this end, a feedback
control for phase locking (not shown in Fig. 1a) is deployed, by ana-
lysing the statistics of the reference signals as well as the signals for
QRNG execution. The illustration of the time frame configuration of
our QRNG is shown in Fig. 2b.

At this point, we emphasise that since our QRNG protocol does
not require any characterisation of the measurement device (i.e., the
homodyne detector), our efforts in loss and noise reduction, phase
locking, etc. do not affect the soundness of the randomness certifica-
tion, but will certainly improve the performance in terms of random-
ness generation rate, the system stability (which is related to the
completeness of the protocol), etc.

Based on Theorem 1, the quantum leftover hash lemma, and the
definition of the expected net randomness expansion rate given in Eq.
(3), we first simulate the performance of our proposed protocol. The
simulated net randomness expansion rate with QPSK modulation and
QAM-16 modulation are shown in Fig. 3a and b, respectively.

The parameters used in the experiment are listed in Table. 2,
where themeanphotonnumber ∣α∣2 of quantumstates inQPSK format,
the probability of choosing test rounds γ are optimised based on the
system efficiency of our setup and the chosen security parameters, as
shown in Fig. 4a, b. The relation of the expected net randomness
expansion rate and the randomness consumed is shown in Fig. 4c.

Fig. 2 | Modulation Scheme. a Illustration of the complementary modulation
scheme. The blue curves represent the voltage levels applied for the signal and LO
phasemodulation. The greenpulses represent the temporalmodes for defining the
two-mode coherent states. Regions divided by the black dashed lines represent the
quantum state preparation and measurement for a single round of QRNG execu-
tion. The constellation diagrams illustrate the distributions of the quadrature
measurement with given input settings. b Illustration of the time frame config-
uration. Reference signals for phase calibration are prepared and measured
amongst the signals for QRNG execution.

Fig. 1 | Experiment Overview. a Schematic of the experimental setup. The Laser
Diode (LD) emits a continuous-wave laser, which is split into two parts by a Beam
Splitter(BS). One is for quantum state preparation, and the other is for Local
Oscillator (LO) for homodyne detection. In the signal path, an Intensity Modulator
(IM) is used for pulse curving and intensity modulation, and a Phase Modulator
(PM) is used for phase modulation. The optical signal is then attenuated to single-
photon energy level by an attenuator (ATT). The final quantum states after mod-
ulation are in QPSK or QAM-16 format. In the LO path, a PM is deployed for basis
choosing for the homodyne detection. The signal states and the LO are mixed on a
balanced BS, and the photocurrent of two photodiodes (PD) are subtracted and
further amplified. Finally, a data acquisition (DAQ) device samples the signal and

obtain the data for analysis. b, c Constellation diagram for QPSK modulation and
QAM-16modulation, respectively. The blue circles represent the quantum states to
be prepared by the transmitter. The circlewith red centre represents the state used
when the randomness generation round is chosen, and all the states are used for
the testing rounds. The black dashed lines represent the twomeasurement bases in
our protocol. For the convenience of illustration, we shift the phase of the states
andmeasurements by π/4 comparing to the descriptions in the main text. This will
not affect either the security analysis or the experimental results. d, e Homodyne
detector characterisation.d Power spectrumof the homodyne detector fromDC to
120MHz. The 3 dB bandwidth is ~72MHz. eNoise variance for different LO powers.
A clearance of 16.94 dB is obtained with 10 mW LO input.
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According to the construction described in the “Methods” section
‘Formulating a P&M game’., we formulate the P&M game G used in our
QRNG protocol as shown in Table. 3, which determines the probability
of choosing settings for Alice’s input x andBob’s input y for test rounds
and the scoring rules. Based on our model of the honest imple-
mentation (refer to the “Methods” section ‘Two-mode coherent state’
for details), we set ω =0.59422 and δ =0.00189 for the experiment,

which represents the expected winning probability, and the con-
fidence interval for the winning probability, respectively.

We collect n = 1 × 1010 rounds of data in the experiment, and
obtain anobservedwinningprobability ofωobs = 0.59443,which is very
close to the expected value. Thenumber of rounds inwhich theplayers
lost the game is 942820, which is within the acceptance range nlost ≤
946026. Hence, the protocol execution is accepted, and we could
certify a gross randomness generation rate (the randomness gener-
ated by the protocol per round) of at least 0.00455 bits per round can
be obtained by running the protocol. Considering the randomness
invested for determiningwhether a given round is a test round and the
inputs of Alice and Bob (x and y), the expected randomness con-
sumption rate in our case is 0.00256 bits per round. Therefore, the
expected net randomness expansion rate of our system is 0.00199 bits
per round. The observed experimental results for test rounds are
shown in Table 4.

Finally, we implement randomness extraction using Toeplitz
hashing with the help of a random seed. Toeplitz hashing is a family of
two-universal hash functions, and it has been shown to be a strong
randomness extractor32,35,36. This means Toeplitz hashing not only
extracts randomness from a weak entropy source, but also guarantees
that the output string is independent of the seed. Thus, in this work,
the seed required for randomness extraction is not considered as
consumed randomness as the seed can be concatenated to the output
due to the properties of a strong extractor.

We utilise a Zynq Ultrascale+ FPGA (XCZU28DR) to implement
randomness extraction.We construct a Toeplitzmatrix with the size of
45 × 10,000 to extract the random numbers from the raw data. To
achieve a faster extraction speed, we further split the Toeplitz matrix
into sub-blocks of size45 × 1000during the extraction. In total, the size
of the raw data was 10.622 Gbits (we conservatively collected a bit
more data than 1 × 1010), and we extracted 47.8 Mbits of random
numbers from it. The detailed implementation of Toeplitz hashing on
FPGA is provided in Methods section ‘Randomness extraction’.

Discussion
In this section, we discuss the strengths and limitations of our work.
Besides its high level of security due to its immunity to detection side
channels, one of the main strengths of our protocol is its potential for
miniaturisation. In the following, we discuss the feasibility of the pro-
posed protocol to be implemented on silicon photonic integrated
circuit (PIC), which is a leading platform for integrated-photonic
applications with substantial advantages regarding miniaturisation,
compatibility with CMOS microelectronics, and high-speed signal
processing. The process design kits (PDKs) from major foundries can
provide the key components on a single chip, with a decent perfor-
mance stability for volume production37–39.

By leveraging mature silicon-on-insulator (SOI) technology, the
optical waveguide on silicon PIC is able to provide a low propagation
loss and large integration density. The 2 × 2 beam spliter can be
achieved by using either evanescent couplers or multimode inter-
ference (MMI) couplers.

For the high-speed optical modulation, the carrier depletion type
modulators are available for quantum state preparation. While the
high-speed Germanium photodetectors could be utilised for the
homodyne detection on the optical quantum states.

Fig. 3 | Performance Analysis 1. Expected net randomness expansion rate rnet
against system efficiency ηeff for different number of rounds n for (a) QPSK mod-
ulation and (b) QAM-16 modulation. Security parameters used for the simulation:
εcom=1 × 10−3, εsou=1 × 10−6 and ϵEA=1 × 10−6.

Table 2 | Parameters used in the experiment

n εcom εsou ϵEA ∣α∣2 γ ω δ

1 × 1010 1 × 10−3 1 × 10−6 1 × 10−6 1.638 × 10−2 1.587 × 10−4 0.40578 0.00189

n: number of rounds.εcom: Completeness error.εsou: Soundness error. ϵEA: Entropy accumulation error. ∣α∣2: Themeanphoton number of thequantumstate.γ: The probabilityof choosing test round.
ω: The expected probability of winning the game. δ: The width of the confidence interval for the winning probability.
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The integrated laser, a critical component to our QRNG system,
turnsout to be ahurdle that impedes full system integrationon a single
silicon chip. This is because pure crystalline silicon lacks a direct
bandgap precluding the possibility of monolithic silicon laser38. For-
tunately, recent integrated laser technology based on packaging or
heterogeneous integration technologies could be adopted to address
this problem37.

In this, one of ourmain objectives is to validate experimentally the
key concept of the proposed protocol and this ultimately boils down
to achieving sufficient effective efficiency of the measurement device
to demonstrate positive net randomness expansion rate. To that end,
we require high-efficiency PDs on silicon PICs. Fortunately, such highly
efficient PDs are within the reach of current technology. For example,
Globalfoundries offers PDs with >1 A/W responsivity at 1310 nm
wavelength, which corresponds to a quantum efficiency of >94%40

while AIM Photonics provides ones with quantum efficiency >80% at
1550 nm wavelength41. Moreover, there is more flexibility for the effi-
ciency improvement if customised components can be used. Thus, a
fully integrated version of our QRNG protocol is practically attainable
with existing PIC technology.

At the system level, however, the main limitation of our current
work is the relatively low randomness generation/expansion rate. We
now discuss some reasons for the limited randomness expansion rate.
One of the reasons is that we used Eve’s guessing probability to con-
struct the min-tradeoff function when applying the EAT. While the
guessing probability can be easily computed using the SDP relaxation,
this construction is generally not tight. Recently, a tight bound on the
conditional vonNeumannentropy that is also compatiblewith our SDP
relaxation was developed42. It would be interesting to see if one can

obtain an improvement in the randomness expansion rate by incor-
porating the new bound on the conditional von Neumann entropy.

Another reason for the limited randomness expansion rate is that
we coarse-grained the homodyne detection output. Indeed, here we
considered a measurement device that gives a binary output; whereas
in practice, the homodynemeasurement actually has a largenumberof
discrete bins determined by the ADC circuit. The coarse-graining was
done to simplify the protocol as it allows us to simply monitor the
winning probability in the parameter estimation step. However, our
security analysis can be extended to consider more outputs using the
framework of ref. 30. Nevertheless, there is a tradeoff between the
number of outputs used in the protocol and the randomness genera-
tion rate as fine-graining the outputs would enhance the effect of the
statistical fluctuations as the probability of obtaining each bin gets
smaller. Finding the optimal number of bins for the measurement
outputs deserve a deeper investigation in the future.

Next, our protocol also demands relatively high detection effi-
ciency to generate net randomness expansion. As there is a tradeoff
between the electronic noise (and its equivalent efficiency loss) and
the working bandwidth of the system, the working frequency in our
experiment is relatively low which results in the low randomness
generation rate. One of the reasons for the high detection efficiency
requirement is the choice of states used in the protocol. In our
experiment, we use the QPSK encoding for the simplicity of the
experiment. However, this choice of states may be sub-optimal. For
example, as shown in Fig. 3b, a significant increase in the randomness
expansion per pulse and decrease in the required detection efficiency
canbe seenby choosing theQAM-16 constellation. Thiswould lead to a
significant increase in the actual randomness expansion rate.

Finally, in this work, we assume that the device is sufficiently
isolated from the environment such that any quantum side infor-
mation that is accessible to the adversary was obtained before the
start of the protocol. While this assumption can be well justified for
QRNGs as both parties are inside in the same secure location, it
could still be removed using the recently developed generalisation
of the EAT43,44. The relaxed assumption may be relevant in a more
pessimistic scenario where the device is surrounded by an insecure
environment such that any photons that are scattered in the channel
might fall into the adversary’s hands. Since the bound in the gen-
eralised EAT is similar to the one derived under the original entropy
accumulation framework (with slightly different correction terms),
we expect that our QRNG could still exhibit randomness expansion
in the more pessimistic scenario. We leave this investigation for
future work.

Fig. 4 | Performance Analysis 2. a, b The expected net randomness expansion rate
of the QRNG versus the (b) amplitude of the quantum state α and (c) the probability
of test rounds γ, withηeff = 91.7%.cTheexpectednet randomness expansion rate and

the randomness consumed versus the homodyne detection efficiency. The results
are obtained by optimising the net expansion rate over ∣α∣2 and γ. All plots are based
on system parameters n = 1 × 1010, εcom= 1 × 10−3, εsou = 1 × 10

−6 and ϵEA = 1 × 10
−6.

Table 3 | The configuration for the P&M game G used in the
test rounds in our experiment

System x =0 x =0 x = 1 x = 1 x = 2 x = 2 x = 3 x = 3
Setting y =0 y = 1 y = 0 y = 1 y = 0 y = 1 y = 0 y = 1

q(x, y) 0 0.256 0 0.232 0.244 0.012 0.244 0.012

Score
for b = 0

0 1 0 0 0 0 1 0

Score
for b = 1

1 0 1 1 1 1 0 1

Thefirst row represents theprobability of choosing a specific setting for Alice’s input x andBob’s
input y. The second and third row show the score assignment for each input-output
configuration.
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To summarise, we present a QRNG protocol based on a com-
pletely uncharacterised homodyne detector. The security analysis
takes into account the finite size effects and the non-i.i.d. measure-
ment process, providing randomnumber generation that is certified in
the presence of quantum side information. To verify the feasibility of
the protocol, we set up a high-efficiency and low noise fibre-coupled
homodyne detector for experiment. The averaged quantum efficiency
of the photodiode pair is 98.55% at 1550 nm, and the clearance is
measured to be 16.94 dB with a 10mW LO input. The effective effi-
ciency of the homodyne detector is characterised to be 91.7%. In order
to have a proper implementation of our protocol and removepotential
signal distortions, we come up with a complementary modulation
scheme and adopt the two-mode coherent states for quantum state
preparation. This guarantees both the modulation signals and mea-
surement outcomes are DC-balanced data streams, for any experi-
mental setting during theQRNGprotocol execution. The systemworks
at a repetition rate of 2.5MHz, and finally obtain a gross randomness
generation rate of 0.00455 and a net randomness expansion rate of
0.00199, with a 1 × 1010 rounds of protocol execution. In addition, we
show that our protocol is compatible with the silicon photonics plat-
form and is readily implementable on silicon PIC.

In conclusion, our results exhibit a practical QRNG with self-
testing feature and provable security, showing a great potential for
providing certifiable randomness for practical and private use.

Methods
Randomness certification
Before we explain the randomness certification of the protocol, we
shall first explain the security criterion of the protocol. Consider a
randomness generation protocol that produces an output string,
which we label as Z. In a self-testing protocol such as ours, it is
common that the legitimate parties exchange some classical infor-
mation during the protocol (e.g., in the parameter estimation step).
We denote the transcript of any classical communication in the
protocol by M. Suppose also that the protocol involves seeded
randomness extraction. We shall denote the seed used for the ran-
domness extraction by S. Finally, any side information that is
available to Eve will be denoted by E. For a given run of the protocol,
let us suppose that its output can be described using the quantum
state

ρZSME = ∣+i +h ∣Z � τ∣S∣ � ~ρ+
ME + ~σZSME : ð4Þ

Here, we account for the probability that the protocol may abort (in
which case, we denote the output of the protocol by+). Furthermore,
τl denotes the uniformly random string with length l denoted in the
subscript and ~ρ+

ME describes the sub-normalised state of Eve’s side
information and the classical transcript when the protocol aborts. On
the other hand, the sub-normalised state ~σZSME in the second term
describes the state when the protocol is not aborted

~σZSME =
X
z,s

∣z, si z, sh ∣ZS � ~ρz,s
ME , ð5Þ

where the summation is taken over all possible output and seed
strings, which we denote by z and s. The sub-normalised state ~ρz, s

ME is
the state describing Eve’s side information and the classical transcript
conditioned on the output string being z and the seed string being s.

Denoting the event in which the protocol is not aborted byΩ, we have

Tr½~ρ+
ME �= 1� Pr½Ω�,

Tr½~ρz,s
ME �= Pr½Z= z,S= s�,

Tr½~σZSME �=
X
z,s

Pr½Z= z,S = s�= Pr½Ω�:
ð6Þ

Normalising the state in which the protocol is not aborted, we
obtain σZSME : = ~σZSME=Pr½Ω�. We say that the QRNG is εsou-sound if

Pr½Ω� � 1
2

σZSME � τ‘ � τ∣S∣ � σME

�� ��
1
≤ εsou ð7Þ

for a fixed εsou∈ (0, 1). Here, σME =TrZS½σZSME �. Informally speaking,
the soundness of the protocol would imply that either the protocol
aborts with high probability or the output of the protocol would be
close (in trace-distance) to a random string with length ℓ that is inde-
pendent of the seed S, any classical information being exchanged in
the protocol M, and Eve’s side information E. Importantly, the above
security definition is composable. Hence, the output of the protocol
can be securely used for other cryptographic applications.

However, a protocol that always aborts would trivially satisfy the
soundness condition given in Eq. (7), and such a protocol is clearly
undesirable. Therefore, we also impose an additional requirement that
the protocol would succeed with high probability of producing a
random string when the device works as expected. Formally, we call a
protocol εcom-complete if its honest implementation (which may use
imperfect devices) satisfy the following

Pr ½Ω�honest ≥ 1� εcom ð8Þ

for some fixed εcom∈ (0, 1). Note that the subscript “honest” empha-
sises that Pr[Ω]honest is calculated with the assumption that the device
works as expected, in particular, independently and identically for
each round. In this case, we normally model the behaviour of the
device, including its imperfection, and calculate the probability of the
protocol aborting (e.g., due to statistical fluctuations in the parameter
estimation) in such scenario.

Next, to analyse the security of the protocol, we shall assume the
following:
1. Quantum theory is correct.
2. Alice has a trusted source of quantum states that can accurately

prepare the code states specified by the protocol.
3. The device is equipped with trusted and private random seed.
4. The device has access to trusted classical devices to perform any

classical post-processing.
5. The device is well isolated such that it does not leak additional

quantum side information nor the output string.

Now,we shall briefly elaborate the assumptionsmentioned above.
The first assumption is normally taken for granted as quantum theory
is the best available description of nature at small scale that we cur-
rently have. As such, throughout this paper, we shall assume that Eve
and the devices used in theprotocol obey the lawsof quantumphysics.

The second assumption can be practically justified by careful
characterisation of Alice’s source. As the scenario that is relevant for
QRNG considers the case where Alice and Bob are located in close
proximity to each other, one could reasonably believe that the source

Table 4 | Observed experimental results for the test rounds

System x =0 x = 0 x = 1 x = 1 x = 2 x = 2 x = 3 x = 3
Setting y =0 y = 1 y =0 y = 1 y = 0 y = 1 y = 0 y = 1

P(b = 0∣x, y) 0.4994 0.5952 0.4994 0.4023 0.4034 0.5022 0.5979 0.5006

P(b = 1∣x, y) 0.5006 0.4048 0.5006 0.5977 0.5966 0.4978 0.4021 0.4994
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is well protected from source side-channel attacks that are possible in
other quantum crytographic protocols (for example, Trojan horse
attacks in QKD45). In particular, we assume that the source behaves
identically and independently in each round.

The third assumption is necessary because the measurement
device which generates the raw random string in this protocol is
uncharacterised. If the inputs are not chosen from a trusted random
number generator, one possible scenario is that the uncharacterised
measurement device could have access to the inputs before the pro-
tocol is run. In this case, it is trivial to reproduce the statistics obtained
by the honest implementation of the protocol. Moreover, as our ran-
domness certification would utilise the EAT, using a trusted random
number generator could enforce the quantum Markov chain condi-
tion. Lastly, the last step of the protocol uses seeded extraction, which
requires a private and uniformly random seed.

The fourth assumption is necessary for any QRNG protocol to
prevent the security criteria from being trivially broken. For example,
when the randomness extraction is not executed properly, it is clear
that the soundness criterion may not be satisfied. Furthermore, when
the output string is leaked, it is trivial to guess the output of theQRNG.

The last assumption is necessary for two reasons. Firstly, it is
obvious that the security of the protocol is null when the device leaks
the output string. Secondly, due to some technicality with the EAT, we
need to assume that the quantum side information available to Eve is
not updated as the protocol is run. It is worth noting that this
assumption is not too restrictive for QRNGs since Alice and Bob are
both inside the same secure location. Recently, there is a generalised
version of the EAT43,44 that allows Eve’s quantum side information to be
updated as the protocol is run and hence, it wouldbe interesting to see
if the assumption that the device does not leak additional quantum
side information can be relaxed.

Having mentioned the assumptions we need in the security ana-
lysis, we emphasise again that we do notmake any assumptions on the
measurement device and the quantumchannel. In particular, in a given
round, the behaviour of these components can have arbitrary corre-
lation to their inputs and outputs in the preceding rounds (unlike the
source which we assumed to behave independently and identically in
each round). Remarkably, our protocol remains secure even if there is
a degradation in the homodyne detector or when Eve has some pre-
shared entanglement with Bob’s uncharacterised measurement
device.

As elaborated previously, we want our protocol to satisfy both
soundness and completeness criteria.We first prove the completeness
of our QRNG protocol. To that end, we use the following theorem.

Theorem 2. (Bounds on the binomial cumulative distribution46,47) Let
n 2 N, p∈ (0, 1) and let X be a random variable distributed according
toX ~ Binomial(n, p). Then, for any integer k such that 0 ≤ k < n, we have

Fðn,p, kÞ≤ Pr½X ≤ k�≤ Fðn,p, k + 1Þ, ð9Þ

where

Dðq,pÞ= q ln q
p

� �
+ ð1� qÞ ln 1� q

1� p

� �

ΦðaÞ= 1ffiffiffiffiffiffi
2π

p
Z a

�1
dx e�x2=2

Fðn,p, kÞ=Φ sign
k
n
� p

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nD

k
n
,p

� �s !

Since the protocol is aborted if ∣fCi : Ci =0g∣>nγð1� ω+ δÞ, we
can apply Theorem 2, in the same way as in ref. 9, to get the following

upper bound on the probability of the protocol being aborted

Pr ∣fCi : Ci =0g∣>nγð1� ω+ δÞ� �
≤ 1� Fðn, γð1� ωÞ, nγð1� ω+ δÞ	 
Þ:

ð10Þ

Hence, by choosing the completeness error as

εcom = 1� Fðn, γð1� ωÞ, nγð1� ω+ δÞ	 
Þ, ð11Þ

our QRNG protocol would satisfy the completeness condition.
Next, to prove the soundness of our QRNG protocol, we shall

use the following Quantum Leftover Hash Lemma (Theorem 8 of
ref. 33).

Theorem 3. (Quantum Leftover Hash Lemma33) Let ρBE 0 be a classical-
quantum state and F = ff s : f0, 1gn ! f0, 1g‘g be a two-universal hash
family with Z = fs(B) and the seed S∈ {0, 1}m is chosen uniformly. Let
0 < κ ≤ ε/2 < 1, we have

1
2

ρZSE 0 � τ‘ � τm � ρE 0
�� ��

1 ≤ 2
ε
2
� κ

� �
+23=2 2‘�Hε=2�κ

min ðB∣E 0 Þ
� �1=4 ð12Þ

where τℓ and τm are the uniform random strings of length ℓ and m
respectively. Consequently, if we choose the output length to be

‘= max
κ

Hε=2�κ
min ðB∣E 0Þ+4log2κ � 2

j k
, ð13Þ

where the maximisation is taken over κ∈ (0, ε/2], then, we have

1
2

ρZSE 0 � τ‘ � τm � ρE 0
�� ��

1 ≤ ε:

On the other hand, for a fixed smoothing parameter ϵs, the EAT
(Theorem 1) guarantees that either the protocol aborts with prob-
ability of at least 1 − ϵEA (i.e. the probability that the protocol is not
aborted is upper bounded by ϵEA) or the conditional smooth min-
entropyHϵs

minðB∣M, EÞρΩ (here,M consists of the registers T,X, andY) is
lower bounded by a certain amount. By identifying the register E 0 in
Theorem 3 as the register ME in the soundness criterion, we can
choose the soundness error εsou to be

εsou = maxfϵEA, 2ðϵs + κÞg: ð14Þ

In this case, EAT either upper bounds Pr[Ω] by ϵEA or—in conjunction
with the Quantum Leftover Hash Lemma—guarantees that the trace-
distance term (for the state in which the protocol is not aborted) in the
soundness criteria is smaller than 2(ϵs + κ). Hence, our choice of εsou
ensures that theprotocol is sound inboth cases consideredby the EAT.
In this work, we choose εsou = ϵEA = 2(ϵs + κ) where κ is chosen to
maximise the expected net expansion rate.

We shall now discuss the technical details of Theorem 1. Firstly, to
apply the EAT, it is important to ensure that the so-called Markov
condition is satisfied during the execution of the protocol. More pre-
cisely, we want that for any round i∈ [n], we need

IðB½i� : Xi + 1Y i+ 1Ti + 1∣X ½i�, Y ½i�,T ½i�, EÞ=0 ð15Þ

where I(A: B∣C) denotes the quantum mutual information between A
and B conditioned on C. Here, B[i] denotes the string (B1,B2, . . .Bi) that
describes the measurement outcomes from the first round until the i-
th round. X[i], Y[i], T[i] are defined similarly. To enforce the Markov
condition in the protocol, we implement each round sequentially and
we choose the inputs for each round from a trusted and private ran-
dom seed which is independent from the inputs and outputs from the
preceding rounds. We also isolate the device such that Eve does not
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obtain additional quantum side information as we execute the
protocol.

Thenext ingredientweneed is the so-calledmin-tradeoff function f
(for its formal definition, we refer the readers toDefinition II.4 of ref. 30).
The min-tradeoff function is, roughly speaking, an affine lower bound
on the worst case single-round conditional von Neumann entropy
H(Bi∣Xi, Yi, Ti,R) that is “compatible” with the probability distribution
over C = f? , 0, 1g for random variable Ci. Here, R is a quantum register
that is isomorphic to the pre-measured state in round i.

To construct the min-tradeoff function, we follow the framework
presented in ref. 30 in the context of device-independent randomness
expansion. A key difference here is that we use the bound on the
conditional von Neumann entropy derived in the Theorem 14 of ref. 48

HðBi∣Xi =0,Y i =0,Ti =0,RÞ≥ 2 1� pg ðBi∣Xi =0, Y i =0,Ti =0,RÞ
h i

ð16Þ

instead of the bound based on conditional min-entropy used in ref. 30.
While both bounds are based on the guessing probability
pg(Bi∣Xi =0, Yi = 0, Ti = 0, R), the bound thatweusedhere is significantly
tighter than the one givenby conditionalmin-entropy in theparameter
regime in which the experiment is conducted. Another advantage is
that the bound that we use is already linear, and as such, we do not
need to perform the linearisation that was performed in ref. 30 to
obtain an affine min-tradeoff function.

To bound the guessing probability, we use the semi-definite
programming (SDP) technique proposed in ref. 31 instead of the
Navascues–Pironio–Acin (NPA) hierarchy49,50 used in ref. 30. Both
techniques are twosimilarhierarchies of SDP relaxation thatbound the
set of quantum correlations; the latter is for the device-independent
scenario while the former is appropriate for the prepare-and-measure
architecture considered in our protocol. For a fixed level of relaxation
k, a given P&M game G, characterised by the scoring coefficients
wb,x,y =qðx, yÞδb,bxy

, and some winning probability ν, the SDP for the
guessing probability has the following primal form

max
fMb∣ygb,y , fΠege ,U

P1
b=0

ϕ0


∣Mb∣0Πb∣ϕ0

�
subject to

P
b,x,y

wb,x,y ϕx


∣Mb∣y∣ϕx

�
= ν,

hϕx ∣ϕx0 i= hψx ∣ψx0 i 8x, x0 2 X :

ð17Þ

Here, fMb∣ygb,y denotes Bob’s POVMelements, fΠege denotes the POVM
elements acting on the system R and U : ∣ψx

�! ∣ϕx

�
denotes the

isometry describing the unknown quantum channel connecting Alice
and Bob. From the dual solution of (17), we can obtain a bound on the
guessing probability of the form

pg ðBi∣Xi =0, Y i =0,Ti =0,RÞ≤ cν + λν � p: ð18Þ

Here, p = (1 − p, p) is the score distribution of the device while λν and cν
are the dual solutions to the SDP (17). We emphasise that ν is a para-
meter that we can choose freely and it does not have to be the actual
winning probability that is attained by the device.

Following the arguments in ref. 30, consider the affine function gν,
which maps a distribution over C n f?g to a real number

gνðecÞ= 2ð1� γÞ 1� cν � λν � ec
� �

, ð19Þ

where ec is the probability distribution where its cth entry is 1 and the
other entries are zeros. Then, for some constant u⊥ that we shall

determine later, the following function fν is a min-tradeoff function

f νðecÞ=
gνðecÞ

γ
+ 1� 1

γ

� �
u?, 8c≠ ?

f νðe?Þ=u?:
ð20Þ

To find the worst case over all distributions which lead to the
protocol being accepted, we repeat the argument presented in ref. 9

here. First, we use the condition for the protocol to be accepted,
freqC(0) ≤ γ(1 −ω + δ), to deduce that if u⊥ ≥ gν(e0), then we have

f νðfreqCÞ≥ ð1� ω+ δÞ gνðe0Þ � u?
� �

+
freqCð1Þ

γ
gνðe1Þ � u?
� �

+ u?:

ð21Þ

Now, we demand that u⊥ ≤ gν(e1) and hence, the second term on the
right-hand side can be dropped

f νðfreqCÞ≥ ð1� ω+ δÞ gνðe0Þ � u?
� ��

+u?: ð22Þ

This is increasingwith u⊥ and hence, it is best to fix u⊥ = gν(e1). We have

f νðfreqCÞ≥ ð1� ω+ δÞgνðe0Þ+ ðω� δÞgνðe1Þ ð23Þ

=2ð1� γÞ 1� cν � λν � ~ω
� �

, ð24Þ

where the adjusted score ~ω= ð1� ω+ δ,ω� δÞ. Thus, we have
obtained the function f in Theorem 1.

Lastly, we have to calculate the correction terms V and K. To that
end,weneed to consider a fewproperties of themin-tradeoff function.
They are the following
1. Maximum over all probability distributions

Max½f ν �= max
p2PC

f νðpÞ, ð25Þ

where PC is the set of all valid probability distributions.
2. Minimum over all protocol respecting distributions

MinΓ½f ν �= inf
p2Γ

f νðpÞ, ð26Þ

where Γ denotes the set of distributions of the form (γω, 1 − γ). We call
such distribution a protocol respecting distribution.
3. The maximum variance over all protocol respecting distributions

VarΓ½f ν �= max
p2Γ

X
c2C

pðcÞ½f ðecÞ � f νðpÞ�2: ð27Þ

To compute these quantities, we consider the maximum and
minimum attainable value of gν (over all distributions) as

Max½gν � =2ð1� γÞ 1� cν � λmin

� �
,

Min½gν � =2ð1� γÞ 1� cν � λmax

� �
,

ð28Þ

where λmin = min
c

λν and λmax = max
c

λν . Note that the choice of
gν(e0) ≤ u⊥ = gν(e1) implies that u? =Max½gν �. Therefore, we are dealing
with similar min-tradeoff functions as those considered in refs. 29,30,
where we have the following relations

Max½f ν �=Max½gν �,
MinΓ½f ν �≥Min½gν �,

VarΓ½f ν �≤
ðMax½gν � �Min½gν �Þ2

γ
:

ð29Þ
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Based on the above relations, we can calculate the correction terms V
and K. Following ref. 30, the correction term V(γ, fν) is given by

V ðγ, f νÞ=
ln 2
2

log29 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� γÞ2ðλmax � λminÞ2

γ
+ 2

s0
@

1
A

2

: ð30Þ

On the other hand, the other correction term K(β, γ, fν) is given by

Kðβ, γ, f νÞ=
2β½1 + 2ð1�γÞðλmax�λminÞ�

6ð1� βÞ3 ln 2
ln3 21 + 2ð1�γÞðλmax�λminÞ + e2
� �

: ð31Þ

Having specified the functions fν, V andK, we can nowapply Theorem 1
and Theorem 3 to prove the soundness of our QRNG protocol. This
concludes the randomness certification of the protocol.

Input randomness
In the previous section, we have shown that if the extracted length ℓ is
chosen according to Eq. (13), our QRNG protocol can generate ran-
domness securely. However, for our QRNG protocol to be practically
useful, we may also demand that, on average, it produces more ran-
domness than the one consumed to run the protocol.

In this work, as we consider strong extractors for the randomness
extraction, it is sufficient to consider the randomness consumed to
choose the inputs T,X and Y as we can treat the extractor seed as part
of the output. As the optimal input distribution is biased, one could
either use a biased random seed or convert a uniform random seed
into a biased one (for example, using the interval algorithm51). We
denote the expected length of random bit string used to generate the
inputs by ℓin. The expected input randomness ℓin is approximately the
Shannon entropy of the inputs (up to some small overhead that is
negligible for large block sizes)

‘in =HðT,X,YÞ+ 3
=n½h2ðγÞ+ γHðqÞ�+3, ð32Þ

where we have used the fact that the inputs for each round are chosen
independently from the ones from the preceding rounds and we also
used the chain rule for Shannon entropy. Here, h2(γ) is the binary
entropy function and H(q) is the Shannon entropy of the input dis-
tribution {q(x, y)}x,y.

Homodyne detector modelling and characterisation
We model the homodyne detector from two aspects: optical loss and
the electronic noise.

The optical loss arises from two main parts. The insertion loss of
the BS, and the imbalance of the homodyne detection, which is caused
by the efficiency mismatch of the two photodiodes and the imperfect
BS splitting ratio.

We first characterise the photon detection efficiency of the pho-
todiodes, which includes the quantum efficiency of the photodiodes,
coupling loss to the photodiodes, and the insertion loss of the fibre-
pigtailed GRIN lenses, with an optical power metre (EXFO PM-1100)
and a Source Measurement Unit (Keysight U2722A).

The GRIN lenses used are anti-reflection-coated in the range of
1250–1650 nm, with an average reflection of <0.2%. In addition, the
waist diameter of the output light beam is in the order of 10 µm,which
is much smaller than the diameter of the active region of our PD
(100 µm).Wemeasure thedetection efficiency of the twophotodiodes,
including the coupling loss and the insertion loss, by putting a reverse
bias at theworking voltage of the photodiode, giving a constant power
input light from the laser, and measuring the photocurrent by the
Source Measurement Unit. The efficiency of the two photodiodes is
deduced from the ratio of the measured photocurrent and the input
power to be 98.3% and 98.8%, respectively.

The splitting ratio of the beam splitter is measured to be
50.4:49.6, and the insertion loss is 0.2 dB. By matching the beam
splitter with the PDs, and carefully balancing the amplitudes of the two
arms, we gradually increase the input LO power with a variable optical
attenuator (Yokogawa AQ2200-311A) and obtain the noise measure-
ments. For frequency domain measurement, a spectrum analyser
(Rohde & Schwarz FSV40) is used, with a resolution bandwidth of
1MHz and a video bandwidth of 5MHz. For the measurement of the
noise variance and clearance, an oscilloscope (Tektronix MSO64 BW
2.5 GHz) is utilised.

The characterisation results are shown in Fig. 1d, e. With a 10mW
LO input, a clearance of 16.94 dB is obtained. Under the assumption
that the electronic noise of homodyne detector possesses a Gaussian
distribution and is independent of the measured optical signal, we
follow the model proposed in ref. 52 and treat the effect of the elec-
tronic noise as equivalent to efficiency loss. In our case, an equivalent
efficiency of 97.98% is estimated.

Taking all the factors into consideration, the total effective effi-
ciency of our homodyne detector is characterised to be 91.7%.

Two-mode coherent states
Two-mode coherent states are used in our system for quantum state
preparation. Here, we give the basic form of the quadrature operator
of the two-mode coherent state, and show that the quadrature value
can be obtained by combining the quadrature values of individual
temporal modes.

Without loss of generality, we define the creation (annihilation)
operators of the early and late temporal modes by ây

e (âe) and ây
l (âl),

respectively. Therefore, the quantum state composed of coherent
states in both temporal modes can be expressed by:

∣αe

�
∣αl

�
= e�

∣αe ∣2
2

X1
m=0

ðαeâ
y
eÞ

m

m!
� e�

∣αl ∣
2

2

X1
n=0

ðαl â
y
l Þ

n

n!
∣0i

= e�
∣αe ∣2 + ∣αl ∣

2

2

X1
k =0

ðαeâ
y
e +αl â

y
l Þ

k

k!
∣0i

= e�
∣αt ∣

2

2

X1
k =0

ðαt â
y
t Þ

k

k!
∣0i,

ð33Þ

where ∣αt ∣=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∣αe∣

2 + ∣αl ∣
2

q
and ây

t =
1

∣αt ∣
ðαeâ

y
e +αl â

y
l Þ represent the

amplitude and the creation operator of the new two-mode coherent
state, respectively. In our case, we have ∣αl

�
= ∣� αe

�
, ∣αt ∣=

ffiffiffi
2

p
∣α∣,

and ây
t = 1=

ffiffiffi
2

p
ðây

e � ây
l Þ.

As a result, the quadrature operator of the two-mode coherent
states can be obtained (in Shot-Noise Unit):

q̂t = âte
�iθ + ây

t e
iθ

=
âe � âlffiffiffi

2
p e�iθ +

ây
e � ây

lffiffiffi
2

p eiθ

=
1ffiffiffi
2

p ðq̂e � q̂lÞ:

ð34Þ

Hence, the quadrature value of the two-mode coherent state qt
satisfies

q̂t ∣q
�
=

1ffiffiffi
2

p ðq̂e � q̂lÞ∣q
�

=
1ffiffiffi
2

p ðqe � qlÞ∣q
�

=qt ∣q
�
:

ð35Þ
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Formulating a P&M game
Previously, we took for granted that our QRNG protocol specifies a
P&M game that is used to test whether the devices are working as
expected. However, constructing a game that is optimal for certifying
randomness generation is a non-trivial task. In this section, we use the
SDP duality to construct a P&M game that can asymptotically witness
the same amount of randomness that is certified by full input-output
probability distribution {P(b∣x, y)}b,x,y. The idea behind our method is
to find a linear function of the input-output probability distribution
that witnesses the randomness generated by Bob’s measurement.
Then, from this linear function, we could derive the input distribution
q(x, y) and the winning outputs bxy. Similar constructions have been
used in device-independent quantum information processing to con-
struct an optimal Bell inequality for certifying randomness53,54 and self-
testing55.

Asymptotically, we expect that the full input-output probability
distribution should be optimal for witnessing randomness as it con-
tains the full statistical information about the devices’ behaviour. Let
us now suppose that the expected input-output probability distribu-
tion is known (either by modelling the honest implementation or
calibrating the device prior to the protocol). To construct a game that
could optimally certify the amount of randomness, we shall consider
the following SDP for the guessing probability subject to the full input-
output probability distribution.

max
fMb∣ygb,y , fΠege ,U

P1
b=0

ϕ0


∣Mb∣0Πb∣ϕ0

�
subject to ϕx


∣Mb∣y∣ϕx

�
= Pðb∣x, yÞ, 8b, x, y

hϕx ∣ϕx0 i= hψx ∣ψx0 i, 8x, x0 2 X :

ð36Þ

Suppose that the optimal dual solution to (36) for the kth level of
relaxation is given by

d̂k = ξ0 +
X
b,x,y

ξðb, x, yÞPðb∣x, yÞ ≥pg ðBi∣Ti =0,Xi =0,Y i =0,RÞ, ð37Þ

where ξ0 is associated with the non-statistical constraints. Any feasible
dual solution is a linear function of the input-output distribution that
upper bounds the guessingprobability. As such, the set of feasible dual
solutions to the SDP gives a family of linear upper bounds on the
guessing probability while d̂k is the tightest upper bound on the
guessing probability among the family (in fact, it is “tight” up to the
semi-definite relaxation31 of the set of quantum correlations and any
duality gap).

Now, for each pair of inputs (x, y), we define b0
xy and b00

xy such that
ξðb0

xy, x, yÞ≥ ξðb00
xy, x, yÞ. We consider

d̂k � ξ0 �
X
x,y

ξðb00
xy, x, yÞ

=
X
x,y

ξðb0
xy, x, yÞPðb0

xy∣x, yÞ+ ξðb00
xy, x, yÞPðb00

xy∣x, yÞ
h

� ξðb00
xy, x, yÞ Pðb0

xy∣x, yÞ+ Pðb00
xy∣x, yÞ

n oi
=
X
x,y

ξðb0
xy, x, yÞ � ξðb00

xy, x, yÞ
n o

Pðb0
xy∣x, yÞ,

ð38Þ

where in the first equality we use the normalisation constraint. Noting
that we are just subtracting a constant from d̂k , expression (38) is still
an almost tight witness on the guessing probability. Finally, we could
also divide the above expression by a constant and the resulting
expression

X
x,y

qðx, yÞPðb0
xy∣x, yÞ, ð39Þ

with

qðx, yÞ= ξðb0
xy, x, yÞ � ξðb00

xy, x, yÞP
x,y ξðb0

xy, x, yÞ � ξðb00
xy, x, yÞ

n o , ð40Þ

would still be an almost tight witness on the guessing probability. By
construction, {q(x, y)}x,y is a valid probability distribution.Moreover, as
b0
xy is defined such that d̂k (and hence, the bound on the guessing

probability) would be higher when Pðb0
xy∣x, yÞ increases, we could

interpret b0
xy as the losing outcome (i.e., we assign the score C =0)

when the inputs x and y are chosen and q(x, y) as the probability of
choosing this pair of inputs. In this case, the game G is defined as one
where for Alice and Bob choose the inputs (x, y) with probability q(x, y)
and the winning outcome is given by bxy = b

00
xy.

The game construction that we have described above is almost
optimal to witness the generated randomness. However, the con-
struction may not minimise the randomness consumed to choose the
inputs and hence, its performance in terms of the expanded ran-
domness may be far from optimal. Formulating the optimal game
construction that maximises the net randomness expansion rate
would be an interesting direction for future work.

Randomness extraction
Toeplitz hashing utilises a Toeplitzmatrix,H. The Toeplitz matrix is an
m × n diagonal-constant matrix, and it is constructed by filling up the
first column and first row of the matrix with a uniform seed, denoted
by S. Thus, the seed length required for Toeplitz hashing is n +m − 1
bits. Toeplitz matrix H can be expressed as

H=

sn sn�1 � � � s2 s1
sn+ 1 sn � � � s3 s2

..

. ..
. . .

. ..
. ..

.

sn +m�1 sn+m�2 � � � sm+ 1 sm

2
66664

3
77775:

The hashing is done by expressing the raw bits as a column vector and
performing matrix-vector multiplication with the Toeplitz matrix. We
used the calculated bit generation rate of 0.00455 and constructed a
Toeplitz matrix H with the parameters m = 45 and n = 10,000.

A field programmable gate array (FPGA) is the chosen platform
for implementation of Toeplitz hashing. The schematic of our post-
processing on FPGA is shown in Fig. 5. The raw data is stored on a
personal computer (PC) and sent in batches of approximately 600
Mbits via 1G Ethernet to the FPGA. Upon receiving the batch of raw

Fig. 5 | Schematic of the post-processing on the ZCU111 evaluation board. The
raw numbers are stored on a personal computer (PC) and sent to the field pro-
grammable gate array (FPGA) via 1G Ethernet. The data is stored in the double data
rate 4th generation randomaccessmemory (DDR4RAM) on the processing system
(PS) and multiplexed into the Toeplitz hashing core on the programmable logic
(PL) side of the FPGA. The output from the Toeplitz hashing core is accumulated
and sent back to PC via 1G Ethernet.
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data, the processing system (PS) on FPGA sends in 10 kbits of data to
the programmable logic (PL), where the data will be further split into
10 batches of 1 kbits each. The multiplexing of raw data and seed is
done via pipelining and the Toeplitz hashing algorithm is executed
in parallel. The PS then receives the output of 45 bits from PL, and
sends in a new set of 10 kbits of data to PL, repeating until all the data
in the current batch has been processed. The PS then sends the
extracted random numbers of the current batch to PC via Ethernet
and waits for a new batch, until all 10.622 Gbits of raw data has been
processed.

Data availability
All of thedata that support thefindings of this study are available in the
main text. Source data are available from the corresponding author on
request.

Code availability
The codes used for simulation are available from the corresponding
author on request.
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