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ABayesianmodel forunsuperviseddetection
of RNA splicing based subtypes in cancers

David Wang1,2, Mathieu Quesnel-Vallieres 1,3, San Jewell1, Moein Elzubeir1,
Kristen Lynch1,3, Andrei Thomas-Tikhonenko 4,5 & Yoseph Barash 1,6

Identification of cancer sub-types is a pivotal step for developing personalized
treatment. Specifically, sub-typing based on changes in RNA splicing has been
motivated by several recent studies. We thus develop CHESSBOARD, an
unsupervised algorithm tailored for RNA splicing data that captures “tiles” in
the data, defined by a subset of unique splicing changes in a subset of patients.
CHESSBOARD allows for a flexible number of tiles, accounts for uncertainty of
splicing quantification, and is able to model missing values as additional sig-
nals. We first apply CHESSBOARD to synthetic data to assess its domain spe-
cific modeling advantages, followed by analysis of several leukemia datasets.
We show detected tiles are reproducible in independent studies, investigate
their possible regulatory drivers and probe their relation to known AML
mutations. Finally, we demonstrate the potential clinical utility of CHESS-
BOARD by supplementing mutation based diagnostic assays with discovered
splicing profiles to improve drug response correlation.

Analysis of RNA sequencing (RNA-seq) data from large patient
cohorts is commonly used to reveal transcriptomic variations that
are associated with complex disease. Within the framework of
machine learning, such analysis can be framed as either supervised
or unsupervised learning tasks. In a supervised setting, the objec-
tive is usually to identify transcriptomic variations that act as pre-
dictive markers for disease state or are strongly correlated with
clinically significant variables1–3. Unsupervised analysis typically
involves identifying latent substructures in the data which can be
used to learn more about disease etiology, such as cancer
subtypes4,5. One approach to quantify changes in the transcriptome
is at the level of alternative splicing (AS). AS is the process by which
different segments of pre-mRNA can be removed while others are
joined, or spliced, together to form mature mRNA. AS is regulated
by intricate interactions between hundreds of RNA binding proteins
(RBPs) and is thus highly susceptible to disease-causing disruption,
especially in cancer6–8. Given the strong association between splice
variants and disease, we propose an unsupervised learning

algorithm for identifying substructures in a matrix of RNA splicing
measurements from cancer patients.

The focus on identifying substructures in RNA splicing cancer
data is motivated by several additional observations. First, in cancers
such as acute myeloid leukemia (AML), the mutation burden is parti-
cularly low such that analyzing genetic mutations alone is insufficient
for explaining disruption of key oncogenic pathways9. Instead, several
works have pointed to splicing aberrations which can severely perturb
the function of regulatory proteins involved in apoptosis and cancer
suppression10,11. Second, many cancers have been shown to be het-
erogeneous, with patients exhibiting high variability in splicing mea-
surements. While some of this variability is likely due to confounders
such as batch effects, recent studies have shown that this variability
can result from mutations which seldom appear in a large fraction of
the patients12. Rather, they are observed in small subsets of patients
with both cis acting effects due to mutations at splice sites and trans
acting effects due to mutations in splicing regulatory machinery13.
These observations motivate the derivation of a dedicatedmethod for
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identifying “tile” substructures in the RNA splicing data matrix, i.e.,
subsets of patients that exhibit distinct splicing changes in a subset
of genes.

Splicing variations derived from RNA-seq are commonly defined
at the level of whole transcripts or at the level of AS “events”. Tran-
script based approaches rely on estimating the abundance of whole
isoforms (e.g., RSEM14, SALMON15, Kalisto16) or relative isoform usage
(e.g., MISO17, BANDITS18). In contrast, methods such as MAJIQ19,
SUPPA220, rMATS21, quantify splicing of events, or local splicing varia-
tions (LSVs), such as cassette exons. These local splice variations
measure splicing as the ratio of RNA segment (e.g., exon) inclusion
(defined as percent spliced in or Ψ∈ [0, 1]) for isoforms that contain
the segment vs. isoforms that do not. While quantifying whole iso-
forms is clearly appealing, we focus here on event based splicing
quantification. Some advantages of using AS events include the fact
they do not require a-priori assumptions about the underlying iso-
forms, can handle un-annotated (de novo) isoforms which is crucial in
cancer analysis, and canbedirectly validatedwith orthogonalmethods
(e.g., RT-PCR).

Despite the above advantages, there are several modeling chal-
lenges associated with unsupervised tile identification using event
based quantifications. First, splicing measurements are inherently
different from gene expression measurements which are modeled as
Gaussian (TPM) or negative binomial (read counts) distributions in
many previous works22–26. In contrast, Ψ is bounded in the [0, 1]
interval, with inclusion levels commonly exhibiting a U shape dis-
tribution, favoring either high or low exon inclusion values. Further-
more, Ψ quantifications typically involve only a small subset of reads
that span splice junctions, thus accounting for uncertainty of Ψ esti-
mates is important. Finally, when identifying substructures in cancer
RNA splicing measurements, it is important to address the inherent
heterogeneous nature of the data and natural variations between
individuals. Specifically, global patterns across rows (Ψ for specific AS
events) or columns (patients) are unlikely. Instead, only a small subset
of LSVs may be perturbed in a subset of samples.

Another important challenge we address here, which has impli-
cations beyond the analysis of RNA splicing data, is the modeling of
missing values. Genomics data often contains missing values that
result from technical limitations in sequencing technologies and are
assumed to be missing completely at random (MCAR). Under this
model, the missingness rate does not depend on observed or unob-
served values and can be imputed or ignored27. However, in RNA-seq
data, the missingness rate is inversely proportional to the sequencing
depth where higher read coverage results in a lower probability of
missingness. Furthermore, splicing quantifications, unlike expression
measurements, cannot be meaningfully imputed since a missing Ψ
quantification can be denoted by a 0 or 1 representing alternate
junctionusage. Thus, naive imputation (e.g.,mean) can lead tounlikely
intermediate values. This necessitates an alternate model in which
values are MNAR (missing not at random). Under this model, the
missingness rate depends on observations in the data matrix and
external factors such as coverage. In cancer data specifically, values
can also be systematically missing due to genetic mutations which
could result in a specific junction not being observed (e.g., mutations
near splice sites) and should be modeled as a secondary signal.

Here we address the above modeling challenges, by developing
CHESSBOARD (Characterizing Heterogeneity of Expression and Spli-
cing by Search for Blocks of Abnormalities and Outliers in RNA Data-
sets). CHESSBOARD is a Bayesian tile finding algorithm tailored for
splicing data with missing values and includes a suite of data proces-
sing and visualization tools (Fig. 1). The input consists of a matrix of
junction spanning reads counts to account for uncertainty in splicing
quantifications (Fig. 1a). The algorithmic task is to identify splicing
patterns in the form of tiles in this matrix (Fig. 1b). This is achieved by
first employing model based pre-filtering to remove irrelevant LSVs

and reduce and data size (Fig. 1c, left). Next, CHESSBOARD’s non-
parametric Bayesian tilesmodel isfit to the data using efficient blocked
Gibbs sampling (Fig. 1c center). Finally, posterior summary statistics
can be visualized to perform downstream analysis (Fig. 1c right).

We first apply CHESSBOARD to synthetic datasets to show it
outperforms several baseline methods and validate the effectiveness
of ourmodeling approach. Next, we show that CHESSBOARD recovers
tiles characterized by splicing aberrations which are reproducible in
multiple AML patient cohorts. Finally, we show that tiles we discover
are correlated with drug responses, pointing to the translational
potential of our findings. We also develop GAMBIT (Graphical Anno-
tatedMap for Basic Inspection of Tiles), a web-based visualization tool
which allows users to visually explore the discovered tile structures
and Bayesian output. Both CHESSBOARD and GAMBIT are available as
open source tools to facilitate reproducible workflow and analysis.

Results
CHESSBOARD robustly models alternative splicing and missing
values to discover tile structures in large heterogeneous
datasets
To address the challenges of analyzing heterogeneous AS datasets,
CHESSBOARD directly models properties of the data that arise from
biological and technical processes. Briefly, the model’s input data
matrixX contains the number of junction spanning reads xijmapped to
the representative (i.e.,most variable) splice junctionof LSV j in sample
i and the total number of reads mapped to the LSV, denoted ηij (more
input details in Supplementary Note 1.2). Under CHESSBOARD’s
model, naturally occurring splicing variations in each LSV are captured
by a (learned)mixture of a Beta-binomial distribution over each xij and
a binomial distribution (defined by missingness rate θj0) for having a
missing value. This mixture distribution over observed and missing
values captures the background. In specific patient subsets however,
additional variation or signal in underlying Ψ (captured by a separate
Beta-binomial distribution over observed values) or an elevated miss-
ingness rate (captured by a separate θj1) may be observed. Thus, the
first part of the CHESSBOARD pipeline is to filter out non-informative
splicing events which can be captured well by the background dis-
tribution. This is achieved using a parametric bootstrap Kolmogorov-
Smirnov test (SupplementaryNote 2.1). Then, for the remaining LSVs in
the data matrix, CHESSBOARD aims to find latent “tiles” in which
multiple LSVs deviate from the background in the same subset of
samples. In practice, this means that every sample i belonging to tile k
has its (unknown) group indicator variable set ci = k and every LSVs j
belonging to this tile has amatching (also unknown) indicator variable
rjk = 1. A specific CHESSBOARD model is represented by a learned tile
configuration and distribution parameters for all the background and
signal groups. Under this Bayesian formulation, every such model can
be assigned a posterior probability, and the CHESSBOARD algorithm
uses an efficient blocked Gibbs sampling procedure to sample from
the posterior distribution over possible models given the observed
data matrix X. See Methods for a detailed description of the
CHESSBOARD model.

In this section we demonstrate the utility of the CHESSBOARD
model formulation described above. First, we show that CHESSBOARD
accounts for uncertainty in splicing measurements due to low
sequencing coverage. Specifically, CHESSBOARD uses a beta binomial
distribution which attributes higher variance to LSVs with low cover-
age, capturing increased uncertainty in their underlying Ψ. To assess
whether this model is advantageous for estimating variability in spli-
cing data, we simulateΨ values from a Beta distributionmodeling low
exon inclusion (Beta(10, 90)) and generate reads for eachΨ at various
coverage levels from a binomial distribution (Fig. 2a). We compute the
empirical variance using MLE (maximum likelihood estimation) under
the CHESSBOARD model and two alternative models: a Beta model
which also functions on a domain of [0,1] analogous toΨ values and a
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Gaussian model which represents a generic approach. This analysis
shows the error in the variance estimation is lowest for the Beta
Binomialmodel and all 3models converge at about 50 reads. However,
in real life datasets the majority of quantifiable LSVs have read cover-
age significantly lower than 50. For example, in the beatAML and
TARGET datasets used in this study (see Fig. 2a as red and blue histo-
grams), 38% and 88% respectively have coverage below this level,
indicating a substantial portion of the data benefits from CHESS-
BOARD’s modeling.

CHESBOARD’s model further alleviates the effect of coverage
dependent uncertainty in heterogeneous data by sharing information
across samples. Specifically, CHESSBOARD uses empirical Bayesian
shrinkage to learn group specific priors, taking advantage of samples
with higher coverage assigned to the same cluster to improve esti-
mates for sampleswith lower coverage (Methods). To demonstrate the
advantages of CHESSBOARD’s modeling approach we generated Ψ
values from Beta(10, 90) and read counts from eachΨ at varying levels
of coverage as before. The results shown in Fig. 2b demonstrate that
indeed there is lower error in Ψ estimates in samples with lower read

counts when estimates are shrunken to the group mean compared to
computing Ψ̂ without prior information. Furthermore, we show that
shrinkage significantly increases correlation of Ψ̂ and the true value of
Ψ, especially in samples with low coverage. As denoted in Fig. 2c, Ψ̂ for
darker data points representing low coverage samples is closer to the
ground truth with group shrinkage (right) compared to individual
quantification (left). Together these experiments show that CHESS-
BOARD’s generative Beta-Binomial model acting on read counts can
substantially improve analysis of splicing data by accounting for
uncertainty in the RNA-seq measurements.

Next, we turned to assess CHESSBOARD’s missing values model-
ing. To account for missing values, CHESSBOARD uses a MNARmodel
where missing values are treated as a secondary signal when the
missingness rate of anLSV ismuchhigher thanexpectedunder the null
missingness rate associated with sequencing limitations. We first
replace each unquantifiable splicing event with a missingness indi-
cator. We then estimate priors for the missingness rates using an
Empirical Bayes procedure (Methods). During CHESSBOARDs model
fit, we obtain posterior estimates for both the background and signal
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Fig. 1 | CHESSBOARD Pipeline. a Input: splice junction read counts (red and blue
reads) extracted from patients' RNA sequencing. Each row in the input data matrix
is a LSV (e.g., cassette exon shown) and each rubric contains the junction spanning
read counts for that LSV in a specific sample. In complex LSV involving more than
two junctions, the most variable junction is selected (Methods). b Task: CHESS-
BOARD’s objective is to identify latent tiles in the input matrix. A tile consists of a
subset of samples and a subset of LSVs where the Ψ distribution of each LSV for
samples within the tile differs from the background distribution. Note that the
matrices shown containΨ values for visualization purposes but CHESSBOARD acts
on the matrix described in (a) and it may not be possible to embed each tile as a
continuous square in a 2D image as shown here. c CHESSBOARD Pipeline: The
pipeline includes three steps. Filtering: Lowlyexpressedgenes (lower 5%bydefault)

and LSVs observed in too few samples (default 20%) are removed, retaining only
those exhibiting high Ψ variability between samples and multiple modes in the Ψ

value distribution (Methods). MCMC: Blocked Gibbs sampling based on CHESS-
BOARD’smodel and the input datamatrix yields posterior samples for potential tile
configurations. Intuitively, the algorithm iterates through a chain of solutions that
tend toward higher likelihood while varying the number of tiles using the Chinese
Restaurant Process (Methods). Analysis: The MC samples are summarized into
marginal posterior distributions and possible point estimates for tiles. Tile analysis
includes sample assignment to subgroups, LSV assignment to a signal tile, and
computation of the ΔΨ and missingness rate associated with a particular LSV in a
tile (Methods). Visualization and analysis are conducted using the accompanying
visualization package, GAMBIT.

Article https://doi.org/10.1038/s41467-022-35369-0

Nature Communications |           (2023) 14:63 3



missingness rate, where the latter can account for other factors suchas
unobserved values due to mutations (Methods). We show that the
MNAR missing value model is effective in identifying tiles containing
missing value signals. For comparison, we implemented an alternative
version of CHESSBOARD that uses theMCARmodel assumptionwhere
missing values are integrated out. Both CHESSBOARD and
CHESSBOARD-MCAR were then applied to a simulated homogeneous
data matrix in which the read counts for each LSV (row) were drawn

from a background distribution with parameters estimated from
beatAML and values were missing at a fixed dropout rate of 10%. To
these we added a single tile of varying size with a missingness rate of
60%. We then assessed the algorithm’s ability to recover this tile by
information gain which measures the purity of the clusters (Supple-
mentary Note 2.2). Fig. 2d shows that the MCAR model was unable to
identify this tile (information gain close to0) regardlessof tile size, as it
relies solely on the observed Ψ values to identify tiles. The MNAR

Fig. 2 | Model Evaluation. a Error in Ψ variance estimation under Gaussian (red),
Beta (blue), and Beta-Binomial (green) models as a function of LSV coverage (x-
axis). Absolute error in Ψ variance estimates (y-axis) is compared to the true var-
iance, assuming a Beta(10,90) distribution. Inset histograms show empirical dis-
tributions of LSV coverage in beatAML and TARGET data. b Error in Ψ̂

quantification estimates under a naive and empirical shrinkagemodel as a function
of readcoverage (x-axis, 1000 samples from the sameBeta as above for eachpoint).
Naive approach uses only read ratios to estimate Ψ̂ while shrinkagemodel uses the
expectation over the posterior for the Beta. Error bars represent the 90% con-
fidence interval for the error inΨ. cCorrelation betweenΨ and Ψ̂ estimates under a
naive (left) and empirical shrinkage model (right).Ψ was sampled as in (a) while
number of reads n represented by the grey scale was sampled randomly from
[10,500]. d Information gained (Supplementary Note 2.2) from missing signals.
Here a backgroundmatrix was used, consisting of 100 samples and 100 LSVswith a
fixedmissingness rate of 10%, into which a signal tile was implanted. The signal tile

consisted of 50 samples and a varying number of LSVs (x-axis) with an elevated
missingness rate of 60%. The observed values in both tile and background were
drawn from the same distribution. Green represents the CHESSBOARD model
(MNAR), red represents a missing completely at random (MCAR) version of
CHESSBOARD. As a reference, we also plot (gray) the information gain from a
similarly sized signal tile where the signal is based on a significantly different Ψ
distribution simulated with parameters estimated from real data (Supplementary
Note 2.3). Missing signals (green) contribute to an increase in information gain as
the number of missing signals increases. e Evaluation of CHESSBOARD’s (top right)
performance on synthetic data, sampled to mimic BeatAML, compared to hier-
archical clustering (bottom left) and spectral co-clustering (bottom right).Ψ values
are represented as a heatmap, sample groups as colored bars and tiles as red
rectangles. Note that tiles may appear permuted. Performancewas evaluated using
a modified version of recovery relevance score (Supplementary Note 2.2) which is
permutation invariant.
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model is able to effectively recover the tile, but as expected the
information gain decreases as the tile size decreases. When the size of
the tile increases to 50 LSVs, the information gain reaches amaximum.

After assessing the CHESSBOARD modeling components indivi-
dually, we turned to assess its ability to recover tiles. For this, we
generated synthetic splicing data modeled based on statistics col-
lected from the BeatAML dataset (Supplementary Note 2.3). For
comparison, we also ran two commonly used algorithms for biclus-
tering as baselines: single-link hierarchical biclustering (HBC) and
spectral co-clustering (SCC)28. Since these algorithms lack some of
CHESSBOARD’s features, both were given data with scalar Ψ and no
missing values to fit their input definition. We also ran both with the
correct number of clusters given as input. Since CHESSBOARD learns
the number of clusters using an infinite mixture modeling approach
with a Chinese Restaurant Process (CRP) prior (Methods), we first
evaluated the behavior of this feature under various parameters
(SupplementaryNote 2.4). Then the ability of the algorithms to recover
tiles was evaluated using a tile precision (τpr) and recall (τrc) statistic
adapted from the recovery and relevance score25 (Supplementary
Note 2.2). Intuitively, these scores identify the tile in the test set that
maximizes precision or recall with respect to each of the reference
tiles, then average the precision or recall across the tiles. In addition,
we evaluated sample group clustering using adjusted rand index (ARI)
(Supplementary Note 2.2). The results in Fig. 2e show that all algo-
rithms were able to recover sample groups well (ARI > 0.9). This result
is to be expected given the strong group signal (number of changing
LSV, magnitude of change) in the original data (see BeatAML analysis
below) and the fact the baseline algorithms were initialized with the
exact cluster number. However, CHESSBOARD significantly out-
performed the baseline algorithms in recovering the exact tiles,
achieving τpr = 1.00, τrc = 0.98 compared to τpr =0.33, τrc =0.68 for
HBC and τpr = 0.78, τrc =0.55 for SCC.

CHESSBOARD discovers reproducible tiles in AML data which
correlate with cancer associated regulators
Having established strongperformanceof theCHESSBOARDmodel on
synthetic data, we applied it to several primary leukemia sample
datasets to discover tiles that correspond to cancer associated reg-
ulators. We ran the standard CHESSBOARD pipeline (Supplementary
Note 3.1) on the beatAML12 dataset (samples = 477, LSVs = 2299)
(Supplementary Data 1). The algorithm detected a single large tile
consisting of 217 samples and 1910 LSVs (Fig. 3a). Confidence in the
predicted tile structure was high with most probabilities of sample
assignment to the tile cluster and LSV assignment to the signal dis-
tribution being close to 1 (Supplementary Fig. 4a). To confirmwhether
this tile constitutes a real biological signal, we first assessed its
reproducibility in Penn HTSC, an independent in-house dataset con-
sisting of 77 adult AML samples. We trained the CHESSBOARD model
on a random subset of the beatAML cohort (samples = 400) and used
this as a predictive model to predict the tile assignments of the held
out beatAML samples (samples = 77) and Penn HTSC (samples = 77)
samples (Supplementary Note 3.3)). We used MOCCASIN29 to account
for confounding factors between the datasets. The prediction yielded
a similar tile structure in the PennHTSCdataset (Fig. 3b). Furthermore,
the median(ΔΨ) (change in Ψ) of LSVs belonging to the tile between
the 2 groups in each dataset are highly correlated (r =0.779) sug-
gesting that the splicing perturbations captured by the tile are similar
in both datasets (Fig. 3c). Sample likelihoods were also comparable
between the held out and external data indicating that the model has
similar confidence in the tile structure predictions (Supplemen-
tary Fig. 4b).

Having established the reproducibility of the AML splicing
tile in two independent cohorts, we then turned to investigate
potential mechanisms for formation of this tile. First, we tested
whether the identified tile was enriched for differentially spliced

junctions that are co-regulated by RNA Binding Proteins (RBPs).
Intersecting the tile’s differentially spliced junctions with those
observed as differentially spliced in ENCODE’s RBP knockdown
experiments implicated 17 RBPs, all of which were either differ-
entially expressed or spliced between the signal and background
patient groups (Supplementary Note 3.4). Put together, all 106
RBPs considered in the analysis affected approximately 11.75% of
the junctions in the signal tile. Notably, two RBPs with the most
significantly enriched DS junction overlap include SRSF1 (2.48%)
and U2AF2 (1.54%), both of which have known roles in promoting
expression of antiapoptotic isoforms of oncogenes in several
hematopoietic maglicanies30. Another candidate splicing reg-
ulator which appeared to be differentially expressed and spliced
between the signal and background groups is HNRNPC (2.44%),
which has been implicated in AML in a recent study31. Next, we
analyzed eCLIP data for each RBP to test whether there was evi-
dence for direct RBP binding around the tile’s differentially
spliced junctions. We observed high binding rates for SRSF1 and
U2AF2 (>4% of tile junctions). However, the binding rate was
lower compared to spliceosome components including AQR,
SF3B4, PRPF8 and EFTUD2 which are known to bind spuriously to
constitutive splice sites. Surprisingly, almost no binding was
observed for HNRNPC. For SRSF1 specifically, there was also sig-
nificant enrichment of CLIP binding to junctions that were also DS
suggesting direct splicing regulation by SRSF1 (Fig. 3d).

Interestingly, SRSF1 itself undergoes AS whereby one isoform
includes exon 4 for the production of the full protein while the other
skips exon 4, resulting in a transcript that contains a premature ter-
mination codon that is targeted for nonsense-mediated decay32. We
thus assessedwhether variation in SRSF1 exon 4 splicing between the 2
clusters corresponds to splicing variations in its known targets.
Observed differences in SRSF1 splicing between the signal and back-
ground occurred almost exclusively at exon4 (Supplementary Fig. 4c).
The background cluster had a higher rate of inclusion for exon 4
(Ψ =0.759) compared to the signal cluster (Ψ =0.490) and higher
expression of the functional transcript (log2FC = 1.16). This suggests
there is higher expressionof theproductive isoform in the background
cluster due to lack of NMD-induced degradation. Over expression of
SRSF1 has been associated with aberrant splicing of several apoptotic
factors in cancer32,33.We analyzed several cancer-associated geneswith
experimentally verified splice variations that are affected by SRSF1
overexpression. Notably, BIN1 exon 12a inclusion is upregulated in the
background and is associated with antiapoptotic processes33. Fur-
thermore, exon 3-6 inclusion in CASP9 is upregulated in the back-
ground and is associated with proapoptotic processes34

(Supplementary Fig. 4c).

CHESSBOARD offers a gene ranking method that implicates
mTORC signaling in identified differentially spliced gene set
In order tomorebroadly assesswhether the identified tiles correspond
to known biological functions, we performed a gene ontology analysis
of biological processes with the genes harboring LSVs in an extended
tile containing all DS LSVs between the two clusters. The analysis
shows that genes with differential splicing in the tile are enriched for
roles related to general functions commonly found in cancer tran-
scriptomics studies such as gene expression and transcription, RNA
processing, and post-translational modifications (Supplementary
Fig. 4d). However, we also found that a subset of genes participate in
stress-related cellular responses, including regulation of cholesterol/
lipid storage and MAPK-signaling (Supplementary Fig. 4d highlighted
in red) suggesting that samples from the two clusters exhibit different
cellular stress profiles.

To further explore possible tile characterization, we sought
to use gene set enrichment analysis (GSEA) to identify similar
pathways in the tile gene sets. Since GSEA requires ranking genes
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within a group we developed a probabilistic ranking method
based on the CHESSBOARD model which account for both spli-
cing changes and missingness rates. Specifically, we score each
LSV based on the likelihood gain achieved in the learned tile
configuration compared to an inverted tile configuration and then
used the score for the highest scoring LSV in each gene as input
to GSEA (see Supplementary Note 3.5 for details). Indeed, GSEA
revealed an enrichment of differentially spliced genes in the tile
among the hallmark mTORC1 signaling gene set (Fig. 3e), a sig-
naling pathway centrally involved in stress response35. Drawing
from experimentally validated interactions extracted from the
Ingenuity Pathway Analysis software, we confirmed that several
genes that harbor high-ranking LSVs in the tile interact directly
with mTORC1 or one of its direct regulators, and that many of
these genes activate mTOR signaling, although it is unclear how
the splicing variations that we observe might affect the function
of the proteins (Supplementary Fig. 4e). Collectively, these

results suggest that the main tile structure CHESSBOARD identi-
fied in the BeatAML data represents a highly reproducible and
biologically relevant AML subtype.

CHESSBOARD enables scalable recursive clustering to discover
alternate subtype definitions
Although CHESSBOARD was able to successfully discover a tile
corresponding to an AML subtype characterized by a specific set
of splicing events, other subtype definitions may exist. Alter-
native tile structures representing these subtypes can emerge
when the inclusion of additional features or exclusion of selected
features alters the amount of evidence supporting existing tile
boundaries. Intuitively, a tile can be interpreted as a collection of
correlated transcriptomic signatures that each capture a mis-
regulated biological process. For example, the tile discovered in
the previous section is partially explained by misregulation of
RBPs. Removal of a signal dominated by certain processes can
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Fig. 3 | BeatAML Dataset Analysis. a Heatmap showing the tile discovered by
CHESSBOARD on the beatAML dataset (samples = 477, LSVs = 2299). The signal
(samples = 217, LSVs = 1910) is outlined in red. Note that although CHESSBOARD
was run on junction spanning read rates as input, the heatmap shows Ψ values to
facilitate visualization. b Heatmap of Ψ values in the Penn HTSC dataset (sam-
ples = 77, LSVs = 2299), showing reproducibility of the tiles originally identified by
CHESSBOARD in the beatAML dataset. The signal tile (samples = 32, LSVs = 1899) is
outlined in red. c Correlation betweenmedian(ΔΨ) in the beatAML and HTSC
datasets for the representative junction in each LSVs belonging to the tile. The
median(ΔΨ) value was computed between the 2 groups discovered by CHESS-
BOARD in both datasets. Correlation is measured using Pearson’s correlation
coefficient (r) and the two-sided p value is the probability of observing a coeffi-
cient > ∣r∣under the exact null distribution.d ENCODEbased analysis of possible tile
regulators. Top bar plot shows the percentage of splice junctions (y-axis) in the tile

that overlap with splice junctions in one of three categories associated with each
RBP/SF (x-axis). DS (blue) is the set of junctions that are differentially spliced
between knockout and control samples in ENCODE K562 cell lines. CLIP (orange) is
the set of junctions that are bound by the RBP in a 250bp region flanking the
junction. The “Both” bar (green) represents junctions in the intersection of DS and
CLIP sets. The bottombar plot showswhether the overlap is significant (bonferroni
corrected cutoff) based on a one-sided fisher’s exact test for enrichment. The red
circles indicatewhether thematchingRBP/SF is differentially spliced (in at least one
junction) and/or differentially expressed between the tiles and whether it is a
component of the spliceosome or a cis/trans acting splice factor. emTORC1 GSEA:
Enrichment of genes ranked by log(likelihood gain) of LSVs among the HALL-
MARK_MTORC1_SIGNALING gene set as performed with GSEA v. 4.1.0 and visua-
lized with the fgsea R package.
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lead to discovery of tiles characterized by misregulation of
orthogonal, possibly less pronounced (in terms of number of
splicing changes and their magnitude), pathways where other
splicing perturbations exist in a different subset of patients.
Similarly, LSVs not present in the initial pre-filtered data matrix
may provide additional support for such tiles. To address this
scenario we developed a recursive clustering solution that natu-
rally fits into CHESSBOARD’s probabilistic model and serves as a
scalable means to probe the entire transcriptome (Supplementary
Note 4.1). In short, our approach iteratively reclusters the LSVs
that are not assigned to a tile and after each recursive step, tests
for termination by assessing the likelihood ratio of the tile model
to a null model in which tile structure is removed. This null model
can be interpreted as a distribution over tile structures in data-
sets where tiles are not expected to occur. Furthermore, the
result of each recursive step can be extended to the whole tran-
scriptome using MAJIQ or similar tools for differential splicing
analysis between the sample groups identified by CHESSBOARD.

We performed recursive clustering on the beatAML dataset using
this approach, treating the result from the previous section as the base
case. The first recursive step yielded a smaller signal tile (samples =
196, LSVs = 389) corresponding to a different subset of the patients
(ARI = 0.0066 between recursive and base case sample clusters)
(Supplementary Data 2). In addition, the new cluster had high corre-
lation with several known AML mutations (Fig. 4a). Specifically, we
observed a significant permutation test p value for enrichment of
mutations in FLT3-ITD (p <0.001), NPM1 (p <0.001), and CEBPA
(p = 0.025) in patients assigned to the tile cluster (Supplementary
Note 4.2). Mutations in these 3 genes are associated with normal kar-
yotype AML which is a known subtype of the disease36. We observed a
fourth association of the cluster with mutations in NRAS (p = 0.025),
but mutations in this gene were actually depleted in the tile samples.
Continued recursive tile discovery showed a sharp decrease in the
likelihood ratio (Fig. 4b) indicating there are nomore significant tiles in
the matrix to discover.

CHESSBOARD identifies tiles that correlate with drug responses
To demonstrate the translational utility of conducting a CHESSBOARD
analysis, we assessed whether tiles discovered by the algorithm cor-
relate with patient response to therapeutics. We ran the CHESSBOARD

pipeline on the beatAML dataset again but now limited the analysis to
only LSVs in 70 AML associated genes (Supplementary Data 3). These
genes have been identified as commonly mutated, truncated or
translocated in AML patients36,37 and their mutational status is used by
clinicians to decide on drug administration. This targeted tile finding
approach based on known gene sets is motivated by several observa-
tions. First, we demonstrated above that a transcriptome wide
approach can be dominated by signals orthogonal to pathways
inhibited by a drug. Second, and as we show below, CHESSBOARD’s
unsupervised approach can detect splicing signals not directly cap-
tured by the mutational landscape in such AML associated genes.
Finally, as demonstrated in Rivera et al. 202110, clustering splicing
changes across those 70 genes gives rise to clear groups and several
candidate regulators.

Our splicing analysis of the 70 AML associated genes recovered 2
clusters (Fig. 5a) with resulting patient subgroups similar to the origi-
nal clustering (ARI = 0.958). This result is notable since the LSV set used
for this analysis was significantly different, with shared LSVs con-
stituting only 0.57% of the original LSV set and 14.4% of the current set.
This result suggests the splicing changes in AML related genes are part
of perturbations to pathways captured in the original, unbiased, LSVs
tile finding.

Since themutational status inmany of these AML associated genes
is used by clinicians to decide on drug administration we correlated the
samples belonging to each tile with drug response measured by area
under the IC50 curve (AUC). Details about this measurement are dis-
cussed in Supplementary Note 5.1. We observed strong correlations
between drug response and the tiles, and noticed the tiles included
aberrant splicing in many gene targets of the most correlated drugs
(Supplementary Data 4). We therefore first tested whether our splicing
based patient stratification can serve as good predictors of drug
response. Specifically, we computed for each drug the percent of AUC
variance that can be explained (Supplementary Note 5.2) by CHESS-
BOARD’s discovered sample groupings compared to that explained by
known mutations. However, this analysis conclusively found the var-
iance explained by the patient subgroups to be relatively low,maxing at
6.7% compared to a much higher percentage for knownmutations and
drug combinations (Fig. 5b). Specifically, the variance explainedby FLT3
mutation is highest for Gilteritinib and FLT3-ITD is highest for Sunitinib/
Sorafenib which are known mutation-drug associations.

Fig. 4 | Recursive Clustering Analysis. a Heatmap showing CHESSBOARD clus-
tering results after the first recursive step. A single tile (samples = 196, LSVs = 389)
was identified. The tracks above the heatmaps indicate whether a patient was
positive (red) or negative (blue) for eachmutation.Missing annotations aremarked
by white. The p values were computed using fisher’s exact test for enrichment and
corrected for multiple testing using the min-p method to account for missing
annotations. b Boxplots showing the likelihood ratio distributions of LSVs after
each recursive step. Each boxplot represents a recursive step with 0 being the base

case. Within a boxplot, each data point (0:LSVs = 2299, 1:LSVs = 389, 2:LSVs = 330,
3:LSVs = 319) represent the log likelihood ratio of a LSV under the tile model
(learned by CHESSBOARD on the original data) and a null model (learned by
CHESSBOARD on the original data with tile structures removed by randomly per-
muting each rowof the datamatrix). Themedian is denotedby a red line, the upper
and lower quartiles are denoted by the box, the whiskers denote points that lie
within 1.5 IQRs of the lower and upper quartile, and observations that fall outside
this range are outliers which are independently displayed.
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Next, given the possible functional consequences of splicing
changes between the identified tiles inmany AMLassociated genes,we
hypothesized that our splicing based patient grouping could improve
clinical decisions that are based on mutation analysis alone. Notably,
the added value of splicing changes to AML classification has been
shown recently for FLT3-ITD and NPM1 for FAB classification AML
genes38 as well as RUNX1 and SF3B139. To assess usefulness of com-
bining splicing changes and mutations to predict drug response, we
prioritize FLT3-ITD and Sorafenib and NPM1 and Venetoclax due to
reliable mutation calls and their prominent role in AML clinical diag-
nosis. Specifically, we developed a simple decision tree (Fig. 5c)

combining both FLT3-ITD and patient subgroups which increased the
AUC variance explained by FLT3-ITD for Sorafenib from 26.0 to 36.8%
(Fig. 5d).We also looked atmedian change inAUC and IC50 fold change
(FC) to confirm that the effect size differences between the groups is
biologically meaningful. Accordingly, using FLT3-ITD alone had med-
ian(ΔAUC) = 64.36 and Log3FC = 2.09, while the combined classifica-
tion had a median(ΔAUC) = 76.29 and Log3FC = 2.73 (p =0.034 by
permutation test, see Supplementary Note 5.3). Similarly for NPM1,
using theNPM1mutation status alonehad amedian(ΔAUC) = 23.34 and
Log3FC =0.86, while the combined classification had a med-
ian(ΔAUC) = 57.91 and Log3FC = 2.65 (p = 0.048).

+ -

Fig. 5 | AML Drug Response Analysis. a Heatmap showing the tile discovered by
CHESSBOARD in LSVs from 70 AML related genes (samples = 477, LSVs = 90). The
signal (samples = 214, LSVs = 66) is outlined in red. The top “Genome Wide Clus-
tering” track shows sample grouping in Fig. 3a. b Barplot showing for each cate-
gorical variable (mutation presence or splicing cluster assignment, left) the drug
(right) with the maximum AUC variance explained (x-axis) by the corresponding
variable. c The proposed decision tree for administering Sorafenib based on spli-
cing patterns and mutations. Patients with FLT3-ITD- and a signal group splicing
pattern exhibit a worse response (high AUC) compared to patients with FLT3-ITD+
and abackgroundgroup splicingpattern (lowAUC).dViolin plots ofAUCvalues for
patients' response to Sorafenibwhen split according to the groups indicatedon the
x-axis. When combining both splicing andmutation information using the decision
tree in (c), the variance explained increases to 36.8%. The bars at the top indicate
the total number of samples that fall into each category. Notably, the groups

exhibiting favorable drug response (FLT3-ITD+ & Background) are enriched for
abnormal splicing (55/66 patients) while the group with poor response (FLT3-ITD−
& Signal) are enriched for normal splicing (152/169). Here, abnormal splicing is
defined as constitutive expression of the canonical isoform with Ψ1 > 0.9 and
Ψ2 > 0.9. e Differential splicing events in FLT3 and EZH2 between the subgroups.
For FLT3, the inclusion of exon 4b in LSV1 and exon 17b in LSV2 results in intro-
duction of a frameshift or PTC respectively. Scatterplot (bottom left) shows cor-
relation betweenΨ values for the skipping event in FLT3 (Ψ1 for LSV1,Ψ2 for LSV2),
while correlation plots (bottom middle and right) show Pearson’s correlation
betweenΨ and FLT3 expression. The red line indicates the linear regression fit and
the band represents the 95% confidence interval. For EZH2, the ΔΨ values between
the clusters for these deleterious events in EZH2 are low (<0.2), but are part of a
change involving a higher rate of missingness in the background cluster (>0.15).
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CHESSBOARD’s identified tiles include splicing changes in AML
drugs’ target genes
To assess potential mechanisms by which CHESSBOARD tiles explain
drug response as described above, we looked for specific targets of
Sorafenib in the tile that were differentially spliced between the 2
groups. Sorafenib is commonly used as a treatment for AML patients
with a FLT3-ITD mutation and functions as a tyrosine kinase inhibitor
with high specificity for FLT3. At a molecular level, FLT3-ITD result in
constitutive activationof receptors that lead to downstream activation
of PI3K/AKT/mTOR, Ras/Raf/MEK/ERK, and JAK/STAT pathways. This
activation in turn results in enhanced proliferation and reduced
apoptosis of the myeloblasts, which contribute to leukemogenesis40.
Inline with this known mechanism, we observed multiple LSVs in FLT3
that were differentially spliced between the patients’ subgroups. We
therefore analyzed several specific splicing events in FLT3 to deter-
mine if there was enrichment of splice isoforms in the signal that may
lead to reduced transcript viability and thus higher sensitivity. Indeed,
for FLT3 we identified two differential splicing events involving skip-
ping of exon 4b (p = 1.13e−43, ΔΨ =0.110) and exon 17b (p = 4.34e
−33,ΔΨ =0.115) that are highly correlated (r = 0.858) and have a higher
skipping rate in the background. Notably, exon 4b has not been pre-
viously reported (de novo exon and junctions) and both events have
not been previously reported with respect to AML to the best of our
knowledge. Skipping both of these exons results in the functional
canonical isoform of FLT3 which was correlated with an increase in
expression of FLT3 (Fig. 5e). In contrast, inclusion of this exon intro-
duces a PTC or frameshift in the alternate isoform.

Taken together, the above analysis suggests that there is over-
expression of FLT3 in the background cluster due to constitutive
expression of canonical FLT3 and failure of regulatory systems to
induceNMD.Noting that Sorafenib is a tyrosine kinase inhibitor,which
includes FLT3, an increase in the concentration of its target would
therefore be expected to increase drug sensitivity, as the splicing
changes we detected could mimic the gain of function effect of FLT3-
ITD. Inline with this mechanistic hypothesis, we find that when com-
bining the splicing signals and FLT3-ITD status, the group of patients
that were FLT3-ITD negative and assigned to the signal group had
much worse responses than patients that were FLT3-ITD positive and
assigned the background tile (Fig. 5d). Indeed, this latter group of
patients has significant enrichment of patients (55/66 patients,
p = 8.95e−8) with constitutive FLT3 canonical isoform expression,
defined as inclusion of both events being >0.9. In contrast, the
patients that were FLT3-ITD- and in the signal group showed enrich-
ment for intermediate canonical isoform levels (152/159 patients,
p = 4.59e−22).

Finally, in another investigation of tile associated splicing changes
in AML genes we observed high enrichment of missing values in the
background cluster for EZH2. The change in inclusion levels was not
particularly large, yet therewas over a 15% increasedmissingness rate of
two EZH2 LSV in the background cluster (Fig. 5e). One of these events
corresponds to an event recently reported by Rivera et al. 202110 and
validated to introduce a PTC that induces NMD and results in reduced
protein levels. Theother splicing changewe identified introduces anun-
annotated exon into the highly conserved WD domain of the protein.
This suggests there was rapid degradation of the transcript making it
more difficult to sequence which in turn resulted in elevated missing
values. In summary, our analysis of CHESSBOARD’s tile with respect to
drug response indicated that the RNA splicing tiles correlate with AML
specific drug responses and offer insights into potential underlying
mechanisms captured by both changes of Ψ and missing values.

CHESSBOARD finds more complex tile structures in other leu-
kemia datasets
While our analysis focused on adult AML, we also applied CHESS-
BOARD to several other datasets and disease to demonstrate

CHESSBOARD’s general utility for splicing pattern discovery. First we
applied CHESSBOARD to a joint dataset (samples = 1089, LSV = 2965)
consisting of TARGET pediatric AML and beatAML samples (Supple-
mentary Data 5). Studies have show that there are many genetic dif-
ferences between pediatric and adult AML41. However the mutation
burden in pediatric AML is lower suggesting that alternative disease-
causing modalities should be investigated. Specifically, LSVs that are
included in tiles that are enriched for samples of a single disease type
can be used to distinguish the diseases at the transcriptomic level. On
the other hand, LSVs which appear in tiles with mixed sample com-
position represent splicing variations that are shared between dis-
eases.CHESSBOARDdiscovered 5 clusters in this dataset. Notably, tiles
segregate by disease with C1, C2, and C4 representing pediatric AML
and C3 and C5 representing adult AML (Fig. 6a). However a subset of
LSVs are unique to adult (green) and pediatric (blue) AMLs respec-
tively. Other LSVs are either shared between subtypes of each disease
type (yellow) or unique to only a single subtype of a disease (purple).
Many of these splice variations occur in genes that are commonly
differentially mutated between pediatric and adult disease types42,43.

Next we applied CHESSBOARD to TARGET B-ALL (B-cell Acute
Lymphoblastic Leukemia) data (samples = 517, LSVs = 1562), a mark-
edly different type of leukemia characterized by proliferation of lym-
phoid blasts in the bone marrow (Supplementary Data 6). We
recovered five clusters with a distinctivelymore complex tile structure
compared to the result on the beatAML dataset (Fig. 6b). Of note, one
identified subgroup was enriched for patients which are RUNX1-ETV6
fusion negativewho alsohave high relapse rates. Thismutation is often
used as a positive prognostic marker which suggests the splicing sig-
nature associated with this tile can be used in a similar manner44.

Discussion
There is increasing evidence for the pathogenicity of splicing aberra-
tions in heterogeneous cancers such asAMLandB-ALL10,11,45,46, pointing
to a need formethods dedicated to unsupervised discovery of splicing
based disease subtypes. Here, we develop CHESSBOARD, a method
which offers several contributions to the densely populated area of
clustering andmissing valuemodeling. Specifically, previous works on
tile finding and biclustering approaches were either not domain
specific23,24 or tailored for other data modalities such as gene expres-
sion and genetic mutations22,25,26. Consequently, these algorithms do
not consider crucial characteristics of heterogeneous splicing cancer
data such as the uncertainty in splicing quantifications and missing
values. We demonstrate here using both synthetic and real data, the
usefulness of modeling these data characteristics. Furthermore,
CHESSBOARD’s MNARmodel could also be applicable in domains well
beyond RNA splicing or even clustering, for example in algorithms for
dimensionality reduction such as sparse probabilistic PCA or factor
analysis47,48.

Beyond the CHESSBOARD model, we also implement several
additional algorithms and tools to enable more extensive exploration
of the data. First, we developed a pre-filtering and recursive clustering
method to facilitate analysis of the entire transcriptome.We then used
the recursive clustering to discover alternate AML subgroups defini-
tions which strongly correlated with mutations in key AML genes.
Second, we implement a LSV ranking system to enable prioritization of
driver genes for use in downstream analysis like GSEA. This system is
unique in that we can rank LSVs based on differences inΨ distribution
and enrichment of missingess value signals. Finally we implement the
CHESSBOARD algorithm and all analytical tools in a Python package.
The package is accompanied by an online interactive visualization tool
called GAMBIT that enables users to manually inspect the LSVs and
samples contained in each tile.

While we applied CHESSBOARD to several leukemia datasets, we
focused on beatAML as it offered both a large set of samples and drug
responsemeasurements. In beatAML, we found a single strong “signal”
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tile that divided the dataset into twomain subgroups of patients which
were highly reproducible in an independent dataset. Investigating
possible splicing factors whichmay form these tiles, we find that SRSF1
is a key regulatory factor and affects the splicing of 2.49% of the
junctions in the tile through direct binding. However it is important to
note that taken together all of theseRBPs can still only explain 11.75%of
the splicing variations in the observed tiles. This arguably low fraction
could be due to a myriad of reasons, including the difference between
ENCODE’s cell lines and tumor specimens, the limited number of RBPs
served by ENCODE, and inherent noise in the CLIP and KD assays.

When we investigated possible functional consequences of the
two BeatAML subgroups, we found that the genes containing events
differentiating the groups were enriched for genes in the mTORC1
pathway. As mTOR is frequently activated in cancer in a manner that
affects drug susceptibility49,50, our clusters might reflect variations in
cellular metabolism that could alter drug susceptibilities in AML
samples. Furthermore, we suspect that the signal tile corresponds to a
subtype of AML that may be less adverse (see Supplemental Note 7.1
and Supplementary Fig. 7). Inline with this hypothesis, we find that the
background tile was characterized by SRSF1 misregulation which
affects several oncogenes including BIN1 and CASP9 in the tile.

We demonstrated the utility of CHESSBOARD’s recursive clus-
tering by detecting an alternative tile in the BeatAML data which cor-
related with FLT3-ITD, NPM1, and CEBPA mutations, defined together
as normal karyotype AML36. The discovery of this known subtype
points to the power of recursive clustering. By removing the dominant
signal driven by splicing variations caused by misregulation of RBPs/
SFs, we enabled further discovery of an alternate tile structure asso-
ciated with a different AML subtype characterized by weaker splicing
signals but a strong mutation signature. We then demonstrated the
clinical utility of CHESSBOARD by analyzing correlation of tiles with
drug response data. Notably, we found that while mutations were
better predictorsof drug response thansplicing signals, combining the
two yielded a better prediction overall, specifically for FLT3-ITD and
Sorafenib and NPM1 and Venetoclax. An interesting hypothesis related
to these results is that Sorafenib sensitivity may have been reduced by

enrichment of the PI3K/mTOR pathway in the signal group as sug-
gested by previous work51. Indeed, such a connection between Sor-
afenib and the mTOR pathway has also been observed in
hepatocellular carcinoma where treatment with Sorafenib in patients
with increased PI3K/mTOR pathway activity results in reduced relapse
rates52–54. A similar effect has recently been observed in AML
patients too55.

There are several limitations in this study which are important to
highlight. Specifically, the narrow IC50 concentration ranges used in the
beatAML experiments limited fitting of sensitivity curves and thus we
had touseAUCas aproxy for sensitivity. Furthermore, despite themany
advantages of the CHESSBOARD model, we make several modeling
assumptions that could be improved upon. For example, CHESSBOARD
assumes there is only a single signal distribution. In many scenarios,
there can be multiple sources of heterogeneity that lead to signal dis-
tributions that are a mixture of Beta distributions. We note though that
in practice, given the noisy nature of splicing and its quantification from
limited read counts, we did not find many clear LSV cases in the data
used here that would justify the additional complexity beyond a two
component mixture model of signal vs. background.

In summary, we developed CHESSBOARD, the first RNA splicing
tailored algorithm for signal detection in heterogeneous RNA-seq
datasets. We showed its applicability on several leukemia datasets,
connecting the splicing tiles discovered to potential regulators, drug
response, and known pathways. Although we present a model of
splicing, CHESSBOARD can be easily adapted for alternate datatypes
such as expression andmulti-omics data integration using a multiview
model56. We also hope the research community will take advantage of
the open source code and apply CHESSBOARD to many other analysis
tasks in large, heterogeneous cancer datasets, pushing further our
understanding of the role of splicing in complex disease.

Methods
Filtering
To enable analysis of large datasets, CHESSBOARD uses a pre-filtering
pipeline to select LSVs of interest followed by a recursive clustering

Fig. 6 | PediatricAMLandB-ALLAnalysis. aHeatmapshowing the tilesdiscovered
by CHESSBOARD when applied the joint beatAML and TARGET pediatric AML
dataset (samples = 1089, LSV = 2965). Tiles are outlined in red. Track on the y-axis
groups the LSVs into groups defined as: unique to pediatric (blue), shared between
diseases (red), unique to adult (green), unique to one subtype in each disease

(yellow), unique to only 1 disease disease and subtype (purple).bHeatmap showing
the tiles discovered by CHESSBOARD when applied the TARGET B-ALL dataset
(samples = 517,LSVs = 1562). Tiles are outlined in red. The top track indicates whe-
ther the patient is positive (blue) or negative (red) of RUNX1-ETV6 fusion. The
second track indicates where the sample is primary (blue) or relapse (red).
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procedure. This two-step process allows the algorithm to analyze the
most potentially interesting splicing events at a high resolution by
removing noisy events that could potentially confound true signals.
The filtering pipeline is detailed below:

• Remove LSVs that correspond to lowly expressed genes. We
quantified gene expression using Salmon and aggregated tran-
script level quantifications into gene level quantifications by
summing the TPMs. Any LSV corresponding to a genewith TPMs
in the lowest 5th percentile was removed from further analysis.

• Remove LSVswithhighmissingness rates. A LSV is considered
quantifiable if at least 10 reads are observed as beingmapped to
its splice junctions. Any LSV that is not quantifiable inmore than
80% of the samples is removed. Note that we allow for such a
high missingness rate because the algorithm is designed to
handle missing values.

• Select highly variable LSVs. For each LSV j in sample i, we
compute the variance across all samples σ2

j =
PN

i
ðΨij�μj Þ2

N . We
construct the empirical CDF of variances and choose a cutoff
based on where the graph plateaus. This procedure selects for
approximated 1500–2500 events in our datasets.

• Select for LSVs with a bimodal Ψ distribution. Intuitively, a
mode that tends toward 0 or 1 with low variance is likely to
represent a background distribution since most splicing events
favor high or low inclusion. A mode with high variance favoring
intermediate values is likely to represent an interesting biologi-
cal signal that could explain disease state. To select for bimodal
LSVs, we use the parametric-bootstrap Kolmogorov-Smirnov
test. Under this test, the null hypothesisH0 is the data was drawn
from a single component beta distribution while the alternate
hypothesis H1 is the data was drawn from multiple beta
distributions. The steps for the test are as follows:

– For each LSV j, fit a beta distribution to the observedΨ values
by obtaining the maximum likelihood estimates of α and β.
Since there is no closed for solution for theMLE,weoptimize it
numerically.

– Obtain the observed test statistic, the Kolmogorov-SmirnovD,
using a 1 sample KS test with the observed data and the CDF of
Betaðα̂,β̂Þ

– Given α̂ and β̂, simulate B bootstrapped datasets.
– For each bootstrapped dataset, estimate α̂b and β̂b and

compute Db.
– Compute the empirical p value of the test as the fraction of

boostrapped test statics that are greater than the observed
test statistic.

We then select all LSVs with p <0.05. This can be interpreted as
selecting LSVs that are multimodal with a 5% chance of being a false
positive. If a lower proportion of false positives is desired, one could
correct the false discovery rate using a procedure such as
Benjamini–Hochberg.

Modeling observed splicing events
Consider a data matrix Xn×m with n columns representing patient
samples and m rows representing AS events or LSVs. For a given
sample i and LSV j, xij contains the number of junction spanning reads
that are mapped to a splice junction of interest while ηij denotes the
total number of reads mapped to all junctions in the LSV (e.g two
alternative 5′ splice sites of an exon). Under CHESSBOARD’s formula-
tion, each sample has anunobserved label {c1, c2,…, cn} which assigns it
to a patients’ group or type k 2 Z + . Each such group k is defined by a
vector rk∈ {0, 1}m where m is the dimension of the vector. The
assignment rjk =0 indicates LSV j is not part of the unique pattern of
group k such that observed inclusion levels for this LSV in samples that
do not belong to group k follow some (learned) background Ψ dis-
tribution. In contrast, rjk = 1 indicates an abnormal splicing signal in LSV

j across all samples belonging to group k. We thus formulate the
generative process for each observed Ψ entry of the data matrix as

xij ∼Binomialðηij ,ΨijÞ
Ψij ∣ci = k,rjk ∼ rjkBetaðμj1,κ1Þ+ ð1� rjkÞBetaðμj0,κ0Þ

μj0 ∼Betaðα0,β0Þ
μj1 ∼Betaðα1,β1Þ
rk ∼BernoulliðδÞX

k

rjk ∼ ExpðλÞ

ci ∼CategoricalðϕÞ
ϕ∼Dirichletðαo=KÞ

ð1Þ

A plate visualization of this model is shown in Supplementary Fig. 8. A
table documenting all variables is given in Supplementary Note 6.1.
Under this model, the read rate of sample i in LSV j follows a Binomial
distribution with a Beta mixture prior over the level of inclusion Ψij.
This Beta-Binomial model naturally handles uncertainty inΨ estimates
since observations with low read counts will have higher variance. If
observation xij is assigned to the signal in group k as denoted by
ci = k, rjk = 1, its likelihood is evaluated using the signal prior distribu-
tion Beta(μj1, κ1). Likewise, the observation is evaluated using the
background prior distribution Beta(μj0, κ0) when rjk =0. Notice that we
reparameterize the Beta in terms of mean and variance using μj = αj/
(αj + βj) and κj = ðμjð1� μjÞÞ=σ2

j where the concentration κ is inversely
proportional to variance. This reparameterization enables the use of a
Beta hyperprior over themean of eachmixture component to capture
known biological behavior of AS. Specifically, normal splicing
dynamics have a propensity toward high or low inclusion levels which
can be modeled using the Jeffery prior α0 = 0.5,β0 = 0.5 and high
concentration κ. Intermediate levels of inclusion modeled by a
distribution with a long tail generally indicate aberrant splicing and
can be modeled as a Beta distribution with α1 = β1 and low concentra-
tion. To control the number of tiles, we impose a L1 penalty
with hyperparameter λ to induce sparsity in the number of groups
for which LSV j is assigned to the signal distribution. Specifically,
∑krjk ~ Exp(λ).

In most biological contexts, the number of tiles is unknown a
priori. This can be modeled as an infinite mixture of groups using a
Dirichlet Process prior with Bernoulli base distribution

Ψi∣ci = k,r ∼ f ðrkÞ
rk ∼G

G∼DPðG0,αoÞ
G0 � BernoulliðδÞm
ci ∼CRPðαoÞ

ð2Þ

where G0 is Bernoulli(δ)m and α0 is the concentration parameter. A
larger value of α will result in the discovery of more sample groups. In
taking the limit of k, the distribution of ci can be interpreted as a
distribution of partitions of natural numbers which is usually for-
mulated as the CRP or stick breaking process.

Modeling missing values
In gene expression data, missing values typically arise due to low
sequencing coverage which results in some transcripts lacking
any observable reads even if they are expressed. However in
splicing data, a lack of junction spanning reads mapped to a
transcript that is expressed indicates inclusion of an alternative
exon. Many algorithms handle missing values under the MCAR
model of missingness by integrating missing values out of the
model27. Under this model, the missingness rate of a feature does
not depend on any observed or unobserved values. However, this
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is generally only a valid assumption in scenarios when the data
generating instrument malfunctions such as a defective micro-
array probe. The missingness rate of transcriptomic quantifica-
tions from RNA-seq is proportional to sequencing depth thus a
model in which values are MNAR (missing not at random) will
yield better estimates for the missingness rate. Under this model,
the missingness rate of features depends on observations in the
data matrix and external factors. In cancer data specifically,
values can also be systematically missing due to genetic muta-
tions resulting in no reads being mappable to the splice junction.
This can occur when a mutation near a splice site reduces junc-
tion usage due to changes in splice factor binding or when the
mutation introduces a PTC into an exon resulting in rapid
degradation of the transcript due to NMD. Thus it becomes
necessary to treat missing values as a secondary signal when the
missingness rate of an LSV is much higher than expected under
the null missingness rate associated with sequencing limitations.
To handle missing values under the MNAR model and detect
missing value signals, CHESSBOARD identifies unquantifiable
LSVs with ηij < 10 and replaces xij with indicator ωij = 1. The indi-
cator is modeled as

ωij ∣ci = k,rjk ∼ rjkBernoulliðθj1Þ+ ð1� rjkÞBernoulliðθj0Þ
θj0 ∼Betaðaj0,bj0Þ
θj1 ∼Betaðaj1,bj1Þ

ð3Þ

where θ0 is the background missingness rate that represents values
that are missing due to techinical factors such as coverage and θ1
represents the signal missingness rate that is expected to be higher
and represents values that are missing due to mutations. The priors
can be estimated empirically. Specifically, we estimate the background
priors by fitting the following Beta-Binomial regression model.

υj ∼BetaBinomialðn,μjΦ,ð1� μjÞΦÞ
logitðμjÞ=β0 +β1χ j

ð4Þ

Here, χj =median({η1j, η2j,…, ηnj}) is themedian number of reads η
that are mapped to LSV j across the n samples. υj is the number of
samples with missing observations for LSV j. The fitted model returns
MLE estimates for the coefficients β0 and β1 and the dispersionΦ. This
trained model can then be used to estimate background priors
αj0 = μjΦ and βj0 = (1 − μj)Φ by predicting μj from the median read
depths for each LSV j in the cancer data to be analyzed. In this study the
above model was fitted to whole blood samples from GTEX V8. Users
can of course fit themodel tomore relevant healthy tissue samples for
their specific cancer of interest. Generally, we expat that in healthy
control samples the missingness rate will be inversely proportional to
sequencing depth (MNAR) but these missing values would not repre-
sent signals caused by cancer. In a similar way, we use the same pro-
cedure over the training data (beatAML or TARGET) to get estimates
for the matching signal prior αj1 and βj1.

Posterior sampling
The entire joint likelihood of the CHESSBOARD model is given by:

Pðx,ωjη,c,r,Ψ,θ,μ,κ,α,β,λÞ /Y
ði,jÞ2fi,j∣8ωij =0g

Pðxij ∣ηij,ΨijÞPðΨij ∣ci,rjci ,μj1,μj0,κ1,κ0ÞPðμj1∣α1,β1ÞPðμj0∣α0,β0Þ

Yn
i = 1

Ym
j = 1

Pðωij∣ci,rjci ,θj0,θj1ÞPðθj0j,aj0,bj0ÞPðθj1j,aj1,bj01ÞP
X
k2fcg

rjk ∣λ

0
@

1
A
ð5Þ

where a bold variable indicates a vector containing the variables across
all possible indices. To sample from themodel’s posterior, we develop

an efficient blocked Gibbs sampling scheme which we will use to
sample from each conditional posterior. The full conditional posterior
of ci is denoted by

Pðci = k∣η,r,Ψ,θ,μ,κ,x,ω,α,β,λÞ /Y
j2fj∣8ωij =0g

Pðxij∣ΨijÞPðΨij ∣ci = k,rjk ,μj1,μj0,κ1,κ0ÞPðμj1∣α1,β1ÞPðμj0∣α0,β0Þ

Ym
j

Pðωij ∣ci = k,rjk ,θj0,θj1ÞPðθj0∣,aj0,bj0ÞPðθj1∣,aj1,bj01ÞP
X
k2fcg

rjk ∣λ

0
@

1
APðci = kÞ

ð6Þ
Due to beta-binomial conjugacy, we can integrate out Ψ and θ. This
allows us to write

Pðci = k∣η,r,Ψ,θ,μ,κ,x,ω,α,β,λÞ /
nk

n�1 +α0

Qm
j = 1 Pðxij ∣rjk ,ΘÞPðΘÞ if ci = k

α0
n�1 +α0

Qm
j = 1

R
Pðxij ∣rjðk + 1Þ,ΘÞPðΘÞPðrjðk + 1ÞÞdrj if ci = k + 1

(

ð7Þ

Here, the term before the product represents the prior P(ci = k) which
Intuitively captures the cluster’s proportion. The term Θ captures all
other variables in the above likelihood not explicitly written again (for
clarity). Since the integral over each rj(k+1) here is intractable, we follow
Neal 2000 and sample vector r(k+1) from its prior distribution when
attempting to open a new cluster. We choose the prior to be
δj = P(rjk = 1) for each element for the vector j. Note that ω is not
included in the notation above for clarity but is trivial to include. With
Ψ and θ integrated out, wewill only need to then explicitly sample r, α
and β. The full posterior conditional of rjci is given below.

Pðrjci = 1∣η,r,Ψ,θ,μ,κ,x,ω,α,β,λÞ= Pðxij ∣rjci = 1,ηij ,μj1,μj0,κ1,κ0ÞP
rjci

Pðxij ∣rjci ,ηij ,μj1,μj0,κ1,κ0Þ ð8Þ

However, due to high correlation between the rjcis, we must sample
them simultaneously. In other words, rather than sampling rjci for each
ci = k, sample a vector rj. with length k. Note that as k becomes large
(i.e., the numberof clusters grows in eachMCMC iteration), computing
this posterior becomes intractable since there are 2k binary vectors.
Therefore, we approximate this posterior by sampling rj. in blocks of
rja. . . rjb where b − a is the maximum blocksize.

Finally, to sample μj0 and μj1, we use a discrete approximation. We
use possible values of μ on the interval p∈ [0.025, 0.975] from 20
discrete bins. Thus we can evaluate the posterior of μ using a discrete
categorical distribution defined as:

Pðμj0 =p∣r,Ψ,θ,μ,κ,x,ω,α,β,λÞ= Pðxij ∣ci,rjci ,ηij ,μj1,μj0 =p,κ1,κ0ÞP
pPðxij ∣ci,rjci ,ηij ,μj1,μj0 =p,κ1,κ0Þ

ð9Þ

The concentration κ0 and κ1 are hyperparameters that are inversely
proportional to the variance of the prior distribution. We choose
κ0 = 20 and κ1 = 10 to model low expected variance of the background
and high expected variance of the signal.

Posterior summary and convergence
To obtain a point estimate for rjk and ci, we apply the following pos-
terior summary procedure. First, we obtain the pairwise matrix of
probabilities that any two samples clustered together across all pos-
terior samples (after burn-in and thinning). In other words, the prob-
ability that ci = cj for any two samples i and j. Determining the portion
of the chain to discard can be evaluated using the Heidelberger-Welch
diagnostic (Supplementary Note 3.2). However in practice, we found
for real high dimensional splicing data as we used here that the esti-
mated model parameters converge very quickly and exhibit low
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posterior variance. In such cases, fewMCMC iterations are needed and
the optimization can be treated as a variational Bayes approximation
(Supplementary Note 3.1). Convergence is then determined to be
where the posterior likelihood of the model stops changing. We apply
hierarchical clustering to the pairwise probability matrix with the
number of clusters k being the median number of clusters across all
posterior samples to obtain final clustering assignments. To obtain a
point estimate for r, we obtain a matrix of the marginal probabilities
that sample i in LSV j is assigned to the signal distribution. rjk = 1 if the
mean of rjci8ci = k > 0:7. Note that we also provide an alternative
approach to point summary by using the posterior sample that mini-
mizes the MSE to the posterior mean. In other words, we generate the
mean pairwise clustering matrix and pick the sample that minimizes
MSE to this mean matrix.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The beatAML dataset can be accessed through the National Cancer
Institute (NCI) at https://www.cancer.gov/about-nci/organization/ccg/
blog/2019/beataml. The Therapeutically Applicable Research to Gen-
erate Effective Treatments (TARGET) dataset, phs000218,managed by
the NCI can be accessed at www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000218.v22.p8. Information about TAR-
GET can be found at http://ocg.cancer.gov/programs/target. The Penn
HTSC dataset is available at GEO (GSE142514). The ENCODE knockout
and eCLIP datasets from Van Nostrand et al. 2020 are available at
https://www.encodeproject.org57. The GTEx v7 whole blood data is
available at https://www.gtexportal.org/home/datasets. Source data
are providedwith this paper. All processed datasets are available in the
Zenodo repository associated with this publication. The data gener-
ated in this study including algorithmoutput anddata used infigures is
described in the Supplementary Information and Source Data files and
can be accessed in the Zenodo repository. Source data are provided
with this paper.

Code availability
All code for the algorithm, Python API and GAMBIT is publically
available at https://bitbucket.org/biociphers/chessboard/src/master/.
A list of Python package dependencies (pandas, scipy, numpy, sea-
born, statmodels, scikit-learn, matplotlib) are listed in the installation
instructions in the repository and will be automatically installed when
installing our software. The GAMBIT tool is available online at https://
paros.pmacs.upenn.edu/gambit/. Sample data for GAMBIT can be
downloaded from the bitbucket repository. Documentation for the
CHESSBOARD python API can be found at https://chessboard.
readthedocs.io/en/latest/index.html. All code to reproduce figures
and analysis can be found in the Zenodo repository.
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