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Molecular subtypes of ALS are associated
with differences in patient prognosis

Jarrett Eshima 1, Samantha A. O’Connor 1, Ethan Marschall1, NYGC ALS
Consortium*, Robert Bowser 2,3, Christopher L. Plaisier 1 & Barbara S. Smith1

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease with
poorly understood clinical heterogeneity, underscored by significant differ-
ences in patient age at onset, symptom progression, therapeutic response,
disease duration, and comorbidity presentation. We perform a patient strati-
fication analysis to better understand the variability in ALS pathology, utilizing
postmortem frontal and motor cortex transcriptomes derived from 208
patients. Building on the emerging role of transposable element (TE) expres-
sion in ALS, we consider locus-specific TEs as distinct molecular features
during stratification. Here, we identify three uniquemolecular subtypes in this
ALS cohort, with significant differences in patient survival. These results sug-
gest independent disease mechanisms drive some of the clinical hetero-
geneity in ALS.

ALS is a heterogenous neurodegenerative disease defined by the
progressive loss of motor neuron function, eventually leading to
respiratory failure and death. Clinical diagnosis remains slow, ham-
pered by an absence of disease-specific biomarkers, subjective scoring
metrics, and presentation of symptoms that overlap with other motor
neuron disorders early in the disease course1,2. The lack of diagnostic
and prognostic biomarkers has led to the utilization of a patient clas-
sification system based on the site of symptom onset (lower, upper,
and bulbar), which poorly predicts differences in patient pathology,
survival, treatment responsiveness, and symptom progression3,4. As a
consequence, the current lack of effective ALS treatments are directly
tied to underlying patient heterogeneity. Recent efforts have been
directed towards identifying the phenotypes and mechanisms driving
clinical heterogeneity in neurodegeneration. In Alzheimer’s patients,
neuroimaging-derived subtypes demonstrated differences in clinical
presentation, survival, age of onset, rate of progression, and age of
death, providing critical new insight into disease heterogeneity5.
Similarly, in the context of ALS, one group has recently developed a
predictive model to stratify patients and inform prognosis, using
patient-derived clinical information6.

Current strategies to assess the molecular foundation of ALS
heterogeneity have primarily applied ‘-omic’ methodologies in com-
binationwith unsupervised clustering for disease subtypediscovery7–9.
Tam et al. established an important foundation for this work, using
frontal and motor postmortem cortex transcriptomics to stratify a
cohort of 77 ALS patients into three distinct subtypes7. They further
demonstrate the direct interplay between TDP-43 and transposable
elements using eCLIP-seq, providing key insight into the pathological
role of transposable elements in ALS, given the near ubiquitous nature
of TDP-43 cellular inclusions (~97%)7,10,11. We aimed to build upon this
work by establishing a direct link between the ALS subtypes and clin-
ical outcomes, such as survival and age of onset.

Here, we leveraged the large patient cohort in Prudencio et al.10,
NCBI Gene Expression Omnibus (GEO) accession GSE153960, to elu-
cidate the hypothesized subtype-driven heterogeneity in ALS. Patient
stratification analysis was performed using RNA-sequencing (RNA-seq)
expressiondata from the frontal andmotor cortex of 208ALSpatients,
corresponding to 451 unique tissue samples. Transposable elements
(TE) were quantified at the locus-specific level, which resulted in the
redefinition of one ALS subtype. Three distinct molecular subtypes
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were identified, with significant differences in survival, defined by i)
glial activation (ALS-Glia), ii) oxidative stress and altered synaptic sig-
naling (ALS-Ox), and iii) transcriptional dysregulation (ALS-TD).
Importantly, these subtypes capture most of the existing disease
mechanisms previously associated with ALS neurodegeneration12. In
addition, some of the subtype-specific genes and transcripts identified
in this study have not been previously associated with ALS, offering
additional insight into disease pathologies and potential targets for
diagnostic or personalized therapeutic development.

Results
Unsupervised clustering identifies three molecular subtypes in
the frontal and motor cortices of ALS patients
To test the hypothesis that ALS patient clinical heterogeneity is driven
by subtype-specific disease mechanisms, we first performed an unsu-
pervised clustering analysis using 451 ALS postmortem cortex tran-
scriptomes (Fig. S1; table S1; Supplementary Data 1). SQuIRE13 was
implemented to quantify transposable element expression with chro-
mosomal locus specificity (Supplementary Data 2). TE features were
filtered to ensure the retained transcripts had unique mapping
reads and quantifiable expression in all ALS patient samples. Prior to

clustering, a variance stabilizing transformation was applied (Fig. S2)
and the removal of sex-dependent genes was performed using DESeq2
differential expression14. Estimation of factorization rank was then
performed in R (Supplementary Data 3), and a rank of 3 was chosen
given the quality metrics (Fig. S3). Similar to the approach outlined by
Prudencio et al.10, we split the cohort by sequencing platform (HiSeq
2500 and NovaSeq 6000, Illumina, San Diego, CA), to account for
substantial batch effects in gene expression due to the use of different
sequencing instruments.

After filtering for the top 10,000 most variably expressed
genes, we applied non-smooth non-negative matrix factorization
(nsNMF)15 to identify subgroups of ALS patients based on gene
expression in the postmortem cortex. Three distinct patterns of
gene expression were identified in both the NovaSeq and HiSeq ALS
cohorts (Fig. 1a, f). In the NovaSeq cohort there was roughly a ratio
of 3:1.4:1 observed for the ALS-Ox, ALS-TD, and ALS-Glia subtypes,
respectively. The HiSeq cohort showed a similar proportion of ALS
subtypes, with an approximate 3:1.9:1 ratio observed for the ALS-Ox,
ALS-TD, and ALS-Glia subtypes, respectively. Principal component
analysis (PCA) demonstrated the ability to separate the putative ALS
subtypes into three distinct clusters when considering the first and
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Fig. 1 | Unsupervised clustering analysis with ALS postmortem cortex
transcriptomes. a Heatmap of 741 genes and transposable elements selected by
SAKE113 shows transcript overexpression in a subtype-specific fashion for the
NovaSeq cohort (n = 255 biologically independent samples). Transcript counts are
z-score normalized. b Principal component analysis shows three distinct clusters
when considering the first two principal components. c Sample expression ofCD28
transcripts was plotted in the same PCA space, with elevated counts seen for the
ALS-Glia subtype. A darker color corresponds to higher feature expression.
d Expressionof theANO3gene shows specificity for the oxidative stress and altered

synaptic signaling subtype. e The ALS-TD subtype shows specific upregulation of
transposable element chr5 | 760200 | 760576 |MLT1B:ERVL-MaLR:LTR | 277 | +
compared to the other two subtypes. f Heatmap of 618 genes and TEs shows
subtype-specific expression in the HiSeq cohort (n = 196 biologically independent
samples). g PCA considering the HiSeq cohort shows three distinct clusters of ALS
patient transcriptomes. h Elevated expression of CD22 is seen in the activated glia
subtype. i Subtype-specific expression of WNT16 in the ALS-Ox subtype.
j chr10 | 14102244 | 14102461|AluSz:Alu:SINE | 138 | + is overexpressed in the ALS-TD
subtype. Source data are provided as a Source Data file.
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second principal components (Fig. 1b, g). Six transcripts associated
with ALS-Glia, ALS-Ox, and ALS-TD were considered in the principal
component space, and subtype-specific expression can be identi-
fied in both sequencing platform cohorts (Fig. 1c–e, h–j). Taken
together, these results support the existence of three distinct pat-
terns of gene and TE expression within the ALS postmortem cortex
transcriptome.

Gene set enrichment analysis reveals subtype-specific
phenotypes
To elucidate subtype-specific molecular phenotypes, we performed
hypergeometric enrichment analysis16 (Fisher’s exact test) and Gene
Set Enrichment Analysis (GSEA)17 using the top 1000 features from
each sequencing platform cohort, leaving 1681 unique transcripts
(Supplementary Data 4). Subtype-specific pathway enrichment was
observed for each ALS subtype (Fig. 2a–d). In ALS-Glia samples,
enrichment for immunological signaling and activation, genes impli-
cated in a pro-neuroinflammatory microglia state in Alzheimer’s (Dis-
ease-Associated Microglia, DAM)18, and markers of neural cell death
were observed (Fig. 2a, b, g). Transposable element expression was
greatly reduced in ALS-Glia samples compared to the other two sub-
types (Fig. 2e; Fig S4a, c).

Enrichment of the ALS-TD and ALS-Ox subtypes suggests some
overlapping disease mechanisms, such as altered ECM maintenance
and the influence of post-translationalmodificationmachinery (Fig. 2c,
d, i, and j). Furthermore, while the ALS-Ox subtype had the strongest
expression of the locus-specific TEs (Fig. 2e; Supplementary Data 5),
the ALS-TD subtype showed elevated TE expression more often than
the control groups and ALS-Glia subtype (Fig. S4a). To distinguish the
ALS-TD subtype from ALS-Ox, we observe the unique downregulation
of RNA polymerase II transcriptional genes (Fig. 2h). We utilized this
evidence, alongwith univariate features considered later, to determine
this ALS subgroup is defined by transcriptional dysregulation (TD),
rather than TE expression7.

In the ALS-Ox subtype we note distinct enrichment of Alzheimer’s
associated genes, but not genes previously associated with ALS or
Parkinson’s disease, which may reflect our stringent filtering during
NMF score-based feature selection. We observed negative enrichment
for genes involved in oxidative phosphorylation (Fig. 2d), and weak
positive enrichment for synaptic signaling (Fig. 2d, k), when compared
to the control cohort. It is worth noting that our subtype enrichment
generally agrees with the findings reported in Tam et al.7, despite the
increased size of our patient cohort, although we elected not to
include custom TE enrichment (additional details in Methods section,
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Fig. 2 | Enrichment analysis identifies subtype-specific disease pathways.
a Benjamini-Hochberg adjusted p-values, derived from a Fisher’s exact test, are
presented on the –log10 scale. All presented pathways are significantly enriched in
at least one subtype. Negative enrichment is encoded as the negativemagnitude of
the –log10(adjusted p-value). P, Fisher’s exact test, one-tailed, Benjamini-Hochberg
method formultiple hypothesis test correction.b–dGene sets enriched in eachALS
subtype are presented along the Y-axis, with GSEA normalized enrichment score
(NES) presented along the X-axis. e Heatmap of transposable element expression,

with 426 unique TEs and 544 biologically independent transcriptomes. Patient
samples were plotted by subgroup, with the thin black lines denoting sample
separation by subtype. TE count values were subject to VST, followed by z-score
normalization, with red indicating elevated expression. f–k Pathways enriched
specifically for one or more subtypes were generated using GSEA rank metric
scores. Genes comprising each functional pathway are included, with subtype-
specific gene enrichment scores encoded on a red-blue scale. Source data are
provided as a Source Data file.
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Fig. S4; Supplementary Data 6) and some differences are observed for
the ALS-Ox group. Given these results, we elected to maintain the ALS
subtype naming conventions presented by Tam et al., where
appropriate.

Network development reveals gene subsets correlated with ALS
disease duration, age of symptom onset, and age at death
We constructed a network in Cytoscape19 to facilitate the interpreta-
tion of subtype-specific pathway enrichment, utilizing the results from
GSEA (Fig. 3a). Pathway nodes were manually color coded by subtype
and edges denote overlapping genes between pathways. The trans-
posable elements node is color coded purple to signify specificity for
both the ALS-Ox and ALS-TD subtypes (Fig. S4a). Although informa-
tive, we sought to complement this analysis by identifying co-
expressed gene sets (eigengenes) associated with patient clinical
parameters, such as age of symptom onset, age of death, and disease
duration using a weighted gene co-expression network analysis
(WGCNA)20. This approach has proven successful in characterizing the
functional and molecular differences that distinguish cellular compo-
sition and pathogenic processes in disease21.

Our results indicate the maroon and gold eigengenes are sig-
nificantly correlated with ALS clinical parameters (Fig. 3b). Expression
of themarooneigengene is seen tobe negatively correlatedwith ageof
symptom onset and age at death. Conversely, the gold eigengene is
seen to be positively correlated with age of onset and death, yet
negatively correlated with disease duration (Fig. 3b). The observed
relationship between the gold eigengene and patient clinical para-
meters indicates that elevated expression drives a later disease onset
but a shorter survival duration. Identification of eigengene clusters
based on the correlation of gene expression is shown as a dendrogram
and heatmap plot (Fig. S5a) and tabulation of module membership is
presented (Supplementary Data 7). The visualization of features
comprising subtype-specific eigengenes22 is presented in Fig. S5b–d.

Eigengenes were enriched for gene ontology (Fig. 3b; Supple-
mentary Data 8), and the gold eigengene was seen to be strongly lin-
ked to the immune system (p < 5 × 10−16, Fisher exact test, one-tailed,
Bonferroni-corrected). Importantly, we observed ALS-Glia specific
overexpression for the majority of features included in the gold
eigengene (Fig. 3c). The maroon eigengene – primarily composed of
transposable elements, long non-coding RNA, pseudogenes, and
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poorly characterized transcripts (Ensembl IDs) – was not significantly
linked to any gene ontologies, although a general association with
transcription is perhaps a reasonable interpretation. ALS-TD specific
expression was observed for many of the features comprising the
maroon eigengene (Fig. 3d). Subtype-specificity for eigengene
expression was assessed using the β coefficient from dummy regres-
sions considering subtype as the binary predictor and sample-wise
eigengene expression as the response (Fig. 3b).

Patient classification highlights hybrid subtype states
We observed some evidence for the co-expression of subtype phe-
notypes within this ALS cohort, guided by the clustering, enrichment,
and network results (Fig. 1a, f; Fig. 2; Fig. 3a, b). Therefore, to better
understand the transcriptional landscape of these molecular subtypes
of ALS, we leveraged the classification approach outlined by Patel
et al.23. Subtype scores were calculated using predictor gene sets
derived from the ALS-Glia (gold), ALS-Ox (navy), and ALS-TD (maroon)
eigengenes (Fig. 3b; Supplementary Data 7; additional details in
Methods section). We observed that the majority of classified patient
samples demonstrated gene expression characteristic of a single
subtype (220/244; Fig. 4). However, for a subset of patients, hybrid
gene expression characteristic of both the ALS-Glia and ALS-TD sub-
types (n = 19), as well as the ALS-Glia and ALS-Ox subtypes (n = 5) was
observed. Interestingly, despite shared disease themes between the
ALS-Ox and ALS-TD groups (Fig. 2b–d, h), these two subtypes are
generally expressed independently. Furthermore, no patient samples
were seen to express all three subtypes simultaneously, evident by the
fact that all samples fall along one of the three faces of the hexagonal

plot (Fig. 4a). Sample subtypes obtained from the unsupervised clus-
tering analysis are encoded as border colors, and generally show
agreement between the two approaches (Fig. 4b). All patient samples
shown to express a hybrid ALS phenotype were initially clustered into
one of the two subtypes comprising the hybrid state (Fig. 4c), further
supporting the interpretation of this analysis. Taken together, the
results capture the heterogeneous spectrum of ALS disease pheno-
types in this cohort and reveal that a subset of ALS postmortem cortex
transcriptomes show evidence for hybrid subtype states.

We further developed four different supervised classifiers24,25 to
assess the ability to stratify newpatients, given the postmortem frontal
ormotor cortex transcriptome (additional details inMethods section).
As may be expected given the bootstrap-based classification results
(Fig. 4), sensitivity and specificity metrics were relatively poor for all
classifiers constructed (Fig. S6).

The ALS-Glia subtype is associated with a worse prognosis
Next, we considered patient clinical parameters in the context of our
subtypes. A survival analysis26 was performed to determine whether
the three molecular subtypes of ALS capture some of the clinical het-
erogeneity seen in patient disease duration. ALS patients (n = 208)
were only assigned a subtype if there was amajority consensus among
frontal and motor cortex samples or a single tissue sample was char-
acterized for a given patient (additional details in Methods section;
Supplementary Data 9). Importantly, we observe that multiple tissue
samples from the same donor are classified as the same subtype
(80.8%; 126/156), lending support to our subtype assignment
methodology.
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biologically independent samples. Patient samples were initially placed at the ori-
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Notably, the results show significant differences in patient survival,
with the ALS-Glia subtype associated with the shortest disease duration
and a median survival of 28 months (Fig. 5a). Pairwise comparisons
using the log-rank test showed significant differences in survival
between ALS-Glia and ALS-Ox subtypes (p =0.015) and ALS-Glia and
ALS-TD subtypes (p =0.0043) but not between the ALS-Ox and ALS-TD
subtypes (p =0.30). Consideration of patient age of symptom onset
showed a nonsignificant trend toward the latest disease onset for the
ALS-Glia subtype (63.2 ± 1.83 years; presented asmean ± standard error)
and earliest disease onset for the ALS-Ox subtype (60.4 ± 1.16 years;
Fig. 5b, Table S1). We observed the oldest median age at death for the
ALS-TD subtype (66.7 ± 1.33 years) and the youngest median age at
death for the ALS-Ox subtype (64.0 ± 1.05 years), which likely reflects
some dependency on the age of symptom onset (Fig. 5c, Table S1).

Site of symptom onset shows roughly the same proportion of
patients with bulbar and limb onset across the three subtypes (Fig. 5d).
Subtype comorbidity for FTLD was analyzed using a Chi-square test of
independence, although subtype dependency in the co-presentation
of ALS and FTLD was not observed (p = 0.59). The clinical parameter
analysis is further supported by WGCNA results (Fig. 3b), given the
ALS-Glia subtype shows the oldest median age of onset and a sig-
nificantly shorter disease duration – as captured by the gold eigengene
(Figs. 5a, b and Table S1). Taken together, these results lend support to
the hypothesized existence of subtype-driven clinical heterogeneity in
ALS neurodegeneration.

This analysis was also performed with ALS patients that were clas-
sified as having a different subtype in each tissue sample transcriptome,
termed ALS-Discordant7 (Fig. S7; Supplementary Data 9). Similar results
were observed, with significant differences in patient survival (p<0.05)
and the latest age of onset maintained for the ALS-Glia subtype (non-
significant). We further considered patient clinical parameters in the
context of the hybrid subtypes identified in our classification analysis
(Fig. S8). In addition, given a large number of patient transcriptomes
shared between this cohort and the Tam et al.7 study, we assessed the
agreement of subtype labels for the 140 samples in common (additional
details in Methods section; Fig. S1; Supplementary Data 1). We observed
85% agreement (119/140) in sample classification (table S2), despite dif-
ferences in the features used for patient stratification.

Subtype-specific gene expression
To provide additional insight into subtype-specific gene expression, a
univariate analysis was performed, considering the 1681 genes and TEs
used in classification, enrichment, and network construction (addi-
tional details in Methods section). Transcript counts were normalized
using DESeq2 size factor estimation14 and log2 transformed (additional
details in Methods section). The heatmap and violin plots reflect ALS-
Glia (Fig. 6, Fig. S9), ALS-Ox (Fig. 6, Fig. S10), and ALS-TD (Fig. 6, Fig.
S11) specific gene and TE expression (Fig. S12; Supplementary Data 10).
Out of the 36 transcripts selected to support the characterization of
these distinct ALS phenotypes (Fig. 6), 33 were found to have a
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Fig. 5 | Assessment of ALS patient clinical parameters in the context of disease
subtypes. a Kaplan–Meier survival for the three identified ALS subtypes, with
n = 150 patients. Patients without an available age of onset or disease duration were
excluded from this analysis. The ALS-Glia subtype is significantly associated with a
shorter survival duration (p <0.01, log-rank test). TheALS-Ox subtypehadamedian
survival duration of 36 months, while the ALS-TD group had the longest median
survival (42 months). b Age of disease onset plotted as boxplots for the three ALS
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quartiles are captured by the bounds of the box. Boxplot whiskers are defined as
the first and third quartiles –/+ interquartile range times 1.5, respectively, and

outliers are denoted as solid black points. Minimum and maximum values are
capturedby the lowermost anduppermost points, respectively, orwhiskerbound if
no outliers are shown. c Age at death plotted as boxplots for the ALS-Glia, ALS-Ox,
and ALS-TD subtypes, with n = 178 patients. Again, no significant differences are
observed. d ALS subtype site of symptom onset, with the ‘Other’ category com-
prising axial (4), axial-limb (2), bulbar-limb (4), axial-bulbar (1), generalized (1), and
unknown (9) sites of onset. e FTLD comorbidity was converted to a percentage and
plotted as a bar graph. A Chi-square test of independence was used to assess
whether ALS subtype and FTLD comorbidity were associated (p =0.59, one-tailed).
Source data are provided as a Source Data file.
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distinctive expression in a single subtype, independent of the RNA-seq
platform used for analysis (Supplementary Data 10). A few features
show rather large differences in normalized expression between con-
trol and ALS groups, which may suggest simple thresholding could be
used to distinguish the two cohorts (Fig. S13). To support these find-
ings, a univariate analysis was performed, considering FTLD controls
and ALS-FTLD patients exclusively. Despite shared pathological
mechanisms in these two cohorts, ALS-FTLD patientsmaintain distinct
expression of features presented in Fig. S13 (Fig. S14). Prudencio et al.10

previously considered the expression of truncated STMN2 in this
cohort, therefore we extended this analysis by considering truncated
and normal length STMN2 (Fig. S15a-d), as well as C9orf72 and SOD1
mutation frequency (Fig. S15e), in the context of the identified sub-
types. Although no subtype was seen to characteristically express
truncated STMN2, ALS-Ox samples had significantly upregulated
expression of the full length STMN2 transcript.

Given the significant differences in patient survival (Fig. 5a),
subtype-specific gene expression (Fig. 6) may offer a molecular-based
approach to inform ALS patient prognosis. Many of these genes and
transcripts have not been previously associated with ALS neurode-
generation, offering additional insight into disease pathologies and
potential targets for diagnostic or therapeutic development.

ALS-Glia. In the ALS-Glia subtype, we note significantly elevated
expression ofmicroglia, astrocyte, and oligodendrocytemarker genes
(AIF17, CCR527, CD4428, CD6829 (Fig. S9), CHI3L230, CR131 (Fig. S9),
CX3CR132, HLA-DRA33, MSR134 (Fig. S9), TLR735, TMEM12536, TNC36,
TREM218, and TYROBP;18,37 Fig. 6). ALS-Glia upregulation of CHI3L2,
CX3CR1, FOLH1, HLA-DRA, ALOX5AP, CCR5, CR1, FPR3, NCF2, TLR8, and
TNFRSF25 generally indicates a pro-neuroinflammatory and pro-
apoptotic disease phenotype30,31,38–46 (Fig. 6 and Fig. S9). ALS-Glia
negative enrichment for PI3K/AKT signaling further supports a pro-
apoptotic disease phenotype47 (Fig. 3a).

Elevated expression of TREM2, TYROBP, and CLEC7A (Fig. 6, Fig.
S9) may suggest a compensatory neuroprotective mechanism, where
the activated (DAM) microglia state enhances phagocytic clearance
and slows neurodegeneration18,48. The DAM phenotype is also known
to promote ROS generation and neuroinflammation49, obscuring the
relationship between disease-associated microglia and ALS-Glia
pathogenesis. Alterations to lipid metabolism in the ALS-Glia subtype
areevidencedbyAPOBR, APOC1, andAPOC2overexpression compared
to ALS-Ox and ALS-TD patients (Fig. 6, Fig. S9), andmay further reflect
the elevated APOE and LPL expression seen in disease-associated
microglia18,50. Interestingly, we note upregulated expression of tran-
scripts CX3CR1, TYROBP, and TREM2 in this subtype, possibly sug-
gesting dysregulation or competition between homeostatic and
activated microglia phenotypes18 (Fig. 6). Similarly, we observe
increased expression disease associated astrocyte51 (DAA) marker
genes in the ALS-Glia subtype, including ITIH3, KCNIP4, PDGFD,
ST6GALNAC5, and TNC. Interestingly, ALS-Glia expression of DAA
genes suggests the astrocyte population in these patients captures
both disease-associated and homeostatic phenotypes when compared
to healthy control donors.

Consistent with the ALS-Glia subtype, we observe characteristic
expression of many Fc-gamma receptors and MHC Class II molecules
(Fig. 3c, Supplementary Data 10). Heightened VRK2 expression sug-
gests some anti-apoptotic regulation occurs in ALS-Glia patients52 (Fig.
S9). Overexpression of FOLH1 may provide evidence for glutamate
excitotoxicity susceptibility in the ALS-Glia subtype38 (Fig. 6). Elevated
transcription of ST6GALNAC2 suggests alterations to post-translational
protein O-glycosylation (Fig. S9), while NINJ2 expression may support
the proclivity for neuronal damage and death (Fig. S9). Although
additional work is needed to better understand the consequences of
the apparently dichotomous microglial phenotypes in the ALS-Glia
frontal and motor cortex, these results clearly demonstrate that a

subset of ALS patients are defined by glial activation and elevated
inflammatory signaling.

ALS-Ox. The ALS-Ox subtype is defined by oxidative stress, evidenced
by upregulated expression of OXR1 and SOD1 and downregulation of
CP (ceruloplasmin), UCP2, and oxidative phosphorylation genes
NDUFA4L2, TCIRG1, and COX4I253–58 (Fig. 6, Fig. S10). NDUFA4L2 and
BECN1 expression further implicate impaired autophagy in ALS-Ox
pathology56,59. We observe subtype-specific expression of many
synaptic signaling-associated genes, including GABRA1 (GABA recep-
tor), GABRA6, GAD2 (catalyzes production of GABA), GLRA2 (glycine
receptor), GLRA3, HTR2A (serotonin receptor), KCNV1 (voltage-gated
ion channel), KCNMB1, PCSK160, SLC6A13 (GABA transporter), SLC17A6
(glutamate transporter), SLC17A8 (glutamate transporter), and TCIRG1
(proton transporter associated with synaptic vesicle formation53)
(Fig. 6, Fig. S10; Supplementary Data 10). Together, the upregulated
transcription of GABRA1, GABRA6, GAD2, GLRA2, and GLRA3 and
downregulation of SLC6A13 strongly suggest increased inhibition in
the ALS-Ox frontal andmotor cortex. Increased expression of SLC17A6
and SLC17A8 is hypothesized to reflect a neuronal process to alleviate
reduced excitability. Elevated transcription of BECN1, PFDN4, SERPINI1
(neuroserpin), UBQLN1, and UBQLN2 suggests proteotoxic stress is
also a defining characteristic of this ALS subtype7,59,61–63 (Fig. 6, Fig. S10;
Supplementary Data 10).

Downregulation of NOS3, NOTCH3, MYH11, MYL9, and TAGLNmay
implicate pericyte and vascular smooth muscle cell dysfunction and
alterations to the blood-brain barrier in ALS-Ox patients64–66 (Fig. S10).
Similar to the ALS-Glia subtype, B4GALT6 overexpression suggests
changes to the O-glycosylated proteome (Fig. S10). Evidence for
alterations to the extracellular matrix, in the frontal and motor cortex
of ALS-Ox patients, is observed in the downregulated expression of
ADAMTSL4, ADAMTS7, ADAMTS14, COL1A1, COL1A2, COL2A1, COL3A1,
COL4A6, COL6A3, COL8A1, COL14A1, COL18A1, and TAGLN (Fig. 6, Fig.
S10; Supplementary Data 10). Interestingly, Collins et al. demonstrate
that alterations to the extracellularmatrix persist at the protein level67.
Briefly considering common disease themes between Alzheimer’s
disease and the ALS-Ox subtype, expression of oxidation-associated
transcripts COX4I2, NDUFA4L2, and OXR1 is consistent with reported
literature68–70, although CP is known to be upregulated in Alzheimer’s55

(Fig. 6). Interestingly, we observe upregulated transcription of
GABRA1, GAD2, HTR2A, and PCSK1 in ALS-Ox patients, which have been
previously reported to be downregulated in Alzheimer’s patients71,
suggesting distinct synaptic signaling pathological mechanisms
(Figs. 3a, 6). Taken together, these results generally suggest ALS-Ox
patients reflect more traditional neurodegenerative themes, such as
oxidative and proteotoxic stress, impaired blood-brain barrier func-
tion, and alterations to synaptic signaling.

ALS-TD. The defining characteristic of ALS-TD patients is the dysre-
gulation of transcription, evident by the overexpression of
pseudogenes (EGLN1P1, ENSG00000213197, HSP90AB4P, KRT8P13,
NANOGP4, RPS20P22), intronic and antisense transcripts (AGPAT4-IT1,
GATA2-AS1, TUB-AS1, ENSG00000205041, ENSG00000263278,
ENSG00000268670, and ENSG00000273151), long non-coding RNA
(LINC00176, LINC00638, LINC01347), and nonsense-mediated decay
mRNA (ARHGAP19-SLIT1, C1QTNF3-AMACR, CHKB-CPT1B, and SLX1B-
SULT1A4) (Fig. 6, Fig. S11; Supplementary Data 10). Upregulated
expression of microRNAs miR24-2, miR219A2, miR3648-1, and MIR-
LET7BHG, relative to the other ALS subtypes, provides additional
support for transcriptional and translational dysregulation in ALS-TD
patients (Fig. 6, Fig. S11; Supplementary Data 10). miR24-2 has been
previously shown to participate in many diseases, including neurode-
generation, serving to regulate cellular proliferation, differentiation,
and apoptosis72. miR219A2 is known to modulate oligodendrocyte
differentiation and remyelination and has been previously reported to
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be downregulated in the brains of Alzheimer’s patients73,74. MIR-
LET7BHG (LET-7B host gene) is also known to regulate gene expression
and has been shown to interact with glial receptor TLR7 to promote
neurodegeneration75. Therefore, downregulation of TLR7 in the ALS-
TD subtype (Fig. 6) may reflect a neuroprotective state. Altered
expression of transcription factors NKX6-2 and RUNX3, relative to
controls, further emphasizes transcription as a central pathological
mechanism in ALS-TD patients (Fig. S11; Supplementary Data 10).

Similar to theALS-Ox subtype,weobserved the downregulation of
transcripts encoding extracellular matrix proteins (Fig. 6, Fig. S11;
Supplementary Data 10) and characteristic expression of some trans-
posable elements (Fig. S12). Surprisingly, TARDBP (encoding TDP-43)
transcription was not a defining feature of ALS-TD patients, and
expression was relatively conserved across ALS subtypes, with only
moderate upregulation observed compared to healthy controls (Fig.
S4b). Transcription of ADAT3 in ALS-TD patients suggests that the
pathological dysregulation of transcription and translation extends to
tRNAs76 (Fig. S11). Consistent with the ALS-TD phenotype, elevated
expression of many novel mRNA transcripts was observed, with some
examples being ENSG00000258674, ENSG00000279233, ENSG0000
0279712, ENSG00000228434, ENSG00000234913, and ENSG00000
250397 (Fig. 6, Fig. S11; Supplementary Data 10). Downregulation of
TP63 suggests alterations to TP53 signaling and an anti-apoptotic
phenotypic state in the ALS-TD subtype77 (Fig. S11). This interpretation
is further supported by the survival analysis (Fig. 5a), given ALS-TD
patients demonstrated the longest median disease duration. Taken
together, these results suggest poor control of gene transcription and
translation inALS-TD frontal andmotor cortices andprovide additional
insight into the role of TEs in this subtype.

Cell deconvolution supports upregulated neuroinflammation as
a hallmark of the ALS-Glia phenotype
In an effort to address potential biases during bulk tissue sequencing,
where varying proportions of glial and neuronal cell types persist, we
performed cell deconvolution using CIBERSORTx78, with DESeq2 nor-
malized count values (additional details in Methods section) and
reference single cell expression from Nowakowski et al.79 (Fig. 7). Ten
cell-type signatures (including “Unknown”) were generated from the
single-cell expression and used to estimate cell percentages in the bulk
expression data. Significant differences between prefrontal andmotor
cortices are observed in microglial, glial progenitor, vascular cell, and
inhibitory neuron fractions (Fig. 7a). Weak significant differences are
observed in the excitatory neurons, and no significant differences are
seen in the astrocytes. Taken together, these findings indicate cell
percentages in the frontal and motor cortex may partially explain the
subtype-specific expression, although tissue region in the CNS does
not strongly influenceour assignmentofALS subtype (Fig. S16a).When
considering cell type percentages in each subtype, some significant
differences were observed (Fig. 7b). The ALS-Ox subtype had a greater
average percentage of excitatory neurons as compared to the ALS-Glia
subtype (Bonferroni-adjusted p-value <1E-5). Similarly, the ALS-Ox
subtype demonstrated a significantly greater percentage of inhibitory
neurons as compared to the other two subtypes. These results suggest
that the ALS-Ox phenotype is partially driven by bulk tissue cell frac-
tions, yet these differences are small in the case of ALS-Ox versus ALS-
TD patients, supporting neuronal stress and altered inhibition as
hallmarks of the ALS-Ox subtype. The percentage of endothelial and
mural cells in ALS-Ox postmortem cortices suggests expression
implicating blood-brain barrier dysfunction may be driven by bulk
tissue biases. Some significant differences in microglial fraction
are observed between the Glia and Ox subtypes (Bonferroni-adjusted
p-value <1E-9) and Glia and TD subtypes (Bonferroni-adjusted p-value
<1E-7), suggesting that differences in cell type fractions may, in part,
explain the elevated expression ofmicroglial marker genes in ALS-Glia
patients. However, it is important to emphasize that no significant

differences in astrocyte fraction were observed between the ALS-Glia
subtype and the other two subtypes, indicating that upregulated
neuroinflammatory signaling in ALS-Glia patients remains a defining
characteristic. Cell deconvolution was also performed on the healthy
control and FTLD patients, with results presented in Fig. S16b.

Discussion
In this study we demonstrate that a large cohort of ALS patient
transcriptomes10 can be stratified into three subtypes defined by dis-
tinct molecular phenotypes, termed ALS-Glia7, ALS-Ox7, and ALS-TD.
Gene expression associated with activated glial cells are observed in
the ALS-Glia subtype, while the ALS-Ox subtype is characterized by
oxidative stress, proteotoxic stress, and increased inhibition in the
frontal and motor cortices. Consideration of locus-specific transpo-
sable elements revealed that both the ALS-TD and ALS-Ox subtypes
strongly overexpressed TEs compared to healthy control donors and
ALS-Glia patients. Guided by enrichment, we observed unique
expression of transcription and translation-associated genes, includ-
ing transcription factors, regulatory microRNAs, mRNA traditionally
marked for nonsense-mediated decay, pseudogenes, antisense, intro-
nic, and long non-coding RNAs. These findings led us to define the final
subtype by transcriptional dysregulation. These subtypes had sig-
nificant differences in survival, and the eigengene analysis provides
additional insight into the variability observed in ALS patient age at
symptom onset and age at death. Given these results, ALS-Glia specific
upregulation and downregulation of genes in the frontal and motor
cortex provides a set of transcripts associated with patient prognosis.

Noteworthy findings, differing from the foundational Tam et al.
study, include (i) our redefinition of the transposable element subtype
– driven primarily by our consideration of transposable elements at
the gene locus level, (ii) our identification of an immunological
eigengene significantly correlated with age of disease onset and sur-
vival, and (iii) our observation that the ALS-Glia subtype is associated
with a significantly shorter survival duration. However, despite the
redefinition of the transposable element subtype, we generally
observe good agreement with Tam et al. with respect to the major
pathological themes identified in each subtype. Furthermore, given
Tam et al. demonstrate TDP-43 binds and regulates a variety of non-
protein coding genes, including intronic, long non-coding and reg-
ulatory RNA, transposable elements, and intergenic DNA our results
suggest that TDP-43 plays a core role in the ALS-TD phenotype.

Importantly, the identified relationship between elevated inflam-
matory gene expression and shorter disease duration, in ALS-Glia
patients, is well supported by previous works80–82. Using ALS mouse
models expressing mutant SOD1, Beers et al.80 and Biollée et al.81 both
show that microglia become activated and accelerate disease progres-
sion, while Yamanaka et al.82 leveraged Cre-mediated gene excision to
demonstrate astrocytes also modulate progression through microglial
activation. While these studies do not find associations between glial
activation and disease onset, our WGCNA analysis captures a significant
positive correlation between inflammatory gene expression and age of
onset – potentially a consequence of differences in sample size between
these works and our own. Lending additional support to our findings, a
recent preprint83 considering spinal cord samples from the same
cohort10 identified activated microglia modules (eigengenes) negatively
correlated with disease duration. Among the inflammatory genes asso-
ciated with ALS, the chitinases (CHIT1, CHI3L1) have been considered
extensively, with many groups demonstrating that elevated expression
is linked to ALS progression and disease duration84–88. Consistent with
these studies, and others30, we show that elevated expression of another
member of the chitinase family, CHI3L2, is uniquely upregulated in ALS-
Glia frontal andmotor cortices. More generally, activated microglia and
astrocytes are known to promote cytotoxicity in motor neurons89,90,
providing a direct framework linking the neuroinflammatory phenotype
in ALS-Glia patients to more rapid disease progression.
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Typical neurodegenerative themes dominate the expressed phe-
notype in ALS-Ox patients. However, we also observe altered expres-
sion of synaptic signaling genes, coherently suggesting increased
inhibition in the frontal and motor cortex at the end stage of the
disease. In contrast, transcranial magnetic stimulation91 shows ALS

patients present with cortical hyperexcitability early in the pathology,
possibly resulting from a combination of increased excitability and
decreased inhibition. While these findings appear at odds, a few works
considering mRNA expression of inhibitory genes in the frontal and
motor postmortem cortex92,93

find elevated expression ofGAD and the
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Fig. 7 | Bulk tissue cell deconvolution inALS subtypes. aCell type percentages in
the prefrontal and motor cortices for all patient samples considered in this study.
b Fractions of cell types in the frontal andmotor postmortemcortex, considered in
the context of the ALS subtypes. Significant differences in cell type percentages
were assessed using a two-sided Wilcoxon rank sum test with Bonferroni p-value
adjustment. Adjusted p-values are denoted using the following scheme: ***
p <0.001; **p <0.01; *p <0.05. The median is indicated by the solid black line, and

first and thirdquartiles are captured by thebounds of the box. Boxplotwhiskers are
defined as the first and third quartiles ± interquartile range times 1.5, respectively,
and outliers are denoted as solid black points. Minimum and maximum values are
capturedby the lowermost anduppermost points, respectively, orwhiskerbound if
no outliers are shown. Source data are provided as a Source Data file, including
exact p-values for all comparisons.
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β1-subunit of the GABAA receptor, lending support to the possibility
that cortical inhibition shifts from an impaired to overactive state
throughout the disease course in response to hyperexcitability.
Alterations to brain vascular function, supported by the down-
regulated expression of NOS3, NOTCH3, MYH11, MYL9, and TAGLN, is
another distinguishing pathological feature in ALS-Ox patients. This
finding is well supported by previous works considering the blood-
brain barrier in ALS pathology, with Henkel et al. noting ultrastructural
alterations to the blood-brain and blood-spinal cord barriers prior to
symptom onset and decreased expression of tight junction proteins in
the postmortem sporadic ALS lumbar spinal cord94. Similarly,
Garbuzova-Davis et al. report pericyte degeneration and endothelial
cell damage in medulla and spinal cord tissue from sporadic ALS
patients95, while Saul et al. utilize RNA-seq to reveal changes to the
blood-CSF barrier at the level of the choroid plexus96. Expanding on
these previous findings, our work suggests blood-brain barrier dis-
ruptions extend to the frontal and motor cortices late in the disease
pathology, implicating systemic vascular changes in the CNS –

although cellular deconvolution results suggest ALS-Ox expression
could be partially explained by cell type composition.

Neumann et al. demonstrated TDP-43 hyperphosphorylation and
mislocalization is a nearly ubiquitous features of ALS and FTLD-TDP
pathology97. Building on this work, other groups have shown that the
TDP-43 protein plays a direct role in the regulation of transcription,
including chromatin assembly98, binding and regulation of transpo-
sable elements, intergenic, lncRNA, and intronic DNA7,99, cryptic exon
splicing in STMN210,100 and UNC13A101,102 genes, and polyadenylation103.
In line with these findings, our patient stratification analysis identified
transcription as the major driver of the ALS-TD phenotype. Elevated
expression of nonsense-mediated decay transcripts CHKB-CPT1B and
SLX1B-SULT1A4 in ALS-TD patients may implicate a TDP-43 associated
mechanism similar to those detailed in the process of cryptic exon
splicing in STMN2 andUNC13A100–103. Should this be the case, nonsense-
mediated decay of read-through genes CHKB and CPT1B suggests
deficits inmitochondrial lipidmetabolism, known to play a pathogenic
role inmuscular dystrophy104, while loss of SLX1B and SULT1A4 indicate
impaired genome stability and monoamine synthesis. Similarly,
increased expression of retrotransposons, intronic, antisense, and
long non-coding RNA implicates the TDP-43 protein in phenotypic
presentation, given findings from Tam et al. and others7,99. Of interest,
bothBrownet al.101 andRosaMaet al.102 report incomplete detectionof
the UNC13A cryptic exon in ALS patients from the same cohort10.
Brown et al. observed that 38% of ALS patients expressed the cryptic
exon in the UNC13A gene, while Rosa Ma et al. found 6.8% (31/454) of
frontal andmotor cortex samples had detectable levels of the UNC13A
cryptic exon. In our analysis, we find that 26.9% of patients dominantly
expressed the transcriptional dysregulation phenotype, potentially
linking ALS-TD patients and cryptic exon expression in UNC13A –

although additional work is needed to determine if cryptic exon
expression is specific to ALS-TD. Despite our observation that TARDBP
(encoding TDP-43) expression was relatively conserved across sub-
types (Fig. S4b), our enrichment, WGCNA, and univariate results,
suggest that TDP-43 pathological mechanisms, stemming from mis-
localization, drive the expressed phenotype in ALS-TD patients. Given
TARDBP expression in this cohort, we hypothesize subtype-specific
differences in TDP-43 pathology occur at the protein level, and note
support for this reasoning in the observation of TDP-43 hyperpho-
sphorylation by Neumann et al.97.

Clinical and pathological heterogeneity are well-established fea-
tures of Amyotrophic Lateral Sclerosis. Heterogeneity in clinical pre-
sentation is typically characterized by a region of onset, themixture of
upper and lowermotor neuron involvement, and rate of progression105

– although this scheme often fails to accurately predict patient
outcomes3,4. As a consequence of the poorly understood clinical het-
erogeneity in ALS, significant research efforts aimed at unraveling the

molecular underpinnings in patients7–9 and animal and cell
models28,38,54,58,59,106 have implicated a number of disease mechanisms
shown to contribute to pathological variability. As detailed by Taylor,
Brown Jr., and Cleveland12, these mechanisms include (1) disturbances
in protein quality control, including autophagy, proteasome-mediated
degradation, and endosome-lysosome mediated degradation, (2)
hyperactivated microglia, (3) decreased energy supply from oligo-
dendrocytes following downregulation of MCT1, (4) glutamate exci-
totoxicity, (5) disturbances in RNA metabolism, and (6) cytoskeletal
defects and altered axonal transport. Importantly, the three subtypes
identified in this work directly capture the majority of these proposed
mechanisms. Supported by our differential expression results, dis-
turbances to protein quality control (proteotoxic stress) is a defining
hallmark of ALS-Ox patients, while the hallmark of the ALS-TD patient
phenotype is dysregulated RNA metabolism. In ALS-Glia patients, we
observe upregulation of inflammatory genes, implicating activated
microglia and astrocytes in the accelerated progression of disease
pathology. Beyond themajor pathological themes of each subtype, we
observe some evidence for cytoskeletal defects and altered axonal
transport in ALS-Ox and ALS-TD patients through the expression of
ACTA2, DYNLT3, PLS1, and TUBB6. Moderate overexpression of FOLH1
implicates glutamate excitotoxicity in ALS-Glia patients, although
further consideration of transcripts and proteins associated with glu-
tamate metabolism and signaling are needed to explore subtype spe-
cificity. In summary, this work helps to clarify the molecular
foundation of clinical and pathological heterogeneity in ALS by
demonstrating that subtype-specific phenotypes are associated with
patient outcomes, including survival and age of onset.

Methods
Study approval
The NYGC ALS Consortium samples presented in this work were
acquired through various IRB protocols from member sites and the
Target ALS postmortem tissue core and transferred to the NYGC in
accordance with all applicable foreign, domestic, federal, state, and
local laws and regulations for processing, sequencing, and analyses10.

Postmortem brain tissues from patients with FTLD-TDP or PSP and
fromcognitivelynormal individualswereobtained fromtheMayoClinic
Florida Brain Bank. Diagnosis was independently ascertained by trained
neurologists and neuropathologists upon neurological and pathologi-
cal examinations, respectively. Written informed consent was given by
all participants or authorized family members, and all protocols were
approved by the IRB and ethics committee of the Mayo Clinic10.

Data sources
ALS patients. Within the GEO data repository, GSE153960 was iden-
tified as the ideal study to further probe the existence of ALS subtypes.
GSE153960 contains RNA-seq data from 1659 tissue samples, spanning
11 regions of the CNS, from 439 patients with ALS, frontotemporal
lobar degeneration (FTLD), or comorbidities for ALS-Alzheimer’s (ALS/
AD) or ALS-FTLD. These 1659 tissue samples were filtered such that
only the individuals belonging to the groups ALS-TDP, ALS/FTLD, ALS/
AD, and ALS-SOD1 were considered. Furthermore, RNA-seq samples
derived from regions of the CNS other than the frontal or motor cor-
tex, such as cerebellum and spinal cord, were not included in the
analysis - yielding 473 cortex transcriptomes (Fig. S1a).

Raw FASTQ files for the 473 ALS patient samples were down-
loaded from the European Bioinformatics Institute data repository
(NCBI mirror) using NIH’s Globus software. Of the 473 selected RNA-
seq samples, five had incomplete or missing paired-end FASTQ files,
and were subsequently excluded from the analysis. An additional
13 samples were mapped to the human reference genome build hg38
via STAR 2.5.3a107 but TEs were not successfully quantified using the
SQuIRE pipeline and were, therefore, excluded from the analysis. A
final 4 sampleswerepoorlymapped to the RepeatMasker transposable
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element reference genome108,109; retaining these four subjects would
have resulted in a reduction of ‘shared’ TEs by > 60% (557/1474). Our
final ALS cohort contained 451 frontal and motor cortex tran-
scriptomes, corresponding to 208 unique patients (n = 95 female,
n = 113 male). Subject demographics for this analysis are included in
table S1. A full list of the included and excluded samples is provided in
Supplementary Data 1.

Control subjects. Control sample transcriptomes were comprised of
healthy control donors (HC; n = 93) and patients diagnosed with FTLD
exclusively (n = 42), corresponding to 58 HC and 42 FTLD individuals.
Equivalent to the ALS subject processing pipeline, raw FASTQ files
were downloaded from the European Bioinformatics Institute data
repository. One RNA-seq sample had missing paired-end FASTQ files
and was excluded from our analysis. The remaining 135 control sam-
ples were mapped to the human reference genome build hg38 using
STAR 2.5.3a and TEs were quantified using SQuIRE’s Count function.
TEs missing from our control sample cohort were replaced with a
count value of 0.

Transcriptomes from the control cohort were implemented dur-
ing GSEA for the identification of enriched pathways associated with
each of the three subtypes. Control samples were further utilized to
assess differentially expressed genes and TEs in each ALS subtype.
Control transcriptomes were subject to cell deconvolution in an effort
to assess bulk tissue RNA-sequencing biases.

Quantification. Quantification of gene expression was performed using
RSEM110, as detailed by Prudencio et al.10. The processed gene count
matrix was accessed directly from the GEO Accession (GSE153960) and
counts were rounded to integers as recommended by the authors of
RSEM and required by DESeq2 differential expression.

SQuIRE13 (Supplementary Data 3) was selected for transposable
element quantification, as this alignment pipeline provides locus-
specific TE counts, allowing for a deeper analysis beyond TE sub-
families. Similar to RSEM, SQuIRE applies the Expectation Maximiza-
tion (EM) algorithm to optimize the allocation of multi-mapped reads.
SQuIRE’s Fetch, Clean, Map, and Count functions were utilized to align
and quantify locus-specific transposable elements. The EM ‘tot_counts’
valueswere selected as the estimate for sequencing reads attributed to
the transposable elements. The hg38 build was used during mapping,
with default trim and EM parameters, and a read length of 100 or 125
base pairs depending on the sequencing platform specified. A scoring
threshold of ≥ 99 was used to restrict the number of false positive TEs
(1%), with fewuniquelymapping reads. Only the locus-specific TEswith
at least one count for all ALS samples (n = 451) were included in
downstream analysis, resulting in 1474 unique TE features (Supple-
mentary Data 2). The naming scheme for our locus-specific transpo-
sable elements is presented in SQuIRE13, however in brief, TE feature
names included the mapping chromosome, start and stop base pairs,
transposable element subfamily, family and superfamily identifiers,
base mismatches in parts per thousand, and sense or antisense stand
annotation.

Differential expression. As discussed by Prudencio et al., the large ALS
cohort size required theutilizationof twodifferent sequencingplatforms
(HiSeq 2500 and NovaSeq 6000, Illumina, San Diego, CA) to complete
the analysis. Exploratory differential expression considering sequencing
platforms as the design equation factor revealed strong batch effects in
gene expression, evident by more than one-third of all genes falling
below the Benjamini-Hochberg corrected p-value threshold (37.2%,
22478/60403; including TEs). To correct for these batch effects, we fol-
lowed the approach outlined by Prudencio et al. and split our ALS cohort
based on the sequencing platform. Our NovaSeq cohort contained 255
patient transcriptomes (n= 106 female, n= 149 male), while our HiSeq

cohort contained 196 (n=97 female, n=99 male). The control cohort
was processed in an analogous manner.

DESeq214 (Supplementary Data 3) was initially applied to perform
a preliminary differential expression on gene and TE counts. Differ-
ential expression was utilized to guide the removal of sex-dependent
genes prior to clustering. As described by Prudencio et al., sex was
determined using XIST and UTY expression. Default parameters were
used for DESeq2 differential expression, with male specified as the
reference level and the ‘betaPrior’ argument in the DESeq() function
set to true. A Benjamini-Hochberg corrected p-value ≤ 0.05 was
selected as the threshold for the removal of sex-dependent genes.

Clustering. Following the removal of sex-dependent genes using the
differential expression, the raw count matrix was subject to a variance
stabilizing transformation (VST) to address heteroskedasticity in gene
counts14. TheVST countswere then subject to rank ordering bymedian
absolute deviation (MAD) and the top 10,000 features were retained
for unsupervised clustering analysis by non-negative matrix factor-
ization (NMF)15,111. This process was completed for both sequencing
platform cohorts.

Rank estimation. Factorization rank was estimated in R, Version 4.0.3
(The R Foundation for Statistical Computing, Vienna, Austria) using
the NMF package112 (Supplementary Data 3). We selected a rank of
three for clustering analysis, based on the plots of the cophenetic
correlation coefficient for ranks spanning 2 to 6. Quality measures
were estimatedusing 50 iterations at each rank and the default seeding
method. The nsNMF (non-smooth non-negative matrix factorization)
method was utilized for all NMF clustering15.

Non-negativematrix factorization. Non-negativematrix factorization
was performed in SAKE, a convenient tool for RNA-seq sample pre-
processing, filtering, clustering and visualization113 (Version 0.4.0). The
top 10,000 MAD genes, after a variance stabilizing transformation,
were utilized as the input into SAKE. No samples were removed during
the quality control step, and further transformations in the filtering
step were not necessary. During non-negative matrix factorization,
selected parameters include factorization rank = 3, iterations = 200,
and NMF method set to nsNMF.

To robustly assign ALS sample subtypes, 10 rounds of NMF clus-
tering were performed in SAKE. For each patient sample, the ALS
subtype with a simple majority was selected. For a small number of
edge cases (5/451), an eleventh round of NMF clustering was used as a
tiebreaker to reach the simple majority threshold. This process was
completed for both sequencing platform groups. The robustly
assigned subtype labels are provided for all ALS patient samples
(Supplementary Data 11).

Feature selection. After each replicate of NMF clustering, gene and TE
feature scores114 were calculated for all 10,000MAD transcripts. Feature
scores were averaged across the 10 clustering replicates and reordered.
The top 1000 features from both sequencing platform cohorts were
combined, and after the removal of duplicates, 1681 genes and TEs
remained for enrichment, networking, and univariate analysis.

Enrichment analysis. Following supervised classification, the gene
and TE feature sets were then enriched using Enrichr16 and GSEA17

(Version 4.1.0, Broad Institute, Boston, MA). Enrichr was performed to
support subtype-specific pathway expression observed during GSEA,
utilizing the Fisher’s exact test with Benjamini–Hochberg multiple
hypothesis test correction. Hypergeometric enrichment analysis was
considered in the context of the Reactome 2016 database. Upregula-
tion and downregulation of pathways was determined using subtype-
specific differential expression, with each feature assigned to two of
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the three subtypes based on the maximum and minimum median
expression. For GSEA, healthy control donors were selected as the
reference phenotype during enrichment. Transcripts without a corre-
sponding gene symbol (HGNC) were excluded from the enrichment
analysis, including TEs, leaving 891 total genes. Theminimum gene set
size was adjusted to 5, and all other parameters weremaintained as the
default. For the enrichment, we leveraged the canonical pathways
contained in the Reactome database115, a custom gene set containing
markers of disease-associated microglia18,116, and curated gene sets for
Alzheimer’s, Parkinson’s, and ALS53,117. Pathway heatmaps reflecting
gene enrichment by phenotypewere built using the RankMetric Score
tabulated during GSEA.

A custom gene set for the enrichment of locus-specific transpo-
sable elements was also considered, however, GSEA rank-based scor-
ing may be biased by the size of the TE set (>400 features). The
collapse of locus-specific TEs to the subfamily level was also con-
sidered, to allow enrichment using Repbase109, however, subfamily co-
expression was not observed following a hierarchical clustering ana-
lysis considering TE features exclusively (Supplementary Data 6).

Networks. Network development was carried out in two different, yet
complementary approaches. For the visualization of gene enrichment
pathways by ALS phenotype, we leveraged Cytoscape (Version 3.8.2,
Institute for Systems Biology, Seattle, WA)19. Result files from GSEA
were utilized as the input into Cytoscape. Additional pathway enrich-
ment was performed using the custom and curated gene sets from the
previous step. Nodes were color-coded according to ALS subtype
specificity, guided by GSEA enrichment score magnitude and uni-
variate analysis. A small number of unrelated or synonymous pathways
were manually trimmed.

Co-expressed gene sets associated with disease duration, age of
symptom onset, and age at death were assessed using the Weighted
Gene Co-Expression Network Analysis (WGCNA) package in R20 (Ver-
sion 1.70-3, University of California, Los Angeles). The minimum
module size was set to 25 and a soft power of 13 was selected given the
assessment of scale-free topology. All 1681 features were considered
during the construction of the eigengene heatmap, using variance-
stabilizing transformation count values. Eigengenes were assessed for
upregulation or downregulation in each subtype using dummy
regression, with subtype as the predictor and sample-wise eigengene
expression as the response variable. For each eigengene, a linear
regressionmodelwas constructed, settingoneof the three subtypes to
a value of 1, and the other two to a value of 0. The sign andmagnitude
of the β coefficient from the non-zero term reflect subtype-specific
eigengene expression.

Eigengenes of interest were subject to network visualization in
VisANT22 using edge weights derived from WGCNA (Supplementary
Data 12). A weight threshold of 0.05 was set to filter genes weakly co-
expressed. Unconnected nodes were manually trimmed from the
networks.

Classification. Given that previously established predictor gene sets
for ALS subtype were not available, ALS-Glia, ALS-Ox, and ALS-TD
predictor gene sets were derived from our gold, navy, and maroon
eigengenes, respectively (Fig. 3b). We utilized enrichment results from
WGCNA and differential expression to establish subtype-specific
expression of each eigengene. For example, most transcripts com-
prising the gold eigengene are specifically upregulated in the ALS-Glia
subtype (Fig. 3c; Fig. S5c). Transcript counts were considered on the
DESeq2median-of-ratios scale, adjusted for RIN, site of collection, and
sequencing platform covariates.

Subtype scores, defined as the average expression of subtype-
specific predictor genes minus the average expression of all 1681 fea-
tures considered in this analysis, were calculated for 100 different sets
of predictors (per subtype) and used to define a 5% cutoff for the

expected subtype score23. Each sampled predictor gene set contained
the same number of features as the original eigengene and were gen-
erated by randomly sampling the eigengenes with replacement. For
example, the expected subtype score for ALS-Glia patients was
determined by first generating 100 predictor sets by randomly sam-
pling features comprising the gold eigengene. Then, the average
(sample-wise) ALS-Glia expression was determined for each of the 100
predictor sets and subtracted from the average (sample-wise) ALS-Glia
expression of all 1681 classification genes.

After repeating this analysis for the ALS-Ox and ALS-TD subtypes,
using their respective eigengenes, 100 subtype scores were generated
for all 451 samples (n =203 female, n=248 male). A 5% cutoff for the
expected subtype score was then established, per sample, and final
subtype classification thresholds were determined by weighting expec-
ted subtype scores according to the observed proportion of patient
samples in each subtype (obtained from clustering). Bootstrapping was
then applied, involving the sampling of predictor gene sets (with
replacement) and the calculation of subtype scores for 1000 iterations.

Patient samples were initially placed at the origin, and moved in
the direction of the subtype vertex after passing the corresponding
subtype threshold. Therefore, the x, y, and z-axis vertices reflect the
expression of a single subtype, while the other three vertices capture a
combination of two subtypes. Individual points that passed a given
subtype threshold in >50%of bootstrap iterationswere filledwith their
respective subtype colors. Samples were considered to express a
hybrid subtype state if one subtype threshold was passed >50% of the
time and simultaneously passed a second subtype threshold >40% of
the time. One ALS-TD sample (CGND-HRA-01732) did not have a RIN
value available and was subsequently excluded from the analysis due
to an incomplete design equation.

Allmachine learning classifierswere developed in Python (Version
3.8.8, Python Software Foundation, Wilmington, DE) using the Scikit-
learn framework24 (Version 0.24.1). Four different models were con-
sidered, k-nearest neighbors (KNN), linear support vector classification
(Linear SVC),multilayer perceptron (MLP), and random forest (RF). To
limit the inclusion of platform-dependent genes, the top 1000 features
were further filtered so that only genes and TEs shared between the
two sequencing platform cohorts were retained, totaling 299. The
k-nearest neighbor classifier was built with k neighbors = 5, distance
calculated using the Manhattan metric, weights = distance, and all
other parameters as default. The linear SVC classifier was constructed
using class weights defined by the proportion of subtypes in the
NovaSeq cohort, max iterations = 100,000 and default for all other
parameters. Themultilayer perceptron neural network was built using
three hidden layers (five total), with 100 ‘neurons’ comprising each
hidden layer, learning rate = 0.0001, hyperbolic tangent activation
function, random state = 1, max iterations = 10,000 and default set-
tings for all remaining parameters. Finally, the random forest was
developed using n estimators = 1000, oob score = True, class weights
defined by the proportion of subtypes in the NovaSeq cohort, and
default for all other parameters. Allmodels were constructed using the
‘one-vs-rest’ multi-class strategy.

Supervised classifiers were constructed using training and test-
ing datasets generated from a 70% / 30% split of the ALS NovaSeq
cohort (n = 255 transcriptomes). 100-fold cross validation was
applied to assess performance in the testing cohort. The ALS HiSeq
cohort (n = 196 transcriptomes) was designated as the holdout
dataset to assess performance metrics when classifying new patient
samples. Transcript counts on the VST scale were utilized during
classifier development. Classifier recall, precision, and F1 scores were
calculated for all ALS subtypes after each round of cross validation.

Clinical parameters. For many patients in our cohort, multiple
tissue samples from the frontal and motor cortex were char-
acterized by RNA-seq (Supplementary Data 9). As a result,
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patients were assigned a label only if there was a majority con-
sensus among their frontal and motor cortex samples, or if there
was a single sample characterized. ALS patients which displayed
multiple subtypes among their frontal and motor cortex samples
were labeled ‘Discordant’. Among the 208 unique patients in this
cohort (n = 95 female, n = 113 male), 30 were found to be dis-
cordant (table S1, S10; n = 17 female, n = 13 male). Differences in
ALS survival by subtype were assessed using the Kaplan-Meier
analysis26,118 with application of the log-rank statistical test.
Subtype-specific differences in age of symptom onset and age at
death were analyzed using ANOVA tests. A Chi-squared test of
independence was applied to assess subtype specificity for FTLD
comorbidity. All analysis was performed with and without dis-
cordant ALS patients.

Subtype concordance. Both the Prudencio et al.10 and Tam et al.7

studies are associated with the New York Genome Center (NYGC) ALS
Consortium (GEO Superseries GSE137810), so a large majority (~95%;
n = 140; n = 77 female, n = 63 male) of postmortem tissue samples
analyzed by Tam et al. are also reanalyzed by Prudencio et al. We took
advantage of this repeat analysis by utilizing the work from Tam et al.
as a reference to assess patient subtype concordance.

Univariate analysis. Transcript counts were normalized using
DESeq214 size factor estimation (median-of-ratios) to better allow
comparison between patient samples. Subtype-specific differential
expression of transcripts was determined using a multifactor design
equation, accounting for sequencing platform, RIN, and site of sample
collection covariates. One ALS-TD sample (CGND-HRA-01732) did not
have a RIN value available and was subsequently excluded from the
analysis due to an incomplete design equation. Pairwise analysis was
performedusing the constrast() argument, for all combinations.Genes
and TEs with an FDR adjusted p-value ≤0.05 were considered to be
significant. All patient samples (n = 586; n = 267 female, n = 319 male)
were consideredduring normalization. Counts on themedian-of-ratios
scale were log2 transformed before plotting. For heatmap presenta-
tion, z-scoreswere calculated usingALSpatients to establish gene-wise
mean expression and deviation, with expression values on the log2
median-of-ratios scale. FDR adjusted p-values, derived from DESeq2
differential expression were –log10 transformed prior to plotting.

A few additional genes not included in the 1681 features used for
classification, enrichment, and networking, were also considered
during the univariate analysis out of disease relevance7,97 and include
TARDBP, OXR1, BECN1, BECN2, SOD1, UBQLN1, UBQLN2, UCP2, and TXN.
Many of these added genes were used during unsupervised clustering
as some of the top 10,000most variable features calculated bymedian
absolute deviation.

Cell deconvolution. Cell deconvolution was performed using
CIBERSORTx78 with reference single cell RNA-sequencing expression
from the developing human brain available from Nowakowski et al.79

(http://bit.ly/cortexSingleCell). Raw data were filtered and normalized.
35 cell types (WGCNAcluster) were grouped into 10 major cell types:
neuronal progenitor, excitatory neuron, inhibitory neuron, glial pro-
genitor, astrocyte,microglia, endothelial,mural, choroid, andunknown.
Marker genes for each major cell type were identified using Seurat’s119

function FindAllMarkers() (Version 4.0.3). Marker genes were used to
generate medioids (i.e., cell type signatures) to use as the reference for
cell deconvolution. The ALS cohort was normalized using DESeq2 with
count values on the median-of-ratios scale. All overlapping MAD tran-
scripts between the NovaSeq and HiSeq cohorts were used, totaling
7372 transcripts, to ensure a sufficient number of transcripts were
available fordeconvolution. Transcriptswithout amappedgene symbol
and transposable elementswere removed fromtheanalysiswhich led to
4912 transcripts. Lastly, transcripts not shared betweenALS and control

cohorts (n = 586; n = 267 female, n = 319 male) and Nowakowski cell
type signatureswere removed. 1881 transcripts remainedandwereused
as input into CIBERSORTx. Quantile normalization was disabled in
CIBERSORTx, which is recommended for RNA-seq data, and 500 per-
mutations were used for significance analysis. Significant differences in
cell type fractions were assessed using the nonparametric Wilcoxon
rank sum test with Bonferroni correction.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw data files used in this study are available in the NCBI Run
Selector database under accession code PRJNA644618. The RSEM
processed gene count matrix utilized in this study are available in the
Gene Expression Omnibus database under accession code GSE153960.
ProcessedRNA-seq count files utilized during our analysis are available
as supplemental tables or made publicly available at: https://figshare.
com/authors/Jarrett_Eshima/13813720. Source data are provided with
this paper.

Code availability
All code developed and utilized in this analysis is available in the Bar-
bara Smith Lab Github repository120 (https://github.com/BSmithLab/
ALSPatientStratification), excluding some scripts used for supervised
classification, which can be found in the Plaisier Lab Github repository
(https://github.com/plaisier-lab/U5_hNSC_Neural_G0).
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