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Spontaneous vortex formation by
microswimmers with retarded attractions

Xiangzun Wang1, Pin-Chuan Chen2, Klaus Kroy 2, Viktor Holubec 3 &
Frank Cichos 1

Collective states of inanimate particles self-assemble through physical inter-
actions and thermal motion. Despite some phenomenological resemblance,
including signatures of criticality, the autonomous dynamics that bindsmotile
agents into flocks, herds, or swarms allows for much richer behavior. Low-
dimensional models have hinted at the crucial role played in this respect by
perceived information, decision-making, and feedback, implying that the
corresponding interactions are inevitably retarded. Here we present experi-
ments on spherical Brownian microswimmers with delayed self-propulsion
toward a spatially fixed target. We observe a spontaneous symmetry breaking
to a transiently chiral dynamical state and concomitant critical behavior that
do not rely onmany-particle cooperativity. By comparison with the stochastic
delay differential equation of motion of a single swimmer, we pinpoint the
delay-induced effective synchronization of the swimmers with their own past
as the key mechanism. Increasing numbers of swimmers self-organize into
layers with pro- and retrograde orbital motion, synchronized and stabilized by
steric, phoretic, and hydrodynamic interactions. Our results demonstrate how
evenmost simple retarded interactions can foster emergent complex adaptive
behavior in small active-particle ensembles.

Ordered dynamical phases of motile organisms are ubiquitous in
nature across all scales1, from bacterial colonies to insect swarms, and
birdflocks2. In particular, self-organization into vortex patterns is often
observed and has been attributed to some local external attractor, e.g.,
light or nutrient concentration, together with behavioral rules like
collision avoidance and mutual alignment3. The pertinent social
interactions are commonly thought to be based on perception4–6 and
the ability to actively control the direction of motion3. They are also
generally presumed to provide some benefits to the individual and to
the collective, as in the case of collision avoidance or predator
evasion7,8. However, since such interactions are usually derived only
indirectly and approximately from observations9, it is arguably useful
to coarse grain them, e.g., into simple alignment rules, in order to
rationalize the collective effects with the help of simple mechanistic
models, in particular with respect to their emerging universal

traits3,10–12. This strategy has been successful in physics and is also
supported by the observation that biological collectives often appear
highly susceptible to environmental influences and exhibit a dynamical
finite-size scaling reminiscent of critical states in inanimatemany-body
assemblies13–16.

Importantly, the cascades of complex biochemical/biophysical
processes17,18 needed to transformsignal perception into anavigational
reaction inevitably result in retarded interactions upon coarse-
graining19 (cf. supplementary Table S1). This generic complication is
oftendismissed in the analysis, anddedicatedmodels andexperiments
addressing the role of time delays in the activematter are still rare20–23,
although these have occasionally been shown to fundamentally alter
the collective dynamics21 and tobring it closer to that found innature24.
To a first approximation, delay effects can resemble inertial correc-
tions to an otherwise overdamped biological dynamics25. In particular,
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both have the propensity to give rise to oscillations and inertia,
moreover, to rotationalmotion around an attractive center, as familiar
from planetary orbits.

Experiments that can assess or even deliberately control retarded
interactions in living systems turn out to be difficult. But by imposing
time delays onto synthetic active particles via computer-controlled
laser activation we can create an ideal laboratory system to experi-
mentally emulate such situations. Suitable feedback control techni-
ques for active particles have recently become available through
photon nudging26. The technique allows to adjust a particle’s propul-
sion speed to acquire real-time information (positions and directions
of motion) about the dynamical state of an ensemble. It has previously
been employed to rectify the rotational Brownian motion for particle
steering and trapping27, to explore orientation-density patterns in
activity landscapes28, and to study information flow between active
particles23, and their emerging critical states29,30. Beyond what related
computer simulations accomplish31–33, these experiments additionally
incorporate the full real-world complexity arising from actual physical
interactions due to hydrodynamic, thermal, or concentration fields. In
the following, we describe experiments with feedback-controlled
active Brownian microswimmers aiming at a fixed target by a retarded
thermophoretic self-propulsion. The systematic navigational errors
resulting from the retardation are seen to cause a spontaneous sym-
metry breaking to a bi-stable dynamical state, in which the swimmers
self-organize into a merry-go-round motion that switches transiently
between degenerate chiralities.

Results
Single-particle retarded interaction
The elementary component of a swarm is a single activeparticle whose
direction of motion depends dynamically on its environment. Even
small fluctuations of the particle position and orientation render any
prospective activemotionbasedon theperceptionof the environment
inaccurate, due to the inevitable finite perception–action delay. In the
most symmetric setup, an active particle moves toward a target

position, which is occupied by an immobile particle of the same size in
our experiments. Assuming that the active particle responds to the
environment that was perceived a delay time δt earlier, its propulsion
direction ûðtÞ at time t is determined by its relative position to the
target particle at time t − δt in the past, according to

ûðtÞ= �rðt � δtÞ
∣rðt � δtÞ∣ , ð1Þ

where r is the location of the active particle with respect to the target
particle’s center. We implemented this interaction rule in an experi-
mental feedback system that controls the active particles’ self-
propulsion. Our active particles are polymer spheres of radius
a = 1.09μm, decorated with gold nanoparticles and suspended in a
thin film ofwater. Laser light with a wavelength of 532 nm is focused at
distance d from the active particle center (Fig. 1A). The resulting
excentric heating excites an osmotic flow that lets the particle swim
with a speed v0 in the direction defined by Eq. (1)34. A darkfield
microscopy setup is used to image the particles (Fig. 1B). A computer
analyzes and records the positions of the particles and then controls
the laser position accordingly via an acousto-optic deflector. We use a
separate calibrator particle running on a quadratic trajectory as a
reference for the speed v0 attained by a free swimmer. Further details
are described in Sec. 2 of the Supplementary Information.

If δt = 0 s, the active particle moves towards the target particle
until it collides with it. Further motion of the active particle is then
constrained by the presence of the fixed target sphere, resulting in a
diffusivemotion around it, at a fluctuating distance consistent with the
barometer formula35,36. As the delay δt increases, the diffusive motion
induces a stochastic “error” component due to the increasingly mis-
aligned self-propulsion. Once a critical delay is reached, the particle
begins to orbit around the target (see Supplementary Movies 1–3). We
quantify this dynamics by the angle θ between the direction of motion
in Eq. (1) and the instantaneous negative radial direction −r(t) (see
Fig. 2A). The angle θ itself or sinðθÞ can serve as an indicator for

Fig. 1 | Experimental realization. A Particles used in the experiments consist of a
melamine resin colloid (2.18μm in diameter) with 8 nm gold nanoparticles scat-
tered across the surface (covering up to 10% of the total surface area). A 532 nm
laser focusedat the edgeof theparticle at a distanced from its center induces a self-
thermophoretic motion and allows for precise control of the propulsion direction.
Importantly, optical forces are weak so the particles exhibit a truly self-phoretic
autonomous motility, making them proper microswimmers. B Experimental setup
used to image the particles by darkfieldmicroscopy (LED, darkfield condenser, and
camera) and guide their motion by sequential beam steering of the laser on the

sample planewith a two-axis acousto-optic deflector (AOD). All particles in the field
of view are addressedduring eachexposureperiodof the camera.CThe interaction
rule for the delayed attraction of a single active particle (white sphere) towards a
target (red sphere) is split into an observation made at a time t − δt that sets the
direction of motion for the self-propulsion step exerted after a programmed delay
time δt. The green arrows indicate the planned motion −r(t − δt) and its actual
realization at time t. D Examples of darkfield microscopy images where a single
active particle (top) and 16 active particles (bottom) interact with one target
particle (red).
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deviations from the “intended” central orientation. Similarly, for many
particles, numbered by the index i, it is useful to define the rotational
order parameters oR,i = ðr̂i × ûiÞ � ez = sinðθiÞ29,37, where the hats denote
vectors normalized to 1 and ez is a unit vector in the direction of z axis.
Figure 2A shows the experimental trajectories of θ for a single active
particle with v0 = 2.16μms−1 and three different delays. For short
delays, θ fluctuates with a small amplitude around zero (Fig. 2A top).
The fluctuations increase with the delay and lead to a flat-top prob-
ability density of the propulsion angle for δt ≈0.87 s (Fig. 2A middle).
At larger delays (δt = 1.14 s), the propulsion angle fluctuates around a
stable nonzero value that changes its sign intermittently (Fig. 2A bot-
tom), corresponding to a bimodal probability density p(θ) (Fig. 2C).
The periods of consistent chirality increase in durationwhen the delay
is increased further. At δt = 1.4 s, the propulsion angle transiently
fluctuates around ±80°. Under these conditions, the cohesion of the
particle to the target becomes marginal as the typical particle velocity
is almost tangential to the target particle circumference. As a result,
the distance ∣r(t)∣ of the particle from the origin starts to fluctuate
more strongly, as shown in the position histograms in Fig. 2B.

The net propulsion angle is the result of angular displacements
ϕ(t) of the particle position acquired due to the perception–action
delay during the period [t − δt, t]:

θðtÞ=
Z t

t�δt
ωðt0Þdt0 =ϕðtÞ � ϕðt � δtÞ=ffðûðtÞ,� rðtÞÞ: ð2Þ

Here, ϕ(t) is the polar angle of the active particle in polar
coordinates centered in the target particle, and we introduced
ωðtÞ= _ϕðtÞ as its corresponding angular velocity (Fig. 2C). The

observed dynamics can be understood by considering the active
particle and the target particle in physical contact. Their distance is
then constrained to be the sum of their radii (R = 2a =〈∣r(t)∣〉) and
the active particle slides around the target particle with an angular
velocity ωðtÞ=ω0 sinðθðtÞÞ, where ω0 = v0/R is the natural angular
velocity for tangential propulsion with θ = ±π/2. As sketched in
Fig. 3A, assuming a constant angular velocity ω with θ =ωδt, the
solutions to the equation for θ are given by the intersections of a
sine function and a linear function,

ðω0δtÞ�1θ = sinðθÞ: ð3Þ

For ω0δt < 1, there is a single intersection at θ = 0, indicating a
stable non-rotational state. For 1 <ω0δt < π/2, the non-rotational
state becomes unstable and two counter-rotational metastable
solutions arise. For ω0δt > π/2, the rotating solutions correspond to
∣θ∣ > π/2, and the radial component of propulsion becomes positive
(repulsive), driving the active particle away from the target particle.
As a result, the orbit “takes off” and its radius R increases until a new
stable orbit with R = 2v0δt/π > 2a and ∣θ∣ = π/2 is reached. For small
particles (a→ 0), the distance of the swimmer to the target position
can thus, in principle, vanish (R→ 0), and the rotating orbits can
even occur at arbitrarily short programmed delays (δt→ 0). Retar-
ded attraction hence always leads to rotational orbitalmotion with a
delay-dependent radius23. In the experiment, due to the presence of
the fixed central particle, the smallest attainable orbit radius R = 2a
is given by the particle diameter. Adding Brownian fluctuations to
the deterministic Eq. (3) results in the nonlinear delayed stochastic
differential equation _ϕðtÞ=ω0 sin ϕðtÞ�ð ϕðt � δtÞÞ+ ffiffiffiffiffiffiffiffiffiffiffiffi

2D0=R
2

p
ηðtÞ,
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Fig. 2 | Propulsion angle at the different programmed delay. A Trajectories of
the propulsion angle θ(t) of an active particle at three different delays (top: δt =
0.3 s, middle: δt =0.87 s, and bottom: δt = 1.14 s) for its attraction towards a target
particle. The velocity of the active particle is v0 = 2.16μms−1.B Propulsion angleθ(t)

vs. the distance ∣r(t)∣ of the particle from the target center. C Histograms of the
propulsion angle over the whole trajectory. The delay for the individual panels in
columns (B, C) is indicated on the left of the corresponding row.
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where D0 ≈ 0.0642 μm2 s−1 denotes the translational diffusion coef-
ficient of the active particle and η(t) white noise. To solve this
equation, we approximated _ϕðtÞδt by θ(t) and expanded the
sinðϕðtÞ � ϕðt � δtÞÞ in a Taylor series around δt = 0 up to the third
order in δt. We dropped the term proportional to ϕ⃛(t) to secure the
stability of the resulting equation38 (for details, see Sec. 3 of Sup-
plementary Information). The resulting noise term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8D0=ðω0δtRÞ2

p

turned out to be inaccurate compared to experimental and simu-
lation data. We, therefore, introduce an effective diffusion coeffi-
cient Dθ as a free parameter in the noise term in Eq. (4) to describe
the rotation of the active particle around the target as the angular
Brownian motion

_θ=
1

3δt
θ2
± � θ2

h i
θ+

ffiffiffiffiffiffiffiffiffi
2Dθ

p
η ð4Þ

with

θ± = ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 1� 1

ω0δt

� �s
: ð5Þ

Eq. (4) yields the stationary solutions 0 and θ± with the
bifurcation point ω0δt = 1, for the transition from a non-rotational
to a rotational state. The data points in Fig. 3B display the
experimentally obtained maxima of the histograms p(θ) of the
propulsion angle (see Fig. 2C) as a function of ω0δt. The transition

points in the experiments are located at lower values of the control
parameter ω0δt, due to the mentioned instrumental delay Δt in the
feedback loop of the experimental setup. This instrumental delay
between the most recent exposure to the camera and the laser
positioning affects the motion direction beyond the programmed
delay δt34,39, causing an earlier onset of the transition to a stable
rotation. The dashed line in Fig. 3B shows the theoretical predic-
tion, which includes both the instrumental delay Δt and the pro-
grammed delay δt, as detailed in the Supplementary Information
(Eq. (11)).

The Langevin equation (4) can be interpreted as a dynamical
equation for the position θ of an overdamped Brownian particle with
diffusion coefficient Dθ in a quartic potential (see derivation in Sec. 3
of Supplementary Information),

UðθÞ= 1
δt

1
ω0δt

� 1
� �

θ2 +
1
12

θ4
� �

, ð6Þ

which allows to classify the observed instability of the isotropic state as
a normal supercritical pitchfork bifurcation40. The potential can also
directly be extracted from the experimental data (Fig. 3B) by fitting
the histogram p(θ) with a (normalized) Boltzmann distribution
expð�UðθÞ=DθÞ=Z at the effective temperature Dθ. The effective tem-
perature thus links the measured potential of mean force�Dθ logpðθÞ
to Eq. (6).

Fig. 3 | Transition to a rotational dynamical state for a single active particle.
A Graphical construction of condition (3) for a transition from an non-rotational
state (red-shaded region) to a rotational state (green-shaded region). The red line
(sin θ) and the black dashed line with slope 1/(ω0δt) intersect at several θ. The
solution θ = θ+ in the green region and its chirally inverse image θ− in the third
quadrant (not shown) correspond to co- and counter-clockwise rotation.
B Experimentally measured propulsion angles (maxima of the histograms in
Fig. 2C) as a function of ω0δt, exhibiting a bifurcation at ω0δt ≈0.76. The dashed
line corresponds to the analytical prediction of the theoretical model (5),
neglecting the inevitable instrumental delayΔt. The solid line shows the solution of
the refined theoretical model, which includes the instrumental delay Δt = 64ms of
our setup in addition to the programmed delay δt. The colored dots indicate the
control parameter values studied in Fig. 2 and the linked small color plots show the

corresponding potentials of mean force, determined from the propulsion angle
histograms in Fig. 2C, together with a fit of the refined analytical model, including
the instrumental delay Δt (see Sec. 2.2 and 3 of Supplementary Information). The
only free parameter for fitting is the effective temperature of the system.
C Relaxation time τ of a single active particle as determined experimentally from
the autocorrelation of the propulsion angle fluctuations (Eq. (8), data points). The
solid lines correspond to the refined version of the theoretical prediction (Eq. (7)),
including the instrumental delay Δt (see Sec. 2.2 of Supplementary Information for
details). The coloreddots have the samemeaning as in panel (B).DTransition rates
between the two rotational states obtained from the experiments (circles) plotted
with the predictions from Kramers’ theory, Eq. (9), with a global fit parameter
Dθ =0.05 s−1 (solid line) andDθ fitted to the probability distribution p(θ) separately
for each value ω0δt (squares). Error bars represent the standard error.
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The latter resembles the Landau free energy at a second-order
phase transition41. For readers familiar with this framework, this
mathematical analogy allows to shortcut the following analysis,
the details of which are given in Sec. 3 of the Supplementary
Information. Note, however, that we are not discussing a thermo-
dynamic phase transition but merely a dynamical bifurcation,
here. The bifurcation and its potential energy landscape are not
due to strong many-particle couplings, but to the interaction of
the single active particle with its own past image. In Landau’s
theory, the control parameter 1 − ω0δt maps onto the dimension-
less distance to the critical temperature. Both the activity ω0 and
the delay δt favor the transition to the symmetry-broken state.
Hence, at high propulsion speeds, already short delays can give
rise to rotating orbits. The inverse of the second derivative of U(θ),
corresponding to the static susceptibility in Landau theory, gives

the time τ (Eq. (7)) to relax in the (meta-)stable states,

τ =
δt
2

1
ω0δt

� 1
� ��1

ω0δt < 1

� δt
4

1
ω0δt

� 1
� ��1

ω0δt > 1:

8><
>: ð7Þ

We determine τ experimentally via C(τ) from the autocorrelation
function,

CðtÞ= hδθðt0 + tÞδθðtÞit0
hδθðt0Þ2it0

ð8Þ

of fluctuations of the propulsion angle δθ(t) = θ(t) − 〈θ(t)〉, as C(τ) = 1/e
(Fig. 3C). The experimental data (circles) is compared to Eq. (7)
(dashed line), and to an improved model prediction (solid line) that

Fig. 4 | Collective rotation of 15 particles attracted to a single target particle.
A Sketch of the shell structure and radii. B Bifurcation of the most probable
propulsion angle as a function of the control parameter ω0δt for a (calibrator)
propulsion speed of v0 = 2.06 μm s−1. The red dots are obtained from the inner
shell particles at a typical distance of Rin = 2.18 μm, while the green dots
denote the outer shell particles at Rout = 4.47 μm. The dashed line corresponds
to the theoretical single-particle prediction, including the instrumental delay
Δt = 70ms. C Average velocity field of active particles at δt = 0.81 s when the
spontaneous rotation of the inner shell is constantly disrupted by the non-
rotating outer shell, at δt = 1.35 s when the two shells are counter-rotating,

and at δt = 1.65 s when both shells are co-rotating. The arrows and colors
denote the average direction of motion. D Snapshot of the active particles
and their propulsion directions corresponding to (C) at δt = 1.35 s. The
repulsion induced by the flow and temperature fields of the inner shell causes
a bias for the outer shell rotation. E Sketch of the flow and temperature fields
induced by the laser (green dot) around an active particle, and the resulting
repulsion. F Schematic sketch of the presumed magnitude of the bias caused
by the temperature and flow fields on the rotation of the outer shell, as a
function of the propulsion angle θin of the inner shell particles (see Sec. 5
of Supplementary Information).

Article https://doi.org/10.1038/s41467-022-35427-7

Nature Communications |           (2023) 14:56 5



also takes into account the inevitable instrumental delay Δt, as dis-
cussed in Sec. 3 of the Supplementary Information. The critical slowing
down of the relaxation due to an increasingly flat potential close to the
transition point at ω0δt = 1, corresponding to the potential plot in the
middle of Fig. 3B, is thereby nicely confirmed, without any free
parameter.

While the rotational orbits can be inferred from a purely deter-
ministic model excluding Brownian motion, the observed sponta-
neous reversal of the chirality is driven by fluctuations in the
propulsion angle and, thus, by the (non-equilibrium) noise in the sys-
tem. It corresponds to transitions between the minima ±θ± of the vir-
tual potential, Eq. (6). We may thus apply Kramers’ theory to estimate
the corresponding transition rate as

k =

ffiffiffi
2

p

π
∣ω0δt � 1∣
ω0δt

2 exp � 3
δtDθ

1
ω0δt

� 1
� �2

" #
: ð9Þ

The effective temperatureDθdriving thefluctuations in the virtual
potential is treated as a fit parameter. Figure 3D displays the experi-
mentally measured transition rates, obtained from the observedmean
residence times of θ in the two potential wells. They are in good
agreement with Eq. (9), despite the hybrid equilibrium/non-equili-
brium origin of the noisy dynamics.

Multiple particles
As demonstrated in the previous section, the rotation observed in our
experiments results from a spontaneous symmetry breaking in the
dynamics of a single active particle. It originates from the particle’s
retarded self-propulsion to a target, which differs from standard
explanations of rotational dynamics in overdamped systems, which
usually blame mutual (“social”) interactions between multiple
agents3,9,12,42. As we demonstrate in Fig. S9B, when adding up to five
more active particles to the system, each of them exhibits the same
rotation andbifurcation as a single swimmer. Steric, hydrodynamic, and
thermophoretic interactions among the particles then synchronize and
stabilize their motion, aligning their sense of rotation. So the system
exhibits collective behavior, but the dynamical symmetry breaking to a
chiral dynamical state is not primarily due to the mutual interactions.

Somewhat larger numbers of particles organize into multiple
rotating shells. Figure 4 summarizes the key results obtained for an
ensemble of 15 active particles attracted to the target particle with the
same programmed and intrinsic delays δt and Δt, respectively. For the
considered range of time delays, the active particles form two tightly
packed shells around the target particle (Fig. 4A). The typical distance
of the inner shell particles to the target is about half that of the outer
shell, Rout ≈ 2Rin = 4a. So based on the single-particle picture alone, the
particles in the inner and outer shells swimming at the same speed
would be expected to start rotating at different delays. However, in
reality, the inter-particle interactions in the compact cluster strongly
correlate with the particle motion and quantitatively change the pic-
ture. Compared to the theoretical prediction, ω0δt =0.73, we observe
that for v0 = 2.06μms−1 the transition to the rotational phase of the
inner shell is postponed to ωin

0 δt � v0δt=R
in ≈ 0.83, corresponding to

δt = 0.9 s (see the rightmost red data point lying on the horizontal axis
in Fig. 4B). Slightly below the transition, the inner shell exhibits alter-
nating periods of rotational and stationary states. Meanwhile, the
stationary outer shell compresses the inner shell due to its inwards-
pointing propulsion direction (Fig. 4C, left). Figure. 4C displays the
velocity fields of the particles averaged over their trajectories with
three different delays. The bifurcation for the outer shell is located at
ωout

0 δt � v0δt=R
out ≈0.41, which corresponds to the same value δt =

0.9 s of the delay at which the inner shell undergoes its bifurcation to
the rotational state (see Fig. 4B and SupplementaryMovies S4–S6). For
delays slightly above the transition, 0.9 s < δt < 1.41 s, the two shells
rotate in opposite directions, as shown in the middle plot of Fig. 4C.

The simultaneous transition and the counter-rotation of the two shells
suggest that the inner shell particles generate backflows opposite to
their propulsion direction, thereby repelling the outer shell particles
and facilitating their transition to the rotational state, as schematically
depicted in Fig. 4D–F. These backflows are presumably caused by the
directional hydrodynamic and thermophoretic interactions. The sur-
face temperature gradient across each particle creates a thermo-
osmotic surfaceflow that propels theparticle43. If theparticlemotion is
opposed by an external force, such as the steric force due to the
immobilized target particle, the slowed-down particle acts as a pump,
creating a hydrodynamic outflow at its hot side (Fig. 4D and Sec. 2.5
and 5.2 of Supplementary Information). Furthermore, thermophoretic
interactions arise from temperature gradients across the surface of a
particle caused by its neighbors33. These are commonly repulsive, as
found, e.g., for Janus particles in external temperature gradients33. We
have carried out finite element simulations of the flow field around a
mobile and an immobile self-propelling swimmer (see Sec. 2.5 of Sup-
plementary Information). The overall near-field hydrodynamic inter-
actions are found to be quite complex, due to many interacting
particles and the nearby substrate surface44–46. They also depend on
the propulsion angle θ. An increasing innershell propulsion angle
results in a changing direction and magnitude of the rotational bias
onto the outer shell, which presumably varies as sketched in Fig. 4F
(see Sec. 5 of Supplementary Information). As a result, for δt ≥ 1.41 s,
the two shells predominantly rotate in the same sense, as shown in
Fig. 4C, right. The transition from counter- to co-rotation shells cor-
responds to the signflipof the bias atθin ≈ 67∘. At even longer delays, θin

tends to reach 90∘, and thus the inner shell tries to take off and expand
against the compression exerted by the outer shell. These competing
tendencies lead to particle exchange between the two shells. While we
currently cannot separate thermophoretic and hydrodynamic effects
in the experiment, hydrodynamic interactions may be expected to be
more important here than for a single free particle in a temperature
gradient: firstly, due to the collective character of the dynamics, and
secondly, due to the pump effect caused by the partial blocking of the
self-phoretic motion of the individual swimmers (see Sec. 2.5 and 5.2
of Supplementary Information). These features could provide a link
between our experiments and the swarming observed in bacterial
colonies47,48.

Discussion
We have demonstrated above that the motion of an active particle
induced by the delayed attraction to a target point can spontaneously
undergo a transition from a diffuse isotropic “barometric” state to a
dynamical chiral state, upon increasing the activity and/or the delay
time. The transition is well described by a pitchfork bifurcation
accompanied by a characteristic critical slowing down of the
response40. Similar to certain mechanical analogs49, the single-particle
dynamics thus already exhibit non-trivial features more commonly
associated with (mean-field) phase transitions in strongly interacting
passive many-body systems. This can be explained by noting that the
deterministic part, _ϕðtÞ=ω0 sin ϕðtÞ � ϕðt � δtÞð Þ, of our stochastic
delay differential equation can also be understood as the dynamical
equation for a single Kuramoto phase oscillator50,51, with vanishing
eigenfrequency and coupling strength ω0, which is trying to synchro-
nize with its own past state. In the chiral state, the particle orbits
around the target point (the central obstacle is optional). The orbiting
motion is stable against noise, but its sense of rotation is only tran-
siently maintained. This should be contrasted with the chiral states
resulting from non-reciprocal coupling in the time-local Kuramoto
model (without delay), as discussed by ref. 52, which hinges on the
stabilization by many-body cooperativity. Based on our results, we
suggest that for the single retarded oscillator, the infinite number of
relaxation modes encoded in the time-delayed equation of motion
play a similar role53,54.
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As we have shown, the nonlinear dynamics of our experimental
system can be described by an approximate analytical model, which
explains the emergence of a self-generated quartic virtual potential.
While such potentials are frequently found in descriptions of phase
transitions and collective effects in active-particle ensembles, fol-
lowing various behavioral rules29,30, we reiterate that themechanism
is a different one, here. Due to the activity and the (programmed)
delay, it already occurs for a single active particle aiming at a spa-
tially fixed target. In a whole swarm of particles that are all attracted
to a common target, which might be its own perceived center of
mass, the single-particle bifurcation is preserved. Inter-particle
collisions merely synchronize, renormalize, and stabilize the rota-
tional states of the individual particles. Upon close contact,
hydrodynamic and thermophoretic interactions become important
and help the swimmers to self-organize into co- and counter-
rotating orbits. In biologicalmotile ensembles, frombacteria to fish,
similar hydrodynamic mechanisms may be at work, although pre-
cise details and scales may differ widely45,55–57. The corresponding
many-body effects can be subtle and may elude coarse-grained
simulations and theories. This underscores the importance of well-
controlled experimental model systems that may act as “hybrid
simulations”, combining computer-controlled active particles with
real-world environments.

To conclude, while time delays are an unavoidable outcome of
coarse-graining microscopic descriptions of the feedback pro-
cesses in natural systems (cf. Table S1), they are often neglected in
low-dimensional models of active particle collective effects5,10. In
this respect, our model system provides a new perspective, as it
takes the unavoidable systematic delays in the dynamics seriously
and explores their generic effects. We find that, in overdamped
systems, retardation plays a similar role as added inertia. Both
effects lead to persistence and associated “aiming errors” in particle
dynamics. In this sense, our analysis can provide a template for an
entire class of motile ensembles exhibiting spontaneous rotational
dynamics caused by aiming errors—as such, are associated with
microswimmer navigation strategies employing “vision-cone”29,30 or
“acceptance-angle”27,36 criteria. In fact, the effects of the time delay
may be even richer20,24,54. While we considered only a positive delay,
i.e., synchronization with the past, above, sophisticated biological
organisms also possess predictive capabilities to extrapolate the
current state into the future58,59. These can, to a first approximation,
be incorporated in the form of a negative time delay. The inclusion
of positive and negative delays may therefore provide a new, “more
physical” perspective on phenomenologically extracted, rather
sophisticated rules like collision avoidance and alignment interac-
tions, commonly postulated as sources of emerging complex
adaptive responses in living many-body systems.

Methods
Sample preparation
Samples were prepared using two glass coverslips (20mm× 20mm,
24mm× 24mm) to confine a thin liquid layer (3 μm thickness) in
between. The edges of one coverslip are sealed with a thin layer of
PDMS (polydimethylsiloxane) to prevent leakage and evaporation.
The liquid film used in the sample is composed of 2.19-μm-diameter
gold-coated melamine formaldehyde (MF) particles (microParticles
GmbH) dispersed in 0.1% Pluronic F-127 solution. The latter pre-
vents the cohesion of the particles and adsorption to the cover slide
surface. The surface of the MF particles is speckled uniformly with
gold nanoparticles of about 8 nm diameter with a total surface
coverage of about 10% (Fig. S3A). SiO2 particles (2.96 μm in dia-
meter, microParticles GmbH) are added into the solution to keep
the thickness of the liquid layer at about 3 μm. Finally, 0.3 μl of the
mixed particle suspension is pipetted on one of the coverslips, for
which the other serves as a lid.

Experimental setup
The experimental setup (see Sec. 2 of Supplementary Information)
consists of an inverted microscope (Olympus, IX71) with a mounted
piezo translation stage (Physik Instrumente, P-733.3). The sample is
illuminated with an oil-immersion darkfield condenser (Olympus, U-
DCW, NA 1.2–1.4) and a white-light LED (Thorlabs, SOLIS-3C). The
scattered light is imaged by an objective lens (Olympus, UPlanApo ×
100/1.35, Oil, Iris, NA 0.5–1.35) and a tube lens (250mm) to an EMCCD
(electron-multiplying charge-coupled device) camera (Andor, iXon
DV885LC). The variable numerical aperture of the objective was set to
a value below the minimum aperture of the darkfield condenser.

The microparticles are heated by a focused, continuous-wave
laser at a wavelength of 532nm (CNI, MGL-III-532). The beam diameter
is increasedbya beamexpander and sent to an acousto-optic deflector
(AA Opto-Electronic, DTSXY-400-532) and a lens system to steer the
laser focus in the sampleplane. Thedeflectedbeam is directed towards
the sample by a dichroic beam splitter (D, Omega Optical, 560DRLP)
and focused by an oil-immersion objective (Olympus,UPlanApo × 100/
1.35, Oil, Iris, NA0.5–1.35) to the sample plane (w0 ≈0.8μmbeamwaist
in the sample plane). A notch filter (Thorlabs, NF533-17) is used to
block any remaining back reflections of the laser from the detection
path. The acousto-optic deflector (AOD), as well as the piezo stage, are
driven by an AD/DA (analog-digital/digital-analog) converter (Jäger
Messtechnik, ADwin-Gold II). A LabVIEW program running on a desk-
top PC (Intel Core i7 2600 4 × 3.40GHz CPU) is used to record and
process the images as well as to control the AOD feedback via the AD/
DA converter.

Data availability
All data in support of this work is available in the manuscript or
the Supplementary Information. Further data and materials are avail-
able from the corresponding author upon request.
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