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Multi-task machine learning improves multi-
seasonal prediction of the Indian Ocean
Dipole

Fenghua Ling1, Jing-Jia Luo 1 , Yue Li1, Tao Tang1, Lei Bai2, Wanli Ouyang2,3 &
Toshio Yamagata 1,4

As one of the most predominant interannual variabilities, the Indian Ocean
Dipole (IOD) exerts great socio-economic impacts globally, especially on Asia,
Africa, and Australia. While enormous efforts have been made since its dis-
covery to improve both climate models and statistical methods for better
prediction, current skills in IOD predictions are mostly limited up to three
months ahead. Here, we challenge this long-standing problem using a multi-
task deep learningmodel that we nameMTL-NET. Hindcasts of the IOD events
during the past four decades indicate that the MTL-NET can predict the IOD
well up to 7-month ahead, outperforming most of world-class dynamical
models used for comparison in this study. Moreover, the MTL-NET can help
assess the importance of different predictors and correctly capture the non-
linear relationships between the IOD and predictors. Given itsmerits, theMTL-
NET is demonstrated to be an efficient model for improved IOD prediction.

The Indian Ocean Dipole (IOD) is a dominant interannual climate
variability in the tropical Indian Ocean involving strong air-sea cou-
pling. It starts in late boreal spring with a gradually shoaling thermo-
cline as a response to the anomalous equatorial zonal winds in the
Indian Ocean. The west-east gradient of sea surface temperature (SST)
anomalies resulting from the shoaling thermocline further reinforces
the zonal wind anomalies via Bjerknes feedback, leading to a culmi-
nated IOD event in autumn. With the reversal of monsoonal wind, IOD
decays rapidly in early winter. Conventionally, the Dipole Mode Index
(DMI) is used to identify IOD events. The DMI is defined by the west-
east gradient of SST anomalies between the equatorial western Indian
Ocean and the southeastern Indian Ocean1–3. Through a variety of
atmospheric and oceanic passages, the IOD can profoundly influence
weather and climate in many regions, especially the countries in the
rim of the Indian Ocean, such as Australia, India, East Africa, and East
Asia3–6. Due to its wide-spread socio-economic impacts, active inter-
national efforts have been made in past decades since its discovery to
improve the IOD prediction by developing/updating atmosphere-
ocean coupled model forecast systems and/or statistical methods7–12.

However, skilful prediction of the IOD still remains a long-
standing challenge13. Compared to the prediction of El Niño/Southern
Oscillation (ENSO) events, which nowcanbe extendedup to 18months
ahead14,15, the prediction of the IOD events (except for the super IOD
event in 2019) is still limited to three months ahead in many current
state-of-the-art climate model forecast systems13,16,17. The major diffi-
culties in predicting IOD are rooted in a variety of unique character-
istics of the tropical Indian Ocean. The relatively small Indian Ocean
basin is bounded by the Eurasian Continent to the north and occupied
with warm water over which stochastic convections are frequent. The
Indian Ocean is strongly impacted by active intra-seasonal oscillations
that are mostly unpredictable beyond a few weeks13. In contrast to the
ENSO in Pacific Ocean, the air-sea coupling in the Indian Ocean is weak
with the prevailing westerlies driving a deeper thermocline in the east
than in the west. In addition, multi-scale nonlinear interactions are
active in the eastern Indian Ocean. All these processes are system-
atically underestimated in climate models18.

Owing to the complicated mechanisms and nonlinear processes
intrinsic to the IOD, many traditional statistical models are also
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suffered for the limited prediction skills7,8. With the advent of the big
data era, deep learning methods have displayed great potential in
predicting weather and climate by detecting intricate structures hid-
den in large datasets. For instance, the deep learning methods have
been widely applied in recent years to predict ENSO, synoptic pre-
cipitation and many other phenomena, demonstrating comparable or
even advantageous ability relative to dynamical model prediction
systems11,12,15,19,20. Here, we develop amodel based onmachine learning
technique to predict the IOD events in their peak season (i.e., Sep-
tember-October-November; SON) as well as their onset and develop-
ment seasons (i.e., March-April-May and June-July-August). We believe
that the robust analyses based on the climatemechanismsmay further
contribute to an increased credibility of the machine learning model.

Results
Improved prediction of SON DMI with MTL-NET
It has been widely recognized that ENSO and IOD are strongly influ-
enced by each other owing to the interactions among the tropical
oceans21,22, this inter-basin coupling needs to beproperly considered in
the predictionmodel. Distinct fromprevious efforts using themachine
learning method for a single task11,12,15,19,20, we utilise a multi-task fra-
mework, namely MTL-NET, in order to capture the important inter-
actions between the Indian Ocean and the Pacific Ocean. In the MTL-
NET, along with the primary task to predict the DMI, we also set three
secondary tasks to predict, namely EIOD, WIOD and Nino3.4 indices.
The EIOD and WIOD indices are the SST anomalies averaged over the
eastern pole of the Indian Ocean (50°−70°E,10°S-10°N) and the wes-
tern pole of the Indian Ocean (90°−110°E,10°S-0°), respectively. The
ENSO-related Nino3.4 index is the average of SST anomalies over the
region 5°N-5°S and 170°−120°W.

Since the IOD is driven by intrinsic ocean-atmosphere coupled
processes, SST, heat content (i.e., vertically-averaged ocean tempera-
ture in upper 300m), surface zonal (Us) and meridional wind (Vs)
anomalies covering the region of 0°–360°E, 55°S–60°N during three

consecutive months prior to the forecast start month are selected as
the predictors to feed theMTL-NET (Fig. 1, see “Methods”). Adding the
surface wind predictor helps improve the IOD prediction skill parti-
cularly at lead times beyond 7 months (Supplementary Fig. 1). To
consider the high persistence of the tropical climate signals, we have
inserted a Long Short-Term Memory (LSTM) block to capture their
temporal relations (Fig. 1). In fact, the added LSTM block assists MTL-
NET in outperforming other popularly used Convolutional Neural
Networks (CNN) models12. The MTL-NET displays the highest perfor-
mance in predicting the IOD among various machine learning models
(Supplementary Fig. 1, “The MTL function and advantages”).

Figure 2 further highlights the advantage of the MTL-NET for the
DMI predictions compared to fourteen world-class state-of-the-art
dynamical model prediction systems including seven operational
models. Both the correlation skills and root mean square errors
(RMSEs) in predicting the DMI by the MTL-NET are persistently
superior to most of the fourteen dynamical counterparts at lead times
of up to 7 months and even beyond. The prediction skills of the DMI
based on 13 out of 14 dynamicalmodels are lower than theMTL-NET at
1-month lead. With the increase of lead time, the skills of most dyna-
micalmodels decrease rapidly. Although somedynamicalmodels have
comparable skills at 1–4 months lead, their prediction skills become
lower than that of the MTL-NET afterwards. It is worth noting that the
MTL-NET can predict SON DMI at lead time beyond 12 months with a
correlation skill close to 0.4 up to 15-month lead. In addition, theMTL-
NET also outperforms most of the fourteen dynamical models in pre-
dicting the IOD in boreal spring and summer (Supplementary Fig. 2),
indicating its improved skills in predicting the onset and development
of the IOD events. The predicted DMI timeseries at lead time of 1, 3, 6
and 12months based onMTL-NET demonstrates that theMTL-NET can
predict many of the IOD events during 1983–2019 (Fig. 2c, Supple-
mentary Fig. 2c and d).

As an advantage of the multi-task framework, if setting another
task (e.g., the EIOD and WIOD indices) as the primary task, it can
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Fig. 1 | The structure of themulti-task learningmodel (MTL-NET). TheMTL-NET
contains three input layers (i.e., the predictors in each month) and each input will
use the convolutional block to extract spatial features. The convolutional block
consists of one channel attention layer, three convolutional layers and two max-
imum pooling layers. Then, the spatial features in each month are concatenated
according to the time dimension and fed into the different tasks. Each task block
contains a 3d convolutional layer, a spatial attention layer, a long short-term
memory (LSTM) layer, and an output layer (i.e., dense layer, the predictand). The
variables of the input layer include sea surface temperature (SST; °C), upper 300m

heat content (HC; °C), surfacewind (Us andVs;ms−1) anomaly fromT-n-2months to
T-nmonths over the globe (0°–360°E and 55°S–60°N). T denotes the target season
(i.e., Sep-Oct-Nov, SON) and n denotes the lead time from 1 to 15 months. The lead
time is defined as the number of months between the latest available observations
andOctober (i.e., themiddlemonthof SON). TheDipoleMode Index (DMI), the SST
index of eastern pole of the Indian Ocean (EIOD), the SST index of western pole of
the Indian Ocean (WIOD), and Nino3.4 SST index (Nino3.4) in SON are selected as
the predictands.
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simultaneously improve the predictions that are also superior to most
of the fourteen dynamical models’ performance (Supplementary
Fig. 3). Furthermore, the predictions of the MTL-NET appear to be
rather robust against different test datasets (Supplementary Fig. 4).
Therefore, we conclude that the MTL-NET provides a reliable forecast
of the IOD events up to 7 months ahead and even beyond, which has
yet not been achieved in most of the fourteen dynamical forecast
systems.

Precursors revealed by MTL-NET for strong IOD events
Furthermore, the channel attention mechanism (see “The attention
blocks”), by estimating the time-varying importance of every pre-
dictor at each lead time, helps understand the reasons why such a
reliable IOD prediction can be extended to long lead times (Supple-
mentary Fig. 5). Among the four predictors, the importance of the
SST anomaly is remarkable at 1-month lead time because the SST
dipole in the Indian Ocean has already formed in July-August-
September (JAS) that is about 1-month prior to the IOD peak season
SON. With the increase of lead time, the zonal and meridional winds
become more important up to 3-month lead compared to the other
predictors. This is consistent with previous studies that suggested
the strong impacts of the summer monsoon on the development of
IOD1,3. As expected, the importance of the heat content anomalies of
the upper ocean to the IOD prediction becomes more remarkable
with the increase of lead time due to strong oceanicmemory9. This is

different from the varying importance of the other predictors among
different lead times.

It is worth noting that the predictability of IOD at each lead time
maycome from theprecursors in different regions. It is also interesting
and important to explore the possible precursors that reinforce the
intensity of an IOD event, especially during the development of an IOD
event. Therefore, the heatmap derived from the spatial attention
mechanism (see “The attention blocks”) is utilised to find out the key
regions at 3-month lead, which generally represents the current pre-
diction level in many dynamical forecast models. A positive (negative)
IOD event is defined as the DMI being greater (lower) thanone positive
(negative) standard deviation during SON. Accordingly, five strong
positive IOD events (pIOD; i.e., 1994, 1997, 2006, 2015, and 2019) and
five strong negative IOD events (nIOD; i.e., 1992, 1996, 1998, 2010, and
2016) since 1983 are selected. They are composited separately to
demonstrate the distinct mechanisms in the pIOD and nIOD
predictions.

Here, a larger value in the heatmapdenotes a greater contribution
of the regional predictors to the IOD prediction (Figs. 3a and 3b). The
heatmap of 3-month lead prediction (i.e., initiated fromMay-June-July
(MJJ)) suggests that precursors in four regions including the tropical
western Pacific, Australia, theNorth and Southeast Pacific are crucial to
the successful pIOD predictions (Fig. 3a). The obvious westerly
anomaly in the equatorial western Pacific may trigger a downwelling
Kelvin wave and transport warm water eastward. In due course, the
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Fig. 2 | Correlation skills of the IndianOceanDipole prediction. a Predictive skill
of the Dipole Mode Index (DMI) in Sep-Oct-Nov as a function of the lead month
based on the multi-task learning model (MTL-NET; red line), SINTEX-F dynamical
forecast system (blue line), six operational forecast models which hindcast periods
are limited to the period after 1993 (dashed lines) and seven dynamical forecast
systems of the North American Multi-Model Ensemble (NMME) project (the other
coloured lines). The prediction skill is validated for the period of 1983–2019. Black

dashed line denotes the skill of 0.5. b Root mean square error (RMSE) of the SON
DMI prediction based on the MTL-NET and each dynamical model forecast system.
The diagonal line represents the model does not have prediction at this lead time.
c The SON DMI based on the observations (black line) and 10-member ensemble
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and brown lines), respectively.
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warmSST anomaly in the central-eastern PacificOceanwill strengthen,
while theWalker circulation will weaken due to the Bjerknes feedback.
The eastward movement of the deep convection results in the
abnormal divergence in thewestern tropical Pacific (region 1 in Fig. 3a)
and the weakening of the climatological westerly wind in the Indian
Ocean. Therefore, it benefits the formation and growth of the pIOD
events9,17,21–24 (Fig. 3c and Supplementary Fig. 6a).

In addition, the strengthening of the Australian High (region 2 in
Fig. 3a) reinforces the cross-equatorial flow over the Maritime Con-
tinent (Fig. 3e), which intensifies the coastal upwelling along the
Sumatra during boreal summer, and subsequently contributes to the
cold SST anomaly over the southeastern tropical Indian Ocean24

(Supplementary Fig. 6b). Note that the far-fetched significant sea-level
pressure (SLP) gradient between the northwestern Pacific (region 3 in
Fig. 3a) and the equatorial western Pacific, which is nonlinearly cor-
related with the pIOD events (Supplementary Fig. 6c), might mostly
represent a response to the equatorial Pacific warming learnt by the
MTL-NET, rather than a contributor to the pIOD predictability. Simi-
larly, the signal in the Southeast Pacific (region 4 in Fig. 3a) resembles
the Pacific South American pattern25, which is also a response to the
SST warming in the equatorial central-eastern Pacific (Fig. 3c and e).

In the nIOD predictions at 3-month lead, the key regions of the
precursors locate in the tropical western Pacific, Australia, and the
ArabianSea (Fig. 3b). The significant northeasterlywind anomaly in the
western equatorial Pacific contributes to the nIOD events in two ways.
In one way, the strengthened northeasterly wind may intensify the
Indonesian throughflow, and transport more warm pool water from
the tropical western Pacific into the eastern Indian Ocean26. In the

other way, the enhanced surface convergence over thewarmpoolmay
strengthen the climatological westerly wind in the Indian Ocean, and
thus results in the nIOD events. Moreover, there is a negative SLP
anomaly in Australia that weakens the northward cross-equatorial
wind due to the decreased interhemispheric SLP gradient (Fig. 3d
and f), therefore favouring the occurrence of nIOD events22,24 (Sup-
plementary Fig. 7a, b). The warm SST and northerly anomalies in the
Arabian Sea appear to be driven by preceding El Niño event through
the IndianOceanCapacitormechanism27, just aswas shown in the 1998
nIOD event (Supplementary Fig. 7c, d). The warm SST anomaly in the
tropical IndianOcean forces a basin-wide cyclonic circulation, which is
reminiscent of the classicalMatsuno-Gill type of atmospheric response
to a tropical heating. The associated westerly anomalies along the
equatorial Indian Ocean help promote the development of nIOD
events.

It is interesting to find a rebound of the correlation skill in the
MTL-NET and a few dynamical models at 10–12 months lead predic-
tions (Fig. 2a), and thismay indicate somemulti-seasonal predictability
of the IOD. To understand this, we have calculated a heatmap of the
MTL-NET to identify the key regions of the precursors for the 12-month
lead predictions (Fig. 4). Precursors in two key regions are found to be
important to the multi-seasonal predictions of the pIOD events
(Fig. 4a). In the central North Pacific (region 1 in Fig. 4a), an apparent
negative SLP (i.e., cyclone) anomaly appears in August-December of
the previous year (Supplementary Fig. 8). The southwesterly wind over
the southern side of the cycloneweakens the northeasterly tradewind,
reducing surface evaporation, and hence increasing the SST in the
western coast of North America (Supplementary Fig. 9). Meanwhile,
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Fig. 3 | Physical interpretation of the Indian Ocean Dipole (IOD) predictions at
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(SLP) anomalies in MJJ during the five strong pIOD years. (b, d, f) As in (a, c, e), but
for the results of the five strong negative IOD events (nIOD). The vectors in bold,
stippling and shading in (c–f) denote the areas where the anomalies are significant
at 10% level based on the Student’s t test.
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the weakening of the northeasterly trade wind reduces the con-
vergence along the intertropical convergence zone at around 10˚N,
and the decreased convective precipitation and cloud cover lead to
more downward surface solar radiation to increase the SST. Therefore,
there is a southwest-northeast oriented warm SST anomaly extending
from the equator to thewesterncoast ofNorthAmerica28,29 (Fig. 4c and
Supplementary Fig. 9).

The seasonal foot-printmechanism triggered by the strong air-sea
interactions allows this spatial pattern to persist from boreal winter to
the following spring and summer28–31. It also promotes the occurrence
of a central-Pacific type of El Niño during August-September-October
of the previous year (ASO (−1)) to January-February-March (JFM) that
subsequently moves eastward in following seasons (Fig. 4c, e). The
eastward propagation of warm upper ocean HC anomalies along the
equatorial Pacific brings warm water up to the surface28–32 (Fig. 4e and
Supplementary Fig. 9) and weakens the Walker circulation. The latter
leads to the slackeningof the climatologicalwesterlywind in the Indian
Ocean, and thus favours the occurrence of pIOD events. We conclude
that the MTL-NET can capture the initial features of the seasonal foot-
print mechanism that provides the robust 12-month lead precursors
for the occurrence of strong pIOD events, a finding that has not been
disclosed in previous studies.

Distinctively, the key region of the 12-month lead precursors for
the nIOD events mainly confines within the tropical Pacific (Fig. 4b).
The heat content evolution along 10˚S-10˚N suggests a clear phase
transition from an El Niño to a La Niña during ASO (−1) to JAS (Fig. 4d, f
and Supplementary Fig. 10). Associated with the development of a La

Niña, both the Indonesian throughflow and the Walker circulation
become stronger than normal, transporting more warm water from
the western tropical Pacific to the Indian Ocean, and thus increasing
the SST in the eastern Indian Ocean22,27,33. This result indicates that the
preceding El Niño signal and the following regular phase transition to a
La Niña provide an important precursor for the 12-month lead forecast
of the nIOD events.

Discussion
Recently, the deep learning method has been widely utilised for
weather-climate predictions although its interpretability is required
for further improvement. Our study suggests that deep learning
methods can extend reliable IOD predictions out to 7 months ahead,
and the combinationof thedeep learningmethodwith the geophysical
big data can help deepen our understanding of complex climate
variabilities in the Earth system. Traditional analyses largely rely on
linear regression to explore the relationship between the predictors
and predictands and the nonlinear relationships are often neglected.
The deep learning method can be an effective complementary as the
deep learningmodel is built on a series of nonlinear calculations. Based
on the interpretable analyses of our model results, we can obtain the
distinctive mechanisms responsible for positive and negative IOD
events. This helps deepen the understanding of the nonlinear
mechanisms of IOD, although they need to be fully tested by tradi-
tional dynamical model experiments and other approaches. Indeed, a
recent finding29 supports our deep learning model results on the
importance of the North Pacific precursors at 12-month lead. In future
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work, we may focus on addressing the interpretability of how to
separate the different precursors at different lead times. Perhaps,
extracting high-dimensional features of multi-modal dataset will help
address this issue.

Methods
Datasets
Centennial historical simulations from Coupled Model Inter-
comparison Project phase 5 and 6 (CMIP5 and 6)34,35 and reconstructed
historical observation data36,37 were used to train the MTL-NET (Sup-
plementary Table 1 and 2). They are used to meet the requirement of
big data for training the artificial intelligence model. To validate the
performance of the model by comparing with the observed values,
monthly mean SST and upper 300m heat content data were collected
from the Global Ocean Data Assimilation System (GODAS) reanalysis
during 1983–201938, while the horizontal wind vector data were
obtained from the NCEP-DOE Reanalysis 239. We first built a Convolu-
tional Neural Networks (CNN) prediction model using only
CMIP5 simulations and using both CMIP5 and CMIP6 outputs,
respectively. When building the MTL-NET, we tested the model’s per-
formance by dropping off surface winds, and both surface winds and
LSTM block, respectively. Finally, we built the MTL-NET by including
both the LSTM and the four ocean-atmosphere predictors. The result
reveals that more training data can produce better prediction skill and
adding surface winds as predictors helps improve the skill, especially
in predicting the strong IOD events (Supplementary Fig. 1). The MTL-
NETprovides thebest prediction skill among all thebuilt deep-learning
models.

NMME and SINTEX-F hindcasts
The North American Multi-Model Ensemble (NMME) is an experi-
mental project, which was established in response to the U.S. National
Academies’ recommendation to support regional climate forecasting
anddecision-makingover intra-seasonal to interannual timescales. The
project has been contributing model predictions from their hindcasts
(dating back to the early 1980s) and real-time forecasts since August
2011. Each model consists of 6–28 ensemble members, and the fore-
casts are provided at lead times from 1 month to 11 months40 (https://
iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/).

The SINTEX-F prediction system is built based on a fully coupled
global ocean–atmosphere circulation model developed under the EU-
Japan collaborative framework. This system has displayed high per-
formance in predicting the tropical climate signals41. In particular,
several ENSO events can be predicted at lead times of up to 2 years by
this system14. The real-time predictions have been updated every
month and made publicly available since 2006 (see http://www.
jamstec.go.jp/aplinfo/sintexf/e/seasonal/outlook.html and https://
icar.nuist.edu.cn/en/111/list.html).

Operational forecast models’ hindcasts
The Copernicus Climate Change Service provides a multi-system sea-
sonal forecast service, where data produced by state-of-the-art sea-
sonal forecast systems developed, implemented and operated at
forecast centres in several countries is collected. The data includes the
retrospective forecasts (hindcasts) during the period 1993–2016, and
the forecasts are provided at lead times from 1 month to 5 months
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-
monthly-single-levels?tab=overview).

The MTL-NET
We built the MTL-NET to predict the IOD. A key challenge is how to
capture the spatiotemporal dependencies simultaneously with one
single forecast model and improve prediction skills of the IOD at
seasonal-to-multi-seasonal lead times. To build the MTL-NET at n
months lead (n=1, 2, 3,…, 15) for the target season (i.e., SON), we used

both the ocean and atmosphere predictors over the globe with a
5°×5° horizontal resolution during three consecutivemonths prior to
each forecast start month. To better capture the spatial features, we
used a convolution module42 and appropriately add maximum
pooling layers to extract the most important regional features. To
capture the temporal features, we added a LSTM43 module after
extracting the spatial feature. It is worth noting that ENSOoften plays
an important role in the evolution of the IOD21,22. The inter-basin
interactions between the Pacific and Indian Oceans can strongly
impact the climate variations in the Indian Ocean. Therefore, we use
the multi-task learning framework (MTL) contains both the IOD
indices and Nino3.4 SST index in the prediction model. Such a fra-
mework allows the model to share the extracted spatiotemporal
features from both ENSO and the IOD. Thus, the important inter-
basin coupling between the Pacific and the Indian Ocean is included
in the MTL. In addition, to better understand the model results and
mechanisms underpinning the seasonal-to-multi-seasonal predict-
ability of the IOD, we added the attention blocks. To avoid unstable
predictions of MTL-NET, the results are produced based on the
integrated learning from 10 ensemble members of the MLT-NET
model for each lead time. The construction andworkflowof theMTL-
NET is schematically displayed in Figure 1.

The MTL function and advantages
When using a supervised learning to build a prediction model, a usual
way is to train one model for each single task separately11,12. However,
the Earth is a holistic system and this may miss the important inter-
actions between the different elements in the system, especially in the
tropical oceans where strong multi-scale interactions operate. The
MTL is capable of sharing parameters between multiple tasks to a
certain degree, and hence can improve the original single prediction
task44. Indeed, Supplementary Fig. 1 displays that the MTL-NET per-
forms better than the single-task model in predicting the IOD during
SON. In addition, the prediction skill of the MTL-NET reaches 0.73 at
7 months lead, which is higher than that of a single-task model12 (i.e.,
0.69) if following the same evaluation way.

The main feature of the MTL is that it can deal with multiple
predictands (i.e., tasks) and different tasks can share loss functions
according to the task weights45. Here, wemainly adoptedmean square
error (MSE) for the loss function. In the multi-task model, the loss
function is written as follows.

LOSS=
Xn

i= 1

ai�Li ð1Þ

where ai and Li is the weight and loss of the i-th task, n is the number of
the tasks. The prediction performance of the MTL-NET is affected by
the weight values. When building the MTL-NET for the SON DMI
prediction, we use four tasks including the DMI, EIOD, WIOD, and
Nino3.4 SST indices. Note that the primary task (i.e., DMI) is harder to
learn with a low predictability, the auxiliary task (Nino3.4) is easier to
learn with a high predictability, and the IOD and ENSO are highly
related due to the strong Indo-Pacific inter-basin interactions. Thus,
the MTL can obtain the better predictions of DMI with helps of the
auxiliary task46. Andwe have conducted twoadditional experiments by
swapping the primary and secondary predictands (Supplementary
Fig. 11). The result demonstrates that the IOD prediction skills as the
primary task are generally better than those as the secondary task. In
addition, the IODprediction skills calculated using the EIOD andWIOD
indices are lower than those of the IOD as the primary task. This is also
true whether the EIOD or WIOD is taken as the primary task
(Supplementary Fig. 1).

This function can help themodel paymore attention to a certain
task and extract more features about this task by optimizing the
value of theweights to obtain better forecast skills. For example, with
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the increase of lead time, the role of the Pacific Ocean may become
more and more important, and hence we can obtain more features
about the Pacific Ocean by increasing the weights of Nino3.4 task
based on the premise that the primary task is set for the prediction of
the DMI.

We also designed an experiment with the same parameters but
removing the influence of ENSO. The skill drops at 5-month lead and
beyond, becoming much lower than the MTL-NET (Supplementary
Fig. 1a). As for the importance of the predictors revealed by the
channel attention and the heat map, the results are generally similar
(figures not shown). However, the results based on the MTL-NET with
ENSO task provides clearer andmore area-focused information on the
importance of the predictors at different lead times.

In addition, we set the weight of the DMI task to 5 and the weights
of the other tasks to 1 at 1-month lead, and allow the weight of Nino3.4
task gradually increase with lead time (Supplementary Fig. 12a, red
line). Note that we have also tested other ways to set the loss function
weights (Supplementary Fig. 12a, orange and blue lines). The results
show that the first weighting strategy produces the best forecast skills
(Supplementary Fig. 12b).

The attention blocks
Physical interpretability of the statistical models constructed with the
artificial intelligence methods has been a long-standing difficulty. In
order to increase the interpretability of the MTL-NET’s results, we
adopted the attention mechanism. It is well known that the attention
plays an important role in human perception. Humans exploit a
sequence of partial glimpses and selectively focus on salient parts in
order to better capture visual structures. We inserted the channel
attention block and spatial convolutional attention block47 into the
MTL-NET as follows.

Attentionchannel = σ W 1 W0 Fc
avg

� �� �
+W 1 W0 Fc

max

� �� �� �
ð2Þ

where σ denotes the sigmoid function and W0 and W1 represent the
weights of the model that are shared by both inputs (i.e., Fc

avg and
Fc
max). The ReLU activation function is followed by W0, F

c
avg and Fc

max

are obtained by aggregating the spatial information of a feature map
using both the average-pooling andmaximum-pooling operations that
represent the average-pooled features andmaximum-pooled features,
respectively. Both descriptors are then forwarded to a dense layer to
produce a channel attention map47.

In addition, we also need a spatial attention map to capture the
geographical importance of the predictors. We aggregated the
channel information of a feature map by using two pooling opera-
tions, therefore generating two 2D maps: Fs

avg and Fs
max. They

represent the average-pooled features and maximum-pooled fea-
tures across the channel, respectively. They are then concatenated
and convolved by a standard convolutional layer, producing the 2D
spatial attention map47. To clearly represent the key regions, the
spatial attention map was standardized and values smaller than the
average were ignored. In short, the spatial attention is computed
as below.

Attentionspatial = σ f n×n Fs
avg ;F

s
max

h i� �� �
ð3Þ

where σ denotes the sigmoid function and f n×n represents a con-
volution operation with the filter size of n×n. In the MTL-NET, we set n
to 1 and use the 3D convolutional layer instead of the standard
convolution.

Sensitivity experiments
It is known that the prediction skill of machine learning models is
dependent on different data. In order to test the possible overfitting
problem and the sensitivity to the prediction test data in the MTL-

NET, we designed three sensitivity experiments, in which we
replaced the original wind and SST in test datasets with the NCEP/
NCAR Reanalysis 148 and NOAA Optimum Interpolation Sea Surface
Temperature V249, respectively. The prediction results from the
sensitivity experiments show no significant difference from the
original one, suggesting that our results are not sensitive to the
selection of test dataset, and therefore the prediction results in the
MTL-NET are robust (Supplementary Fig. 4).

Data availability
Data related to this paper can be downloaded from: CMIP5 database,
https://esgf-node.llnl.gov/search/cmip5/; CMIP6 database, https://
esgf-node.llnl.gov/search/cmip6/; SODA, http://iridl.ldeo.columbia.
edu/SOURCES/.CARTON-GIESE/.SODA/; NOAA-20Century Reanalysis
version 3, https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.
monolevel.html; GODAS, https://psl.noaa.gov/data/gridded/data.
godas.html; OISST, https://psl.noaa.gov/data/gridded/data.noaa.oisst.
v2.html; NCEP/NCAR Reanalysis 1, https://psl.noaa.gov/data/gridded/
data.ncep.reanalysis.html; NCEP-DOE Reanalysis 2, https://psl.noaa.
gov/data/gridded/data.ncep.reanalysis2.html; NMME, http://iridl.ldeo.
columbia.edu/SOURCES/.Models/.NMME/.

Code availability
The deep learning models were developed using standard libraries in
open-sourceplatforms including Keras andTensorFlow. Codes used in
this study are available from the corresponding author on request.
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