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Radiative anti-parity-time plasmonics

Yumeng Yang1,2,3,4,5, Xinrong Xie1,2,3,4,5, Yuanzhen Li1,2,3,4, Zijian Zhang1,2,3,4,
Yiwei Peng1,2,3,4, Chi Wang1,2,3,4, Erping Li 1,2,3,4, Ying Li 1,2,3,4,
Hongsheng Chen 1,2,3,4 & Fei Gao 1,2,3,4

Space and guided electromagnetic waves, as widely known, are two crucial
cornerstones in extensivewireless and integrated applications respectively. To
harness the two cornerstones, radiative and integrated devices are usually
developed in parallel based on the same physical principles. An emerging
mechanism, i.e., anti-parity-time (APT) symmetry originated from non-
Hermitian quantum mechanics, has led to fruitful phenomena in harnessing
guided waves. However, it is still absent in harnessing space waves. Here, we
propose a radiative plasmonic APT design to harness space waves, and
experimentally demonstrate it with subwavelength designer-plasmonic
structures.Weobserve two exotic phenomena unrealized previously. Rotating
polarizations of incident space waves, we realize polarization-controlled APT
phase transition. Tuning incidence angles, we observe multi-stage APT phase
transition in higher-order APT systems, constructed by using the scalability of
leaky-wave couplings. Our scheme showspromise in demonstrating novel APT
physics, and constructing APT-symmetry-empowered radiative devices.

Electromagnetic (EM) waves of spatial and guided forms, as widely
known, are two crucial intermediaries in extensive wireless and inte-
grated applications respectively. Therefore, various manipulation
technologies are usually developed for the two types of waves in
parallel. For example, transformation optics has spawned surface-
wave1–3 and space-wave cloaks4. Negative refractions have led to
superlens for space waves5–7 and subwavelength focusing for guided
waves8. Topology9 roots in both bound states in the radiative
continuums10 and robust waveguides11,12.

Decades ago, the concept of parity-time (PT) symmetry13, which
originates from non-Hermitian quantum mechanics, has been intro-
duced into photonics, thus igniting intense interests in non-Hermitian
photonics. It has resulted in fascinating phenomena i.e., unidirectional
transmission for spacewaves14, aswell as coherent perfect absorber15,16,
loss-induced transparency17, and high-performance sensors for guided
waves18,19. Subsequently, anti-parity-time (APT) symmetry has also
been proposed and aroused intense interests across multi disciplines
from atomics20–23, photonics24–30, classical31 and quantum32 circuits,

thermology33 to magnetics34, etc. Fundamentally different from PT-
symmetry systems, APT-symmetry systems exhibit exotic dynamics,
i.e., energy-difference conservation31,35, thus providing fascinating
approaches to harnessing EMwaves. On guided waves, APT symmetry
has so far resulted in fruitful photonic phenomena, e.g. constant
refraction36, mode switching37, and enhanced Sagnac effect38,39. How-
ever, the studyon harnessing spacewaveswithAPT-symmetry systems
is still lacking.

Here, we propose a radiative plasmonic APT design scheme to
harness space waves (in Fig. 1). The crucial part of such design is the
leaky wave, which plays a significant role in two aspects. Its in-plane
propagating component provides imaginary coupling channels to
enable the APT system, while its out-of-plane radiation nature enables
the interaction of APT systems and space waves. We then experimen-
tally demonstrate the design with subwavelength designer surface
plasmonic resonators (DSPRs). The DSPRs host low-frequency surface
modes which are analogous to the localized surface plasmons at
optical frequencies40–45. Exploring the degrees of freedom (DoFs) of
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spacewaves,weobserve two exoticphenomenaunrealizedpreviously.
Switching polarizations of illuminating space waves, we realize
polarization-controlled APT phase transition. Tuning incidence angles,
we observe multi-stage APT phase transition in higher-order APT sys-
tems, constructed by using the scalability of leaky-wave coupling. Our
scheme shows promise in demonstrating novel APT physics, and
constructing APT-symmetry-empowered radiative devices.

Results
Designer-plasmonic realization of radiative APT systems
Figure 2a shows a designer-plasmonic radiative APT system consisting
of two DSPRs. A purple dashed circle indicates an individual DSPR,
which is a cylindrical three-layer structure. The top layer is a groove-

textured ultrathin copper disk, the middle layer is a dielectric sub-
strate, and the bottom layer is a complete copper plate attached to the
substrate. The top surface of the DSPR exhibits a highly-confined
dipole mode ψ1(2)

nf, whose horizontal decay length is Lx = 2.9mm from
the edge of the resonator (in Fig. 2b). The subscripts 1 and 2 denote the
left and right DSPR respectively. However, this DSPR mode does not
radiate in the z-direction, since the upper x-polarized dipole and its
image generated by the ground plane conceal their radiations in the
far-field, due to the deep subwavelength thickness (h = 2mm) of the
substrate. Removing the top layer, we obtain background structures,
which host surface waves ψp propagating along x direction (cross-
sectional field in the substrate is shown in Fig. 2c). The dispersion of
such surface waves is very close to the light line as shown in Fig. 2d. A
slight perturbation (e.g. DSPRs) on the background can transform the
surface waves into leaky modes, which not only propagates along x
direction (i.e. in-plane radiation), but also radiates in z-direction into
the free space46 (i.e. out-of-plane radiation). Consequently, the in-plane
component of leaky waves can provide the indirect coupling channels,
in addition to the direct coupling through the evanescent field of the
two DSPRs. While the out-of-plane radiation leakage enables the
interaction of the system and space waves.

In the basis [ψ1
nf, ψ2

nf]T the coupled designer-plasmonic system is
described with a generalized coupled-mode equation:

ω
ψnf
1

ψnf
2

" #
=

ω1 + iγ0 ω0ðκ12 + iχ12Þ
ω0ðκ21 + iχ21Þ ω2 + iγ0

� �
ψnf
1

ψnf
2

" #
ð1Þ

where ψ1(2)
nf, ω1 (ω2) and ω0 represent the complex amplitude, the

resonant frequency of the DSPR mode and the averaged frequency
ω0 = (ω1 +ω2)/2, respectively. The coefficient κ12 (κ21) quantifies the
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Fig. 1 | Schematic of the radiative plasmonic APT design. The system consists of
two plasmonic resonators, whose frequencies are oppositely detuned, i.e. up-
detuned (ωH) plasmonH and down-detuned (ωL) plasmonL.ωC denotes the averaged
frequency ωC = (ωΗ + ωL)/2. The two resonators are indirectly coupled by leaky
waves, whose out-of-plane radiation leakage enables the interaction of the APT
system and space waves.
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Fig. 2 | Designer-plasmonic realization of the radiative APT system. a The top
view and the front view of the designer-plasmonic APT system. It consists of two
DSPRs with a distance d, encircled by the background horizontally. The purple
dashed line denotes a single resonator composed of three layers. The top layer is a
groove-structured copper plate, standing on a dielectric substrate with the copper
coating on its bottom. The background is also constructed with the dielectric
substrate coated with copper plating. b The Ez component of the simulated DSPR

eigenmode (ψnf) at 3.655GHz on the XY (left) and XZ (right) planes. c The Ez
component of the surface wave (ψp) on the XZ plane. d The dispersions of the
surface wave (red) in the background, and the light line (blue) in the air. The leaky
waves lie in the gray region. e The distance-dependent strength of calculated direct
coupling κ (blue) and indirect couplings χe (magenta) and χo (red). The insets depict
the mode-parity modulation on leaky waves.
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strength of direct coupling between the two modes, while iχ12 (iχ21)
represents their indirect coupling strength through leaky-wave
channels47–49. Besides the in-plane components of leakymodes which
indirectly couple the two DSPRs, the out-of-plane radiation of leaky
modes takes the energy of the resonant modes into the ambient
space, thus behaving as loss channels (quantified with dissipation
rates γ0).

Applying energy conservation50 to the hybrid system including
both the plasmonic system and environment, we obtain that coupling
coefficients satisfy κ12 = κ21 = κ, iχ12 = iχ21 = iχ (see Supplementary
Information I). Therefore, the system Hamiltonian is expressed as
H =ω0 + iγ0 +ω0Hint, where the interaction part is Hint = [−δ, κ+iχ; κ+iχ,
δ]. δ = |ω1 −ω2 | /(2ω0) represents the frequency detuning.

We further elucidate the synthesis of APT symmetry inHint, which
should satisfy the anti-commutation relation, i.e. {Hint, PT} = 0. The
parity operator P, expressed by Pauli matrix σx, exchanges the spatial
positions of the two modes. The time-reversal operator T is given by
the complex conjugation. Consequently, such anti-commutation rela-
tion requires vanished real couplings, while remaining only the ima-
ginary couplings.

For this purpose, we elucidate these two couplings with the field
overlap integral51. The indirect coupling through leaky waves is
elucidated as iχ ∝ ∫(ψ1(2)

nf·ψ2(1)
p)/(|CNF | · | CFF | )dV, where normal-

ization constants follow |CNF |
2 = <ψm

nf |ψm
nf > V and δ (0)|

CFF |
2 = <ψm

p |ψm
p > V (m = 1, 2). The leaky mode excited by the cor-

responding resonant mode ψ1(2)
nf is approximated with the in-plane

propagating wave ψ1(2)
p. Since the fields of resonant modes are

mostly confined in the substrate, the integration is dominated by the
parts in the substrate. Since the substrate-field distribution is
approximately uniform along the z direction, the volume integral is
simplified as iχ ∝ h·∫(ψ1(2)

nf·ψ2(1)
p)/(|CNF | · | CFF | )dxdy. It is worth

noting that there are two forms of indirect couplings, i.e. even-mode
and odd-mode couplings, since the propagating wave ψ1(2)

p is
modulated by the DSPRmodeψ1(2)

nf with different parities (shown in
Fig. 2e). Taking an arbitrary line along x direction, the field dis-
tributions of ψnf is approximated as cos(πy/2 R)sin(πx/2 R) (odd) or
sin(πy/2 R)cos(πx/2 R) (even). Due to the parity modulation by ψnf,
ψp is approximated as cos(πy/2 R)eikx (odd) or sin(πy/2 R)eikx+iπ/2

(even), respectively. k denotes the propagation constant of the
in-plane radiation. Therefore, the non-vanished indirect coupling
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Fig. 3 | Near-field characterizations of plasmonic APT systems. a, b The real part
(a) and imaginarypart (b) of the calculated eigensolutions of the APT systemversus
the ratio between the frequency detuning δ and indirect coupling χ. The blue and
red regions denote the APT-S and APT-B phases respectively. The red stars indicate
the detected resonance frequencies in experiments. c, d The evolution of the
transmission spectra (black lines) as | δ / χ| varies, obtained with simulations (c) and

near-field-measured experiments (d). Eachblack line is decomposed into a blue and
a red line, according to mode decompositions. The inset shows the setup for both
simulations andmeasurements. The ‘S’ and ‘P’ denote the locations of the near-field
source and probe respectively. e–h Themeasured near-field distributions of APT-S
(| δ/χ| = 0), EP( | δ/χ| = 1), and APT-B phases (|δ/χ| = 4.46), respectively. The distribu-
tions of Ez and |Ez | are shown with rainbow and hot colors, respectively.
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gives pure imaginary values as shown in Fig. 2e (see Supplementary
Information II). In Fig. 2e, the indirect coupling strength is inde-
pendent of the distance d between two resonators in proper regions
(see Supplementary Information II), and χe is less than χο. While the
direct coupling is also proportional to the field overlap integral
κ ∝ ∫(ψ1

nf·ψ2
nf)/(|CNF |

2)dV (in Fig. 2e), which decreases as the distance
d increases due to the evanescent distance of ψnf. To guarantee
vanished direct couplings and retained indirect couplings, we set
the edge-edge distance of the two DSPRs sufficiently distant as
d = 10mm, which is larger than 2Lx. Therefore, the interaction
Hamiltonian is reduced asHint = [−δ, iχ; iχ, δ], which satisfies the anti-
commutation relation, i.e. {Hint, PT} = 0. It is noteworthy that such
photonic indirect coupling, resulting in a plasmonic APT system in
the spectral domain, is a mechanism of linear optics, rather than
nonlinear optics which usually require high-power input21,26,29.

The reduced Hamiltonian Hint undergoes spontaneous APT-
symmetry breaking by sweeping the frequency detuning δ. More
specifically, the system changes from APT-symmetric (APT-S) to APT-
symmetry-broken (APT-B) phase, when δ changes from | δ / χ| < 1 to | δ /
χ| > 1. Three striking features indicate the symmetry-breaking process.
Firstly, the eigenvalues λ evolve from two pure imaginary values
±i(χ2 − δ2)1/2 to two pure real values ± (δ2 − χ2)1/2 (as shown in Fig. 3a, b).
Such evolution corresponds to the transition from two degenerate
modeswith different decay rates (the eigenvalues ±i(χ2 − δ2)1/2 manifest
as high-Q and low-Q mode respectively) to two non-degenerate
modes with the same decay rate (the eigenvalues ± (δ2 − χ2)1/2 corre-
spond to the high-frequency and low-frequency mode respectively).
Secondly, the two corresponding eigenmodes of the Hamiltonian
change from [ψ1

nf, ψ2
nf]T = [1, −(iδ ∓ (χ2 − δ2)1/2)/χ]T in the APT-S phase to

[1, −i(δ ± ((δ2 − χ2)1/2)/χ)]T in the APT-B phase. Specifically, the APT-S
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modes exhibit the unit amplitude ratio (|ψ2
nf/ψ1

nf | = 1) and varied phase
differences. However, the APT-B modes exhibit non-unit amplitude
ratios with a fixed phase difference arg(ψ2

nf) – arg(ψ1
nf) = −π/2 (see

Supplementary Information III). Thirdly, the effective Hamiltonian
becomes defective at the critical point | δ / χ| = 1, which is also termed
as the exceptional point (EP), and gives a single eigenvalue λ =0 and
eigenstate [1, −i]T. Therefore, the two-dimensional Hilbert space coa-
lesces into one-dimension space, where the missing dimension is also
known as the Jordan vector52.

Near-field demonstration of APT phase transition
Without loss of generality, we take the odd mode (in Fig. 2e) to verify
the APT phase transition. Five samples with different δ are realized by
changing the inner radius rR of the right DSPR as 6, 6.3, 6.7, 7.0, and
7.3mm respectively, while keeping the rL = 6mm for the left DSPR.
Their corresponding frequency detuning parameters ω0δ are extrac-
ted as 0, 0.025, 0.061, 0.085, and 0.1115 GHz respectively (see Sup-
plementary Information IV). Under the slight detuning and keeping the
edge-edge distance as d = 10mm, the indirect coupling ω0χ is
approximately unchanged and extracted as 0.025GHz from simula-
tion (see Supplementary Information IV for details). Therefore, the
sample of ratio | δ / χ| = 0 corresponds to the APT-S phase, |δ / χ| = 1 at
the EP and | δ / χ| = 2.44, 3.40, 4.46 in the APT-B phase.

Utilizing near-field measurements (see Supplementary Infor-
mation V), we further verify the APT phase transition. The near-field
transmission spectra are measured by using the point excitation-
probe setup (shown in the inset of Fig. 3c). As the ratio | δ / χ|
decreases, we experimentally observe that two Lorentz peaks gra-
dually merge into one (shown in Fig. 3d), which is consistent with
the simulated spectra in Fig. 3c. The peak evolution corresponds to
the change from two real eigenvalues to zero and confirms the
phase transition from the APT-B to the APT-S phase. Furthermore,
the evolution of spectral linewidth also verifies the APT phase
transition. The two peaks in the APT-B phase exhibit the same

linewidths, which are extracted as 0.036, 0.044, and 0.045 GHz
at | δ / χ| = 2.44, 3.40, and 4.46 respectively. While the spectrum of
the APT-S phase (|δ / χ| = 0) is decomposed into two peaks with
different linewidths (0.029 and 0.061 GHz). The linewidth evolution
corresponds to the change of the imaginary parts of eigenvalues
and further confirms the APT phase transition. The noteworthy
phenomenon is that the spectrummeasured at the APT-S phase (|δ /
χ| = 0) is dominated by the high-Qmode, while the degenerate low-Q
mode is weak. The phenomenon is due to that the high-Q mode is
excited with a larger efficiency (ω0χ + γ0)/2 under the asymmetric
near-field excitation in the existence of background loss, thus
dominating the measured near-field spectrum (see Supplementary
Information VI).

Using near-field imaging technologies, we further observe the
APT phase transition by capturing field patterns at resonance peaks.
Comparing the samples of | δ / χ| = 0 (APT-S) and 4.46 (APT-B), the
field patterns exhibit near-unit and non-unit amplitude ratios
respectively (in Fig. 3e, g, h), which are consistent with theoretical
results. At the EP ( | δ / χ| = 1), the captured field pattern (in Fig. 3f)
deviates from the calculated eigenstates [1, −i]T. Such deviation is
due to the emergence of the missing eigenstate [1, i]T in the pre-
sence of the background loss γ0 (see Supplementary Informa-
tion VI). These captured field patterns further confirm the APT
phase transition. Also, such the detuning-induced APT phase tran-
sition is observed under space-wave illuminations (see Supple-
mentary Information VII).

Note that we use different samples here just for the con-
venience of experimental characterizations. It does not mean this is
the only way to achieve the APT phase transition. Since our plas-
monic APT system is an open system, the phase transition is also
achieved by changing environmental factors, e.g. permittivity (see
Supplementary Information VIII and IX). This approach does not
require using different samples, and is promising for sensing
applications.

Fig. 5 | Observation of multi-stage APT phase transitions under space-wave
illuminations. a The top view of the higher-order APT system. From left to right,
the inner radii of the four DSPRs are r1, r2, r1, and r2, respectively. b The real (black)
and imaginary part (white) of the calculated eigenvalues of the system versus the
detuning r2 − r1. The blue, purple and pink regions denote the APT-S, 1st-APT-B and
2nd-APT-B phases, respectively. The red dots represent the EPs. Stars mark the

experimentally detected resonance frequencies at r2 − r1 = 0, 0.4, and 0.7mm. The
inset is the schematic of normal (red) and oblique (blue) illuminations to excite
modes inGroup+andGroup− respectively. c–jThemeasured field patterns of APT-
S at | δ/χ| = 0 (c), 1st-APT-B at | δ/χ| = 1.4 (d–f), and 2nd-APT-B phases at | δ/χ| = 2.4
(g–j), respectively. The distributions of Ez and |Ez | are shown with rainbow and hot
colors, respectively.
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Far-field polarization-controlled APT phase transition
We further investigate the polarization responses of the plasmonic
APT system, since the leaky wave links the polarization of space waves
to the parity of DSPR modes. Specifically, the horizontal (H) and ver-
tical (V) polarizations are linked to the odd- and even-parity modes,
respectively. The even and odd modes exhibit different indirect cou-
pling strengths due to their parity modulations on leaky waves (in
Fig. 2e). Therefore, the APT system exhibits two sets of APT phase
transitions for odd and even modes (in Fig. 4a). In the blue region of
Fig. 4a, theAPT system is in theAPT-Sphase for oddmodeswhile in the
APT-B phase for even modes. Since the links between the space-wave
polarizations and DSPR-mode parities, we switch the polarizations of
illuminating space waves (in Fig. 4b) to induce the APT phase transi-
tion. We design the sample (rR = 6.27mm and rL = 6mm) in the blue
region. A vertical near-field probe is utilized to capture the Ez com-
ponents of field patterns. We probe the fields at positions A and B (in
Fig. 4b) under H- and V- polarized incidence, respectively. When we
rotate the space-wave polarization from H to V, the number of reso-
nance peaks changes from one to two (shown in Fig. 4c). The spectral
results indicate the polarization-controlled phase transition from APT-
S to APT-B, consistent with the theoretical results in Fig. 4a.

The polarization-controlled APT phase transition is further ver-
ified by the captured field patterns at the resonance peaks. Under
H-polarized incidence, the pattern shows the low-Q mode [1, eiπ/3] of
odd parity at 3.725GHz, thus confirming the APT-S phase. While under
the V-polarized incidence, the capturedpatterns, corresponding to the
even parity, show [2, −i] at 3.72 GHz and [1, −2i] at 3.76GHz, respec-
tively, thus confirming the APT-B phase.

Two-stage APT phase transition in higher-order systems
Attributed to the scalability of the leaky-wave coupling, the design
mechanism of our radiative APT system is further utilized to study
higher-order systems. Moreover, the incoming direction of space
waves plays a unique role in identifying high-order APT supermodes.
Fig. 5(a) shows the higher-order APT system, which consists of four
DSPRs with inner radii [r1, r2, r1, r2], while other parameters remain the
same as the above structures. In the basis [ψ1

nf, ψ2
nf, ψ3

nf, ψ4
nf]T, the

Hamiltonian of this system is expressed as H =ω0 + iγ0 +ω0H4.

H4 =

�δ iχ

iχ δ

0 0

iχ 0
0 iχ

0 0

�δ iχ

iχ δ

2
6664

3
7775

The fourth-order effective Hamiltonian H4 obeys the four-
dimensional anti-commutation relation {H4, P4T} = 0, where the four-
dimensional parity operator is P4 = [0, 0, 0, 1; 0, 0, 1, 0; 0, 1, 0, 0;
1, 0, 0, 0].

During sweeping the frequency detuning δ, the higher-order APT
system undergoes two-stage APT-symmetry breakings (in Fig. 5b),
marked by the two distinct EPs, i.e. |δ / χ| = (√5 ∓ 1)/2. When | δ /
χ| < (√5 − 1)/2, four degeneratemodes differ with the imaginary parts of
their eigenvalues λ1,2,3,4 = ±i[−δ2+((3±√5)χ2/2)]1/2. We term this region as
the APT-S phase, where all four degenerate modes can be classified
into two groups according to their fixed amplitude ratios, i.e. |ψ1

nf | : |
ψ2

nf | : |ψ3
nf | : |ψ4

nf | = 1: (√5 + 1)/2: (√5 + 1)/2: 1 as Group+ and 1: (√5 − 1)/2:
(√5 − 1)/2: 1 as Group−. After crossing the first EP | δ / χ| = (√5 − 1)/2,
the system enters the 1st-APT-B phase (√5 − 1)/2 < |δ / χ| < (√5 + 1)/2. The
modes in Group+ are still degenerate and keep the fixed amplitude
ratio, while the modes in Group− become nondegenerate with real
eigenvalues λ3,4 = ±[δ2 + ((√5 − 3)χ2/2)]1/2, exhibiting the fixed phase
difference [0, π/2, π, 3π/2]. Tuning δ across the second EP | δ /
χ| = (√5 + 1)/2, the system enters the 2nd-APT-B phase. The modes in
Group+ also become nondegenerate with the fixed phase difference
[0, π/2, 0, π/2] (see Supplementary Information X).

To verify the two-stage APT phase transition, we design three
samples with different frequency detunings δ. We take r2 as 6, 6.4 and
6.7mm respectively, while keeping r1 = 6mm. Their corresponding
detuningsω0δ are extracted as0, 0.035 and0.06GHz respectively and
the indirect coupling ω0χ is the same as above. Therefore, the sample
of ratio | δ / χ| = 0 corresponds to the APT-S phase, |δ / χ| = 1.4 in the 1st-
APT-B phase and | δ / χ| = 2.4 in the 2nd-APT-B phase.

We demonstrate the two-stage APT symmetry breaking of the
higher-order APT system with space-wave illuminations (see Supple-
mentary Information V for the far-field experimental setup). The
detected resonance frequencies are indicated with stars in Fig. 5b,
which are consistent with the theoretical eigenvalues. The corre-
sponding capturedmode profiles are shown in Fig. 5c–j. Regarding the
APT-S sample (|δ / χ| = 0) under normal incidence, Fig. 5c shows the
low-Q mode [1, (√5 + 1)/2, (√5 + 1)/2, 1] in Group + . For the samples |δ /
χ| = 1.4 (1st-APT-B), modes in Group+ remain degenerate, but the
degeneracy in Group− is lifted. Under normal incidence, we clearly
identify the low-Q mode [1, (√5 + 1)e(−iπ/3)/2, (√5 + 1)/2, e(−iπ/3)] in
Group + (Fig. 5d), but cannot identify anymode inGroup − . The reason
is that normal incidence does notmatch the gradient phase difference
[0, π/2, π, 3π/2] in Group − , so that these modes cannot be efficiently
excited. To address this issue, space waves are illuminated with a
specific incidence angle θi = arcsin[λi/4(d + 2R)] on the sample, where
λi denotes the wavelength of incident waves. The nondegenerate
modes in Group− are clearly observed in Fig. 5 e, f. In the 2nd-APT-B
region (|δ / χ| = 2.4), the high-frequency (low-frequency) modes are
very close in spectra. To decern them, we also use normal and oblique
incidences to efficiently excite them respectively (in Fig. 5g–j). These
results confirm the scalability of our design, and selective excitation by
harnessing the incident angle of space waves.

Discussion
We proposed a radiative APT plasmonic design and demonstrated it
with designer-plasmonic structures. Unlike previous photonic APT
systems restricted in guided waves26–29, our plasmonic APT systems
are capable of harnessing spaces waves, due to the radiative prop-
erty of leaky waves. Our system, exhibiting polarization-controlled
APT phase transition, provides a platform to exploit the polariza-
tion of space waves with APT symmetry. The incidence angle of
space waves also plays a role in decerning the higher-dimensional
APT modes. Furthermore, attributed to the scalability, our system
also provides a platform to demonstrate the higher-order APT
phenomena, e.g. multi-stage APT phase transitions. Our work opens
an avenue to construct APT-empowered radiative devices, and is
promising in wireless sensing applications. Also, the subwavelength
scale of our designer-plasmonic design is helpful in miniaturizing
APT photonic devices. Our plasmonic APT design could be further
extended to optical frequencies53 (see Supplementary Informa-
tion XI) and further interface with gain materials or topological
structures12,54, to spawn unusual lasers or intriguing non-Hermitian
topological photonic phenomena.

Methods
Simulations
COMSOL Multiphysics is utilized to obtain the eigen-field patterns.
The simulated near-field transmission spectra are obtained with CST
Microwave Studio. The simulation model consists of two planar
designer-plasmonic resonators with a distance d = 10mm, encircled
by the background horizontally. The groove-structured copper
plates of 0.018mm thickness stand on a 200 × 80 × 2mm dielectric
substrate, with a copper coating on its bottom. The outer radius of
the copper plate is R = 12mm, and the groove number is N = 60. The
metal is modeled as the perfect electrical conductor (PEC) in the
microwave regime. The relative permittivity and loss tangent of
the dielectric layer are 2.2 and 0.001 respectively. The near-field
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excitation source is a discrete port, while plane-wave excitation is
utilized in far-field simulation.

Experiments
The sample is fabricatedwith the technology of printed circuit boards.
The dielectric layer of the sample is made of F4BM with the relative
permittivity 2.2 ± 0.03 and the loss tangent 0.001. Experimental mea-
surements are carried out in the microwave anechoic chamber. The
measurements of S parameters are conductedwith the vector network
analyzer. Space waves are generated from a horn antenna.

Data availability
The data generated in this study have been deposited in Figshare
database under the following accession code. https://doi.org/10.6084/
m9.figshare.21601923.v1.

Code availability
The codes that support the plots within this paper are available from
the corresponding authors upon reasonable request.
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