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Molecular models of multiple sclerosis
severity identify heterogeneityof pathogenic
mechanisms

Peter Kosa1,3, Christopher Barbour1,3, Mihael Varosanec1, Alison Wichman1,
Mary Sandford1, Mark Greenwood2 & Bibiana Bielekova 1

While autopsy studies identify many abnormalities in the central nervous
system (CNS) of subjects dying with neurological diseases, without their
quantification in living subjects across the lifespan, pathogenic processes
cannot be differentiated from epiphenomena. Using machine learning (ML),
we searched for likely pathogenic mechanisms of multiple sclerosis (MS).
We aggregated cerebrospinal fluid (CSF) biomarkers from 1305 proteins,
measured blindly in the training dataset of untreated MS patients (N = 129),
into models that predict past and future speed of disability accumulation
across all MS phenotypes. Healthy volunteers (N = 24) data differentiated
natural aging and sex effects fromMS-related mechanisms. Resulting models,
validated (Rho 0.40-0.51, p < 0.0001) in an independent longitudinal cohort
(N = 98), uncovered intra-individual molecular heterogeneity. While candidate
pathogenic processesmust be validated in successful clinical trials, measuring
them in living people will enable screening drugs for desired pharmacody-
namic effects. This will facilitate drug development making, it hopefully more
efficient and successful.

Effective management of chronic, polygenic diseases requires patient-
specific polypharmacy regimens that target all pathogenic mechan-
isms underlying disease expression in the patient. This strategy is
feasible, e.g., in cardiovascular diseases, where the contributing
pathogenicmechanisms are easilymeasured. In contrast, it is currently
impossible to measure diverse mechanisms that may mediate the
destruction of the central nervous system (CNS). This limits new drug
development and makes clinical management of patients suboptimal.

Advances in proteomics allow for accurate measurements of
thousands of proteins in cerebrospinal fluid (CSF)1,2. These CSF pro-
teins can be aggregated into molecular diagnostic test of multiple
sclerosis (MS)3 that outperforms magnetic resonance imaging (MRI)-
based diagnosis of MS (i.e., independent cohort-validated area under
receiver-operator characteristic curve (AUROC) 0.98 for themolecular
diagnostic test3 versus AUROC of ~0.70 for the MRI-based tests4). In

recognition of the insufficient accuracy of MRI-based diagnosis, the
2017 revision of MS diagnostic criteria incorporates a possibility to
evaluate CSF oligoclonal bands (OCB)5. This opens an opportunity to
bring to clinical practice advanced laboratory tests that may pinpoint
patient-specific pathophysiological drivers of CNS tissue damage, in
addition to diagnosing a condition.

Pathologists identified multiple processes in MS CNS tissue
autopsy but differentiating disease consequences from disease
mechanisms is practically impossible when each patient can be ana-
lyzed only once, usually at the disease end. Intrathecally compartmen-
talized inflammation6, associated with the tertiary lymphoid follicles,
may be pathogenic based on correlations with rates of disability pro-
gression in a limited number of autopsy cases7. We recently validated
relationship between intrathecal inflammation and MS severity in a
prospectively acquiredMS patients (N = 244); where CSF biomarkers of
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intrathecal inflammation positively, but weakly (i.e., Rho =0.18-0.24;
p =0.044-0.002) correlate with the rates of disability progression8.

Non-immune mechanisms such as mitochondrial dysfunction,
hypoxia, oxidative stress, demyelination, toxic (A1) astroglial
activation9,10, and axonal transection might also be measured by
CSF biomarkers. The most promising of these is neurofilament light
chain (NFL)11, detectable in healthy volunteers (HVs) but in greater
quantities in neurodegenerative diseases. NFL correlates strongly
with MS relapses or contrast-enhancing lesions (CELs) and has weak
prognostic value for disability progression12–16. Additionally, NFL is an
epiphenomenon reflective of ongoing axonal damage rather than its
pathophysiological driver.

Thus, there remains a need for development of biomarkers
reflective of diverse (ideally all) molecular intrathecal processes with
potential pathogenic role in MS.

In this work we present CSF biomarker-based models of MS
severity that provide insight into MS pathophysiology, identify mole-
cular disease heterogeneity, and lead to an independent cohort-
validated prognostic test(s).

Results
The study design is depicted in Fig. 1. The collection of longitudinal
clinical and cross-sectional brain MRI (Fig. 1a) volumetric outcomes is
detailed in Methods.

Disability measured by clinical scales (Expanded Disability Status
Scale [EDSS]17, Combinatorial Weight-adjusted Disability Score
[CombiWISE]18), or the amount of CNS tissue destruction reflected by
brain parenchymal fraction (BPFr) increase with disease duration (DD)
and patient’s age (Fig. 1a). If these outcomes are changing with MS
evolution, biological processes that correlate with these progression
outcomes must also evolve intra-individually: i.e., be less expressed in
patients with early MS (i.e., relapsing-remitting MS [RRMS]) and more
prominent in patients with long disease duration and greater disability
(i.e., progressive MS). These are processes expected to overlap with
what pathologists identified in MS autopsies. While some of these
evolving processes may contribute to CNS tissue destruction (i.e.,
might be pathogenic), others likely represent an epiphenomenon (i.e.,
inert) or even beneficial response of CNS to injury (i.e., protective).

To try to differentiate between potentially pathogenic, inert, or
beneficial intrathecal processes, we can study which of them correlate
with “MSseverity”, definedas the speedofdisabilityprogression. Ideally,
wewould study speedof disability accumulation in longitudinal cohorts.
Practically longitudinal data are difficult to collect due to subject attri-
tion. Diversity of treatments during longitudinal follow-up represents
further impediment. Consequently, MS severity has been measured by
cross-sectional outcomes that relate accumulated disability to either
disease duration (in EDSS-based MS Severity Score [MSSS19]) or age
(in EDSS-based Age-Related MS Severity Score [ARMSS20] and in
CombiWISE-basedMS Disease Severity Score [MS-DSS21]). As subclinical
stage of MS may last years, relating disability to age is scientifically
preferable, especiallywhen epidemiological data suggests thatMS starts
in late childhood/early adulthood in most patients22,23.

Age-based MS severity outcomes differentiate MS patients of
identical age who accumulated more or less disability. As this com-
parison is done for all ages, biological processes that correlate withMS
severity are unlikely to represent epiphenomena, because they occur
equally in younger andolder subjects. Instead, processes that correlate
positively with MS severity are enriched in patients who accumulated
disability faster; therefore, such processes might be pathogenic.
Conversely, processes that correlate negatively with MS severity are
candidate protective mechanisms, enriched in patients who accumu-
lated disability slower.

This inference assumes that MS severity is relatively stable intra-
individually in the absence of treatments. We can formally test intra-
individual stability of MS severity by asking if past rates of MS

progression reflected by cross-sectionalMS severity outcomes predict
future rates of MS progression (measured by longitudinal follow-up).
Among 3 published MS severity scales, only MS-DSS was shown to
predict future rates of disability progression in the independent vali-
dation cohort21, likely because MS-DSS is based on CombiWISE18, a
continuous disability scale with much larger dynamic range than EDSS
(i.e., ranging from 0-100). MS-DSS, in contrast to MSSS and ARMSS,
also adjusts for multiple confounders, including the effect of
applied disease modifying therapies (DMTs). We can further quantify
intra-individual stability ofMS-DSSby calculating intraclass correlation
coefficient (ICC), which compares the fluctuation of longitudinal MS-
DSSmeasurements for individual patients with the variance ofMS-DSS
measured between MS patients. The ICC close to 1 indicates complete
interchangeability of intra-individual measurements (i.e., patient-
specific MS-DSS does not fluctuate), whereas value close to 0 indi-
cates high fluctuation of MS-DSS values in repeated measurements.
The ICC for MS-DSS is 0.90 (Fig S1).

Validating intra-individual stability of MS-DSS allows us to link any
MS-DSS measurement to CSF sample collected from the same patient.
We selected the MS-DSS calculated at the first untreated clinic visit
(concomitantly with CSF collection; Fig. 1a) as the primary outcome
againstwhichwemodeledCSF biomarkers, as this allowedus to test the
hypothesis that CSF biomarker-based model of MS-DSS will predict
future rates of disability progression measured from subsequent clinic
visits. As sensitivity analyses for the robustness of the gained biological
insight, we used MS-DSS collected at the last clinical follow-up, as sec-
ondary outcome. In 2017 (which falls between first and last clinic visit
for most subjects) we developed the NeurExTM App24. NeurExTM elim-
inates scoring differences among clinicians by algorithmically com-
puting disability scales from clinician-documented examination. We
hypothesized that by eliminating this source of noise, MS-DSS com-
puted from NeurExTM scores will be more accurate, leading to CSF-
biomarker model that reflects overlapping biology with the model of
primary outcome, but achieves higher effect size.We also hypothesized
that MS-DSS models will predict EDSS-based MS severity outcomes,
especially ARMSS, which shares the age denominator with MS-DSS.

Finally, as an exploratory outcome we wanted to assess biology
associated with rates of CNS tissue destruction, using cross-sectional
outcome analogous to disability-based MS severity outcomes. Brain
volume deficit (BVD) severity outcome, calculated as residuals from
the linear regression model of 1-BPFr against age (Fig. 1a) was calcu-
lated from a single brain MRI performed within 3 months of CSF col-
lection. Patients with higher BVD severity have lost more brain tissue
than their equally aged peers.

Adjusting SOMAmers based on physiological age and sex asso-
ciations (Fig. 1b)
Some of the processes that pathologists identified in MS brain
autopsies overlap with processes associated with natural aging: e.g.,
mitochondrial dysfunction, oxidative stress or activation of innate
immunity25–28. Without access to HV data it would be impossible to
determine if processes that correlate with age in MS cohort represent
physiological aging, MS-related mechanisms, or both. This is impor-
tant, as MS DMTs are unlikely to inhibit physiological aging.

Therefore, we sought to differentiate the natural aging (and
physiological sex differences) from MS-specific processes using HV
CSF data (Fig. 1b). As our HV cohort was small (N = 24; Table 1), we
applied 2-tier analyses (Fig. 1b) to conserve p-values by including prior
knowledge. Hypothesizing that aging exerts same effect on proteins
measurable in serum and CSF, in the first analysis we prioritized bio-
markers that already showed strong relationship with age in a pub-
lished cohort of 3301 HV from the INTERVAL study analyzing serumby
identical DNA-aptamer-based SomaScan® technology1. Specifically, we
assessed: A. Concordant directionality in the relationships (p < 0.05)
between INTERVAL HV and our HV CSF cohort; and B. Statistically

Article https://doi.org/10.1038/s41467-022-35357-4

Nature Communications |         (2022) 13:7670 2



Fig. 1 | Experimental design. a Prospective collection of longitudinal clinical
(Expanded Disability Status Scale [EDSS], Combinatorial Age-adjusted Disability
Score [CombiWISE]), and cross-sectional imaging outcomes (brain parenchymal
fraction (BPFr]) paired with lumbar puncture (LP) at the first clinic visit. b 1305
biomarkers measured in blinded fashion in cerebrospinal fluid (CSF) samples of
multiple sclerosis (MS) patients and healthy volunteers (HV) were mathematically
adjusted to eliminate the effects of aging and sex. c Random forest (RF) algorithm

was applied to training cohort (N = 129) data, resulting in three models of MS
severity. Models’ performance was assessed by Spearman Rho, R2, Concordance
CorrelationCoefficient (CCC), and p-value (p) of the Spearmancorrelation between
observed and model-predicted values. The validity of the three models was then
evaluated in an independent cohort (N = 98) by measuring the above-mentioned
characteristics of the observed vs predicted outcomes. MS-DSS Multiple Sclerosis
Disease Severity Scale, BVD brain volume deficit.
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significant relationship with age and/or sex in our MS cohort (demo-
graphic data available in Table 1).

Using this approach, 73 age-associated biomarkers had adjusted
p <0.05 (Fig. 2). Considering that some CSF proteins may not be
measurable in the serum,we also assessed correlationwith age and sex
for remaining biomarkers not prioritized above. This identified two
additional proteins (PGF and SLPI) in our HV CSF cohort with evidence
of age associations after Bonferroni adjustments. Out of these 75 HV
age-associated biomarkers, 22 (29.3%) showed discordant changes
between the HV and the MS cohort (i.e., increasing with age in CSF of
MS patients and decreasing with age in HV) (Fig. 2a).

On the example of GDF15, the validated biomarker of mito-
chondrial dysfunction29–32, Fig. 2b showcases the difference between
subtracting only HV-aging variance from the CSF protein levels and
regressing age as covariate based on MS cohort only, which is the
usual way to adjust for confounding effects. The Fig. 2b left panels
demonstrate that CSF GDF15 correlates with age both in HV (top
panel, blue color) and MS cohorts (bottom panel, black color), even
thoughdistribution ofMS values suggests elevation of GDF15 beyond
physiological aging with MS progression. This is validated in right
panels, where regressing out only physiological aging demonstrates
residual positive correlation of HV-Age-adjusted GDF15 CSF levels
with MS age (R2 = 0.1, p = 7.4 × 10−6). Thus, we conclude that while
mitochondrial dysfunction is associated with physiological aging,
there is additional, MS-related mitochondrial dysfunction that
increases with MS progression. This conclusion is consistent with
published pathological observations in MS33. Regressing out age in
MS cohort as covariate would fail to identify mitochondrial dys-
function beyond natural aging associated with MS. Conversely,
ignoring age altogether would overestimate the amount of mito-
chondrial dysfunction linked to MS.

To verify that identified proteins are indeed age-related based on
current knowledge, we used the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) annotations. Reassuringly, this
analysis (Fig. 2 and Supplementary Data 1) identified Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) and Reactome pathways pre-
viously associated with physiological aging, such as proteoglycans/
chondroitin sulfate and extracellular matrix reorganization, signaling
pathways p53, PI3K-AKT, MAPK, HIF-1 and WNT, apoptosis, and Alz-
heimer’s disease. While most of the age-concordant proteins were
proteins secreted to extracellular space and were part of the extra-
cellular matrix, age-discordant CSF proteins (i.e., decreased in HV but
increased in MS) belonged to two categories: Secreted proteins linked
to immune system; and the cell surface/membrane-anchored proteins
found in axons and the neuronal cell body (Fig. 2 and Supplementary
Data 2). This suggests re-expression of these neuronal receptors and
pathways in MS or their release by MS-associated neuronal injury. The
pathways enriched for Age-discordant CNS proteins are metabolism,
axon guidance, netrin-1, NOTCH, hedgehog, and thyroid hormone
signaling, all linked to neurogenesis or myelination.

Using the same strategy, 35 biomarkers were linked to physiolo-
gical sex differences in CSF, with all but one (SERPINA10) showing
concordant differences between MS patients and HV (Fig. 3). STRING
analysis confirmed validity of our approach: the seven proteins ele-
vated in females are related to ovulation, ovarian steroidogenesis, and
prolactin signaling (Fig. 3 and Supplementary Data 3). Male-elevated
proteins are linked to immunity (innate immunity, chemokines), fluid
shear stress, and atherosclerosis (Fig. 3 and Supplementary Data 4),
consistent with the reported effects of Y-chromosome genes on
inflammation and atherosclerosis34.

For all downstream analyses we used HV age- and sex-adjusted
values for 110 proteins with significant physiological confounding
effects (Fig. 1b).

MS is not associated with accelerated aging
Among the proposedhypotheses ofMSprogression is the idea thatMS
patients suffer from accelerated aging35. Thus, we tested the hypoth-
esis that the CSF proteomic signature of physiological aging estimates
higher than biological age for MS patients. To this end, we used a
regularized multiple linear regression (elastic net) to develop a
CSF biomarker-based model of chronological age in HV cohort
(Fig. 4a). When we used this model to predict chronological age in MS
patients (Fig. 4b), we did not observe evidence for accelerated aging.
Instead, the model slightly overestimated age in RRMS (without
reaching statistical significance). Surprisingly, the model under-
estimated physiological age in both progressiveMS subtypes (Fig. 4c).
Thus, we conclude that molecular mechanisms different from phy-
siological aging are responsible for CNS tissue loss in MS, at least as
reflected by CSF proteins measured in this study.

Identifying molecular pathways associated with MS severity
To gain biological insight about processes that correlate with MS
severity, we used two Functional Enrichment Analyses (FEA) (Fig. 5).
FEA uses associations of all measured CSF proteins with MS severity
outcomes (MS-DSS at baseline, MS-DSS at follow-up, and BVD sever-
ity): either captured by correlation coefficients (for STRING ordered
analysis36) or by false discovery rate (FDR)-adjusted p-values (for
g:Profiler ordered analysis37). To increase FEA stringency, we focused
on those processes/pathways that achieved FDR-corrected statistical
significance in both g:Profiler and STRING FEA.While all gene ontology
(GO) terms and REACTOME pathways (and their contributing CSF
biomarkers) that fulfilled these pipeline criteria are provided in Sup-
plementary Data 5, based on the overlap of the contributing CSF bio-
markers, wemerged GO/REACTOME terms into five distinct biological
categories (Fig. 5; left panels).

As we hypothesized, we observed strong overlap in biological
processes that correlated with MS-DSS measured at first and last
clinic visit. Surprisingly, somewhat different biological processes were
associated with imaging BVD severity outcome: The coagulation cas-
cadewas only associatedwith BVD severity outcome andComplement

Table 1 | Demographic data for the training, validation, and HV cohorts

Controls Training cohort Validation cohort p-value

HV RRMS SPMS PPMS RRMS SPMS PPMS

N (female/male) 24 (11/13) 37 (19/18) 31 (21/10) 61 (29/32) 33 (20/13) 24 (15/9) 41 (19/22) 0.915

Average Age (SD) 40.9 (11.4) 40.9 (11.1) 52.3 (9.0) 54.8 (7.9) 39.5 (9.5) 51.9 (12.2) 54.7 (11.3) 0.583

Average DD (SD) NA 4.8 (6.7) 22.4 (9.9) 11.7 (8.2) 6.0 (7.7) 19.6 (10.7) 12.8 (8.5) 0.989

Average EDSS (SD) NA 1.8 (1.2) 5.9 (1.2) 5.3 (1.6) 2.2 (1.6) 5.5 (1.5) 5.2 (1.6) 0.610

AverageMS-DSS (SD) NA 1.3 (0.5) 2.1 (1.1) 2.0 (0.8) 1.4 (0.7) 2.3 (1.3) 1.9 (1.0) 0.511

p-value column tests for differences in demographic parameters between the twocohorts (excludingcontrols), using a chi-squared test for sex andaWilcoxon rank test for quantitative variables. All
statistical tests were two-sided. See also Methods section.
HV healthy volunteer, RRMS relapsing-remitting multiple sclerosis, SPMS secondary progressive multiple sclerosis, PPMS primary progressive multiple sclerosis, EDSS expanded disability status
scale, DD disease duration, MS-DSSMultiple Sclerosis Disability Severity Score, SD standard deviation. See also Methods section.
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cascade, while significantly associated with all three outcomes showed
lower p-values and more than twice contributing GO/REACTOME
complement-related terms with BVD severity as compared to MS-DSS.
In contrast, NOTCH signaling (specifically, NOTCH1 and NOTCH3,
JAG1, JAG2, DLL1, DLL4) was significantly associated only with MS-DSS
outcomes. The “Neuron recognition” category, enriched for proteins
involved in Ephrin signaling, neuronal recognition, junctional mole-
cules, and axon guidance proteins were associated with all three MS
severity outcomes, with stronger MS-DSS association based on lower
p-values and higher number of significant terms.

To provide directionality of these biological categories with MS
severity outcomes, we aggregated either positively or negatively cor-
related CSF-biomarkers (FDR-adjusted p < 0.05) with MS severity out-
comes and ran g:Profiler enrichment analysis using operator-defined
background of the 1305 proteins included in the SOMAScan (Fig. 5;

right panels). This analysis demonstrated positive associations of
coagulation and complement cascades and negative associations for
NOTCH signaling and neuron recognition categories with MS severity.
As the proteins from Innate immunity/cytotoxicity category had both
positive and negative correlations with MS severity outcomes, this
category did not exert statistically significant positive or negative
associations with MS severity.

Spearman correlation coefficients and FDR-adjustedp-values38 for
all individual CSF biomarkers are in the Supplementary Data 6. We
observed large differences in the number of CSF proteins that were
significantly (FDR-adjusted) correlated with different MS severity
outcomes: 26 for MS-DSS measured at baseline, 76 for MS-DSS at
follow-up and 55 for BVDseverity. Only twoSOMAmers correlatedwith
ARMSS at baseline and one at follow-up visits and no biomarkers
correlated with MSSS. Each of these CSF proteins showed only small

Fig. 2 | Adjusting SOMAmers based on physiological age associations.
a Regression coefficients for the 75 SOMAmers with age associations verified in
healthy volunteers (HV) cerebrospinal fluid (CSF). Blue triangles compare effect
sizes (regression coefficients) of physiological age on protein concentrations in
serum (external HV cohort from INTERVAL study; x-axis) versus CSF (internal HV
cohort; y-axis). Circles correspond to multiple sclerosis (MS) CSF coefficients with
concordant (black) or discordant (red) associations with age compared to HV
cohorts. Vertical lines connect the CSF coefficients for MS and HV cohorts for the
same biomarker. b Example of adjusting measured CSF concentrations of a single
protein (growth differentiation factor 15; GDF15) by subtracting effect of healthy
aging. GDF15 log-transformed relative fluorescent unit (RFU) values (y-axis) versus
age (x-axis) are displayed for HV (top) and MS (bottom) cohorts, before (left) and
after (right) adjustment. The HV simple linear regression line (blue) used for the

adjustment is superimposed on each panel. The coefficient of determination [R2]
and the corresponding p-value were extracted from the linear model (represented
by the black line) of HV age-adjusted GDF15 values versus age in MS patients.
c Heatmap displaying the standardized expression (log-scaled z-scores) for the
75 selected SOMAmers (rows, for ordered list of proteins, see Supplementary
Data 15), separated based on HV/MS concordance or discordance, for all patient
samples (columns). Corresponding ages for each participant are displayed in
ascending order at the top of the heatmap. d Selected pathways identified using
functional enrichment STRING analysis along with Benjamini–Hochberg-adjusted
–log10(p-values) describing how significant the functional enrichment is for age
concordant and discordant proteins, respectively. See also Supplementary Data 1
and Supplementary Data 2. All statistical tests were two-sided. Source data are
provided as a Source Data file.
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effect size when correlating with MS severity outcomes (i.e., up to
Spearman Rho =0.382 for MMP7).

Development and validation of CSF biomarker-based MS sever-
ity models (Fig. 1c)
Observing that only few CSF proteins correlated significantly with MS
severity outcomes and all exerted small effect sizes, we asked whether
we can use machine learning (ML; i.e., random forest39 with a variable
selection pipeline40) to aggregate CSF biomarkers into models that
predict MS severity in the independent validation cohort with effect
sizes higher than any single CSF biomarker (Figs. 1c and 6a).

For the primary outcome (MS-DSS at baseline; Fig. 6b), the model
selected 57 SOMAmer ratios (75 unique biomarkers) and explained 62%
of variance in the training cohort (Fig. 6b, left panel, Rho=0.767,
R2 = 0.618, CCC=0.662 [CCC=Concordance Correlation Coefficient-
reflects 1:1 fit between measured and CSF-predicted outcomes, with
perfect fit = 1]; p< 2.2 × 10-16). 21 ratios (34 unique SOMAmers) selected
byMS-DSSmodel based on follow-up clinical data (secondary outcome)

had the strongest training cohort effect size (MS-DSS Follow-up; training
cohort results [Fig. 6c, right panel]: Rho=0.781, R2 = 0.634, CCC=
0.719; p< 2.2 × 10-16). The BVD severity model (exploratory outcome),
consisting of 21 ratios (35 unique biomarkers), explained 60% of var-
iance (Fig. 6b, middle panel, Rho=0.778, R2 = 0.597, CCC=0.675;
p< 2.2 × 10-16). Collectively 3 MS severity models used 99 SOMAmer
ratios; 97 unique and two SOMAmer ratios shared between the models
predicting MS-DSS at baseline and at follow-up.

Considering the small number of CSF biomarkers that constitute
eachof thesemodels (i.e., representing 0.1–0.3% of human proteome),
the effect sizes observed in the training cohort were almost certainly
too optimistic. ML-based algorithms invariably overfit the data and the
amount of overfit cannot be determined unless themodels are applied
to new observations (independent validation cohort) not used in the
model development (Fig. 6c).

When applied to validation cohort, all three models validated with
very low p-values. Expectedly, the effect sizes diminished considerably;
The CSF-based MS-DSS at baseline model captured 17% of variance of

Fig. 3 | Adjusting SOMAmers to subtract effects of physiological sex associa-
tions. a Regression coefficients for the 35 SOMAmers with sex associations from
cerebrospinal fluid (CSF) and serum. Blue triangles compare effect sizes
(regression coefficients) of protein association with sex measured in healthy
volunteer (HV) serum in the published (INTERVAL) study (x-axis) with internal HV
CSF cohort (y-axis). Circles correspond tomultiple sclerosis (MS) CSF coefficients
with concordant (black) and discordant (red) associations with sex compared to
HV. Vertical lines connect the CSF coefficients for our MS and HV cohorts for the
same biomarker. SERPINA10, identified by a black arrow, showed discordant
association with sex in MS versus HV. b Example of adjusting CSF protein con-
centration to subtract effects of physiological sex differences on prolactin (PRL).

CSF PRL log-transformed relative fluorescent unit (RFU) values (y-axis) versus sex
(x-axis) are displayed for both HVs (top) and MS (bottom) cohorts, before (left)
and after (right) adjustment, showing no residual difference betweenMS and HV.
cHeatmap displaying the standardized expression (log-scaled z-scores) for the 35
sex-associated biomarkers (rows), separated based on elevation in females/males,
for all patient samples, separated by males and females (columns). d Selected
pathways identified using functional enrichment STRING analysis along with
Benjamini—Hochberg-adjusted –log10(p-values) describing how significant the
enrichment is for female- elevated and male-elevated proteins, respectively. See
also Supplementary Data 3 and Supplementary Data 4. All statistical tests were
two-sided. Source data are provided as a Source Data file.
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measured MS-DSS (Fig. 6c, left panel, Rho=0.395, R2 = 0.166, CCC=
0.306; p=6.5 × 10–5), BVD severity model captured 22% of variance of
measured values (Fig. 6c, middle panel, Rho=0.470, R2 = 0.219, CCC=
0.400; p= 1.1 × 10-5) and MS-DSS at follow-up captured 26% of variance
(Fig. 6c, right panel, Rho=0.505, R2 = 0.264, CCC=0.430; p=2.4 × 10–7).
This hierarchy of model validation (i.e., MS-DSS at baseline <BVD
severity <MS-DSS at follow-up) was identical to the hierarchywithwhich
outcomes correlated with individual CSF proteins.

Supplementary Data 7 contains annotated workbook that
includes variable importance metrics41 for all three models.

CSF biomarker-based model predicts future rates of disability
accumulation, as well as EDSS-based MS severity outcomes
The validated CSF biomarker-based models explain between 17 and
26% of variance measured by MS severity outcomes. How should we
interpret this performance and how does it compare to published
biomarkers/models of MS severity?

First, it is important to dissect plausible relationship between
modeled outcomes (i.e., MS severity scales) and modeling predictors
(i.e., CSF proteins). The biological substrate of neurological disability is
loss of neuronal functions, molecularly reflected by transient loss of
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coefficients from the elastic net (EN) model predicting age in the healthy volun-
teers (HV). Red-shading corresponds to biomarkers that increase with age, and
green-shading corresponds to biomarkers decreasing with age. b Observed vs
model-predicted age in the HV cohort (top) and multiple sclerosis (MS) cohort
(bottom). The linear regression line (red) of observed vs predicted MS samples is
superimposed on the green regression line of the HV cohort. The coefficient of
determination (R2) of the red line shows that cerebrospinal fluid (CSF) biomarkers
explain almost 40% of variance associated with age of MS patients. c Difference
between CSF model-predicted ages and observed ages (y-axis) in HV and MS
subtypes (x-axis). The black bars mark significant differences based on pairwise

comparisons of the diagnostic groups using two-sided Wilcoxon test and false-
discovery rate (FDR) adjustment for multiple comparisons (p < 0.0001 ****,
p < 0.001 ***, p < 0.01 **, p < 0.05 *). Exact FDR-adjusted p-values for individual
comparisons: HV-SPMS: p = 0.049, HV-PPMS: p =0.00058, RRMS-SPMS:
p = 0.0072, RRMS-PPMS: p = 2.3 × 10-5. The lower and upper hinges of the boxplots
correspond to the first and third quartiles (the 25th and 75th percentiles). The
upper whisker extends from the hinge to the largest value no further than
1.5 * interquartile range (IQR) from the hinge. The lower whisker extends from the
hinge to the smallest value atmost 1.5 * IQR of the hinge. Source data are provided
as a Source Data file.
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electrical conductivity due to inflammation and associated blood–brain
barrier (BBB) opening, demyelination, lack of glial support, pathological
synaptic pruning andeventually deathof neurons. Theseheterogeneous
processes might be captured by CSF proteome (see below), but they
can’t be differentiated by clinical (or imaging) severity scales.

In other words, as ourmeasurements do not capture complexity of
underlying process, it is impossible tomeasureMS severity using clinical
or imaging outcomes with the precision comparable to measuring
physical phenomena, such as distance between two points in physical
space. Different tools that measure physical distance will capture close
to 100% variance, irrespective of measuring units they use. In contrast,
the correlation matrix (Fig. 7a and Supplementary Data 8) shows only
modest correlations between MS severity outcomes measured at first
clinic visit, explaining minimum of 0, maximum of 55 and an average of

16% of variance in the independent validation cohort. If the clinical
measurements of MS severity explain up to 55% of variance, it is
impossible for CSF biomarkers to explain more.

If the correlation betweenMS severity outcomes is limited, how can
we judgewhichoutcome ismost relevant?Wecanassess clinical valueof
MS severity outcomes bymeasuring effect sizes with which they predict
future rates of disability progression. Only MS-DSS (but not MSSS or
ARMSS) predicted future rates of disability progression in the indepen-
dent validation cohort, measured prospectively by CombiWISE and
adjusted for the effect of treatments as described21 (Fig. 7a). Reassur-
ingly, CSF biomarker-based model of MS-DSS (i.e., primary outcome)
also predicted future rates of disability progression in the independent
validation cohort with comparable (i.e., Rho=0.26, p=0.0175
FDR-adjusted) effect size as clinical (MS-DSS) outcome. Even the
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Fig. 5 | Molecular pathways associated with MS severity. One-thousand three-
hundred five healthy volunteer (HV) age- and sex-adjusted SOMAmers were cor-
relatedwith the threemultiple sclerosis (MS) severity outcomes—multiple sclerosis
disease severity score (MS-DSS) at baseline (dark green),MS-DSS at follow-up (light
green), and brain volume deficit (BVD) severity (orange). Spearman correlation
coefficients were used for the Functional enrichment analysis (FEA) in the STRING
database. Enriched pathways and processes with false-discovery rate (FDR)-adjus-
ted p-value < 0.05 were grouped into fivemain categories, and the boxplots for the
p-values of individual processed are displayed. The validity of the findings was
tested in g:Profiler database, where the same list of 1305 genes ordered by the
increasing p-value was inputted for the FEA using the g:GOSt tool. The boxplots
of FDR-adjusted p-values are shown. # term counts the number of processes
identified for each category and outcome. Biomarkers significantly (FDR-adjusted

p-value < 0.05) correlating with either of the three outcomes were submitted to
g:Profiler using the custom set of 1305 SOMAmers (dark blue) or the whole pro-
teome (light blue) as analysis background. The same set of SOMAmers was also
analyzed by STRING using whole proteome background (violet). Boxplots of p-
values for significantly enriched processes are displayed, as well as the number of
significantly enriched processes that the g:Profiler identified linked to MS severity
outcomes using 1305 SomaScan proteins as a background. FDR-adjusted p-values
aredisplayedona–log10 scale, the reddashed line depicts the FDR-adjustedp-value
of 0.05. The lower and upper hinges of the boxplots correspond to the first and
third quartiles (the 25th and 75th percentiles). The upper whisker extends from the
hinge to the largest value no further than 1.5 * interquartile range (IQR) from the
hinge. The lower whisker extends from the hinge to the smallest value at most
1.5 * IQR of the hinge. Source data are provided as a Source Data file.
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CSFbiomarker-basedmodelofBVDseveritypredicted future ratesofMS
disability progression with higher effect size than EDSS-based MS
severityoutcomes (Rho=0.21), but thep-valuewasno longer statistically
significant after adjusting formultiple comparisons (p=0.06). Although
CSF biomarker-based model of MS-DSS collected at last clinic visit also
correlated with MS the progression slopes (Supplementary Data 8), this

comparison contains a circular argument, in that MS-DSS measured at
last clinic visit already comprises thedisability progression that occurred
during follow-up. We conclude that CSF biomarker-based models out-
performed EDSS-based MS severity outcomes (MSSS and ARMSS) and
matched MS-DSS in predicting future slopes of disability progression in
the independent validation cohort.

Article https://doi.org/10.1038/s41467-022-35357-4

Nature Communications |         (2022) 13:7670 9



CSF biomarker-based models also predicted all EDSS-based MS
severity outcomes with statistical significance and weak effect sizes
(Rho 0.24–0.38; Supplementary Data 8).

Finally, we compared predictive effects of CSF-biomarker-based
models with NFL measured in the CSF (cNFL) and serum (sNFL). Most
NFL measurements were part of recently published paper14, where we
made unexpected observation that while cNFL strongly outperforms
sNFL in predicting acute MS injury reflected by contrast-enhancing
lesions (CEL) on brainMRI, only sNFL but not cNFL correlates (weakly)
withMS severity outcomes. This sNFL advantage resides in its ability to
capture spinal cord injury that leads to release of NFL into systemic
circulation (likely from axons of spinal roots and peripheral nerves),
bypassing the CSF14. However, while sNFL explains 5.7% variance of
baselineMS-DSS (p =0.023) neither cNFLnor sNFL predict future rates
of disability accumulation (Fig. 7b and Fig S2).

Thus, we conclude that CSF biomarker-basedmodels outperform
NFL in predicting future rates of MS disability accumulation.

SomaScan-based models of MS severity reveal pathophysiolo-
gical heterogeneity among MS patients that transcends clinical
classification of MS subtypes
We alluded to the possibility of heterogeneity in disease mechanisms
that underlie MS severity, which is not captured by clinical MS severity

outcomes, but may be reflected in CSF biomarkers. To explore possi-
bility of such pathogenic heterogeneity, we performed unsupervised
cluster analysis42,43 of MS patients using CSF proteins from the three
MS severity models.

Seven distinct patient clusters (Fig. 8) differed in CSF concentra-
tions of proteins from four protein modules: 1. Myeloid lineage/TNF
module (Module 1; red annotation; Supplementary Data 9); 2. CNS
repair module (Module 2; green annotation; Supplementary Data 10);
3. Complement/coagulation module (Module 3; blue annotation;
Supplementary Data 11); and 4. Adaptive immunity and CNS stress
module (Module 4; black annotation; Supplementary Data 12). The
protein module names were based on STRING annotations (Supple-
mentary Data 9–12).

All MS severitymodels selected biomarkers from all fourmodules
(Fig. 8). While the MS clinical subtypes (i.e., RRMS, SPMS, and PPMS)
were distributed across all seven molecular groups, few minor differ-
ences were noted: patient cluster 2 had a predominance of male pro-
gressive MS patients. This cluster had relatively low expression in the
CNS repair module and high expression in the Myeloid lineage/TNF
module and Complement/coagulation module. Consequently, these
patients had higher MS severity. In contrast, patient clusters 3 and 4
were relatively enriched for female patients. Patient cluster 3 had only
high expression of protein module 4 (Adaptive immunity and CNS

Fig. 6 | Development and validation of CSF-based MS severity models. a All
models were developed and optimized in the training cohort (N = 129). Three
modelingoutcomeswereused:Multiple SclerosisDiseaseSeverity Score (MS-DSS) at
baseline, brain volume deficit (BVD) severity at baseline, andMS-DSS atmost recent
follow-up. Healthy volunteer (HV) age- and sex-adjusted SOMAmers and all possible
SOMAmer ratios were used as variables for the modeling. Random forest models
were generated using a high-performance computing cluster (1), A statistical learn-
ing pipeline optimized models by decreasing the number of predictors to minimize
overfit: At each step, we constructed 10 random forest models and recorded the
training out-of-bag (OOB) model error (2), We also averaged variable importance
measures from these 10 random forest models based on node impurity (3). The 10%

least contributing variables were excluded, and the process repeated till the OOB
error had minimized (red dashed line). The remaining predictors constituted the
final/optimized model. b Performance of the final models was evaluated by Spear-
man correlation test (Rho), coefficient of determination (R2) of a linear regression
model, Lin’s concordance correlation coefficient (CCC), andp-value of the Spearman
correlation between observed (x-axis) and predicted (y-axis) outcomes in the train-
ing cohort. cThevalidity of the threeRFmodelswas tested in an independent cohort
of 98 samples that did not contribute in any way to development of the models.
Concordance line (x= y) is shown in black. Linear regression lines are shown in black
with gray-shaded error band representing 95% confidence interval. All statistical
tests were two-sided. Source data are provided as a Source Data file.
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Fig. 7 | MS severity outcomes in the validation cohort and their associations
with cerebrospinal fluid (CSF) model predictions. a Spearman correlation (the
size and color of the square represent the Spearman Rho; significance levels are
depicted by stars) between five measured clinical outcomes and two CSF bio-
marker-predicted multiple sclerosis (MS) severity outcomes in the validation
cohort (N = 98). b Correlations between prospectively measured MS progression
slopes (i.e., therapy adjusted CombiWISE slopes derived from longitudinal clinical

follow-up; y-axes), clinical/imaging outcomes and CSF biomarker-predicted out-
comes (x-axes). For exact Spearman Rho, p-values, and R2 see Supplementary
Data 8.MS-DSSMultiple Sclerosis Disability Severity Score,MSSSMultiple Sclerosis
Severity Score, ARMSS Age-Related Multiple Sclerosis Severity, CombiWISE Com-
binatorial weight-adjusted disability score, sNFL serum neurofilament light chain,
cNFLCSF neurofilament light chain. All statistical tests were two-sided. Source data
are provided as a Source Data file.
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stress) and was enriched in RRMS subjects. Patient cluster 4 had rela-
tively high expression of all protein modules except module 3 (Com-
plement/coagulation module), which meant that these patients had
relatively low MS severity.

These data support different representations of mechanisms
associated with MS severity that go beyond physiological pathways of

sexual dimorphismandmayunderliedifferences inprognosis between
male and female MS patients.

Discussion
Developing treatments that inhibit disability progression require
understanding ofmechanism(s) that cause CNS tissue injury. However,
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identifying disease mechanism for polygenic CNS diseases is challen-
ging because they occur behind the BBB, pathology studies can’t dif-
ferentiate causal processes from epiphenomena and disease
mechanisms are inadequately reproduced in animal models. CSF bio-
markers offer complementary information and provide ability to link
intrathecalmolecular processes to clinical outcomes. This study shows
that CSF biomarkers can be aggregated to models that correlate with
clinical and imaging MS severity outcomes and predict future rates of
disability accumulation, measured by prospective longitudinal follow-
up of MS patients in the independent validation cohort.

Wewillfirst address the study limitations: The cohorts are relatively
small if judged by EDSS-based outcomes, raising concerns about sta-
tistical power. Statistical power is the probability with which we’ll detect
true relationship when the true relationship exists. Clearly, we detected
(training cohort) and validated in newpatients, relationshipsbetweenall
three CSF biomarker-based models and MS severity outcomes.

However, while in training cohort models explained >60% of var-
iance, this decreased to 17–26% of variance explained in the indepen-
dent validation cohort. It is tempting to think that using substantially
larger cohorts would yield models with stronger validated effect sizes.
However, while training models in much larger cohort would likely
decrease model’s overfit, effect sizes depend on the outcome: the
accuracy with which it is measured and how homogeneous is the
biology that underlies it. This is demonstrated in serum SomaScan-
based models of 11 quantitative health outcomes: slight decrease of
models’ validation performance was seen even when using thousands
of subjects in the training cohort, but validated effect sizes (or whether
the model validated at all) were entire dependent on the outcome, not
on the size of the training and validation cohorts44. There is substantial
inaccuracy inMS severitymeasurements that stems fromdifferences in
performing neurological examination, translating neurological exam-
ination into a single number, but also inmotivation and cooperation of
the patients. This inaccuracy is reflected inmodest correlations among
MS severity outcomes. We believe that outcome inaccuracy deter-
mines the hierarchywith which outcomes correlatedwith CSF proteins
(e.g., 13–76 timeshighernumber of biomarkers correlatedwithMS-DSS
than with EDSS-based outcomes) and predict longitudinally measured
MS progression slopes (Supplementary Data 8).

Thus, the imprecision of measuring MS severity and the hetero-
geneity of the mechanisms that underlie it limit the effect sizes with
which any model may predict MS severity. Consequently, our results
are best interpreted in comparison to published literature. To do so,
we recently published meta-analysis45 of 302 publications that used
clinical, imaging, or biomarker-based predictors of MS clinical out-
comes: Table 2of thatmeta-analysis summarizes studies predictingMS
severity as continuous outcomes. The training cohorts’ results
explained maximum of 45% of variance, while independent validation
cohorts explainedmaximumof 12% of variance. Themeta-analysis also
shows that decrease in effect sizes from training to validation cohorts
is not an anomaly, but a rule. Furthermore, only 8% of publications
validated effect sizes in new cohort. We conclude that CSF biomarker-
based models of MS severity in current study achieved highest effect
sizes in both training and validation cohorts. Validated effect sizes are
more than two-fold higher than the strongest published validated
model, using any type of predictor, including MRI.

Current models also outperform NFL, currently the most useful
single biomarker of CNS injury. IncreasedNFL reliably identifies people
with acute or subacute neuroaxonal injury such as subjects forming
new MS lesions. While some (but not all) studies also linked NFL
measurements to future MS progression, the published studies
emphasized p-values rather than effect sizes13,16,46, which are compar-
able to what we measured in the validation cohort here.

The advantage of CSF biomarker-based models over NFL resides
not just in stronger prognostic power, but in their ability to reflect
potential disease mechanisms, whereas NFL is an epiphenomenon of
axonal injury. Indeed, the important biological insight learned from
this study is the fundamental role CNS tissue plays in determining MS
severity and that its influence dominates the MS severity measures
based on physical disability, while coagulation and clotting cascades
are stronger determinants of the BVD severity.

We also observed that, to the extent to which measured CSF
biomarkers reflect physiological aging (which is 97% of variance for
HV; Fig. 4b), MS is not associated with accelerated physiological aging
on a molecular level. In fact, age-discordant CSF proteins (i.e.,
decreased in healthy aging and increased in MS aging; Fig. 2a) point
towards re-expression ofCNSdevelopmental pathways related to axon
guidance, EPHB2, EPHB4, EPHB6, NTN1, NOTCH1, NOTCH3, and SHH,
which likely mediate CNS repair, as these proteins and their signaling
pathways negatively correlate with MS severity.

NOTCH-related signaling was especially strongly and negatively
associatedwith the rates of development of clinical disability. NOTCH-
signaling pathways have overarching effects on many MS-related
processes, includingCNS repair (adult neurogenesis, formation of new
synapses and remyelination)47, neovascularization and vascular
damage (especially NOTCH3), even the immune system48.

This result has important implications: while the prevalent notion
blamesneurodegenerativemechanisms for disability progression inMS,
our results identified lack of neuro-reparative processes, not only those
linked to remyelination, but also those that directly affect neurons, as
having validated CNS association with disability-based MS severity.
Indeed, while these pathways decrease with natural aging, their re-
expression in MS confers better prognosis. Thus, new research is nee-
ded to provide mechanistic insight, which could translate into treat-
ments strengthening these physiological neuro-reparative mechanisms,
that can be clearly re-expressed even in older progressive MS patients.

Thedichotomyofmolecularpathways associatedwith the rates of
accumulation of physical disability versus with BVD severity is fasci-
nating, as it may finally explain why some MS patients have severe
brain damage on structural MRI imaging (i.e., large T2 lesion load and
prominent brain atrophy), but they have surprisingly low physical
disability; whereas other MS patients with minimal brain damage
accumulate physical disability at high rate from disease onset (e.g.,
PPMS, especially male subjects).

We already mentioned that NOTCH signaling-related GO/REAC-
TOME termswere strongly associatedwith bothMS-DSSmodels, while
coagulation and clotting cascades dominated BVD severity. Our find-
ings expandmechanistic studies from animalmodels and humanpost-
mortem studies that link vascular permeability, resulting in the influx
of plasma proteins, such as fibrinogen and complement components
to CNS tissue, with subsequent brain damage49.

Fig. 8 | SomaScan-based models of multiple sclerosis (MS) severity reveal
pathophysiological heterogeneity among MS patients. a Heatmap displaying
the log-expression of the selected proteins from the three severity models in the
MS cohort, with hierarchical cluster analysis identifying four protein modules
(rows) across seven patient clusters (columns). RRMS relapsing-remitting multiple
sclerosis, SPMS secondary progressive multiple sclerosis, PPMS primary pro-
gressive multiple sclerosis, MS-DSS Multiple Sclerosis Disease Severity Score, BVD
brain volume deficit. Black rectangles on the right of the module annotations
indicate whether the specific protein was present in a given model. b Spearman

correlation plot of pipeline-selected biomarkers, ordered by module membership
(left), along with Spearman correlation coefficients between model-selected bio-
markers and measured MS severity outcomes (right). Colors of the protein labels
correspond to module membership in a. c Selected pathways identified using
STRING analysis, along with false-discovery rate (FDR)-adjusted –log10 p-values for
the four proteinmodules, respectively. See also SupplementaryData 9–12. Ordered
list ofproteins displayed in the heatmap (8a) and correlationmatrix (8b) is available
in Supplementary Data 16. Source data are provided as a Source Data file.
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This finding poses an important question: why aren’t the coagu-
lation/platelet activation-related pathways equally associated with
disability-basedMS severity outcomes? Perhaps the explanation lies in
the molecular differences between brain and spinal cord tissue, with
the latter being the dominant anatomical site associated with clinical
disability50–52. The beneficial CNS processesmay also dominate, so that
in their presence, the increased vascular permeability and influx of
plasma proteins, including complement, does not cause neuronal or
axonal damage.

Our results also inform on the long-standing question whether
CNS tissue damage outside of MS relapses and especially at the pro-
gressive stage of MS is caused by compartmentalized inflammation or
neurodegenerative mechanisms: on a group level, CSF biomarkers
associate MS severity with both CNS- and immune-related pathways.
From the immune-mediatedmechanisms both this study and previous
genetic studies53,54 singled out immune effector mechanisms that
cause cell death, such as cell-mediated cytotoxicity (i.e., cytotoxicity of
T cells, but also NK cells and neutrophils and monocytes/macro-
phages), and complement-related processes as reproducibly asso-
ciated with MS severity.

In this regard, a biased knowledgebase of public databases
towards cancer biology with underrepresentation of CNS processes
somewhat limits interpretation of these associations. For example,
increased CSF levels of early complement proteins may not reflect
their blood origin, but rather a proinflammatory, toxic response of
microglia and astrocytes10,55, even though this biology was not anno-
tated in pathway analyses. Hence, mechanistic studies must follow our
results to identify cellular sources of biomarkers assembled in
CSF biomarker-basedmodels and the conditions under which they are
released and consumed during physiological and pathogenic interac-
tions between CNS and immune cells.

Lastly, intra-individual heterogeneity in pathways linked to MS
severity observed in this study is highly reminiscent of pathological
heterogeneity involved in the formation of acute MS lesions56. This
information is essential for development of new, process-specific
treatments aiming to slow CNS tissue destruction in patients with
residual progression on immunomodulatory drugs as it shows that
approximately a half of MS patients lack any of the four mechanisms
identified in this study. Thus, without CSF biomarker guidance, almost
half of the participants in clinical trials of novel treatments may lack
the target of the tested medication. This will dilute therapeutic
response on a group level, requiring prohibitively large Phase2/3 trials.
Even if such an expensive drug development succeeds, the blind
application of such treatments will incur high societal cost and unne-
cessarily expose patients who lack therapeutic targets to the side
effects of applied drugs.

In conclusion, CSF analysis for oligoclonal bands was essential for
MS diagnosis 40 years ago butwas outpaced in contemporary practice
by non-invasive CNS imaging. Advanced proteomic assays applied to
CSF have a potential to revolutionize drug development and perso-
nalize treatments for MS and other CNS diseases57. We expect that the
clinically useful information derived from CSF biomarkers will con-
tinue to expand andwill eventually includepredictivemodels tomatch
therapy to the molecular mechanisms that drive disease process in
individual patients. This will make treatments simultaneously more
effective, safer, and cost-efficient.

Methods
Subjects
MS patients and HVs were prospectively recruited between May 2004
and April 2021 under an approved IRB protocol “Comprehensive
Multimodal Analysis of Neuroimmunological Diseases of the Central
Nervous System” (Clinicaltrials.gov identifier NCT00794352) and
signedwritten informed consent (samples collected before 2009were
part of the “NIB Repository Protocol”.

[10-N-0210]). To be considered for the study, patients must have
had a clinically definitive MS diagnosis, a lumbar puncture (LP) within
one year of a clinical visit that included four clinical scales (i.e., EDSS17,
Scripps Neurological Rating Scale (SNRS)58, nine hole peg test (9-HPT),
and 25 foot walk (25FW)), which are all required for calculation of
CombiWISE18.

To assure that CSFbiomarkers, imaging, and clinical datawere not
influenced by treatments orMS exacerbations, patients were excluded
if they were inMS exacerbation or have been on low-efficacy therapies
(i.e., Copaxone, interferon-beta preparations, and oral DMTs) within
3 months of LP, or high-efficacy therapies (i.e., Natalizumab, Daclizu-
mab, Alemtuzumab, Rituximab, orOcrelizumab)within 6months of LP
[note that the classification of drugs into low and high efficacy was
adopted from a meta-analysis of age-adjusted efficacies from con-
trolled clinical trials59].

HV inclusion criteria were ages 18-75, lack of neurological diag-
nosis or systemicdisease that could influence neurological disability or
brain MRI, and with vital signs in the normal range during the initial
screening. The demographic data of all subjects are detailed in Table 1.

Clinical data
Patients underwent neurological examination by an MS-trained
clinician. Before November 2017, the calculation of neurological
rating scales EDSS and SNRS was performed by each clinician.
After November 2017, the calculation of all neurological rating scales
was fully automated using NeurExTM App24, which also computes
the NeurExTM score, a continuous disability score ranging from zero
to theoretical maximum of 1349. For clinical visits linked to CSF
collection before 11/2017, an MS-trained clinician retrospectively
transcribed the neurological examination documented in NIH elec-
tronic medical records into NeurExTM App. Clinicians rating neuro-
logical disability were blinded to volumetric MRI data and
CSF biomarker data, as well as to calculated MS severity scales
(described below).

Non-clinical investigators, blinded to neurological disability
scales, MRI volumetric data, and CSF biomarker data collected 25FW
and 9-HPT and uploaded these to the research database. All clinical
and functional data were quality controlled during weekly clinical care
meetings after which the corresponding parts of the database were
locked to prevent modifications.

CombiWISEwas automatically computed in the research database
from EDSS, SNRS, 25FW, and 9-HPT values as described18. Machine
learning-optimized MS-DSS was computed as described21. MS-DSS
predicts future rates of disability progression as opposed to EDSS-
based severity scales—MSSS19 and ARMSS20.

All computed scales developed by the Bielekova lab are freely
available at https://bielekovalab.shinyapps.io/msdss/. NeurExTM soft-
ware is likewise freely available to non-commercial entities.

CSF processing
CSF was collected on ice and processed according to a written
standard operating procedure by investigators blinded to clinical
and MRI outcomes. Aliquots were assigned alphanumeric identifiers
and centrifuged for 10min at 4 °C within 15min of collection. Until
use supernatant was aliquoted and stored in polypropylene tubes
at –80 °C.

SomaScan®
CSF samples were analyzed blindly, using SomaScan® technology60

(Somalogic Inc, Boulder, CO, USA), a DNA aptamer-based assay that
measures relativefluorescenceunits (RFUs) of 1,305proteins (available
after October 2016, referred to as the 1.3 K platform) by theNIHCenter
for Human Immunology. In total, 227 MS patients and 24 HVs (42
unique samples) had CSF samples available on the 1.3 K platform that
met the inclusion criteria discussed above.
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Magnetic resonance imaging (MRI)-based MS severity scale
The brain MRIs were performed on 1.5 T and 3T Signa units (General
Electric, Milwaukee, WI) and 3 T Skyra (Siemens, Malvern, PA) equip-
ped with standard 16- and 32-channel imaging coils.

MRI sequences used for grading comprised of T1 magnetization-
prepared rapid gradient-echo (MPRAGE) or fast spoiled gradient-echo
(FSPGR) and T2 weighted three-dimensional fluid attenuation inver-
sion recovery (3D FLAIR). The details of the MRI sequences are pre-
viously published (32).

The brain MRI images were evaluated by two complementary
methods: 1. semiquantitative ratings were assembled to Combinatorial
MRI scale of CNS tissue destruction (COMRIS-CTD) using the pub-
lished formula (32), available at https://bielekovalab.shinyapps.io/
msdss/; 2. Identical MRI scans were analyzed using LesionTOADS
volume segmentation algorithm61, performed internally at the NIH
until December 2018 and afterwards in collaboration with QMENTA
platform (https://www.qmenta.com/).

Raw unprocessed but locally anonymized and encrypted T1-
MPRAGE or T1-FSPGR and T2-3D FLAIR DICOM files as input sequen-
ces, ideally with 1 mm3 isotropic resolution, were uploaded to the
QMENTA platform. LesionTOADS, now implemented into the cloud-
based service, is a fully automated segmentation algorithm using mul-
tichannelMRIdata62. Theuploaded sequences are anterior commissure-
posterior commissure (ACPC) aligned, rigidly registered to each other
and skull stripped (theT1 image is additionally bias-field corrected). The
segmentation is performed by using an atlas-based technique combin-
ing a topological and statistical atlas resulting in computed volumes for
each segmented tissue in mm3. Manual quality control of the scans was
performed to check for inaccurate segmentation of brain structures,
low image quality, and motion artifacts.

To calculate the BVD severity measurement, brain volume deficit
measured as 1-BPFr (calculated as proportion of intracranial volume
occupied by brain tissue; [Cortical gray matter +Caudate +Thalamus +
Putamen+Normal appearing white matter + Lesions]/[Cerebrum
graymatter +Caudate +Thalamus + Putamen+Normal appearing white
matter + Lesions + Sulcal CSF +Ventricular CSF]) was regressed against
age using baseline data in the full cohort of patients with MS. This
demonstrated strong evidence of increasing brain volume deficit over
increasing age (t128 = 4:41, p-value=0.00002). The residuals from the
resulting regression were then calculated. These residuals were used as
the BVD severity outcome, where positive values are indicative of
moreCNS tissue destruction in amanner analogous to clinicalmeasures
of MS severity.

Adjusting SOMAmers for differences in age and sex
As previous studies1,63,64 have demonstrated associations between
specificCSFproteinsmeasuredbySOMAscan and confounding factors
age and sex in HVs, we sought to adjust protein levels in our MS
patients to account for natural physiological differences due to age
and sex. An initial list of SOMAmers were selected from published
INTERVAL cohort examining serum proteins using SomaScan1 where
either age or sex associations were detected. The natural log of these
SOMAmers were modeled using regression to test for age and/or sex
difference in the 1.3 Kplatform inCSF samples fromMSpatients aswell
as HVs. SOMAmers with an association between age and/or sex with
p <0.05 in the MS cohort, and concordant directions between
INTERVAL HV serum and HV CSF, were adjusted in the MS data using
regression models derived from HV CSF samples.

Examining individual associations between SOMAmers and dis-
ease outcomes
Individual Spearman correlations were computed between adjusted
protein levels and MS severity endpoints. All p-values for individual
SOMAmer correlations were adjusted for multiple comparisons using
the FDR method38. See also Supplementary Data 6.

Constructing a CSF-based severity model of MS using statistical
learning
Random forest algorithm39 using the ranger R package65,66 was used in
RStudio software version 1.1.463 (utilizing R version 3.6.1) to construct
the CSF biomarker-based models of MS severity. For each platform,
theCSF samples at theuntreatedbaselinewere used topredictMS-DSS
at both the baseline visit and the most recent follow-up, and the BVD
severity measure at baseline. All possible protein ratios were included
in the modeling along with individual markers. The principle of ran-
dom forest algorithm and rationale for using protein ratios has been
explained3.

Prior to model development, the available data were randomly
split into training and validation cohorts, with 129 samples used as a
training cohort and 98 samples retained only for model validation.
To reduce number of ratios/markers based on predictive perfor-
mance, a variation of the published procedure40 was performed
(Fig. 6a)54. Briefly, 10 random forests were run using the training
cohort, and variable importance measures based on node impurity41

were averaged together. The bottom 10% of variables, according
to these average variable importance measures, were removed
from the candidate set. This process was repeated until only three
variables remained. The mean and standard deviation of the out-of-
bag (OOB) error was graphically assessed to determine the final
cut point for each model. This procedure was performed for
SOMAmers adjusted for age and sex. For each instance, a final ran-
dom forest model was constructed in the training cohort, using
ntree = 40,000 and mtry = 3*√p, where p is the number of available
features. Biological interpretations of the selected proteins were
explored using cluster analysis42,43, STRING analysis36, and g:Profiler
analysis37. The raw data and code are available as Supplementary
Data 13 and 14.

Statistics
All statistical tests are two-sided. All correlations were calculated using
Spearman correlation coefficients. Therefore, no assessment of line-
arity was performed. When determining if SOMAmers had physiolo-
gical age and sex associations, t-statistics from multiple linear
regression models were constructed. When comparing differences
between CSF-predicted age and observed age between diagnoses
pairwise comparisons using Wilcoxon signed-rank test and FDR
adjustment for multiple comparisons were used.

The MS disease heterogeneity was analyzed in the MS cohort by
unsupervised hierarchal clustering of z-score-transformed values of
SOMAmers selected by the three MS severity models using the
“ward.D2” clusteringmethod and Euclidean clustering distance as part
of the “ComplexHeatmap” R package67.

Study approval
All subjects were prospectively recruited under protocol “Compre-
hensive Multimodal Analysis of Neuroimmunological Diseases of the
Central Nervous System” (Clinicaltrials.gov identifier NCT00794352)
and signed written informed consent. The study was reviewed and
approved by the Intramural Institutional Review Board at the National
Institutes of Health. Healthy volunteers received financial compensa-
tion for their participation in the protocol.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant raw data supporting key findings of this study are
available within this article and its Supplementary Information.
Source data are provided with this paper. Biological interpreta-
tion of the selected proteins was explored using public databases
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STRING (https://string-db.org) and g:Profiler (https://biit.cs.ut.
ee/gprofiler/gost). Source data are provided with this paper.

Code availability
Custom R codes used for data analysis are available as Supplementary
Data 14.
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