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Discovery of synthetic lethal interactions
from large-scale pan-cancer perturbation
screens

Sumana Srivatsa 1,2,7, Hesam Montazeri 3,7, Gaia Bianco4,7,
Mairene Coto-Llerena4,5, Mattia Marinucci 4, Charlotte K. Y. Ng 2,6,
Salvatore Piscuoglio 4,5 & Niko Beerenwinkel 1,2

The development of cancer therapies is limited by the availability of suitable
drug targets. Potential candidate drug targets can be identified based on the
concept of synthetic lethality (SL), which refers to pairs of genes for which an
aberration in either gene alone is non-lethal, but co-occurrence of the aber-
rations is lethal to the cell. Here, we present SLIdR (Synthetic Lethal Identifi-
cation in R), a statistical framework for identifying SL pairs from large-scale
perturbation screens. SLIdR successfully predicts SL pairs even with small
sample sizes while minimizing the number of false positive targets. We apply
SLIdR to Project DRIVE data and find both established and potential pan-
cancer and cancer type-specific SL pairs consistent with findings from litera-
ture and drug response screening data. We experimentally validate two pre-
dicted SL interactions (ARID1A-TEAD1 and AXIN1-URI1) in hepatocellular
carcinoma, thus corroborating the ability of SLIdR to identify potential drug
targets.

Synthetic lethality (SL) refers to gene pairs for which an aberration in
either gene alone does not affect cell viability, but aberrations in both
genes are fatal to the cell. Key to exploiting SL in cancer therapy is the
identification of a targetable dependent gene (SL partner) for a given
genetically altered gene, such that the two genes form an SL pair
(Fig. 1a). A classical example of SL in cancer therapy is the use of PARP
inhibitors in BRCA-mutated cancers. The BRCA1/2 genes involved in
DNA double-strand break repair are often mutated in breast and
ovarian cancers1–3, and hence such cancer cells rely on alternate DNA
repair processes. PARP1 plays a central role in these alternate DNA
repair mechanisms4,5, and therefore inhibiting PARP results in cata-
strophic double-strand breaks during replication, ultimately leading to
cancer cell death6,7.

In recent years, high-throughput experiments have enabled the
generation of multi-omics observational data and large-scale

interventional data in various cancer types. Several computational
methods have since been developed to identify and prioritize SL
interactions from suchdiversemolecular data. Earlymethods involved
the identification of mutually exclusive genetic alterations in func-
tionally related genes. These approaches were either de novo and
detected patterns in the mutational data8–11, or knowledge-driven and
based on pathways or interaction networks12. Other computational
methods for identifying SL interactions relied on human orthologues
of yeast genetic interactions13, inter-species network models14, signal-
ing networks15, and protein-protein interaction networks16.

Experimentally, large-scale perturbation screens based on siRNA,
shRNA, CRISPR, or small molecules in cell lines have been con-
ventionally used to identify SL interactions17–27. McDonald et al.27

conducted a large-scale deep RNAi screen, entitled Project DRIVE, that
targeted 7,837 genes in 398 Cancer Cell Line Encyclopedia28 (CCLE)
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Fig. 1 | Overview and SLIdR workflow. a Definition of a synthetic lethal pair:
Aberration of gene A (driver gene) or knockdown of gene B (SL partner gene) alone
does not affect the viability of the cell. However, the combination of mutated gene
A and knockdownof gene B is lethal to the cell.bDistribution of the number of cell
lineswith copynumber data fromCCLE across 23 different cancer typesused in this
study. Sincemost cancershave small sample sizes, thefigure indicates the necessity
of developing a computational toolwith sufficient statistical power on small sample
size data. c Illustration of the SLIdR algorithmwith a toy example. The data consists

of driver genes DG 1-DG 4 and perturbed genes PG 1-PG 15 across cell lines CL 1-CL
10. Cell lines CL 2-5 are mutated in the driver gene DG 1 (Mut), while the remaining
cell lines are DG 1 wild-type (WT). Comparison of viability distributions across all
perturbed genes PG 1-PG 15 in the DG 1mutated (Mut) andWT cell lines shows that
perturbation of gene 8 (PG 8) results in reduced viability only in CL 2-5 and not the
WT cell lines. Thus, PG 8 is a SL partner of DG 1. d The computational pipeline
illustrating the different steps performed to obtain the candidate SL pairs from
mutation profiles and perturbation screen data.
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models and provided a rich and robust dataset for the identification of
SL pairs. However, the authors primarily analyzed gene interactions in
a pan-cancer manner.

Significant efforts have been made in developing integrative
computational methods that harness both multi-omics observational
data and genetic perturbation screening data. Jerby-Arnon et al.29

proposed DAISY, a method that predicts a global network of potential
SL interactions in human cells from tumor copy number, expression
data, and shRNA screening data from cell lines. Similarly, Sinha et al.30

presented MiSL, an algorithm based on Boolean implications to
prioritizemutation-specific SL partners for different cancer types from
large pan-cancer multi-omics and perturbation screening data. ISLE is
another statistical approach that uses lab-screened SL interactions as
inputs and analyzes tumormolecular profiles, patient clinical data, and
gene phylogeny relations to identify clinically relevant SL
interactions31.

While all these methods mark a significant step forward, general
prediction of SL interactions in cancer still remains a challenge. Most
methods primarily relyon large sample sizes andmulti-omicsdata, and
thus are not suitable for rare cancer types. Furthermore, they use
genetic perturbation screening data merely to refine the candidate list
of SL pairs derived from analyzing multi-omics data. We hypothesize
that such rich large-scale perturbation screens canbeexploited further
to obtain SL pairs.

Here, we present a statistical framework called SLIdR (Synthetic
Lethal Identification in R), a rank-based statistical method for pre-
dicting SL pairs from perturbation screens in both pan-cancer and
cancer type-specific settings. The predicted SL pairs are validated by
large-scale drug-response profiles and literature evidence. Subse-
quently, by benchmarking SLIdRon simulateddata andexperimentally
identified SL interactions, we demonstrate the improved predictive
power and advantage of SLIdR in reducing the number of false posi-
tives even when the sample size is small. Finally, we validate two SLIdR
predictions in hepatocellular carcinoma, namely ARID1A-TEAD1 and
AXIN1-URI1, through comprehensive experiments in patient-derived
cell lines.

Results
SLIdR workflow
We developed SLIdR, a statistical framework for identifying SL inter-
actions between a genetically altered gene and a perturbed gene from
large-scale perturbation screens of cancer cell lines. We focused on
significantly mutated genes reported by MutSig 2CV v3.132,33 for each
cancer type and considered thesegenes to be genetically altered in cell
lines if they were subject to non-synonymous mutations or deep
deletions (seeMethods).We collectively refer to these altered genes as
driver genes and their alterations as mutations. SLIdR aims to find SL
partners for such drivers from perturbation data. We applied SLIdR to
the Project DRIVE dataset27, focusing on cell lines from CCLE28 across
various cancer types with available copy number data (Fig. 1b).

In contrast to previousmethodswhich perform statistical tests on
the raw viability readouts27,29,31, SLIdR uses the normalized ranks of the
viabilities across all perturbed genes, for each cell line, in order to
increase statistical power for small sample sizes. For each driver gene,
SLIdR first stratifies the cell lines into mutated and wild-type based on
the mutation status of the driver gene. Subsequently, it tests, for each
perturbed gene, whether the perturbation results in lower ranked
viabilities in the mutated cell lines but not in the wild-type cell lines
(Fig. 1c). SLIdR uses two Irwin-Hall tests to mine for such driver-
perturbed SL gene pairs (see Methods). Cell lines with several co-
occurring driver mutations can yield multiple SL pairs with the same
perturbed gene. To identify themost likely SL pairs, we perform causal
inference using matching-based potential outcome models. For a
given candidate pair, we match the wild-type to mutated cell lines
based on the other co-occurring mutations, thus achieving a covariate

balance. Finally, SLIdR compares the viabilities of thematched groups,
and the significant SL pairs are reported (Fig. 1d; see Methods).

Enrichment of pan-cancer SL interactions by SLIdR
To identify pan-cancer SL interactions, we first applied SLIdR to the
DRIVE data in a pan-cancer setting. We identified 151 SL pairs (Sup-
plementary Data 1) involving 84 driver genes (Fig. 2a). Out of the 151 SL
pairs, five pairs involving bona fide driver genes TP53, KRAS, BRAF,
CTNNB1, and PIK3CA exhibited oncogene-addiction, i.e., they paired
with themselves as the SL partner gene. This proved to be an efficient
quality check for our method as these are well-established drivers and
their subsequent knockdown resulted in cellular mortality. We also
found that somecell lineswith several co-occurringmutations resulted
in multiple driver genes pairing with the same SL partner (Fig. 2b;
Supplementary Fig. 1a). For example, co-deletion of genes near p16
includingMTAP and several interferons is common in several cancers,
and subsequently all these drivers pairedwithMAT2A as the SLpartner.
Using causal inference (see Methods), we accounted for these co-
occurring mutations and predicted the relevant driver genes for each
SL partner (Fig. 2c; Supplementary Fig. 1b), resulting in 90 SL pairs
across 42 driver genes (Fig. 2d).

Top predictions of SLIdR included PRMT5, MAT2A, and RIOK1 as
SL partners of MTAP which are all well-established vulnerable targets
for MTAP-altered cells27,34. SLIdR also predicted E2F3 and SKP2 as SL
partners of RB127. Furthermore, RPL22 showed lethality with its paralog
RPL22L1 confirming thefindings ofMcDonald et al.27. PIK3CA-BIRC5was
another reassuring pair as depletion of survivin (BIRC5) has been
shown to have a pro-apoptotic effect in breast cancer cells with PIK3CA
mutations35,36. In addition to established pairs, SLIdR also predicted
several potential SL pairs, such as KRAS-TRPM7 and TP53-specific SL
partners, including TP53BP1, USP28, DDX3, and PNPLA6, which were
further supported by evidence in the literature (Supplemen-
tary Data 2).

Next, we systematically validated the predicted pan-cancer SL
pairs on the primary PRISM repurposing dataset, a large-scale drug-
response profile from the DepMap consortium37. Out of the predicted
SL interactions, 25 SL pairs had at least one matching drug compound
in the screen. Stratifying the cell lines based on the mutation status of
the driver gene for each pair, we tested if the drug targeting the cor-
responding SL partner gene was more effective in the mutated cell
lines using a t-test (Supplementary Data 3). Reassuringly, we found 13
SL pairs, including BRAF-CYP2B6, BRAF-HTR2C, KEAP1-NFE2L2, PIK3CA-
BIRC5, and TP53-GABRR3, with significant difference in drug response
(significance level α = 0.1). Of these 13 pairs, BRAF-HTR2C, KEAP1-
ATP1A1,NOTCH3-WEE1, and POTEF-PLK1were significant aftermultiple
testing correction (q-values ≤0.2) across 9 different candidate drug
compounds (Supplementary Fig. 2, Supplementary Data 3). The lower
coverage after FDR correction can be attributed to the heterogeneity
and noise of these screens. As a control experiment, we performed
permutation tests across 1000 sets of random gene pairs and found
these validated hits to be significant (empirical p-value ≤0.005),
thereby confirming the predictions from SLIdR (see Methods).

Pan-cancer analyses offer large sample sizes and the ability to
identify shared targets across different cancer types. While the latter
property is preferred especially from a therapeutic perspective, it is
often difficult to identify such pairs due to the inherent genetic
diversity in tumors based on their primary sites. To assess the differ-
ential sensitivities of the predicted pan-cancer hits based on primary
sites, we computed the SLIdR p-values for these predicted pan-cancer
SL pairs in subsets of cell lines grouped by primary sites.We found that
a sizable fraction of the pan-cancer signals is indeed cancer type-
specific (Fig. 2d). For example, SLIdR identified NFE2L2 as the SL
partner of the mutated KEAP1, both of which play an important role in
cancer throughNrf2 pathway activation38. However, this SL interaction
was largely driven by lung cancer samples (Fig. 2d), in accordance with
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Leiserson et al.39 who also reported the pair to bemutually exclusive in
their pan-cancer TCGA analysis largely due to lung cancer samples.
Similarly, signals for APC-CTNNB1 and all the BRAF associated SL
interactions were mostly specific to large intestine and skin samples,
respectively (Fig. 2d). Thus, although a considerable number of pan-
cancer hits are consistent with previous findings, these examples show
the need to identify cancer type-specific SL partners.

Enrichment of cancer type-specific SL interactions by SLIdR
To identify cancer type-specific SL interactions, we applied SLIdR to
the DRIVE data for 17 cancer types and identified a total of 839 SL pairs
over 233 unique driver genes (Supplementary Data 1). Out of the 233

drivers, 66 genes weremutated inmore than one cancer type (Fig. 3a).
However, the mutation profiles are diverse across cancer types, with
TP53 mutations being highly prevalent and observed in 81% of the
cancer types, while well-known drivers such as BRAF, APC, and PTEN
were distinctly associated with skin, large intestine, and endometrial
cancers, respectively.

Upon extensive literature survey of the SL pairs, we identified 55
established and potential pairs with literature support (Fig. 3b; Sup-
plementary Data 2). For example, SLIdR predicted GATA3-ESR1 in
breast cancer.GATA3 is mutated in >10% of breast cancers and directly
impacts ESR1 enhancer accessibility, thereby altering binding potential
and transcriptional targets in tumor cells40. Furthermore, GATA3

Fig. 2 | Pan-cancerSLIdRpredictions. aStackedbarplot indicating the frequencies
of 84 mutated driver genes across different cancer types. The number of mutated
cell lines of a given cancer type may have an impact on the statistical power of the
SLIdR framework. b Bubble-plot summarizing the significance (-log10(p-value)) of
different driver genes (x-axis) pairing with the same SL partner gene (y-axis) as
predicted by SLIdR in the pan-cancer analysis after filtering out false positives from
multiple testing. The p-values are computed using one-sided IH-test.
c Corresponding list of significant SL pairs after accounting for confounding

mutations and performing causal inference using matching-based potential out-
come models. d Differential sensitivities of pan-cancer SL pairs in subsets of cell
lines grouped by primary sites (y-axis). Each panel corresponds to a specific driver
gene (x-axis top) and encapsulates the significance profiles of all its SL-partners (x-
axis bottom) across various primary sites. Each column in a given panel depicts the
significance profile of the SL pair in subsets of cell lines grouped by primary sites.
The p-values are computed using one-sided IH-test.
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mutations are almost never observed in ER-negative breast cancers,
strongly suggesting synthetic lethality. Despite the small sample size (7
cell lines, Fig. 1b), SLIdR also successfully elicited the RB1-MCL1 pair in
osteosarcomas. Loss-of-function RB1 mutations are common in
osteosarcomas41,42 and inhibition of MCL1 has been shown to block
tumor growth in osteosarcoma43. Additionally, SLIdR predicted several
significant SL partners specific to TP53, including HMGA1, RAB14, and
RAC1 in osteosarcoma, renal, and breast cancers, respectively (Fig. 3b;
Supplementary Data 2).

Validating the cancer type-specificpredictions on the PRISMdrug-
response dataset further bolstered our findings and provided drug-
gable targets for 10 cancer types (Supplementary Fig. 2, Supplemen-
tary Data 3). Analogous to the pan-cancer analysis for validating
predicted SL pairs, we used t-test to test the differential drug response
between the mutated and WT cell lines. We identified one significant

candidate drug compound each in central nervous system, skin, sto-
mach, and thyroid cancers, and six andeight significant candidate drug
compounds in large intestine and pancreatic cancers, respectively (q-
values ≤0.2). In particular, four of the eight candidate compounds in
pancreatic cancer were MTOR-targeting drugs and were significantly
more effective in EIF3C mutated cell lines than WT cell lines (Supple-
mentary Data 3). It has been previously reported that EIF3 complex
instability is linked to deregulation of MTOR, leading to increased
translation of oncogenic proteins and malignant transformation in
pancreatic cancer44,45, further establishing this interaction in pancrea-
tic cancer. In skin cancer, in addition to one significant hit after FDR
correction, BRAF-specific SL partners including AKT3, KIT, LDLR, and
MAPK1 found support in the PRISM dataset (significance level α =0.1)
and in the literature (Supplementary Data 2, 3). We also performed
control experiments based on permutation tests of 1000 sets of

Fig. 3 | Cancer type-specific SLIdR predictions. a Heatmap of frequencies of 66
driver genes across 16 cancer types. b Circos plot summarizing the SL partners
(right) of different driver genes (left) with literature evidence, across 11 cancer

types. The SL pairs constituting SL partners in red have further evidence in the
PRISM drug response screen (significance level α =0.1). c Top-ranked SL pairs in
hepatocellular carcinoma reported by SLIdR.
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random gene pairs and found some evidence for these hits in pan-
creatic, skin, stomach, and renal cancers (empirical p-value = {0.024,
0.076, 0.002, 0.075}, respectively), which reached statistical sig-
nificance after multiple testing correction for stomach cancer (q-
value ≤0.02). These results demonstrate that SLIdR is capable of
finding established and potential cancer type-specific SL pairs.

SLIdR outperforms conventional tests for SL prediction
To demonstrate the advantage of relative ranking over raw viability
scores and to benchmark the performance of SLIdR, we compared
SLIdRwith existing SLpredictionmethods in a simulation study.DAISY
and ISLE are two popular methods that both use the Wilcoxon rank
sum test for predicting candidate SL interactions from perturbation
screens29,31. While both of these methods are multi-step and use other
data sources to predict the final pairs, their reliance on raw viability
scores rather than relative viabilities from shRNA screens limits the full
utilization of such screens. In fact, the authors of DAISY29 expressed
that the data obtained from shRNA screens have low statistical power
and hence, DAISY uses such screens only to refine a list of highly sta-
tistically significant SL interactions obtained from other data sources.
By contrast, we show here that these screens are more powerful if
ranked viabilities across genes are used rather than raw viabilities. In
addition, we included the t-test in our simulation study as we found it
to be statistically more powerful than theWilcoxon rank sum test. The
simulation study focused on liver, ovarian, and bone cancers. For each
cancer type, the ground truth comprised 30 random pairwise inter-
actions between driver genes and perturbed genes. For the simulation
study, we reused the binarized mutation matrices of the correspond-
ing cancer types and simulated the viabilities by sampling fromnormal
distributions. In particular, for the ground truth SL pairs, the viability
distribution parameters were different between mutated and WT cell
lines (see Methods). Subsequently, we compared SLIdR to the Wil-
coxon rank sum test and t-test on the simulated data. SLIdR sig-
nificantly outperformed these tests for predicting SL interactions from
simulated data in liver, ovary, and bone cancers (Supplementary
Fig. 3). SLIdR was especially advantageous in reducing the number of
false positives as illustrated by both the ROC and precision-recall
curves, even in rare osteosarcomas with only seven cell lines. The
performance difference is more pronounced in the precision-recall
curves due to the class imbalance. This imbalance stems from our
assumption about the simulated data that the number of true SL pairs
is much fewer than non-SL pairs. It is noteworthy that the precision-
recall curves are in general more informative for performance com-
parison in highly imbalanced datasets46.

SLIdR recovers experimentally identified SL interactions
Going beyond simulated data, we also evaluated the overlap of SLIdRs
pan-cancer predictions with experimentally identified SL interactions
from (i) 17 in vitro SL screens reported by Lee et al.31, and (ii) 10
combinatorial CRISPR screens17–26. For these evaluations, we excluded
the experimentally identified SL interactions that were not in the set of
possible pairwise interactions in the DRIVE dataset, and focused on
978 and 1301 unique experimentally identified SL interactions in the
in vitro and CRISPR screens, respectively (see Methods). The retained
1301 unique experimentally identified SL interactions included pairs
from 8 of the 10 CRISPR screens. Only four interactions were shared
across these 8 combinatorial CRISPR screens. In contrast, SLIdR
recovered a significant fraction of established SL interactions (hyper-
geometric p-values < 10−9) with sensitivities of 12.3% and 11.45% in the
in vitro SL screens andCRISPR screens, respectively.With accuracies of
~93% across both sets, these results comprehensively validated SLIdR
predictions (Supplementary Data 4).

Overall, these results highlight the ability of SLIdR to identify well-
established and potential targets in both pan-cancer and cancer type-
specific settings. Exploring these SL interactions, we observed that the

overlap between pan-cancer and cancer type-specific predictions is
limited, re-emphasizing the need to explore the data in both settings,
as they provide complementary information. The flexibility of SLIdR to
work on both small and large sample sizes makes it an attractive
method for this problem.

SLIdR identified two putative targets in hepatocellular
carcinoma
In hepatocellular carcinoma (HCC),we identifiednine SLpairs (Fig. 3c).
Identifying new potential lethal interactions is particularly relevant for
the treatment of liver cancer, where few targeted therapies are
available47. To demonstrate the predictive power of SLIdR, we sought
to validate two of our top hits in HCC, namely ARID1A-TEAD1 and
AXIN1-URI1 (Fig. 4a and Supplementary Fig. 5a). BothARID1A and AXIN1
loss-of-function mutations are highly prevalent in HCC patients.
ARID1A is a SWI/SNF chromatin remodeling gene, and it is mutated in
~9% of hepatocellular carcinomas48. AXIN1 encodes for a key Wnt sig-
naling factor, and it is mutated in 5–15% of HCCs49. TEAD1 and URI1
have been shown to act as oncogenes andpotential therapeutic targets
in liver cancer50–52. First, we validated the SL interaction between
ARID1A and TEAD1 in vitro, using SNU449, a HCC cell line carrying an
ARID1A somatic mutation. Silencing of TEAD1 in SNU449 cells sig-
nificantly impaired cell proliferation compared to control cells (Fig. 4b,
c). Using different concentrations of siRNAs, we observed that the
phenotype induced by the knock-down of TEAD1 was dose and time-
dependent, thus indicating a specific on-target effect (Fig. 4b, c).

In addition, we inhibited TEAD1 function using an orthogonal
method, specifically the small molecule inhibitor verteporfin. The
transcriptional activity of TEAD transcription factors relies on their
binding with the Yes-associated protein (YAP) coactivator, a well-
known effector of the Hippo-signaling pathway53. Verteporfin disrupts
the YAP-TAZ complex, therefore inhibiting the transcription of the
downstream targets54 (Fig. 4d). Treatment with different dosage of
verteporfin significantly impaired cell proliferation and induced cell
death inARID1Amutant SNU449 cells (Fig. 4e–g), indicating that the SL
interaction between ARID1A and TEAD1 requires TEAD1 transcriptional
activity and is dependent on the Hippo-signaling pathway. Further-
more, to demonstrate that indeed SNU449 sensitivity to verteporfin
was dependent on presence of mutant ARID1A, we rescued ARID1A
wild-type expression in SNU449 cells. Indeed, we observed that res-
cuing wild-type ARID1A desensitized cells to verteporfin (Fig. 4h and
Supplementary Fig. 6).

Cancer cell lines carry multiple genetic alterations. Therefore, to
prove that inhibition of TEAD1 is specifically synthetic lethal to ARID1A
loss-of-function, we employed two HCC-derived cell lines carrying a
wild-type ARID1A–Huh-7 and HLE, and modulated ARID1A and TEAD1
expression using siRNAs (Supplementary Fig. 4a, b). Both Huh-7 and
HLE cells transfected with siRNAs targeting both ARID1A and TEAD1
proliferated significantly less compared to control cells or cells
silenced for each gene individually (Fig. 5a and Supplementary Fig. 4c).
Additionally, inhibition of TEAD1 using the small molecule verteporfin
reduced proliferation in both cell lines only upon ARID1A silencing,
while it did not impact the viability of control cells, thus indicating that
loss of ARID1A sensitized cells to the treatment (Fig. 5b and Supple-
mentary Fig. 4d). Indeed, ARID1A-silenced Huh-7 and HLE cells both
showed a lower IC50 for verteporfin compared to control cells (Fig. 5c
and Supplementary Fig. 4e). ARID1A-silenced cells treated with verte-
porfin additionally showed a significantly higher proportion of apop-
totic cells compared to untreated cells or treated control cells in both
Huh7 and HLE cell lines (Fig. 5d, e and Supplementary Fig. 4f).

To assess whether ARID1A expression levels would also modulate
response to verteporfin in vivo, we employed an in vivo model of the
chicken chorioallantoic membrane (CAM), a densely vascularized
extraembryonic tissue55,56. We treated ARID1A-silenced and control
Huh-7 cellswith verteporfin (1μM)or vehicle (DMSO) for 24 h.We then
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inoculated the cells into the CAMs and screened the eggs for tumor
formation 4days later (Fig. 5f). In accordance with our in vitro results,
verteporfin treatment reduced the volume of tumors formed by
ARID1A-silenced cells, but not in control cells (Fig. 5g, h), suggesting
that ARID1A expressionmodulates response to verteporfin in the CAM
model as well.

To further corroborate the predictive power of our method, we
additionally validated the SL interaction between AXIN1 and URI1.
Similar to the previous SL pair, knockdown of URI1 affected the via-
bility of AXIN1-mutant and AXIN1-silenced HCC cells (Supplementary
Fig. 5). On the contrary, dual silencing ofAXIN1 andTP53, predicted as a
non-significant SL pair by SLIdR, did not result in decreased pro-
liferation in HCC cells (Supplementary Fig. 5), thus confirming the

specificity of the synthetic lethal interactions predicted by SLIdR.
Taken together, our experimental data strongly support the two HCC
SL pairs predicted by SLIdR.

Integration with CRISPR data
We applied SLIdR to CRISPR data from the DepMap consortium
(Project Achilles)57 to identify SL pairs. In both pan-cancer and cancer
type-specific settings, we reused the mutation data from the Project
DRIVE analyses, replacing the viability scores from DRIVE with the
CERES58 viability scores from the CRISPR screens (see Methods). Sub-
sequently, we ran SLIdR in both settings. In the pan-cancer analysis of
theCRISPRdata,we found 104SLpairs includingKEAP1-NFE2L2, RPL22-
RPL22L1, RPL22-WRN, APC-CTNNB1, and MTAP-PRMT5 from the DRIVE

Fig. 4 | Inhibition of TEAD1 is deleterious in ARID1Amutant liver cancer cells.
a Viability scores of ARID1A mutant vs wild-type (WT) HCC cell lines with TEAD1
knockdown from Project DRIVE dataset, where n = 13 HCC cell lines subject to
TEAD1 knockdown experiment. Data are presented as boxplots: Mutant = {min =
−1.666, lower (1st Qu.) = −1.5375, middle (median) = −1.409, upper (3rd Qu.) =
−1.3190, max = −1.229} and WT= {min= −0.722, lower (1st Qu.) = −0.3455, middle
(median) = 0.442, upper (3rd Qu.) = 0.7295, max= 1.044}. b RNA expression level
(fold-change) of TEAD1 relative to GAPDH in SNU449 cells transfected with control
siRNA or with different concentrations (3.125 and 12.5 nM) of TEAD1 siRNA. RNA
levels were assessed by quantitative real-time PCR (qPCR). c Proliferation kinetic of
SNU449 cells (ARID1A mutated) transfected with control siRNA or with different

concentrations (3.125 and 12.5 nM) of TEAD1 siRNA. d Schematic representation of
verteporfin mechanism of action. e, f, g Proliferation kinetic (e), immunoblot for
PARP (f), and apoptosis assayusingAnnexinV andpropidium iodide (PI) staining (g)
of SNU449 cells treated with vehicle (DMSO) or different dosage of verteporfin.
f Protein lysates of SNU449 cells 48h post-treatment with DMSO or different
dosage of verteporfin up to 48 h. h SNU449 cells overexpressing ARID1A and
control cells treated with vehicle (DMSO) or different dosage of verteporfin. Error
bars represent mean (+/−SD) from n ≥ 2 replicated. For all experiments performed,
statistical significance was assessed by two-sided multiple t-tests (*P <0.05,
**P <0.01, ***P <0.001). d was generated using BioRender.
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pan-cancer analysis. While the overlap between the two screens was
significant (hypergeometric p-value < 10−16), we observed that several
established and strong candidate pairs of the DRIVE analysis, such as
MTAP-MAT2A, MTAP-RIOK1, and TP53-TP53BP1, were missed in the

CRISPR analysis by smallmargins. This could partlybe attributed to the
reduced power in the CRISPR analysis, as the data had only 266 cell
lines in commonwith the DRIVE data, i.e., 107 cell lines from the DRIVE
screen were missing in the CRISPR screen. Another factor is the

Fig. 5 |ARID1Adown-regulationsensitizes liver cancer cells toTEAD1 inhibition.
a Proliferation kinetic of Huh-7 cells (ARID1A wild-type) transfected with control
siRNA, ARID1A siRNA, TEAD1 siRNA or both. b Proliferation kinetic of Huh-7 cells
transfected with control or ARID1A siRNA and treated with DMSO or verteporfin
(1uM). c Dose-response curve of verteporfin in Huh-7 cells transfected with control
or ARID1A siRNA. d, e Immunoblot of PARP (d) and apoptosis assay using AnnexinV
and propidium iodide (PI) staining (e) of Huh-7 cells transfected with control or
ARID1A siRNA 48h after treatment with DMSO or verteporfin (1 uM). Immunoblot

quantification is relative to loading control (actin). f Schematic representation of
the CAM assay. g, h Representative pictures (g) and relative volume quantification
(h) of tumors explanted from the CAM and derived from Huh-7 cells transfected
with control siRNA or ARID1A siRNA and treated with DMSO or verteporfin (1uM).
Error bars represent mean (+/−SD) from n ≥ 2 replicated. For all experiments per-
formed, statistical significancewas assessedby two-sidedmultiple t-tests (*P <0.05,
**P <0.01, ***P <0.001). f was generated using BioRender.
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differences in pre-processing and normalization steps across the two
screens. Therefore, using Fisher’s method to combine the corre-
sponding p-values from both screens for each SL pair and retaining
only the significant pairs, we identified 162 robust SL pairs across both
screens (seeMethods). These 162pairs retained62% (91 SLpairs) of the
original DRIVE candidate SL pairs (Supplementary Data 5), including
strong pairs, such as ACVR2A-WRN, RB1-E2F3, and RB1-SKP2, backed by
literature evidence (Supplementary Data 2).

Extending the analysis to the cancer type-specific setting, we
found several robust hits in 15 different cancer types (Supplementary
Data 5). Some of these were supported by evidence in the literature,
including BRAF-DUSP4, BRAF-MAPK1, and BRAF-PEA15 in skin, GATA3-
ESR1 in breast, and CDH1-CTNNB1 in stomach cancers (Supplementary
Data 2). In addition to being common between the two screens, CD93-
ALDH18A1 in pancreatic, KEAP1-ATP1A1 in lung, BRAF-MAPK1, BRAF-
MDM2, and BRAF-CDK5 in skin, RHOA-CTNNB1 in stomach, and OR6C1-
MDM2 in large-intestine cancers also found support in the PRISM
dataset (significance level α =0.1) before multiple testing correction
(Supplementary Data 3).

Similar to the pan-cancer setting, using Fisher’s method, we were
able to leverage the complementary information across the two
screens in the cancer type-specific setting. The method proved espe-
cially beneficial in retaining pairs which showed reduced signal orwere
droppeddue to thep-value threshold forWTcell lines in oneof the two
screens. Some examples of such robust hits include KEAP1-TAPT1 in
lung cancer - a dependency recently established by Romero et al.59,
EIF3C-MTOR in pancreatic cancer (Supplementary Data 2, 3), ARID1A-
TEAD1, ARID1A-FERMT2, and AXIN1-URI1 in hepatocellular carcinoma
(Figs. 3c, 4, 5; Supplementary Figs. 4, 5), and GATA3-MDM2 in breast
cancer. In a recent study by Bianco et al.60, GATA3 and MDM2 were
found to be synthetic lethal in estrogen receptor-positive breast can-
cers. Thus, through parallel analysis and integration of the two data-
sets, SLIdR reports robust and complementary SL pairs.

Discussion
With precision medicine advancing in oncology, there is a need to
identify mutation-specific therapeutic options for different types of
cancer. Most current methods for predicting novel drug targets per-
form pan-cancer multi-omics analysis and use genetic perturbation
screening data, if at all, merely to refine the candidate list of SL pairs.
To make better use of these data and generate improved predictions,
we developed SLIdR, a rank-based statistical method for predicting
mutation-specific SL partners from large-scale perturbation screens.

Following the work of McDonald et al.27, we initially applied SLIdR
to the Project DRIVE dataset in the pan-cancer setting and recovered
most of the SL interactions reported by them in addition to several
candidate pairs. However, further analysis of these pan-cancer hits
revealed that the signal for many pairs were highly specific to a parti-
cular cancer type, warranting the need to identify cancer type-specific
SL pairs. Thus, we applied SLIdR to each cancer type individually and
identified several well-known as well as candidate pairs. Through a
detailed literature survey, systematic validation on large-scale drug-
response profiles, and integration with CRISPR screening data, we
found strong supporting evidence for several pairs in both the pan-
cancer and cancer type-specific settings. These lists of candidate tar-
gets, while still requiring extensive validation in follow-up experi-
ments, hold promise for drug repurposing and designing targeted
therapies.

A key advantage of SLIdR is its ability to predict SL pairs evenwith
small sample sizes while reducing the number of false positive targets.
SLIdR improves the statistical power by using statistical tests based on
the Irwin-Hall distribution on the ranked viabilities across all genes. In a
simulation study, we have illustrated this advantage and superiority of
SLIdR by comparing it to the Wilcoxon rank sum test adopted by ISLE
and DAISY. In addition, SLIdR recovered experimentally identified SL

interactions from in vitro SL screens and CRISPR screens with ~93%
specificity. Thus, we propose that by replacing theWilcoxon rank sum
test stepwith SLIdR,methods such as ISLE andDAISY could reduce the
number of false positive candidate SL pairs in their initial sets and
improve their overall performance.

To corroborate the predictive power of our method, we
experimentally validated two synthetic lethal interactions—ARID1A-
TEAD1 and AXIN1-URI1, in hepatocellular carcinoma. Specifically, we
proved that inhibition of TEAD1 function, using siRNA or the TEAD-
YAP inhibitor verteporfin, is lethal in ARID1A-mutated or ARID1A-
silenced HCC cell lines. We additionally showed that treatment with
verteporfin significantly reduced the growth of ARID1A-silenced
HCC cells in vivo. Taken together, our results show that ARID1A and
TEAD1 are synthetic lethal interactors in HCC and strongly indicate
that this relationship is dependent on the regulatory function of
TEAD1 in the Hippo-signaling pathway. Indeed, our results are in
accordance with the recent work of Chang et al.61. Given the wide-
spread role of the SWI/SNF complex62, the frequency of ARID1A
inactivation in several malignancies other than HCC62, and the
availability of TEAD-YAP inhibitors53, the identification of the
ARID1A-TEAD1 synthetic lethal pair provides an example of how
SLIdR can help improve cancer therapy. We also validated another
independent synthetic lethal pair, AXIN1-URI1, in HCC, further cor-
roborating the predictive power of our method.

While SLIdRwas successful in identifying SL pairs, there are several
limitations: (1) In its current scope, SLIdR primarily focuses on identi-
fying SL partners from perturbation screening data, copy number, and
mutation data. Consequently, it failed to recover the predictions based
on expression and pathway reported byMcDonald et al.27, emphasizing
the importance of integrating other omics data. Thus, extending SLIdR
to incorporatemulti-omics and pathway data or using it in tandemwith
methods like ISLE could further improve its overall performance. (2)
Occasionally, the results from SLIdR are sensitive to the WT p-value
threshold, resulting in losing important SL pairs. While this threshold is
important for filtering out candidates showing increased or decreased
viabilities in WT cell lines, the choice of the threshold depends on the
data type and processing steps, requiring the user to optimize this
threshold to their specific setting. For improved versatility, an extension
of SLIdR could include a score to prioritize the pairs instead of filtering
based on the WT p-value threshold. (3) As cancer cells can harbor
multiple mutations, SLIdR initially identified the same SL partner for
different mutations mapping to the same cells, especially in the pan-
cancer setting. To overcome this issue and identify the true SL pairs
from several potentially confounding mutated genes, we used pro-
pensity scorematching-based potential outcomemodels and identified
significant SL pairs. Propensity-score matching tries to replicate a ran-
domized experiment by matching samples between mutated and wild-
type groups on other confounding mutations, thereby obtaining
balanced covariate distributions across the two groups. Consequently,
the average causal effect using matching is determined only from a
subset of data. Since the mutation matrix is sparse, matching yields
under-powered subsets in certain cases, inadequate for robust estima-
tion of the average causal effect. Furthermore, our current approach for
controlling confounding drivers is prone to selection bias, because we
do not account for the underlying dependency structure between
confounding drivers due to small sample sizes. Further research is
required to improve the estimation of the causal effect of driver
mutations from sparse mutation data. A possible solution would be to
use information from other omics data to select the confounders to
adjust for, thus improving the overall estimate.

Taken together, SLIdR provides a robust statistical framework for
rapid discovery of SL interactions from large-scale perturbation
screens in both pan-cancer and cancer type-specific settings. Particu-
larly in precision oncology, SLIdR can help in developing putative
mutation-specific and effective personalized therapies.
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Methods
Primary screening data
We used viability profiles published in Project DRIVE27, as well as cor-
respondingmutation data and copy number data from the Cancer Cell
Line Encyclopedia (CCLE) collection28 for 373 cell lines across 23
cancer types.

Viability data from Project DRIVE
Viability data captures the viability of cell lines for each gene knock-
down experiment. In ProjectDRIVE, 7837 geneswere targeted by using
an average of 20 pooled shRNAs per gene. The shRNA activities were
defined as the quantile normalized log fold change in shRNA read
counts 14 days after the start of the knockdown experiment to the
shRNA abundance in the input library. The gene-level viability score of
each cell line was computed by aggregation of shRNA activities using
two computational methods, namely RSA63 and ATARiS64. The RSA
method uses all shRNA reagents targeting a gene and can be used to
identify essential, inert, and active genes, while ATARiS only uses a
subset of shRNAs with consistent activity across the cell lines and aims
to provide a robust gene-level score by discarding shRNA reagents
with off-target effects. ATARiS provides a relative score for the gene-
level activity by median-centering the data for each reagent and, as a
result, cannot distinguish between inert and essential genes.

To process the viability data, we removed essential genes using
the RSA method as was performed in Project DRIVE27. Genes with an
RSA value ≤ −3 in more than 50% of cancer cell lines were reported as
essential genes. In total, 460 and 185 genes were reported essential in
cancer type-specific and pan-cancer settings, respectively. The result-
ing viability matrices consisted of the ATARiS scores for the remaining
perturbed genes (rows) for each cell line (columns).

Mutation and copy number data
For the pan-cancer setting, we focused on genes with mutations or
copy number aberrations in more than 30 cell lines. We downloaded
mutation data and copy number data from the CCLE website, and
binarized them as follows. A gene in a given cell line was assigned a
value of 1 if it was subject to non-synonymous mutations, and 0
otherwise. For copy number data, we focused only on deep deletions
and binarized a gene in a given cell line by assigning a value of 1 if the
gene was homozygously deleted and a value of 0 otherwise. Finally,
combining both these data, a driver gene in a given cell line was
assigned a value of 1 if it was subject to non-synonymous mutations,
deep deletions, or both; and 0 otherwise.

In the cancer type-specific setting, to define the set of driver
genes, we first used the MutSig 2CV v3.132,33 MAF file from TCGA for
each cancer type and focused only on significantly mutated genes (q-
value ≤0.05). Next, we concentrated on genes with non-synonymous
mutations in twoormore cell lines, and excluded copy number data as
it was very noisy in this setting. Thus, a gene in a given cell line was
assigned a value of 1 if it was subject to non-synonymous mutations,
and 0 otherwise. The resulting binarized mutation matrices described
the mutation profiles for each cell line (column) across all driver
genes (rows).

SLIdR algorithm
SLIdR is a rank-based statistical framework to identify the presence
of synthetic lethal dependency between a driver gene d and a per-
turbed gene g. For each driver gene d, we divided the cell lines into
two groups according to the mutation status of d, namely wild-type
cell lines (WT) and mutated cell lines (Mut). Further, we ranked the
perturbed genes by their ATARiS scores, for each mutated and WT
cell line, and normalized it between 0 and 1. Due to a large number
of perturbed genes, the normalized ranks have many distinct levels
and are highly fine-grained. Hence, we assumed the normalized
ranks to be continuous.

Let (d, g) be afixedpair ofdriver andperturbed gene andCdbe the
set of cell linesmutated in d of cardinality n. If (d, g) is an SL pair, based
on the aforementioned definition (Fig. 1a), a mutation in driver gene d
in combination with knockdown of gene g, results in low viabilities in
mutated cell lines Cd. We used a one-sided statistical test based on the
Irwin-Hall distribution to test whether the viabilities of mutated cell
lines Cd from knockdownof gene g are lower than expected by chance.
We defined the null hypothesis H0 as the knockdown of gene g having
no impact on the viability of the cell lines inCd. For each cell line c∈ Cd,
we computed thenormalized rankof the viability of c fromknockdown
of gene g across all other gene knockdowns in cell line c, and denoted
this rank as rc|g. Under the null hypothesis, the normalized ranks take
uniform random values in the interval [0, 1], rc|g∼U(0, 1). The test
statistic T for the pair (d, g) is then defined as the sum of normalized
viability ranks of mutated cell lines Cd perturbed in gene g,
T =

P
c2Cd

rc∣g . UnderH0, the test statisticT is the sumof n independent
uniform random variables on the unit interval and hence it follows the
Irwin-Hall distribution of order n. The resulting p-value was computed
as the lower tail probability P(T < tobs), where tobs is the observed test
statistic. For large n, computation of the Irwin-Hall probability dis-
tribution is either computationally expensive or numerically unstable.
Therefore, we used the approximation T∼N(n/2, n/12) for n > 20.

Conversely, based on the definition of synthetic lethality (Fig. 1a),
wild-type cell lines with respect to driver gene d are expected to
behave similar to healthy cells when perturbed in gene g. Therefore, it
is important to filter out genes which upon knockdown adversely alter
the viabilities of WT cell lines. We used a two-sided Irwin-Hall test to
filter out any pair (d, g) that reached statistical significance (α =0.1) in
theWT cell lines. However, we did not use this filter for the pan-cancer
setting due to the diverse nature of the cell types and cancer types.
Since knockdown data of several driver genes is unavailable in the
Project DRIVE screen, we tested for SL interactions only in one direc-
tion andwere unable to test the effect on viability of the cell lineswhen
the driver genes alone are knocked down.

Multiple testing
We reduced the number of false positives arising frommultiple testing
by choosing a significance level of 1/(M ×N), whereM is the number of
knockdowns andN is the number of driver genes.Therefore, we expect
on average one false positive hit among all reported SL hits, for each
cancer. Our method is computationally inexpensive as it avoids per-
forming all M ×N tests. For each driver, we compute the test statistic
for all perturbed genes and sort them in ascending order. The pre-
ordering of the test statistics enables us to test for genes until the
corresponding p-value is less than the chosen significance level. Fur-
ther, we note that this approach was in good agreement with con-
trolling the false discovery rate at 10% (Supplementary Fig. 1c).

Causal inference
Cell lines are often subject to mutations or aberrations in multiple
driver genes and, as a result, different driver genes pair with the same
SL partner gene (Fig. 2b; Supplementary Fig. 1a). This is typically not an
issue in the cancer type-specific setting but is prevalent in the pan-
cancer setting. In order to identify the most likely SL pairs from the
many confounding driver genes, we used matching-based potential
outcomemodels. Themain goal of thematchingmethod is to emulate
a randomized experiment bymatching samples of treated and control
groups according to covariates, thereby obtaining similar covariate
distributions across the two groups.

Let S= fd1, . . . ,dkg be a set of k driver genes pairing with the same
SL partner gene g. For a given driver gene di 2 S, the cell linesmutated
and wild-type in di constitute the treated and control groups, respec-
tively, and the viability from knockdown of the SL partner gene g is
used as the response or outcome variable. S�di

= Snfdig is the set of all
the driver genes in S excluding di and constitutes the set of
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confounding covariates. We used the Matching R package65 and per-
formed propensity-score matching with a caliper of 0.1 to match the
treated and control groups based on confounding covariates, i.e., the
mutation status of all the driver genes in S�di

. Since matching is
dependent on the order of the samples, we reshuffled and repeated
matching 50 times. After each run,we recorded the standardizedmean
difference (smd) between the two groups for all covariates and chose
the runwith the lowest sumof smd across all covariates. Finally, for the
chosen run, we performed a paired t-test between the responses of
treated and control groups. We repeated these steps for all k driver
genes in S.

We repeated the above described process for all such sets of
driver genes pairing with the same SL partner gene and reported the
pairs that reached statistical significance (α =0.05) in the paired t-test
(Fig. 2c; Supplementary Fig. S1b).

Simulation Study
We performed a simulation study focusing on both prevalent and rare
cancer types, including liver, ovarian, and bone cancerswith 13, 14, and
7 cell lines, respectively. For each cancer type, we reused the binarized
mutation matrix from the cancer type-specific analysis on the Project
DRIVE dataset and simulated the corresponding viabilities. For a given
cancer type, the ground truth comprised 30 random pairwise inter-
actions between driver genes and perturbed genes. The viability
matrix for each cancer type was simulated in two steps. First, the
viabilities of all the cell lines across all perturbations were simulated by
sampling from Nðμs,σ

2
s Þ, where μs and σs are the mean and standard

deviation of viabilities from the Project DRIVE data for the primary site
s, respectively. Next, for each true SL pair (d, g), we stratified the cell
lines into WT and mutated based on the mutation status of the driver
gene d. Since true SL pairs should exhibit differential viability profiles
betweenmutated andWT cell lines, the viabilities of mutated cell lines
from perturbation of the true SL partner gene g were sampled from
another distribution Nðμmut

s ,σmut2
s Þ, where μmut

s = ðmins +μsÞ=2 and
σmut
s = 1:2*σs, and mins is the minimum of viabilities from the Project

DRIVE data for the primary site s. Using these parameters ensured that
(i) the perturbation of gene g resulted in reduced viabilities inmutated
cell lines than in WT cell lines, and (ii) the simulated viabilities were
congruent with the Project DRIVE data. This was repeated for all 30
true SL pairs in each cancer type.

Finally, we applied SLIdR to the simulated data and compared it to
Wilcoxon rank sum test and t-test applied to the raw simulated
viabilities. For eachpossible pairwise interaction in a given cancer type,
we stratified the cell lines into mutated and WT cell lines based on the
mutation status of the driver gene constituting the pair. Then, we
tested whether the raw viabilities of the mutated cell lines from the
perturbation of the partner gene was less than zero using a one-sided
Wilcoxon rank sum test and t-test. The resulting p-values from SLIdR,
Wilcoxon rank sum test, and t-test were compared to the true labels in
order to plot the ROC and Precision-Recall curves. The true labels
comprised a binary vector of all possible pairwise interactions with 1
assigned to true SL pairs and 0 otherwise. This was repeated for all
three cancer types.

Comparison of experimentally identified SL interactions
To compare SLIdRs predictions with established SL interactions, we
focused on (i) 6,033 experimentally identified SL interactions from 17
in vitro focused SL screens reported by Lee et al.31, and (ii) 24,651
experimentally identified SL interactions from 10 combinatorial
CRISPR screens17–26 (details in Supplementary Note 1). Sincewe applied
SLIdR to the Project DRIVE dataset, we excluded the experimentally
identified SL interactions that were not in the set of possible pairwise
interactions in the DRIVE dataset (9,443,304), yielding 978 and 1301
unique experimentally identified SL interactions in the in vitro screens
and CRISPR screens, respectively. The retained 1301 unique

experimentally identified SL interactions included pairs from 8 of the
10 CRISPR screens and four shared SL interactions (Supplementary
Data 4). Finally, we re-ran SLIdR in the pan-cancer setting by relaxing
the significance level to 5% and used a hypergeometric test to assess
whether the overlap between predicted and experimentally identified
SL pairs was significant. We also computed the sensitivity, specificity,
and accuracy in both sets.

Validation on PRISM dataset
We validated the predicted pan-cancer and cancer type-specific SL
pairs on the primary PRISM drug-response screen containing the
growth inhibitory activity of 4686 drugs tested across 578 human
cancer cell lines37. For both settings, we first filtered out all the pairs
exhibiting oncogene-addiction and retained only those pairs with a
targetable SL partner gene from the drugs in the screen. As previously
described in the SLIdR algorithm, for each predicted SL pair, we stra-
tified the cell lines based on themutation status of the driver gene into
WTcell lines andmutated cell lines. Subsequently,we tested if thedrug
compound targeting the corresponding SL partner gene resulted in
reduced viabilities of mutated cell lines in comparison toWT cell lines
using a one-sided t-test. Since multiple drug compounds could target
the same SL partner gene, for a given SL pair we tested the differential
drug response for each drug compound. We repeated this for all SL
pairs and reported the SL pairs with a significant difference in drug
response at a significance level of α =0.1 along with their multiple
testing corrected q-values.

Control experiments on PRISM screen
To assess the robustness of the PRISM validation results of SLIdR hits,
we compared them to the PRISM results obtained from 1000 sets of
random gene pairs. The same process was followed for both pan-
cancer and cancer type-specific settings. We first retained only those
perturbed genes with at least one matching drug compound in the
PRISM screen for each cancer. We then generated a set of all possible
pairwise interactions (U) between all the driver genes and druggable
perturbed genes and filtered out all the pairs exhibiting oncogene-
addiction. Subsequently, we ran permutation tests on random sets of
gene pairs. For each run, we sampled K gene pairs from U at random,
where K is the number of SL pairs predicted by SLIdR and tested on
PRISM screens. For each sampled gene pair, we stratified the cell lines
based on the mutation status of the driver gene into WT and mutated
cell lines. Then, we tested whether the drug compound targeting the
corresponding partner gene reduced the viabilities of mutated cell
lines compared toWT cell lines using a one-sided t-test. Sincemultiple
drug compounds could target the same partner gene, we tested the
differential drug response for each drug compound for a given gene
pair. We repeated this for all random gene pairs and counted the gene
pairs with a significant difference in drug response (significance level
of α =0.1). Finally, we computed the empirical p-values by comparing
the number of significant drug responses of SLIdR hits and those of
random sets.

SLIdR on CRISPR dataset
With Project DRIVE as our primary screen, we extended SLIdR to
CRISPR data from the DepMap consortium (Project Achilles 20Q2)57 to
identify robust hits. This secondary screen consisted of CERES58 via-
bility scores of 769 cell lines across 18,119 CRISPR knockout experi-
ments. However, only 266 cell lines were common with the primary
screen and were subsequently used for the downstream analysis.

In both pan-cancer and cancer type-specific settings, we reused
the mutation data from the Project DRIVE analyses, replacing only the
viability scores from DRIVE with the CRISPR viability scores. However,
it should be noted that the reduced overlap of cell lines in the CRISPR
screen resulted in dropping a few driver genes in a few cancer types.
Specifically, a few driver genes were dropped as they lacked non-
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synonymous mutations in at least two cell lines in the cancer type-
specific setting. For the viability matrices, we focused only on the
common perturbations between both the screens across common cell
lines. Subsequently, the CRISPR viability scores were median centered
across cell lines.

We re-ran SLIdR with the same threshold parameters as with
ProjectDRIVE. To identify the robust hits, we took the union of the sets
of SL pairs predicted by SLIdR on both the screens. For the SL pairs
unique to the DRIVE screen, we determined the significance of the pair
in the CRISPR screen, and vice-versa. Consequently, we combined the
p-values corresponding to the mutated cell lines from the two screens
using Fisher’s method, and filtered those with combined p-value < 1/
(M ×N), whereM is the number of knockdowns and N is the number of
driver genes in the ProjectDRIVE analysis. Finally, wefiltered out all the
candidate pairs that reached statistical significance (α =0.1) in the WT
cell lines inboth screens.However,wedidnotuse thisfinalfilter for the
pan-cancer setting due to the diverse nature of the cell types and
cancer types.

Cell lines maintenance
Liver cancer-derived cell lines SNU449, Huh-7, and HLE were obtained
from the Laboratory of Experimental Carcinogenesis (Bethesda, MD,
USA), authenticated by short tandem repeat profiling as previously
described66, and tested for mycoplasma infection using a PCR-based
test (ATCC). All cell lines were maintained under the conditions
recommended by the provider. Briefly, all cell lines were cultured in
DMEM supplemented with 5% Fetal Bovine Serum (FBS), non-essential
amino-acids (NEAA) and antibiotics (Penicillin/Streptomycin). The
cellswere incubated at 37 °C in a humidified atmosphere containing 5%
CO2. Exponentially growing cells were used for all in vitro studies.

Transient gene knockdown by siRNAs
Transient gene knockdown was conducted using ON-TARGET plus
siRNA transfection. ON-TARGET plus SMARTpool siRNAs against
human TEAD1, ARID1A, URI1, AXIN1 and TP53, ON-TARGET plus
SMARTpool non-targeting control, and DharmaFECT reagent were all
purchased from GE Dharmacon (Supplementary Data 6). Transfection
was performed according to the manufacturer’s protocol. Briefly, log-
phase liver cancer cells were seeded at ~60% confluence. Since residual
serum affects the knockdown efficiency of ON-TARGET plus siRNAs,
growth medium was removed as much as possible and replaced by
serum-free medium (Opti-MEM; Supplementary Data 6). siRNAs were
added to a final concentration of 25 nM. siRNAs targeting different
genes can be multiplexed. Cells were incubated at 37 °C in 5% CO2 for
24–48–72 h (formRNAanalysis) or for 48–72 h (for protein analysis). In
order to avoid cytotoxicity, the transfection medium was replaced
with a complete medium after 24 h.

Transient ARID1A overexpression
For ARID1A overexpression, pcDNA6-ARID1A (#39311)67 was obtained
from Addgene (https://www.addgene.org), and the empty control
vector was pCDNA6-V5/His.b (ThermoFisher Scientific). The expres-
sion vectors were transiently transfected using the Lipofectamine
3000 transfection reagent (ThermoFisher Scientific) following the
manufacturer’s instructions.

RNA extraction and relative expression by qRT-PCR
Total RNA and proteins were extracted from cells at 75% confluence
using TRIZOL (Supplementary Data 6) according to manufacturer’s
guidelines. cDNA was synthesized from 1μg of total RNA using
SuperScript™ VILO™ cDNA Synthesis Kit (Supplementary Data 6). All
reverse transcriptase reactions, including no-template controls, were
run on an Applied Biosystem 7900HT thermocycler. Gene expression
was assessed by using FastStart Universal SYBR Green Master Mix
(Supplementary Data 6) and all qPCR were performed at 50 °C for

2min, 95 °C for 10min, and then 40 cycles of 95 °C for 15 s and 60 °C
for 1min on a QuantStudio 3 Real-Time PCR System (Applied Biosys-
tems). The specificity of the reaction was verified by melting curve
analysis. Measurements were normalized using GAPDH level as the
reference. The fold change in gene expressionwas calculated using the
standard ΔΔCt method as previously described68. All samples were
analyzed in triplicates.

Proliferation assay
Cell proliferation was assayed using the xCELLigence system (RTCA,
ACEA Biosciences, SanDiego, CA, USA). Background impedance of the
xCELLigence system was measured for 12 s using 50μl of room tem-
perature cell culturemedia in each well of E-plate 16. Cells were grown
and expanded in tissue culture flasks as previously described. After
reaching 75% confluence, the cellswerewashedwith PBS anddetached
from the flasks using a short treatment with trypsin/EDTA. 5000 cells
were dispensed into each well of an E-plate 16. Growth and prolifera-
tion of the cells were monitored every 15min up to 120h via the
incorporated sensor electrode arrays of the xCELLigence system, using
the RTCA-integrated software according to the manufacturer’s para-
meters. In the case of transient siRNA transfection, cells weredetached
and plated on xCELLigence 24 h post-transfection.

Drug treatment
5 × 103 exponentially growing cells were plated in a 96-well plate. After
24 h, cells were treated with serial dilution of verteporfin (Supple-
mentary Data 6) or dimethyl sulfoxide (DMSO). DMSO served as the
drug vehicle, and its final concentrationwas no >0.1%. Cell viability was
measured after 72 h using CellTiter-Glo Luminescent Cell Viability
Assay reagent (Supplementary Data 6). Luminescence was measured
on Varioskan Microplate Reader (ThermoFisher Scientific). Results
were normalized to DMSO control. All experiments were performed in
triplicates. Results are shown as mean± SD. Curve fitting was per-
formed using Prism (GraphPad) software and the nonlinear regression
equation.

Apoptosis analysis by flow cytometry
Cells were collected 72 h post siRNA transfection, stained with
annexinV (FITC conjugate; Supplementary Data 6) and propidium
iodide (PI), and analyzed by flow cytometry using the BD FACSCanto II
cytometer (BDBiosciences, USA). Briefly, cellswere harvested after the
incubation period and washed twice by centrifugation (1200 g, 5min)
in cold phosphate-buffered saline (DPBS; SupplementaryData 6). After
washing, cells were resuspended in 0.1mL AnnV binding buffer 1X
(ABB 5X, Supplementary Data 6) containing fluorochrome-conjugated
AnnV and PI (PI to a final concentration of 1 ug/mL) and incubated in
darkness at room temperature for 15min. Following immediately, cells
were analyzed by flow cytometry, measuring the fluorescence emis-
sion at 530 nm and >575 nm. Data were analyzed by FlowJo software
version 10.5.3 (https://www.flowjo.com/).

Immunoblot
Total proteins were extracted by directly lysing the cells in Co-IP lysis
buffer (100mmol/L NaCl, 50mmol/L Tris pH 7.5, 1mmol/L EDTA, 0.1%
Triton X-100) supplemented with protease and phosphatase inhibi-
tors. Cell lysates were then treated with a reducing agent, boiled and
loaded onto neutral pH, pre-cast, discontinuous SDS-PAGE mini-gel
system. After electrophoresis, proteins were transferred to nitro-
cellulosemembranes using the Trans-Blot Turbo Transfer System (Bio-
Rad). The transblotted membranes were blocked for 1 h in TBST 3%
SureBlock (LubioScience) and then probed with appropriate primary
antibodies (1:1000) overnight at 4 °C. List of antibodies and working
concentrations are available in (Supplementary Data 6). Next, the
membranes were incubated for 1 h at room temperature with fluor-
escent secondary goat anti-mouse (IRDye 680) or anti-rabbit (IRDye
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800) antibodies (both from LI-COR Biosciences). Blots were scanned
using the Odyssey Infrared Imaging System (LI-COR Biosciences) and
band intensity was quantified using ImageJ software. The ratio of
proteins of interest/loading control in verteporfin-treated samples
were normalized to their DMSO-treated control counterparts. All
experiments were performed and analyzed in duplicates.

Chorioallantoic membrane (CAM)
Fertilized chicken eggs were obtained fromGeproGeflügelzucht AG at
day 1 of gestation and were maintained at 37 °C in a humidified (60%)
incubator for 9 days69. At this time, an artificial air sac was formed
using the following procedure: a small hole was drilled through the
eggshell into the air sac and a second hole near the allantoic vein that
penetrates the eggshell membrane. Mild vacuum was applied to the
hole over the air sac in order to drop the CAM. Subsequently, a square
1 cm window encompassing the hole near the allantoic vein was cut to
expose the underlying CAM69. After the artificial air sac was formed,
Huh-7 cells growing in tissue culture were inoculated on CAMs at
1.5 × 106 cells per CAM, on three to six CAMs each. Specifically, 48 h
post-siRNA transfection, ARID1A-silenced and control Huh-7 cells were
treated with verteporfin (1μM). 24 h post-treatment, cells were
detached from the culture dish with Trypsin, counted, suspended in
20μl of medium (DMEM) andmixed with an equal volume ofMatrigel.
To prevent leaking and spreading of cells, an 8mm (inner diameter)
sterile teflon ring (removed from 1.8ml freezing vials, Nunc, Denmark)
was placed on the CAMs and the final mixture was grafted onto the
chorioallantoic membranes inoculating the cells with a pipette inside
the ring70. Embryos were maintained at 37 °C for 4 days after which
tumors at the site of inoculation were excised using surgical forceps.
Images of each tumor were acquired with a Canon EOS 1100D digital
camera. Surface measurements were performed by averaging the
volume (height*width*width) of each tumor using ImageJ, as pre-
viously described71. Total n ≥ 5 tumors for each condition were ana-
lyzed over three independent experiments. Experiments in fertilized
eggs were performed before the third period of the embryonation
period (before day 14). Experiments in fertilized eggs in this period do
not require ethical approval.

Statistics and reproducibility
No statistical method was used to predetermine sample size. For the
in vivo experiments, CAMswere allocated randomly to each condition.
For the in vivo model, CAMs were screened for tumor formation
blindly by two independent scientists.

For the functional experiment reported in Figs. 4, 5 and Supple-
mentary Figs. 4, 5, 6, statistical analyses were conducted using Prism
software v8.0 (GraphPad Software, La Jolla, CA, USA). For in vitro
experimental studies, statistical significance was determined by the
two-tailed unpaired Student’s t-test. For comparison involving multi-
ple time points, statistical significance was determined by multiple
Student’s t-test corrected for multiple comparisons with the
Holm–Sidak method. A p-value < 0.05 was considered statistically
significant. For all figures, ‘ns’ indicates not reaching the significance
level. For the CAM assay, a two-tailed unpaired Student’s t-test was
used. Unless otherwise indicated, all data represent the mean ±
standard deviation from at least three independent experiments.

For details on the reagents used, please refer to Supplemen-
tary Data 6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw shRNA data has already been published as a part of Project
DRIVE (https://data.mendeley.com/datasets/y3ds55n88r/4) and all the

mutation and copy number data from CCLE is available at https://
portals.broadinstitute.org/ccle. The MutSig 2CV v3.132,33 MAF file for
each cancer type is available at http://firebrowse.org/. The processed
project DRIVE data for running SLIdR in pan-cancer and cancer type-
specific settings are available at https://doi.org/10.6084/m9.figshare.
21508065.v472. The PRISM drug-response dataset and the CRISPR
dataset (Project Achilles 20Q2) are available at https://depmap.org/
portal/download/. All these datasets are publicly available. The vali-
dation experimental data generated in this study are provided in the
Source data file. Source data are provided with this paper.

Code availability
The latest version of SLIdR package is available at https://github.
com/cbg-ethz/slidr73 along with the scripts used to process and
generate the results for the paper. Other R packages used, include,
Matching (v4.9-3), tableone (v0.9.3), dplyr (v0.7.6), ggplot2
(v3.2.0.9), cowplot (v0.9.2), circlize (v0.4.5). For the validation
experiments the following softwares were used—BD, FACSDiva and
FlowJo (10.5.3), Prism for MacOS v8.2.1.
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