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Direct retrieval of Zernike-based pupil func-
tions using integrateddiffractive deepneural
networks

Elena Goi 1,2 , Steffen Schoenhardt 1,2 & Min Gu 1,2

Retrieving the pupil phase of a beam path is a central problem for optical
systems across scales, from telescopes,where thephase information allows for
aberration correction, to the imaging of near-transparent biological samples in
phase contrast microscopy. Current phase retrieval schemes rely on complex
digital algorithms that process data acquired from precise wavefront sensors,
reconstructing the optical phase information at great expense of computa-
tional resources. Here, we present a compact optical-electronic module based
on multi-layered diffractive neural networks printed on imaging sensors,
capable of directly retrieving Zernike-based pupil phase distributions from an
incident point spread function. We demonstrate this concept numerically and
experimentally, showing the direct pupil phase retrieval of superpositions of
the first 14 Zernike polynomials. The integrability of the diffractive elements
with CMOS sensors shows the potential for the direct extraction of the pupil
phase information from a detector module without additional digital post-
processing.

Retrieving the phase distribution of an incoming wavefront is a pro-
blem of central interest for imaging systems across scales. On one
hand, this phase information can be used in the context of phase-
contrast imaging, the characterizationof near-transparent specimen in
biology andmedical research1, which has led to significant advances in
live cellmonitoring2 and tissue imaging3. On the other hand, unwanted
distortions of the wavefront result in the limited performance of
imaging systems of any scale frommicroscopes to telescopes4,5, which
can be corrected for if known. The phase distribution across a wave-
front can thereby be conveniently described by Zernike polynomials6,
which were first introduced by Frits Zernike (1953 Nobel Prize in Phy-
sics) in 1934 to describe the diffracted wavefronts in phase contrast
microscopy. The Zernike polynomials form a complete basis set of
functions that are orthogonal over a circle of unit radius, and therefore
their linear combination offer a mathematical description of arbitrary
pupil phase distributions of an optical systemwhile yieldingminimum
variance over a circular pupil. Hence, the Zernike polynomials have
been used in a wide range of field such as describing atmospheric

turbulence in astronomy7,8, ophthalmic optics9, lens design10 and
microscopy11.

As phase retrieval is such a central problem to optical imaging
systems, numerous methods for solving this task have been devel-
oped. Artificial Neural Networks (ANNs) and deep learning12–14, with
their capability to learn complex relationships without being pro-
grammed with specific physical rules, have been applied to determine
the Zernike coefficients that represent a given wavefront since the
‘90 s15. Together with conventional phase retrieval algorithms, such as
the Gerchberg-Saxton algorithm16 and indirect optimization methods,
such as modal wavefront sensing17 or pupil segmentation18, computer-
based ANNs are used for direct11,19 and indirect20–22 pupil phase retrie-
val. In indirect phase retrieval, focal plane images or detected
wavefronts23 are mapped to Zernike coefficients in a modal-based
approach, requiring a subsequent reconstruction of the wavefront.
While indirect phase retrieval is the most common method to deter-
mine the phase of a wavefront, direct phase retrieval, where the
wavefront phase information is directly retrieved, was recently shown
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to achieve higher accuracy11,19 in a single forward propagation step.
This higher accuracy does, however, come at the cost of computa-
tional complexity, large memory footprint11,19 and the need to use a
dual CCD camera system to reconstruct the sign of axially symmetric
aberrations such as defocus, which requires modification to the beam
path of the imaging system they are applied to11,19.

Despite the computational power and the flexibility of electronic
processing units and artificial intelligence (AI) accelerators, photonic
hardware and optical neural networks24–32 have been proposed as a
paradigm shift for deep learning and, in general, machine learning,
using photons instead of electrons for computation. Photonic hard-
ware offers high-speed optical communication (speed of light in
medium) and massive parallelism of optical signals (multiplexing in
time, space, wavelength, polarization, orbital angular momentum,
etc.). Through advances in photonic integration technology with low
losses33, this results in compact and configurable integrated photonic
processors. Free space optical neural networks such as diffractive
neural networks (DN2s)

25,34,35 and convolutional neural networks28, on
the other hand, exploit the nature of light propagation in free space
and the interaction of a light field with thin scattering layers to
implement convolutions and matrix multiplications passively in the
optical domain33. Among these, themore compact device form factors
can be achieved by DN2s, where the thin diffractive layers are sepa-
rated only by a fewwavelengths, able to implement all-opticalmachine
learning tasks such as classification algorithms25,36,37 or decryption34

with record-high neural densities. These systems can passively process
optical information in its native domain, with the advantages of direct
information processing at the speed of light, without the need for
image digitalization with specialized detectors or digital post-
processing. However, while DN2s commonly rely on phase modula-
tion for information processing, the inputs considered in current
experimental implementations25,35,36,38 are intensity distributions,
omitting the phase of the incident fields. Although there are several

proposals describing optical neural networks processing complex-
valued inputs in recent literature, these works implement the neural
networks either in-silico11,39,40, as digital neural networks, or they are
restricted to numerical models of D2N2s. The numerically proposed
optical networks are focused on performing logical operations on
vortex beams41 or orbital angular momentum multiplexing
schemes42,43 and hence specialized on operations with radially sym-
metric wavefronts, rather than the retrieval of arbitrary wavefronts,
which is the essential problem for imaging systems.

In this work, we propose a new single-step method to retrieve an
arbitrarypupil phaseof anoptical beampath through the analysisof its
Point Spread Function (PSF), performed by a DN2 working in con-
junctionwith an imaging sensor (Fig. 1a). From the complex-valuedPSF
received as input, the DN2, which operates optically in the near-
infrared (NIR) wavelength region, passively reconstructs an intensity
distribution representing the corresponding pupil phase in sign and
magnitude on the output. The resulting intensity distribution is then
detected by the sensor, thus adding the nonlinear responsivity
required to achieve an integrated diffractive deep neural network
(ID2N2) module with phase retrieval capabilities. We show numerically
and experimentally that these optoelectronic networks can retrieve
the pupil phase of incoming PSFs with low error rates and, through co-
integration with standard complementarymetal oxide semiconductor
(CMOS) imaging sensors, have the potential for leading to a new
generation of compact optoelectronic wavefront sensors. Compared
with previous works11,23, our approach allows for direct pupil phase
retrieval from a single compact optoelectronic sensing element.

Results
The ID2N2 presented in this work is an optoelectronic neural network
that combines a DN2 composed by four planar diffractive elements
with a nonlinear activation function (Fig. 1b). The DN2 receives in input
a complexfield thatwas linearly transformed through anobjective that
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Fig. 1 | Integrated Diffractive Deep Neural Networks (ID2N2). a Schematic of a
diffractive neural network integrated on a commercial CMOS chip performing
pupil phase retrieval. An ID2N2 comprises a diffractive neural network (DN2)
and an activation function based on the nonlinear response of the CMOS
detector module. The DN2 consists of multiple diffractive layers, where each
point on a given layer acts as a diffractive neuron, with a complex-valued
transmission coefficient that can be trained byusing deep learning to perform a
function between the input and output planes of the network. b Flow diagram

of ID2N2 training. The training dataset consists of a set of known pupil func-
tions, built from linear combinations of Zernike polynomials from Z1 to Z14

(OSA/ANSI indices), and the corresponding point spread functions (PSF) cal-
culated with a fast focus field method44. A mean square error loss function is
defined to evaluate the performance of the ID2N2 with respect to the desired
target. During the computer-based training, the complex transmission coeffi-
cient of each diffractive neuron of the ID2N2 is iteratively adjusted through an
error backpropagation method.
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forms a PSF, which is a linear expression of the pupil phase distortion
in form of a single Zernike polynomial or a superposition of multiple
Zernike polynomials. Retaining phase and amplitude information of
the incoming light, the DN2 can scatter and modulate each of a mul-
titude of aberrated PSFs, mapping them into a specific output field.
The intensity distribution of the output field is a linear representation
of the original pupil phase inmagnitude and sign. Through this optical
inferenceprocess, the pupil phase is directly obtained in the sense that
the phase distribution is shown immediately as a distribution over (x,
y) on the output plane of the DN2, rather than being represented as
coefficients of Zernike polynomials, as done in indirect phase retrieval
schemes.

The complex field PSFs used during training were calculated fol-
lowing a fast Fourier transform (FFT) implementation of vectorial
Debye theory44, while the complex field PSFs in the experiment were
generated by an optical setup. While the nonlinear activation in the
optical characterization of the printed DN2s is implemented through
the photoelectric conversion of the field incident on the CCD sensor38,
this behavior is approximated as a Rectified Linear Unit (ReLU) func-
tion of optimized shape (see Supplementary Fig. 1 foroptimization) for
purposes of in-silico training and numerical characterization of the
DN2s. The choice to use the ReLU function to approximate the non-
linearity of the detector is motivated by the response curve for a light-
sensitive detector module consisting of photoelectric conversion and
electronic readout circuit45 (see Supplementary Information). While
the diffractive neural network performs a linear operation on the light
field, the nonlinear response of the CCD sensor at the output of the
DN2may serve as nonlinear activation function of a hidden layer, if the
readout of the sensor is used as input to another optical or digital
neural network. The images obtained from the CCD sensor are a direct
representation of the pupil phase in the optical characterization

systems and no further post-detection computation or post-
processing is required to obtain the result.

ID2N2 nondegenerate response to a varying degree of defocus
The ID2N2 are trained in silico and a detailed description of the forward
model is given in Fig. 1b, Methods and Supplementary information
sections. The numerical demonstration of the ability of the ID2N2 to
reconstruct axially symmetric pupil phase distributions is reported in
Fig. 2, where the pupil phase of the PSF and the outputs of the ID2N2

modules are shown for defocus terms (Z4) of changing sign and
amplitude. It is important to note that an ID2N2 trained using only the
intensity pattern of the PSFs is not able to distinguish the sign of
defocus, while the ID2N2 trained using the complex fields that describe
the PSFs can retrieve the information contained within the phase
structure of the PSF and encode it in the intensity of the outputs23. The
outputs of ID2N2 trainedusing only the intensity patterns are smoother
and more uniform compared to the outputs of a ID2N2 trained using
the complex fields, since the network appears to map the ambiguous
inputs in an image that is the average of the multiple outputs given
during the training46.

ID2N2 numerical performance
After proving the ability of the ID2N2 trained with complex fields to
retrieve the phase information of an incoming PSF by comparing the
outputs when a symmetric pupil phase distributions with different
signs, such as defocus, is applied at the focal spot, we work with PSFs
calculated at 20 µm from the focal spot. Moving away from the focal
spot, the PSFs increase in size and are therefore easier to characterize
experimentally.

The phase matrices of a four-layer ID2N2 trained using a data set
comprising PSF images with pupil functions generated from single
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Fig. 2 | ID2N2 non-degenerate response to defocus. a Defocus (Z4) terms applied
and corresponding calculated PSF intensities. The amplitude is scanned between
±π radians, the PSF are calculated at the focal spot of a 10× 0.25NA objective for a
point source of 100 µm diameter using a fast focus field method44. b Output
intensities for the different defocus terms in (a) of an ID2N2 trained with PSFs

intensity distributions dataset. c Output intensities for the different defocus terms
in (a) of an ID2N2 trained with complex field PSFs dataset. Despite the fact that
positive and negative defocus terms of the same amplitude give identical PSFs in
intensity, the output of an ID2N2 trained with complex field PSFs is unambiguous.
The simulations are performed at a wavelength of 785 nm.
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Zernike polynomial from Z1 to Z14 (OSA/ANSI indices) is reported in
Fig. 3a. Supplementary Fig. 2, the Methods and Supplementary infor-
mation sections contain the details of the network training.

The ability of this ID2N2 to retrieve thepupil phase of a PSFs canbe
seen in Fig. 3b, Supplementary Fig. 3, Supplementary Fig. 4 and Sup-
plementary Fig. 5, which show the original pupil phases imposed, the

resulting PSFs and the corresponding ID2N2 outputs with the recon-
structed phases. A quantitative evaluation of the ID2N2 performance is
given by root mean square (RMS) error between the original pupil
phase and the ID2N2 output. A comparison between performance for
the first fourteen Zernike polynomials is reported in Fig. 3c. It was
numerically found that the average RMS error is 0.036 π radians.
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Fig. 3 | ID2N2 response to single and combined Zernike pupil phase testing.
a Phase matrices of the trained four-layer DN2. b Pupil phase and simulation
results of ID2N2 output for six Zernike polynomials. The complete results and
performance analysis for the first 14 Zernike polynomials are reported in Sup-
plementary Fig. 3 and Supplementary Fig. 4. c Comparison of the root mean
square (RMS) error between the original pupil phase and the ID2N2 output for

the first 14 Zernike polynomials. d Imposed and numerically retrieved pupil
phases, where the test data set is composed by 1000 randomized pupil phases
comprised of linear combination of all the first 14 Zernike polynomials with
RMS magnitude from 0 to 1. e Comparison of the RMS error between the pupil
phases and ID2N2 outputs for composed pupil phase with RMS magnitude
scanned between 0 and π.
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Figure 3d, e report the ability of ID2N2, which was trained with a
training data set comprising PSF images generated fromsingle Zernike
polynomial pupil phases (Fig. 3a), to retrieve the pupil phase for PSFs
generated from Zernike polynomials combinations. Figure 3d shows a
comparison between six images of the pupil phase and the corre-
sponding ID2N2 outputs, whilst Fig. 3e shows a comparison of the RMS
error between the imposed and the retrieved pupil phase for PSFs
generated from Zernike polynomials combinations with root-mean-
squared (RMS) magnitude scanned between ±1π. We also evaluated
the performance of an ID2N2 trained on a data set comprising pupil
phases and the corresponding PSFs generated from combinations of
Zernike polynomials in reconstructing the pupil phase generated from
single and combinations of Zernike polynomials. The results are
reported in Supplementary Fig. 6 and Supplementary Fig. 7, showing a
worse performance (average RMS error 0.043 π radians) compared to
the phase retrieval ability of ID2N2 trained on a data set comprising
PSFs generated from single Zernike polynomial pupil functions.

We evaluated the generalization ability of the proposed ID2N2 by
training the network using two datasets consisting of Zernike poly-
nomials (single Zernike polynomials Z1 to Z7 and single Zernike poly-
nomials Z8 to Z14) that were each assigned a random RMS magnitude
between ± 0.6 π and their corresponding complex field PSFs. Then, we
tested the performance of the network in reconstructing single

Zernike polynomials Z1 to Z14. The results reported in Supplementary
Fig. 8 show that the networks trained with different subsets of Zernike
polynomials have, to some extent, comparable generalization abilities,
as confirmed by the average RMS errors calculated for the Zernike
polynomials Z1 to Z14. However, the prediction ability drops notably
when the network predicts polynomials that were not included in the
training, as shown by the average RMS errors calculated on the subsets
of polynomials.

ID2N2 vectorial printing
After calculating the phase delay of each diffractive neuron of the four
diffractive layers comprising the DN2 (Fig. 3a), the 3D models of the
DN2 were obtained by converting the calculated phase value of each
diffractive neuron into a relative height map and then printed in IP-S
photoresist using a two-photon nanolithography (TPN) method34,47.
The results of the TPN printing are reported in Fig. 4a–c.

During fabrication, the position of the polymerizing voxel is
controlled with nanometric precision34,47 in the 3D space thanks to the
employment of a TPN system with a piezoelectric nanotranslation
stage. Other than commonly used 3D printingmethods, where a three-
dimensional structure is printed layer-by-layer with discrete height
steps in the axial direction, we employ a simplified vectorial printing
approach to fabricate the diffractive neurons. Each diffractive neuron
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Fig. 4 | Experimental fabrication and characterization. Scanning electron
microscope (SEM) image (a) and opticalmicroscope image (b) (top view) of the
laser printed DN2. c SEM image of a laser printed diffractive element (layer 4).
The radius of each pixels is 400 nm, the pixel heights span between 0 and
1.57 µm for a phase modulation 0–2π and the axial nano-stepping is approxi-
mately 10 nm34. d Diagram of the laboratory setup used for testing the D2N.
e Original pupil phases (with RMS absolute magnitude of 0.6 π radians)

imposed to the PSFs, simulated PSF intensities, experimentally detected PSF
intensities and experimentally detected ID2N2 outputs for the three Zernike
polynomials Z7, Z9, Z12. The complete results and performance analysis are
reported in Supplementary Fig. 9. The images of the experimentally detected
PSF and the reconstructed pupil phases consist of 350 × 350 pixels (1.94 × 1.94
mm2). Each DN2 output image is plotted after the application of a 1.3 stretch to
better highlight low-intensity features.
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is printed in a single step as a thin rod that extends into the axial
direction, allowing for precise control of the length – and hence phase
delay – of each printed diffractive neuron. At the same time, the lateral
diameter of the diffractive neurons was precisely controlled through
the laser power and the printing speed.

With this method, we were able to achieve diffractive neurons
with a lateral diameter of 400 nm, resulting in a neuron density of 625
million neurons per square centimeter, and a nearly continuous phase
modulation between 0 and 2π. The Methods and Supplementary
information sections contain the details of the TPN setup and the
vectorial printing method.

Experimental performance
To demonstrate the ability of the ID2N2 to retrieve the phase of PSFs
and to map it into an intensity distribution, we designed an experi-
mental setup, which, using a coherent laser source and a spatial light
modulator (SLM), allowed the projection of PSFs with arbitrary pupil
phases at the input plane of the DN2, and the detection of the output
with a CCD camera. The experimental layout is shown in Fig. 4d; see
the Methods section for a detailed description of the setup and the
characterization procedure.

Comparing the pupil phase imposed with the intensity pattern at
the output plane of the ID2N2 (Figs. 4e, 5 and Supplementary Fig. 9), we
show the ability of these devices to directly reconstruct Zernike-based
pupil phase distributions from a PSF. For each measurement in Fig. 4e
and Supplementary Fig. 9, a single Zernike polynomial with RMS of
0.6π radians is applied to the SLM. The DN2 output intensities are then
recorded with a CCD camera, assuming a uniform response of the
detector. The images of the PSFs are also saved for reference.

Qualitatively, the ID2N2 output images prove the ability of the
optical network to discriminate PSFswith different pupil phases and to
map the pupil phase into an intensity distribution. A quantitative
evaluation of the ID2N2 experimental performance is given by the
calculation of the RMS error between the original pupil phase and the
nanoprinted ID2N2 output reported in Supplementary Fig. 10. For this
purpose, we assign values between −0.6π and 0.6π to the normalised
output intensity pattern reported in Fig. 4 and Supplementary Fig. 9,
where the lowest intensity refers to −0.6 π and the highest intensity to
+0.6π and themeasured intensity representing the phase inπ radians
scales linearly with intensity. It was found that the average RMSerror is
0.20with peaks above 0.24 for the third-order Zernike polynomials Z11

and Z13. The experimental demonstration of the ability of the ID2N2 to
mapaxially symmetric pupil phase is reported in Fig. 5, where the pupil
phase of the PSF and the pupil phase predicted by the ID2N2 are shown
for defocus terms (Z4) of changing sign and amplitude.

Four-layer ID2N2 printed on CMOS
In order to harness their complementary physics through integrated
on-chip solution, the DN2 were fabricated using the TPN method
directly on a CMOS sensor48 (Fig. 6), realizing in this way a ID2N2 in a
single chip. The TPN fabricationmethod allows the precise fabrication
of complex three-dimensional (3D) structures, such as the DN2, on a
variety of substrates, with nanometric resolution and without dama-
ging the sensor, essential abilities to access theNIRandVISwavelength
regions and for manufacturing co-integrated opto-electronic systems.
Further information on the pretreatments, design and nanoprinting
canbe found in theMethods and Supplementary information sections.
The 3D-nanoprinted CMOS-integrated ID2N2 have the potential to
perform in a single step optical inference on complex-valued inputs
and digital conversion to reconstruct the pupil phase of the incoming
PSFs. The details of the fabrication process and the characterization
results for a prototype device with limited functionality are shown in
Supplementary Fig. 11, Supplementary Fig. 12 and in the CMOS pro-
totype section of the Supplementary Information.

Discussion
The ID2N2 presented in this work combines four diffractive optical
elements with the nonlinear detection through an imaging sensor,
achieving a hybrid opto-electronic integrated deep neural network
with phase retrieval capabilities. This compact device operates in the
NIR wavelength region and processes complex field PSFs through
optical inference, performing direct retrieval of the incoming field
pupil phase, including the magnitude and the sign. Numerical simu-
lations validate the principle of the ID2N2, and laboratory demonstra-
tions confirm its performance. Our goal throughout this work was not
to match the highest accuracy achieved with a state-of-the-art ultra-
deep CNN trained for phase retrieval tasks49,50, but rather to under-
stand and characterize the behavior of the ID2N2when interactingwith
complex fields, proofing the ability to retrieve phase information and
assess its potential in a hybrid optoelectronic architecture.

In the optoelectronic network architecture presented here, the
ReLU is applied as last output layer that adds a bias term to the output
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Fig. 5 | ID2N2 non-degenerate response to defocus. Defocus (Z4) terms applied
and corresponding detected PSF intensities and ID2N2 outputs. The amplitude of
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focal plane of a 10× 0.25NA objective for a point source of 100 µm. EachDN2 output
image is plotted after the application of a 1.3 stretch to better highlight low-
intensity features.
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image – i.e. changes the value of all pixels by a constant, adjusting the
brightness of the image – improving the performance of the network
(Supplementary Fig. 1b and Supplementary Fig. 1c). The application of
the nonlinear activation function as last layer of the network con-
stitutes an architectural difference compared with computer-based
neural networks.

However, the ID2N2s could be incorporated in a more complex
optoelectronic scheme, where the response of the detector module
would play the role of the first nonlinear hidden layer of the
network33,51,52.

The ID2N2 presented in this work are trained to operate with
temporally and spatially coherent light at a 785 nm wavelength. The
use of other wavelengths or spatially and temporally incoherent
illumination37,53 on the networks presented in this work, will result in
unpredictable outputs.

In numerical experiments, we introduced pupil phases with RMS
magnitude between ±0.6π radians constructed using the first 14 Zer-
nike polynomials individually and in combination, and we verified that
the pupil phases of the PSFs in input are accurately reconstructed from
the ID2N2 with an average precision of 0.036 and 0.043 π radians RMS
error for the single and combinedZernike polynomials, respectively. In
either case, the lowest RMS error is achieved for RMS absolute mag-
nitude between 0.2 and 0.4 π radians. The tendency of PSFs to
approach a uniform diffraction-limited shape means that the predic-
tion ability of the ID2N2 is limited for RMS absolute magnitudes lower
that 0.2 π radians. For RMS absolute magnitudes above 0.6 π radians,
the challenge is to reconstruct pupil phase images with higher con-
trasts. These challenges may be mitigated by using a lager training
dataset11 or by training the ID2N2 only on the specific range of RMS
magnitudes forwhich it is designed to encounter in the optical system.

In our optical experiments, we characterized the performance of
the 3D nanoprinted ID2N2 finding that single polynomials pupil phases
of the PSFs in input are reconstructed with an average precision of
0.191 π radians RMS error. Several factors might have contributed to
the discrepancies observed between our numerical simulations and
the experimental results reported. Sources of errors could be any
lateral and axial misalignments between the diffractive layers due to
shrinking and distortions that might be caused by capillary forces
arising during the evaporation of the developer and rinsing liquids.
Moreover, the incident light field is assumed to be spatially uniform
and to propagate parallel to the optical axis of the DN2. Additional
experimental errors might be introduced in our results due to the
imperfect beam profile and alignment with respect to DN2. Finally,
potential fabrication inaccuracies (errors in the printing of single dif-
fractive neurons) or impurities in the photoresist could also contribute
with additional errors in our experimental results compared to the
numerical results.

The experimental characterization of the ID2N2 was performed
using a CCD camera, while the integration of DN2 with a CMOS

detector module aimed to prove the integrability of our optoelec-
tronic framework. In our current method for designing the ID2N2, all
the layers of the network (i.e. input layer, diffractive layers, output
layer) have the same number of pixels and the same pixel pitch. In our
case thepixel size andpitchwerechosen tomaximize theperformance
of the DN2 for the chosen operative wavelength (785 nm) without
considering the pixel size/pitch of the CMOS sensor. For an optimised
design that consider the features of theCMOS sensor, several solutions
can be considered. For example, the design of the diffractive layer
could be adjusted to match the CMOS pixel size. This would result in
diffractive neurons with large diameter compared with the operative
wavelength, and consequently a low diffraction efficiency and an
increased distance required between layers to form fully connected
layers. Alternatively, the method for training the DN2 could be exten-
ded to consider layers with different numbers of pixels, for example,
through changing the samplingof thefields after propagation between
the respective layers.

Other than a spatial mode sorter that implements a modal-based
approach to phase retrieval, our method is a physical implementation
of a direct phase retrieval scheme, where the ID2N2s map a light beam
into an intensity distribution representing the beam’s Zernike-based
pupil phase, an image that gives information on the beam’s original
aberration. However, the ID2N2 canbe trained to perform spatialmode
sorting, multiplexing and de-multiplexing of light beams, following a
modal-based approach42,54.

In conclusion, the ID2N2 module presented in this work may be
used as a compact phase sensing element co-integrated on off-the-
shelf CMOS imaging technology that can retrieve a pupil phase in a
single step. We have shown the capability of the ID2N2 to directly
retrieve the pupil phase of superpositions of the first fourteen Zernike
polynomials through passive optical inference in conjunction with a
nonlinear optical-electronic conversion step. The ID2N2 presented
here allows for direct retrieval of Zernike-based pupil phase, although
the error rates may be too high for certain applications. To overcome
this limitation, the ID2N2 can be used as a building block in larger scale
optoelectronic deep neural network, where the nonlinear response of
the detector module can act as a hidden nonlinear layer. Also, the
output of the ID2N2 can be considered as an optically pre-processed
entry point to digital phase retrieval algorithms. The combination of
ID2N2 with electronic networks will increase the performance of phase
retrieval systems by leveraging the advantages of optical pre-
processing with a diffractive network, such as the ability to dis-
criminate the sign of a pupil phase, and reduce the requirements for
computational resources and multiple sensors.

Hybrid optical-electronic solutions, such as the one presented in
this work, may form the basis of new highly integrated ON2-based
systems to perform inference tasks on information native to the
optical domain faster, more efficiently and more robustly than con-
ventional digital neural networks. Consequently, this development

Fig. 6 | Multilayer diffractive neural networks integrated on CMOS. The
nanoscale DN2 is physically 3D printed by TPN method (a) directly on the CMOS
sensor.b Photographof the Sony IMX219NoIR CMOS sensor with aDN2 3Dprinted

via the TPNmethod. cOpticalmicroscope image (top view)of the laser printedD2N
(top view) printed on the CMOS sensor.
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might have transformative impact on aberration correction with
adaptive optics, data processing55 and sensing56 and may be crucial in
the development of robust and generalized quantitative phase ima-
ging methods1 with low computational complexity and memory foot-
print, to be applied, for example, in biological cell- and tissue imaging
problems.

Methods
In silico training
The ID2N2 is modelled on a computer combining a multi-layer DN2

(input, four diffractive layers and output) with a ReLU nonlinear
activation function (Fig. 2a). Each layer of the DN2 consisting of N × N
resolvable pixels that act as diffractive neurons, which receive,
modulate and transmit a light field. The diffractive neurons of each
layer are linked to the diffractive neurons of the neighboring layers
through Rayleigh-Sommerfeld57 diffraction. While the diffractive
neurons of the input and output layers are unbiased (i.e., uniform),
each neuron of a diffractive layer adds a bias in the form of a phase
delay to the transmitted signal. The phase delay, modelled as the
complex transmission coefficient of each pixel can be considered as
a learnable parameter that can be iteratively adjusted during the
computer-based training. A mean-squared-error loss function58 is
defined to evaluate the performance of the ID2N2 with respect to the
targeted application, and an algorithm iteratively optimises the
phase delay of each diffractive neuron in the diffractive layer to
minimise the loss function. We achieve the MLD design using the
TensorFlow (Google Inc.)59 framework, used to implement a forward
propagation model. We employ the stochastic gradient descent
algorithm Adam60 to back-propagate61 the errors and update the
diffractive layer phase parameters to minimise the loss function. The
desired mapping functions between the input and output planes are
achieved after 500 epochs and an empirically optimized learning rate
of 0.0001. Themodel is implemented using Python version 3.5.0 and
TensorFlow framework version 1.4.0 (Google Inc.). The Supplemen-
tary information section contains further details of this TensorFlow-
based design and training processes.

Training and test dataset processing
To build the training dataset random pupil phase functions were
generatedusing Zernikepolynomials fromZ1 toZ14 (OSA/ANSI indices)
as they covered the strongest aberrations typically seen inmicroscopy.
The corresponding PSFs were generated by a fast Fourier transform
(FFT) implementation of vectorial Debye theory44. The optical system
chosen for our training consisted of infinity corrected objective lens
with a numerical aperture (NA) of 0.25, a magnification of 10× oper-
ating in air and a point source of 100 µm. A coherent, monochromatic
wave field with uniform amplitude distribution parallel to the optical
axis of the simulated objective crossing the aperture stop (entrance
pupil) was considered in the current experiments. The PSF was cal-
culated at an axial offset from the geometric focus by a distance of
+20 µm.For theoptical systemdetailed above, a complete imageof the
PSF requires a lateral dimension of approximately 30 μm, that can be
divided in 75×75 diffractive neurons with a diameter of 400nm. The
wavelength of the point source was 785 nm. The size of the diffractive
layers has been chosen to match the size of the PSF generated by the
10× NA0.25 objective and the diffractive neuron size and number have
been optimised for the chosen wavelength. The separation between
the DN2 layers is 40 wavelengths (31.4 µm). The numerical calculations
of the PSF were validated by the comparison between the numerically
calculated PSF intensities and the experimentally detected PSF inten-
sities reported in Fig. 4e and Supplementary Fig. 9.

In our numerical experiments we train an ID2N2 using a dataset
consisting of 8000 randomly selected single Zernike polynomials
between Z1 and Z14 that were each assigned a random root-mean-

square (RMS) magnitude between ±0.6 π and the corresponding
complex field PSF. We than test the ability of the same network to
reconstruct:
– single Zernike polynomial pupil phases (Fig. 3c) using a test data

set comprising 800 PSFs with pupil phases generated by each of
the fourteen Zernike polynomials used in the training data set. For
this test, the random root-mean-square (RMS) magnitude of each
individual polynomial was varied between ±0.6π radians such that
the entire training range was probed.

– combinations of Zernike polynomial pupil phases (Fig. 3e) using a
test data set comprising 8000 PSFs with pupil phases generated
using linear combination of Zernike polynomials from Z1 to Z14.
Themagnitude of each individual pupil phaseswas varied between
±1π radians and the combinations were then normalized to ±0.2π,
±0.4π, ±0.6π, ±0.8π and ±1π radians to study the response to
different aberration magnitudes.

The non-degenerate response of the network to defocus, was
evaluated using training and test data sets generated by each of the
fourteen Zernike polynomials, where the random root-mean-square
(RMS) magnitude of each individual polynomial was varied between
±1π radians.

Nanoprinting
Polymeric DN2 areprinted by a TPN47,62method based on femtosecond
laser pulses and two-photon absorption. A femtosecond fiber laser
(Spectra Physics, InSight X3) provides laser light at a wavelength of
800nm. The laser pulses with a width of 120 fs and a repetition rate of
80MHz are steered by a 4f imaging system into a 1.45 NA × 100 oil
immersion objective (Olympus). A piezoelectric nanotranslation stage
(PI P-545.xC8S PInano Cap XY(Z) Piezo System, Physik Instrumente) is
used to trace out the microstructures in the photoresist. We employ a
dip-in TPN approach using commercial IP-S (Nanoscribe GmbH) pho-
toresist. To ensure the proper distance between the different layers of
the DN2, we designed a frame structure comprising layer supports on
pillars (Fig. 4a).

We manufacture ID2N2 on a Sony IMX219 NoIR CMOS image
sensor from a Raspberry Pi Camera Module (Fig. 6). Before manu-
facturing, we remove the lenses and clean the sensor surface with
ethanol. After the TPN procedure, the sample is developed in propy-
lene glycol methyl ether acetate (PGMEA, 1-methoxy-2-propanol acet-
ate/ SU-8 developer) for 20min, rinsed with isopropanol, ethanol, and
then dried at room temperature.

Characterization setup
A schematic diagram of the experimental setup is given in Fig. 4b.
The light beam is generated through a Thorlabs OBIS 785 nm
coherent laser source. The point source is generated by a 100 µm
pinhole. The polarised beam is then directed on a Hamamatsu SLM
X13138-07 (620–1100 nm) and through a 10× Olympus objective
(0.25 NA), is focused at the input plane of the ID2N2 at 20 µm from the
objective focal point. After passing through the ID2N2, the output
image is collected by a CCD camera (Basler ace acA2040-90uc, frame
rate 90Hz).

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and Supplementary Information. Additional data related to
this paper may be requested from the corresponding author, E.G.

Code availability
The custom code and mathematical algorithm used to obtain the
results within this paper may be requested from the corresponding
author, E.G.
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