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Recent global decline in rainfall interception
loss due to altered rainfall regimes

Xu Lian 1 , Wenli Zhao 1 & Pierre Gentine 1,2

Evaporative loss of interception (Ei) is the first process occurring during
rainfall, yet its role in large-scale surface water balance has been largely
underexplored. Here we show that Ei can be inferred from flux tower evapo-
transpiration measurements using physics-informed hybrid machine learning
models built under wet versus dry conditions. Forced by satellite and reana-
lysis data, this framework provides an observationally constrained estimate of
Ei, which is on average 84.1 ± 1.8mm per year and accounts for 8.6 ± 0.2% of
total rainfall globally during 2000–2020. Rainfall frequency regulates long-
term average Ei changes, and rainfall intensity, rather than vegetation attri-
butes, determines the fraction of Ei in gross precipitation (Ei/P). Rain events
have become less frequent and more intense since 2000, driving a global
decline in Ei (and Ei/P) by 4.9% (6.7%). This suggests that ongoing rainfall
changes favor a partitioning towardsmore soilmoisture and runoff, benefiting
ecosystem functions but simultaneously increasing flood risks.

Over vegetated landscapes, rainfall is first intercepted and temporally
stored on leaves, branches, stems, lichens, or litter on the forest floor,
much of which is subsequently recycled to the atmosphere1–3. This
evaporative loss of intercepted rainfall (Ei), buffers rainfall intensity,
redistributes surface available water, and provides rapid moisture
feedbacks to the atmospheric water cycle4. Leaving this part of rainfall
aside, the remainingwater reaches the soil surface through throughfall
and stemflow, recharging the soil reservoir or runningoff into streams/
rivers. In this regard, the amount of Ei directly influences how much
water will be available in the soil for sustaining vegetation growth and
functioning, which is important especially in water-stressed regions/
seasons. Observational evidence also shows that any bias in this Ei flux
would be directly propagated to estimates of key eco-hydrological
parameters such as the ratio of plant transpiration to total evapo-
transpiration (ET)5–7. Therefore, a better understanding of canopy
rainfall interception will shed light into other hydrological fluxes
involved in the precipitation-to-runoff processes, and help better
constrain the ecosystem water availability and actual ecosystem
water use.

Ei is usually measured at the site level as the difference between
gross rainfall and net rainfall (throughfall + stemflow)2, which is how-
ever limited to specific locations and short periods. In situ-based

studies reported substantial variations in Ei ranging from 10 to 50% of
gross rainfall depending on vegetation attributes (plant functional
types [PFT], leaf area index [LAI], etc.), rainfall regime characteristics,
and evaporative demands2,8–10. While providing a first-order estimate
of Ei, such site-level measurements cannot scale up to continental or
global scales since characteristics of drivers particularly rain events
vary tremendously across space and time. Evenwithin a site, this is still
problematic because of horizontal and vertical variations in canopy
characteristics or species. Global flux tower networks provide con-
tinuous eddy-covariance (EC) measurements of water and energy
fluxes, and encompass a wide range of vegetation and meteorological
conditions11. EC measurements do offer the opportunity to measure
latent heat flux (LE, ET in the form of energy) at the ecosystem level as
opposed to the tree level. Such ecosystem-level measurements have
great capacity to extrapolate to large spatial scales by leveraging
machine learning (ML) algorithms and Earth observations12–15. Never-
theless, EC towersdo not directlymeasure Ei, or indirectlypartition the
Ei part of this water flux.

Because of this critical data gap, global mapping of the Ei flux has
generally used process- or physically based models16–19. Lacking
mechanistic understanding of Eidevelopment, the rainfall interception
process is often overly simplified in current land-surface models

Received: 6 May 2022

Accepted: 1 December 2022

Check for updates

1Department of Earth and Environmental Engineering, Columbia University, New York, NY, USA. 2Center for Learning the Earth with Artificial intelligence and
Physics (LEAP), Columbia University, New York, NY, USA. e-mail: xl3179@columbia.edu

Nature Communications |         (2022) 13:7642 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1428-3529
http://orcid.org/0000-0002-1428-3529
http://orcid.org/0000-0002-1428-3529
http://orcid.org/0000-0002-1428-3529
http://orcid.org/0000-0002-1428-3529
http://orcid.org/0000-0001-6152-1692
http://orcid.org/0000-0001-6152-1692
http://orcid.org/0000-0001-6152-1692
http://orcid.org/0000-0001-6152-1692
http://orcid.org/0000-0001-6152-1692
http://orcid.org/0000-0002-0845-8345
http://orcid.org/0000-0002-0845-8345
http://orcid.org/0000-0002-0845-8345
http://orcid.org/0000-0002-0845-8345
http://orcid.org/0000-0002-0845-8345
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35414-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35414-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35414-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-35414-y&domain=pdf
mailto:xl3179@columbia.edu


(Table S1),many using an empirical relationship of Eiwith gross rainfall
and leaf area20, without explicit physical constraints of canopy energy
and water budgets. One prominent physically based method is the
Gash’s analytical model17,21. This model estimates Ei by additively cal-
culating evaporation in the moistening, saturating and drying phases
of rainfall interception during discrete events,which accounts for both
canopy and rainfall characteristics21. However, this analytical model
relies on several simplified assumptions that may not necessarily hold
in real-world situations, for example, rain events are spaced sufficiently
far apart such that canopy dries out completely21. To date, while
extensive efforts has been devoted to refining Ei formulations in
models22,23, these are, to a high degree, hindered by the lack of relia-
bility and sparsity of observation-based Ei estimates at large scales for
benchmarking model results.

The potential to partition Ei from LE measurements at EC flux
towers is underexplored. Compared with leaf transpiration and soil
evaporation, the Ei flux occurs exclusively under wet canopy
conditions, and is a primary component of ET during or shortly after
rain events24. Since Ei occur only for conditions of wet canopy, separ-
ating wet spells (during rainfall or the post-rainfall drying phase lasting
2–8 h25) from dry spells, offers a promising avenue for disentangling
and estimating the Ei component from the total LE flux using EC
measurements around the globe. A previous study26 developed an
innovative empirical EC-based method for estimating Ei, in which this
Ei fluxwas determined as the excess evaporation occurring during and
after rain events relative to baseline evaporation time series that are
scaled from net radiation using an empirical relationship built during
dry periods. This EC-basedmethodwasproven effective for estimating
Ei at an old-growth rainforest in eastern Amazonia, showing that Ei
accounted for 7.8–18% of rainfall during daytime rain events with a
range of intensity26. Nevertheless, the generalization of this approach
to other micrometeorological conditions and ecosystem types is not
verified, and simple empirical models are insufficient to quantify the
complexity of rainfall evaporation.

In this study,wemodify the above EC-basedmethod tobe suitable
for use worldwide, taking advantage of two hybrid models merging
physics andmachine learning (Methods). The hybrid models conserve
energy at the land surface and use a resistor approach to estimate LE,
which show better generalization to unseen (out-of-sample) condi-
tions and non-linear processes (e.g., contrasting behaviors in dry ver-
suswet seasons27), while also ensure physical consistency28. Onemodel
is trained with 146,608 wet samples from 29,985 rain events detected
in the flux tower measurements (HMwet), and the other model is
trained with 287,764 dry samples (HMdry) (“Methods”; Figs. S1 and S2),
i.e., having not seen wet conditions when Ei occurs. The two models
use a common set of environmental predictors including air tem-
perature, net solar radiation (Rn), wind speed, vapor pressure deficit
(VPD), PFT and LAI (Fig. S1). The HMwet uses an additional latent pre-
dictor called canopy water storage (CWS), which is inferred with a
neural network from vegetation attributes and eight variables
describing rainfall characteristics within the events (Methods; Fig. S1)
in order tooptimize the LEprediction inwet conditions. Themodel not
having seen rainfall events (HMdry) provides the baseline LE estimate
contributed by transpiration and soil evaporation (Fig. 1a). Hence, the
difference between HMwet and HMdry naturally filters out the LE com-
ponents of transpiration and soil evaporation, offering an indirect
estimate for Ei (Fig. 1a). Importantly, the models allow for upscaling
site-based Ei estimates to the global scale with the geo-spatial infor-
mation of predictors available from Earth observations and climate
reanalysis (“Methods”).

Results
LE estimates by HMwet and HMdry

The hybrid models, established at hourly timescale, show a good
performance in reproducing site-level LE observations under both wet

and dry conditions (r2 > 0.75, RMSE < 60mm) (Fig. S3). Given the nat-
ural variability of turbulence at EC towers, this validation indicates
strong predictive power of the hybrid models to capture hourly LE
dynamics.With all predictors (except forCWS) being consistent, the LE
estimated by HMwet is overall 42% greater than that by HMdry at the
hourly scale, and 32% greater at the event scale (Fig. 1b, c), demon-
strating the important additional water flux during and shortly after
rainfall. Hence, the difference between HMwet and HMdry reflects an
instantaneous Ei response to the additional rainfall inputs. This dif-
ference scales nearly linearly with average LE (Fig. 1b, c), suggesting a
larger Ei flux in wetter periods or warmer climates.

Our data-driven approach allows for assessing how Ei responds to
rainfall occurrence on an hourly basis. We illustrate the model-
predicted hourly time series for several cases of rain events grouped
into three types: single-pulse rainfall, continuous rainfall and inter-
mittent rainfall (Fig. 2). The result shows that Ei depends not only on
the available water stored within the wet canopy, but also on the
available energy to vaporize the water. During rainy hours, the eva-
poration rate of wet foliage is relatively small since rainfall often co-
occurs with low incident solar radiation (Fig. 2). After the rainfall has
ceased or during non-rain intervals, the evaporation of intercepted
water follows increasing availability of solar radiation (energy-limited),
and then decreases after the canopy has been gradually dried out
(water-limited) (Fig. 2). The maximum evaporation rates occur under
conditions with both abundant canopy water and also sufficient
energy, often lagging behind the latest rainfall pulse for a few hours
(Fig. 2). We emphasize that this expected physical behavior is not
imposed in the model but learned from observations, further building
confidence in the mechanistic representation of the hybrid models.

The fraction of rainfall partitioned to Ei and its drivers
The fraction of Ei in gross precipitation (Ei/P), i.e., the incoming pre-
cipitation at the top of the canopy, measures the relative importance
of Ei in surface water budget. Our result shows that the Ei/P varies
tremendously from near 0% to 100% (Fig. 3), across rain events, with a
medianof 18.3% and amean of 24.4% (Fig. 3a). The event-level estimate
is quantitatively comparable to the global Ei/P estimate (median: 21.8%;
mean: 25.0%) reported by a recent meta-analysis of field studies10.
Among the four forest biomes, the highest Ei/P values are identified for
evergreen needleleaf forests (32.0%, mean only), followed by mixed
forests (25.6%) and evergreen broadleaf forests (22.2%), while the
lowest values are detected for deciduous broadleaf forests (19.2%)
(Fig. 3a). Non-forest biomes (often in relatively dry regions) show
relatively lower Ei/P values (shrub: 20.1%, grasslands: 21.8%, savanna:
20.1%) than forest biomes. By comparing our EC-based Ei/P values
against a set of geographically close in situ observations (Methods), we
find a general agreement across available sites (r = 0.76, p < 0.05)
(Fig. 3a). This validation against independent ground measurements
confirms the capacity of our hybrid models for inferring Ei variations
across biomes.

To understand the determinants of Ei/P variations, we analyze the
relationship between Ei/P and its drivers across all available events, for
individual PFTs (Fig. 3). We find that rainfall characteristics (including
total rainfall amount, maximum hourly rainfall and average hourly
rainfall; Fig. 3a–c), rather than vegetation attributes (Fig. 3e), play a
dominant role in determining Ei/P variations. The Ei/P ratio is inversely
related to average and maximum raining rates, indicating that more
intense rain events cause less rainfall partitioned into Ei (Fig. 3a–c).
About 3/4th of rain events that have average rainfall rate greater than
1.0mmh−1 showa Ei/P ratio lower than 5% (Fig. 3c). Thisfinding is in line
with field observations that canopy has greater potential to intercept
rainfall in drizzle and light rain conditions than during short
rainstorms29,30. During heavy rain events, interception first increases
proportionally with rainfall until the canopy water storage reaches its
saturation level as the area coverage of the water on the leaves or
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stems is very high and the surface tension cannot hold anymore water
droplets on the plants29,30. After reaching the maximum interception
capacity, the additional rainfall becomes throughfall or stemflow and
will no longer contribute to Ei.

Ei/P is positively correlated to LAI across all available events
(r = 0.13, p < 0.05) as denser canopies can intercept more water,
yet this relationship is weak and insignificant for most PFTs
(Fig. 3e). This weak Ei/P dependence on LAI is confounded by the
overwhelming effect of rainfall intensity. For a specific LAI level,
there exists a tremendous variability in the types of rainfall
events, encompassing a wide range of intensity (Fig. S4) and
dampening potential Ei response to LAI. The Ei capacity also
depends on other plant characteristics such as leaf morphology,
leaf inclination, leaf texture, canopy architecture and the
overstory-substrate structure31,32. These factors are to some
extent captured by PFT and LAI, but are hard to infer in the
absence of available measurements. Similarly, a weak relationship
between Ei/P and wind speed can be found due to the con-
founding effects of the diverse rainfall regimes. A significant
negative correlation between Ei/P and wind speed (r = −0.57,
p < 0.01) is however detected for evergreen broadleaf forest

(Fig. 3f). Wind speed affects Ei through two counteracting pro-
cesses: wind blows over raindrops into the canopy interior and
promotes evaporation loss of wet leaves, while precluding water
collection by enhancing air motion and swaying canopy leaves33.
This negative relationship for broadleaf species suggests the
second mechanism plays a dominant role.

Global and zonal contribution of Ei to gross rainfall
Using spatially explicit climatic and vegetation states as inputs, we
produce an upscaled global data-driven estimate for cumulative
rainfall interception over 2000–2020 (“Methods”). Averaged over
the entire period, the annual accumulated global Ei is 84.1 ± 1.8
(mean ± 1-SD, based on interannual variability) mm, which accounts
for about 8.6 ± 0.2% of total incoming rainfall. The spatial pattern of
mean Ei shows strong similarity to that of precipitation and LAI cli-
matology, as expected, with the highest Ei occurring in the wettest
andmost densely vegetated tropical regions (Fig. 4a, b). Importantly,
Ei does not increase proportionally with precipitation across global
lands. Strikingly, the Ei/P ratio tends to increase with rainfall amount
in relatively dry regions (P < 800mmyr−1), which however shifts to
decrease in humid regions (P > 800mmyr−1) (Fig. 4c). The
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contrasting behavior of Ei/P across moisture gradients is due to tra-
deoff between effects of vegetation cover and rainfall characteristics.
In dry regions with low-rainfall intensity, the Ei/P increases with
vegetation cover. However, in humid regions particularly tropics
dominated by short-duration convective rainfall events, the fraction
of annual rainfall contributed by heavily raining hours (>1.0mm) and
the average rainfall rates are both much greater than that in dry
regions (Fig. S5), favoring lower Ei/P, as demonstrated by our site-
based analyses (Fig. 3c, d).

We further compare our data-driven results with available global
Ei estimates fromGLEAM (which uses the Gash’s analytical model) and
state-of-the-art land-surface models (LSMs, Table S1). Globally, our
data-driven approach produces greater annual mean Ei than estimates
from GLEAM (60.2mm) and LSMs (73.9mm; ranging from 18.9mm in
CABLE-POP to 100.3mm in ISAM), as well as the Ei/P (GLEAM: 7.0%,
LSMs: 8.4% [2.2–13.0%]) (Fig. 4b, d). By categorizing global lands into
five dominant climate zones (tropical, arid, temperate, boreal, polar),
we show that all products have similar spatial structure of Ei despite
having varying values. However, both GLEAM and LSMs fail to repro-
duce the spatial structure of the Ei/P ratio, with much higher Ei/P in
tropical wet climates (this work: 7.6%, GLEAM: 8.7%, LSMs: 10.6%) than

in arid (this work: 11.3%, GLEAM: 1.5%, LSMs: 5.4%) or boreal climates
(this work: 10.0%, GLEAM: 7.3%, LSMs: 6.3%) (Fig. 4d). This systematic
bias is likely caused by the fact that, in empirical physically
based models, current parameterization of the Ei process overly
relies on leaf area or canopy cover, and correspondingly, under-
estimates the dominant role of rainfall intensity in determining
rainfall partitioning to Ei especially in humid regions (Fig. S6). In
addition, the large inter-model spread of Ei (and Ei/P) estimates
(Fig. S7) highlights the need for observational constraint on this flux
and further improvement of process representation.

Rainfall regime characteristics drive recent Ei changes
We next assess how the global Ei flux has changed over the last two
decades (Fig. 5). During 2000–2020, global mean annual precipitation
has remained almost unchanged with an insignificant trend of
+0.81mmyr−1 (p >0.1) (Fig. 5d). Our data-based approach however
estimates that global mean annual Ei has significantly decreased by
4.9% (percent change relative to the climatology; average rate:
−0.20mmyr−1, p <0.01), which leads to a global decline in the Ei/P ratio
by 6.7% (p <0.01) (Fig. 5d). Given the dominant effect of rainfall
characteristics on Ei/P (Fig. 3a–c), we examine concurrent changes in

6 7 8 9 10 11 12
0

2

4

6

8
H

ou
rly

 P
 (

m
m

)

S
in

g
le

-p
u

ls
e 

ra
in

fa
ll

BR-Sa3 (EBF)
Date: 24-Feb-2001
Total P = 3.6 mm
Duration = 7 hours
Ei = 0.6 mm

a

0

200

400

600

800

11 12 13 14 15 16 17
0

2

4

6

8
US-Whs (SHU)
Date: 14-Sep-2011
Total P = 7.4 mm
Duration = 7 hours
Ei = 1.1 mm

b

0

200

400

600

800

LE
 o

r 
ra

da
iti

on
 (

W
 m

-2
)

12 13 14 15 16 17 18 19 20 21 22 23
0

2

4

6

8

H
ou

rly
 P

 (
m

m
)

C
o

n
ti

n
u

o
u

s 
ra

in
fa

ll

CA-Gro (MF)
Date: 19-Sep-2006
Total P = 4.2 mm
Duration = 12 hours
Ei = 0.7 mm

c

0

200

400

600

800

9 10 11 12 13 14 15 16 17 18 19
0

2

4

6

8
DE-Kli (CRO)
Date: 27-Oct-2008
Total P = 4.1 mm
Duration = 11 hours
Ei = 0.5 mm

d

0

200

400

600

800

LE
 o

r 
ra

da
iti

on
 (

W
 m

-2
)

16 17 18 19 20 21 22 23 0 1 2 3 4 5 6 7 8 9 10 11 12
Time (hour)

0

2

4

6

8

H
ou

rly
 P

 (
m

m
)

In
te

rm
it

te
n

t 
ra

in
fa

ll

US-Me2 (ENF)
Date: 21-Mar-2003
Total P = 5.6 mm
Duration = 21 hours
Ei = 1.7 mm

e

0

200

400

600

800

12 14 16 18 20 22 0 2 4 6 8 10 12 14
Time (hour)

0

2

4

6

8
AU-DaS (SAV)
Date: 16-Dec-2008
Total P = 31.6 mm
Duration = 27 hours
Ei = 1.7 mm

f

0

200

400

600

800

LE
 o

r 
ra

da
iti

on
 (

W
 m

-2
)

Net solar radiation LE from HMwet LE from HMdry Observed P

Fig. 2 | Cases of rainfall interception prediction in different rain events.Hourly
time series of latent heat flux (LE) for several cases of rain events, as estimated by
hybrid models trained with wet samples (HMwet, blue curves) and dry samples
(HMdry, red curves). These cases are grouped into three general types: single-pulse
rainfall (a, b), continuous rainfall (c, d) and intermittent rainfall (e, f). Cyan bars

show the observed hourly precipitation (P), and purple curves show net solar
radiation. X axis represents the local solar time from the start through the end of
the event. Labels in the panels show the auxiliary information of the sites and rain
events. EBF evergreen broadleaf forest, SHU shrubland, MF mixed forest, CRO
cropland, ENF evergreen needleleaf forest, SAV savanna.

Article https://doi.org/10.1038/s41467-022-35414-y

Nature Communications |         (2022) 13:7642 4



rainfall frequency (Frain) and intensity (Irain), using the fraction of wet
hours (0mmh−1 < P < 90th percentile) and intensely raining hours
(> 90th percentile ofmulti-year rainy hours) as indicators, respectively
(Methods). We diagnose a decreasing fraction of wet hours (−2.3%,
p <0.01) and an increasing fraction of intensely raining hours (+2.3%,
p =0.09) during 2000–2020 (Fig. 5d). These trends suggest thatglobal
land rain regimes have shifted to be less frequent and more intense,
both becoming less favorable for Ei generation. Globally, the year-to-
year variations of Ei are significantly and positively corrected with Frain
(Pearson correlation: r =0.55, p < 0.05) but not with Irain (r = 0.14,
p >0.1) (Fig. S8a, b). Oppositely, the Ei/P is significantly and negatively
correlated with Irain (r = −0.61, p <0.05) but not with Frain (r =0.28,
p >0.1) (Fig. S8c, d). This indicates that rainfall frequency alters aver-
age Ei, while rainfall intensity determines rainfall partitioning between
Ei and other fluxes.

The changes in rainfall and its distribution characteristics are
spatially diverse (Fig. 5b), leading to a strong heterogeneity in
Ei changes (Fig. 5a). Ei shows a decreasing trend over 74.2% of tropical
lands and 57.5% of extratropical lands, with the few increasing areas
identified over the eastern U.S., Middle East and northern high lati-
tudes. By summarizing the Ei trend in terms of Frain and Irain changes
(areaswith significant P trend are excluded), we confirm that Frain is the
most important factor, compared to Irain, to explain the spatial varia-
tions of Ei trend (Fig. 5a). Most global land areas that see a Ei decline
corresponds to regions with less frequent rainfall, such as the vast
tropical regions (Fig. 5a, b). The trend of Ei/P presents even stronger

spatial heterogeneity, with 60.3% of global lands being negative and
the remaining 29.7% being positive (Fig. 5c). In contrast to the Ei trend,
yet in concert with the global result, the spatial variations of Ei/P trend
are modulated to a greater extent by Irain than Frain changes (Fig. 5c).
The Ei/P ratio decreases for land areas where precipitation gets more
intense, such as the Amazon rainforest, eastern Africa and India, and
correspondingly, this ratio tends to increasewhereprecipitation is less
intense, such as in western Australia and eastern Europe (Fig. 5b, c).

Discussion
By integrating EC measurements, meteorological and reanalysis
observations in a hybrid data-driven approach, we generate the data-
driven and spatially explicit estimate of global rainfall interception
over the past two decades (2000–2020), and characterize its overall
contribution to the global water balance. We estimate that Ei accounts
for around 8.6% of gross land rainfall, but can be higher than 15% in
some low-rainfall-intensity areas. Rainfall interception is usually
regarded as a non-beneficial water use, as this flux does not benefit
plant productivity or societal water needs34. A knowledge of this flux,
however, has implications for water-oriented forest planning and
management especially in arid regions35,36. For instance, in regions
undergoing massive forest loss (agricultural clearing, logging, die-
backs from fires or droughts), the Ei loss would almost completely
convert into extra water inputs to the catchment water cycle. In an
opposite case, for regions undergoing large-scale afforestation prac-
tices, the rainfall interception adds to the concomitant loss of
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factors. a Median (white line), average (black dots), interquartile range (shading),
and the 5th and 95th percentiles (whiskers) of Ei/P across eight plant functional
types (PFTs). The upper right scatterplot in a compares the estimated Ei/P with
observed Ei/P at geographically close sites (Methods), with colors denoting the
corresponding PFT defined by the bars. The identity line is shown in red. b-f Scat-
terplots of the event-mean Ei/P ratio against four potential driving factors including
total precipitation (P) (b), maximum hourly P (c), average hourly P (d), leaf area

index (LAI) (e) and wind speed (f). The relationship is characterized for both all
available rain events (dots), and for the events grouped into each of the eight PFTs
(inset tables). The relationships with three metrics of rainfall characteristics are
fitted with a rational model, while the others are fitted with a linear model. Quan-
tities p, q, a and b are regression coefficients. Blue curves represent the best-fitted
regression, with the shading showing the 95% confidence intervals. EBF evergreen
broadleaf forest, DBF deciduous broadleaf forest, ENF evergreen needleleaf forest,
MF mixed forest, SAV savanna, SHU shrubland, GRA grassland, CRO cropland.
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transpiration37. This hydrological process could be a significant driver
of observeddecline in available surfacewater over intensely afforested
areas, yet has not been accurately assessed or event accounted for38.
We thus call for consideration of this additional water loss by inter-
ceptionwhen formulating the impact of future afforestation programs
initialized to combat climate change.

Our study demonstrates the capacity of hybrid modeling for
capturing Ei dynamics across climates/biomes, under the assumption
that relationships built over dry periods can be applied to wet periods.
However, we are aware of potential biases in the Ei estimate in certain
circumstances where the assumption might not hold true. For exam-
ple, during rainfall, the intercepted water could reduce transpiration
by covering some stomata openings and limiting leaf-air water vapor
exchanges39,40, which would translate to a negaitve bias in the Ei esti-
mate. This bias is alleviated by the fact that most plants stomata are
located on the lower side of the leaves, and thus do not direclty
interact with the intercepted rainfall unless during storms. Moreover,
even though HMdry exposed only to dry conditions doesn’t encapsu-
late this direct physical constraint ofwater, it still has adaptive capacity
to wet periods because: (1) it has explicitly accounted for leaf energy
balance; (2) it has captured other meteorological factors accompany-
ing rainfall occurrence (e.g., high humidity and low radiation) that
constrain leaf transpiration. Potential biases from soil evaporation and
transpiration fluxes should also be noted in water-limited biomes. In
such areas, our estimated Ei is to some degree confounded by soil
evaporation and transpiration pulses right after rainfall when there are

both abundant soil water and still relatively high atmospheric demand
for water41. Another source of uncertainty is that ML algorithms tar-
geting at predicting fine-scale targets (e.g., hourly Ei) have inherent
deficiency at capturing impacts of slowly evolving factors (e.g., LAI).
Although leaf area is experimentally identified as a key driver of LE and
Ei variations8,10,42, this effect is however of secondary importanceunder
our hybrid framework (Fig. 3e, Fig. S9). Future researchneeds to better
encapsulate the longer-termeffect of ongoing vegetation changes37 on
Ei dynamics, particularly for more targeted assessments of vegetation
impact on regional water resources.

Our data-driven results suggest that rainfall characteristics are the
primary driver of rainfall interception capacity at large spatial scales.
This is supported by several experiment-based studies9,43, but is con-
trary to some others since in situ plots are often situated close to each
other and observe similar rainfall patterns. The critical role of rainfall
characteristics challenges the widely adopted linear scaling of Ei with
rainfall in models based on LAI or canopy cover fraction20, and also
highlights that insufficient representation of sub-daily rainfall varia-
bility (e.g., prediction on a daily or longer basis44) would yield a sub-
stantial bias. We demonstrate a reduced partitioning of incoming
rainfall into interception loss in less frequent and more intense rain
events under climate change. This dependence has produced a sig-
nificant decreasing trend of Ei since 200045, and will likely determine
future Ei changes in response to shifts in rainfall characteristics. In the
warming future, state-of-the-art climate models project a robust
intensification of rainfall extremes and decrease of rainfall frequency

Fig. 4 | Spatial variations in annual mean intercepted rainfall (Ei) and its frac-
tionof total rainfall (Ei/P).Spatial patterns representmulti-year annualmean Ei (a)
and Ei/P (c) during 2000–2020, with the inset histogram showing the mean value
across precipitation (P) gradients. The radar plots on the right compare the Ei (b)

and Ei/P (d) values among three products and five climate zones (Fig. S2). GLEAM
uses the Gash’s analytical model for Ei prediction. LSMs show the ensemble mean
value of six land-surface models (“Methods”).
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globally46–48. Hence, the present decreasing trend of interception loss
should continue in future, thus increasing soil moisture and runoff.
This altered rainfall partitioning could have two counteracting effects
that require further in-depth investigation: (1) supplying water needed
for ecosystem functions andhuman activities; (2) increasingflood risks
as the extra water occurs mainly during intense rainfall events.

Methods
FLUXNET measurements
Global collection of eddy-covariance (EC) measurements at flux
towers were obtained from the FLUXNET2015 Tier 2 database11,
which contains gap-filled, half-hourly measurements of carbon,
water and energy fluxes, and meteorology. We here used mea-
surements of latent heat flux (LE), sensible heat flux (H), air tem-
perature (Ta), precipitation (P), vapor pressure deficit (VPD), net
solar radiation (Rn), ground heat flux (G), wind speed (WS), as well as
auxiliary information of site locations, plant functional types (PFTs),
canopy and tower heights. The data originally consist of 212 sites
that encompass 13 PFTs defined by the International Geosphere
Biosphere Programme (IGBP).

The following data filtering was applied to the half-hourly flux
data: (1) sites (or periods) without sufficient measurements
required for the hybrid model, as listed above, were excluded; (2)
half-hourly data with negative LE or labeled as having ‘poor quality’
were excluded; (3) in situ measurements generally have small
footprints, thus sites where the site-level PFT is not representative
of the dominant PFT retrieved from satellite grids were filtered out.
Here, to ensure site availability in arid regions, woody savanna
(WSA) was combined into savanna (SAV), open shrublands (OSH)
and closed shrublands (CSH) were combined into shrublands

(SHU); (4) measurements with Ta < 0 °C were excluded, to avoid
confounding effects of snowfall interception. The data screening
led to a subset of 76 sites that encompasses eight major vegetation
types: EBF (evergreen broadleaf forest), DBF (deciduous broadleaf
forest), ENF (evergreen needleleaf forest), MF (mixed forest), SAV,
SHU, GRA (grassland) and CRO (cropland) (Fig. S2; Table S2).
Among these, 48 use the open-path (OP) EC system and the rest use
the closed-path (CP) EC system (Table S2), which differ in deploy-
ment and data post-processing measurements and thus the ET
estimates49. Site-level LAI time series were not directly available, so
this information was extracted from satellite-retrieved 8-day LAI
maps based on site locations (details of LAI and PFT data in “Global
Ei mapping driven by satellite and reanalysis data”). To alleviate the
influence of non-vegetated surfaces within the grids, for each site,
the extracted grid-mean LAI was multiplied by the ratio of site
maximum LAI to grid maximum LAI. Maximum LAI for 39 flux sites
was collected by literature review50, and the scaling factor for the
remaining sites were filled with the nearest site of the same PFT.

We aggregated all half-hourly time series of all variables to hourly,
to accommodate the hourly reanalysis data used for globalmapping of
Ei. Previous studies demonstrated a systematic underestimation of LE
measurements during or shortly after rainfall, because the low-pass
filtering of water vapor is inherently flawed under raining and high-
humidity conditions51,52. Assuming a dependence of the latent energy
ratio (LER, defined as LE/(Rn −G −H)) on relative humidity (RH) and
rainfall intensity, we applied a neural network (NN) to correct for
potential biases in LE following a recent study47. Specifically, we first
built for each flux site a NN to model LER as a function of RH and log-
transformed hourly P. Using the LER predictions driven by observed
predictors (LERpred), we next corrected hourly LE to ensure that LER

Fig. 5 | Temporal changes of rainfall interception loss (Ei) for 2000–2020
controlled by rainfall (P) characteristics. Spatial patterns of the linear trend in
annual Ei (a), rainfall frequency and intensity (b) and the ratio of Ei to P (Ei/P) (c), all
calculated for the 2000–2020 period. Stipples show statistically significant
(p <0.05) trends. The inset plots at the lower left corners of a and c show the
distribution of the value in the space of rainfall frequency and intensity changes.

Rainfall frequency and intensity use the fraction of wet hours and intensely raining
hours as indicators, respectively. d Trajectories of global mean P, Ei, Ei/P, rain-
fall frequency and intensity during 2000–2020. Labels alongside the best-fitting
lines indicate the linear trends, significance, and the overall changes relative to its
mean value during 2000–2020 (in brackets).
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was set at the reference level with moderate RH (50%) and no rain
(P = 0mmh−1), expressed as:

LEcor = LE× LERpred½RH=50%, P =0�=LERpred ð1Þ

where LEcor is the LE flux after correction for RH and P dependence,
LERpred[RH=50%, P=0] is the reference LER corresponding tomoderate RH
and no rain. Last, a Bowen ratio method49 was applied to correct for
potential incomplete energy balance closure remained in the hourly LE
data53.

Splitting wet and dry hours
For each flux site, we separated the hourly time series into wet and dry
hours, as inputs to HMwet and HMdry (details below), respectively. Wet
hours were defined as those within a rain event. Rain events were
identifiedwith site-observed P time series based on the following three
principles: (1) it starts with hourly P ≥0.5mm; (2) the following 6 hours
(12 h if occurred during nighttime) after the event ceases were also
included in the same event, because evaporation of wet foliage often
lags behind rain occurrence. If there was an hour with P ≥0.5mm
during the following 6 h, this event was extended to another 6 h until
none in the following 6 h exceeded this threshold. (3) If an event lasted
longer than60h, thewhole rainfall periodwas split into several shorter
rain events that started with P ≥ 1mm and spaced longer than 6 hours.
Based on this definition, an event lasts a couple of hours, and may
contain a few non-rain (P =0mm) intervals (Fig. S1b). Those con-
secutive rainy hours (P > 0mm) split by non-rain intervals were con-
sidered as individual rainfall pulses (Fig. S1b). Last, those non-rain
hours outside the rain events were defined as dry hours. In total, we
obtained 146,608 wet samples from 29,985 individual rain events, as
well as 287,764 dry samples.

Hybrid model architecture, training, and prediction
The hybrid model for quantifying LE is a physics-constrained
machine learning (ML) model developed by Zhao et al.28. This
model integrates traditional ML model with a physically based
model, thus leveraging the strengths of ML (strong predictive ability
and data adaptiveness)54,55 and physical modeling (theoretical foun-
dations, interpretability and extrapolation capacity)28,56. In this
model, the physical part of themodel retrieves surface resistance (Rs)
from LE by inversing a quadratic Penman-Monteith (PM) equation,
and the ML part predicts the logarithm value of Rs (which is more
normally distributed than Rs), as a set of environmental factors
(Fig. S1a). A quadratic PM equation is used in the loss function to
ensure that the LE predictions conserve the surface energy balance
and meet the physical constraint that ET is a turbulent diffusion
process driven by vapor pressure gradients28. TheML algorithm used
in the model is a feedforward NN. Our model setup of NN was con-
sistent with what used in Zhao et al.28. The hybrid model has proved
to outperform pure NN in ET prediction particularly under climate
extremes and for out-of-sample extrapolation15,28. This improved
behavior is the rationale for the use of this approach such that a
hybrid model fitted outside of rainy conditions (HMdry) can be
compared to the hybrid model fitted during and right after rainy
conditions (HMwet).

The workflow of model training and prediction is shown in Fig. S1.
We first built a hybridmodel (i.e., HMdry) using dry samples of LE and its
predictors including Ta, VPD, Rn, WS, LAI and PFT. Before the model
training, all input variables (except PFT that used the original category
values) were normalized by the mean and standard deviation (SD) to
have zeromean and normalized variance.We next fed the HMdry with its
predictors observed under wet conditions, which estimated the hypo-
thesized LE values without canopy interception (Fig. 1a), as this model
only sawdry conditions where rainfall interceptionwas absent during its
training. The wet samples provided LE observations that captured the

contribution of rainfall intercepted by canopies. Thus, the difference
between observed LE and HMdry-predicted LE was used as a proxy for
the amount of vaporized canopy water storage (CWS) from intercep-
tion. Note that this parameter also encapsulates energy availability for
evaporation at hourly scales (Fig. S1b), so this can also be interpreted as
canopy interception capacity, which accounts for bothwater and energy
constraints.We then built a NN topredict theCWS (as a latent variable in
HMwet) since this parameter is not directly observable but is necessary
for the global mapping of Ei using climate reanalysis. Predictors used
here were vegetation states (LAI, PFT) and eight variables describing
rainfall characteristics including: (1) accumulated P since the start of the
event; (2) average hourly P since the start of the event; (3) maximum
hourly P since the start of the event; (4) P of the current hour; (5)
accumulated P of the last rain pulse; (6) maximum hourly P of the last
rain pulse; (7) number of non-rain hours since the last rain pulse; (8) end
timing of the last rain pulse. Further, we built HMwet in a similar manner
as HMdry, except using wet samples and using CWS as an additional
predictor. Last, the difference between LE estimates by HMwet and
HMdry, forced identically by wet samples, was regarded as an estimate
for the Ei flux. A small fraction of estimated CWS and Ei values were
negative (<0mm)due to inherent noise in the flux towermeasurements.
These anomalous values were removed when reconstructing the pre-
dicted time series for individual rain events.

Validation against in situ Ei measurements
To validate our EC-based Ei estimates, we obtained 981 in situ obser-
vations of Ei from a recent meta-analysis paper10 for comparison. Such
ground-based Ei was often observed indirectly as the difference
between gross rainfall measured above canopy or at a neighboring
open land, and the sum of the throughfall and stemflow sampled
simultaneously on the forest floor. This site-level validation was sub-
ject to issues of limited spatial representation and mismatch of mea-
suring periods, particularly given the spatially and temporally varying
rainfall inputs that strongly affect Ei. Thus, this validationwas based on
the Ei/P ratio, rather than Ei, to ensure better comparability. We
selected sites that met the two criteria: (1) both individual- and
community-level data were provided, but only community-level mea-
surements were used to match our ecosystem-level EC-based esti-
mates; (2) for each flux site, we only selected in situ site(s) of the same
PFT and located within 500 km of the target site. Applying the criteria
led to a small set of 10 in situ observation sites that encompassed four
vegetation types (ENF, EBF, DBF and SHU) (Fig. 3a). In this comparison,
the Ei/P at flux sites was averaged over all detected rainfall events, and
that of in situ sites was also averaged over plots, rainfall events, and/or
repeated experiments.

Global Ei mapping driven by satellite and reanalysis data
Weused thewell-trainedhybridmodels to upscale site-inferred Ei from
towers to the global scale using globally available predictor variables
from climate reanalysis and satellite observations. Gridded hourly
meteorological variables required as model inputs (Ta, VPD, Rn, WS,
P, G) were derived from the ERA5 climate reanalysis data57. This pro-
duct is available at 0.25° × 0.25° grids since 1979 and has shown high
consistency with observations57. Global LAI maps were derived from
the MOD15A2H (C6) product, available as 8-day composites with 500-
m spatial resolution since 2000. Global IGBP PFT maps were from the
MCD12C1 (C6) product, available at 0.05° × 0.05° grids since 2000.We
predicted Ei for the overlapping 2000–2020 period, and at 0.5° × 0.5°
global grid after regridding all forcing data to this common spatial
resolution. We identified the dominant PFT with the largest percent
cover after aggregating the percent fraction of each land cover to
0.5° × 0.5°grid. LAI at8-day intervalswas interpolated tohourly using a
cubic smoothing spline algorithm. Unlike the use of site-corrected LAI
for model training, global prediction of Ei instead used the original LAI
values.
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First, we extracted predictor variables for hours and grid cells that
were within a rain event (based on the definition in “Splitting wet and
dry hours”) by searching the P time series over the past 60 h. Second,
CWS was approximated for each wet hour and grid using LAI, PFT and
the eight variables of rainfall characteristics. Third, all grid-based
variables (except CWS) were normalized by the mean and SD of site-
based values, with additional verification that they generally fell within
the range of site-based variables (not shown). The site-based CWS and
grid-based CWS were quantitatively different, which could bring a
systematic bias in Ei estimates since only the HMwet has incorporated
this parameter. Therefore, global grids of CWS were normalized using
the mean and SD calculated for those grids surrounding the site
locations (within a 5° × 5° window), instead of that from site-based
values. This ensured that normalized CWS values from sites and sur-
roundinggridswerequantitatively similar. Fourth,we re-ran thehybrid
models to predict Ei for wet hours/grids driven by the predictors, and
reconstructed the global Ei maps. Finally, the predicted gridded Eiwas
multiplied by the fraction of vegetated cover (derived from the
MOD44B product) to exclude contributions from non-vegetated sur-
faces within the grids.

Previous model-based studies highlighted the effect of sub-grid
rainfall variability on rainfall interception58,59. There was a sizable
fraction of rainfall at coarse grids contributed by hourly P <0.5mm.
The light rain excluded from rain events also contributed to Ei due to
the strong spatial heterogeneity of rainfall within the grid. We here
adopted the following method to solve this problem. We assumed the
Ei/P ratio increases linearly with smaller rainfall amounts for light rain
(P < 0.5mm) (Fig. S11). If the rainfall amount converged to zero, we
expected that rainfall over canopy could be completely intercepted,
hence the grid-mean Ei/P ratio was approximated as the fraction of
vegetated surface. When the rainfall amount was close to 0.6mm
(0.5–0.7mm to ensure enough samples), we obtained the average Ei/P
ratio from the estimates by hybridmodels for each PFT. As a result, we
linearly interpolated the Ei/P for any given PFT and rainfall amount
between 0 to 0.5mm, and used this ratio to calculate Ei in response to
light rain (P < 0.5mm outside rain events) (Fig. S11).

When attributing global and regional Ei (Ei/P) changes, we intro-
duced two measures of rainfall characteristics. Rainfall intensity was
measured by the yearly fraction of intensely raining hours. Specifically,
we determined for each grid the 90th percentile of hourly rainfall
amounts across all rainy hours (P >0mm) during 2000–2020, and
defined intensely raining hours as those with simultaneous rainfall
exceeding the local 90th percentile. Rainfall frequency was then mea-
sured by the yearly fraction of wet hours excluding those intensely
rainy ones (0mm <P < local 90th percentile).

Process- and physically based Ei simulations
Available global Ei estimates from land-surface models (LSMs) and
the Gash’s analytical model were used for comparison. We used
an ensemble of six LSMs from the TRENDY (trends in net
land–atmosphere carbon exchange) v7 project60,61, which provided
Ei outputs for 2000–2018. These models included CABLE-POP,
CLM5.0, ISAM, LPJGUESS, ORCHIDEE-CNP and SURFEX. For all LSMs,
we used the simulation (S2) forced by varying both atmospheric CO2

and climate. We also obtained the Ei data from the Global Land Eva-
poration AmsterdamModel (GLEAM) v3.4a, in which the Ei estimation
relied on the Gash’s analytical model19. This product is available at
0.25° × 0.25° global grids for 1981–2018. Allmodel datawere regridded
to 0.5° × 0.5° spatial resolution for comparability. Note that, Ei esti-
mation closely depends on the precipitation inputs, so the derivation
of Ei/P used the original precipitation forcing data, that is, CRU-NCEP
for LSMs and MSWEP for GLEAM19. This comparison was also con-
ducted for the five major global eco-climatic zones (tropical, dry,
temperate, boreal and polar) according to the Köppen–Geiger climate
classification (types A, B, C, D, E, respectively; Fig. S2).

Data availability
All observation and model data that support the findings of this
study are available as follows. The FLUXNET2015 EC measurements
are available at https://fluxnet.fluxdata.org/2015/12/31/fluxnet2015-
dataset-release/; The ERA5 Reanalysis products are available at
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
single-levels?tab=form; The GLEAM v3.5b datasets are available at
https://www.gleam.eu/; The MODIS LAI data are available at https://
e4ftl01.cr.usgs.gov/MOLT/MOD15A2H.006/; The MODIS land cover
maps are available at https://e4ftl01.cr.usgs.gov/MOTA/MCD12C1.
006/; The Köeppen-geiger climate classification map is available at:
http://koeppen-geiger.vu-wien.ac.at/prese nt.htm; The processed Ei
data are available at: https://doi.org/10.5281/zenodo.7309030.

Code availability
The processing MATLAB and Python codes are available from the
corresponding author upon request.
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