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A multi-phenotype analysis reveals
19 susceptibility loci for basal cell carcinoma
and 15 for squamous cell carcinoma

Mathias Seviiri 1,2,3 , Matthew H. Law 1,2, Jue-Sheng Ong 1,
Puya Gharahkhani 1, Pierre Fontanillas 4, The 23andMe Research Team*,
Catherine M. Olsen 5,6, David C. Whiteman 6 & Stuart MacGregor 1,2

Basal cell carcinoma and squamous cell carcinoma are the most common skin
cancers, and have genetic overlap with melanoma, pigmentation traits, auto-
immune diseases, and blood biochemistry biomarkers. In this multi-trait
genetic analysis of over 300,000 participants from Europe, Australia and the
United States, we reveal 78 risk loci for basal cell carcinoma (19 previously
unknown and replicated) and 69 for squamous cell carcinoma (15 previously
unknown and replicated). The previously unknown risk loci are implicated in
cancer development and progression (e.g. CDKL1), pigmentation (e.g. TPCN2),
cardiometabolic (e.g. FADS2), and immune-regulatory pathways for innate
immunity (e.g. IFIH1), and HIV-1 viral load modulation (e.g. CCR5). We also
report an optimised polygenic risk score for effective risk stratification for
keratinocyte cancer in the Canadian Longitudinal Study of Aging (794 cases
and 18139 controls), which could facilitate skin cancer surveillance e.g. in high
risk subpopulations such as transplantees.

Keratinocyte cancers (KC), including basal cell carcinoma (BCC) and
squamous cell carcinoma (SCC), are the most commonly diagnosed
cancers globally. KC resulted in over 5.4 million diagnoses and $8
billiondollars in expenditure in theUS in 2011 alone1, while in Australia,
they account for >24% of all-cancer diagnoses2, and impose a huge
economic burden on the health sector costing over AUD $700 million
for treatment annually3. KC is responsible for up to 8700 deaths a year
in the United States4. The relative rates and morbidity, from KC,
is even higher in Australia5. BCC and SCC share many common risk
factors, including sun exposure, skin and hair pigmentation and
immunosuppression.

Skin cancers, and pigmentation traits and autoimmune diseases
have several susceptibility genes overlapping6–9. For example, several
variants in pigmentation genes ASIP/RALY, IRF4, MC1R, OCA2, SLC45A2
and TYR, are associated with BCC, SCC and melanoma8,10. Shared

immune-regulatory genes in theHLA and LPP regions have been found
to influence susceptibility to BCC, SCC, melanoma and autoimmune
diseases such as rheumatoid arthritis, vitiligo, type 1 diabetes and
psoriasis6–9. There are also some tumour-genesis-related genes, which
are expressed in both KC and other non-skin cancers. For example,
oncogene TNS3, which is overregulated in BCC, is also associated with
breast, lung and prostate cancers8,11,12. Furthermore,HAL at 12q23.1 has
been found to be associated with KC risk13 as well as vitamin D levels14.
However, standard single GWAS meta-analysis approaches are unable
to utilise this multi-trait genetic overlap to further explore the genetic
risk for BCC, and SCC.

Multivariate GWAS approaches, such as multi-trait analysis of
GWAS (MTAG)15, can draw on this overlapping genetics to identify
new risk regions (here for BCC or SCC). MTAG is a generalisation of
inverse-variance-weightedmeta-analysis that importantly accounts for
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incomplete genetic correlation, and sample overlap, betweenGWAS. A
key property of MTAG is that it outputs estimates of trait-specific
effect sizes and p-values for each of the input traits—in this caseBCCor
SCC. We have previously used MTAG to identify loci for KC based on
the genetic correlation between BCC and SCC only13. BCC and SCC are
different in terms of polygenicity and aetiology and therefore, we
sought to identify susceptibility genetic loci for BCC and SCC by
exploring their genetic overlap with melanoma, pigmentation traits,
autoimmune diseases, and blood biochemistry biomarkers in a multi-
phenotype analysis of GWAS.

In this work, we show that BCC and SCC have a high genetic
correlation with melanoma, pigmentation traits, autoimmune dis-
eases, and blood biochemistry biomarkers. We use MTAG to leverage
this genetic overlap and identify 78 and 69 independent genome-wide
significant susceptibility loci for BCC and SCC, respectively; 19 BCC
and 15 SCC loci are both previously unknown and replicated in a large
independent cohort. The previously unknown risk loci are implicated
in BCC/SCC development and progression, pigmentation, cardiome-
tabolic pathways, and immune-regulatory pathways, including; innate
immunity, HIV-1 viral load modulation and disease progression. We
also report a optimised BCC polygenic risk score (PRS) that enables
effective risk stratification for KC.

Results
Genetic correlation
Using linkage disequilibrium score (LDSC) regression16, 20 phenotypes
were significantly genetically correlated (P <0.05, rg > 10%) with either
BCC or SCC (Fig. 1 and Supplementary Data 1). In the first instance, 35

phenotypes thatwe considered as possibly correlatedwith skin cancer
(including body mass index) were excluded for not meeting the
aforementioned criteria above (Supplementary Data 2). Using the
same selection criteria, no additional new phenotypes were included
following analysis using collated GWAS summary statistics (over 700
phenotypes) in the LD hub database17. In total, subsequent analyses
included 22 genetically correlated traits; cancers; BCC and SCC GWAS
from the UK Biobank (UKB)18,19, a cutaneous melanoma GWAS meta-
analysis20, KC from the QSkin Sun and Health Study (QSkin)21, KC from
the Electronic Medical Records and Genomics Network (eMERGE)
cohort22,23 and all-cancer from the Resource for Genetic Epidemiology
Research onAging (GERA) cohort;24 skin and hair pigmentation related
traits; skin burn type (QSkin), red hair (QSkin), hair colour excluding
red hair (UKB), skin colour (UKB), and mole count excluding mela-
noma cases (QSkin), autoimmune conditions; type 1 diabetes and
hypothyroidism25, and vitiligo26, lifestyle-related traits; educational
attainment in years spent in school27 and smoking (cigarettes
per day)28, and biochemistry blood biomarkers from the UKB; aspar-
tate aminotransferase, C-reactive protein, albumin, and gamma-
glutamyl transferase, glucose and vitamin D (adjusted for monthly
variation). The sample sizes and phenotype measurements for all the
included and excluded traits are presented in Supplementary Data 3
and 2, respectively.

Discovery of genome-wide significant susceptibility loci for BCC
and SCC
Adding 20 traits genetically correlated with either BCC or SCC (rg >0.1,
P <0.05) (from UKB) increased the effective sample sizes for BCC and

Fig. 1 | Heatmap for the genetic correlation between 22 traits with a significant
correlation with either BCC or SCC. Bivariate genetic correlation 22 traits that
were significantly correlated (P <0.05, rg >10%) with the UKB BCC or SCC GWAS.
BCC UKB basal cell carcinoma in the UK Biobank, SCC UKB squamous cell carci-
noma in the UK Biobank, CM cutaneous melanoma, KC QSkin keratinocyte cancer

in the QSkin cohort, KC eMERGE keratinocyte cancer in the eMERGE cohort,
Hypothyr hypothyroidism, T1Dtype 1 diabetes, EA education attainment, VitD
vitamin D, AAT aspartate aminotransferase, CRP C-reactive protein, GGT gamma-
glutamyl transferase and Corr correlation. Source data are provided as a Source
Data file.
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SCC by 2.6 and 8.3 times, respectively. Using the MTAG approach, we
identified 78 and 69 independent genome-wide significant (P < 5 × 10−8)
susceptibility loci for BCC (Fig. 2 and Supplementary Data 4) and SCC
(Fig. 3 and SupplementaryData 5), respectively. Although the results for
the peak single nucleotide polymorphisms (SNPs)weremore significant
following theMTAGanalysis due to the greater statistical power, the log
(odds ratio) effect sizes for the MTAG output and the respective UKB
BCC or SCC GWAS inputs were highly concordant. For BCC the Pear-
son’s correlation of effect sizes was 0.93 (95% confidence interval
[CI] = 0.89–0.96, P < 2.20 × 10−16; Fig. 4a). Similarly, concordance was
high for SCC loci (Pearson’s correlation =0.71, 95% CI =0.57–0.81,
P = 7.34 × 10−12; Fig. 4c).

In the 23andMe, Inc replication sample (252,931 cases and
2,281,246 controls), 71 of the 78 susceptibility loci for BCC replicated at
the genome-wide level (P < 5 × 10−8), 74 replicated after Bonferroni
correction (P =6.49 × 10−4), and 77 loci replicated at a nominal P=0.05

(Supplementary Data 4). There was high concordance with the BCC
effect estimates between the MTAG and the replication set with Pear-
son’s correlation =0.97 (95% CI =0.95–0.98, P = 2.20 × 10−16; Fig. 4b). Of
the69 susceptibility loci for SCC, 25 replicated at the genome-wide level
(P = 5 × 10−8), 31 replicated after Bonferroni correction (P = 7.24 × 10−4)
and 38 loci replicated at a nominal P=0.05 in the 23andMe cohort
(135,214 cases and2,404,735 controls) (SupplementaryData 5). For SCC,
there was also high concordance with the effect estimates between the
MTAG and the replication set with Pearson’s correlation =0.69 (95%
CI = 0.55–0.80, P = 3.48 × 10−11; Fig. 4d).

Description of the previously unknown loci for BCC and SCC
A locus was considered previously unknown for BCC or SCC if it had
not been significantly associated with either BCC, SCC or KC at the
genome-wide level (P < 5 × 10−8) before, and if it replicated atminimum
P <0.05) in the 23andMe replication cohort. By this criterion, we
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Fig. 2 | Manhattan plot for basal cell carcinoma susceptibility. The Manhattan
plot shows the association between SNPs and basal cell carcinoma susceptibility
based on the MTAG approach. The Y-axis represents the level of significance
recorded in negative log 10 (P value) (two-tailed test), whilst the X-axis represents
the chromosome 1–22, alternated with light blue and light pink colours. The hor-
izontal blue line represents a suggestive level of significance at P value = 10−6, while

the red one represents the genome-wide level of significance; P = 5 × 10−8. The green
dots represent the 78 genome-wide significant independent loci for basal cell
carcinoma susceptibility (after multiple correction for a million tests; 0.05/
1,000,000). Only SNPs with a P value <0.01 were included. The source data file is
provided as the BCC summary statistics in the GWAS Catalogue under accession
code GCST90137411.
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Fig. 3 | Manhattan plot for squamous cell carcinoma susceptibility. The Man-
hattan plot shows the association between SNPs and squamous cell carcinoma
susceptibility based on the MTAG approach. The Y-axis represents the level of
significance recorded in negative log 10 (P value) (two-sided test), whilst the X-axis
represents the chromosome 1–22, alternated with light blue and light pink colours.
The horizontal blue line represents a suggestive level of significance at P

value = 10−6, while the red one represents the genome-wide level of significance;
P = 5 × 10−8. The green dots represent the 69 genome-wide significant independent
loci for squamous cell carcinoma susceptibility (after multiple correction for a
million tests; 0.05/1,000,000). Only SNPs with a P value <0.01 were included. The
source data file is provided as the BCC summary statistics in the GWAS Catalogue
under accession code GCST90137412.
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identified 19 and 15 previously unknown loci for BCC (Table 1) and SCC
(Table 2), respectively. The previously unknown lociwere annotated to
the pigmentation, cardiometabolic, cancer development/progression
and immune-regulatory pathways (Figs. 5, 6), whilst others are known
loci for cutaneous melanoma susceptibility (ATM, and SOX6 for BCC,
and GPR98, and DSTYK for both BCC and SCC). More details on these
loci and the broader biological groups have been discussed in the
Supplementary Information (Supplementary Note 1). For loci that are
unique to BCC or SCC, or overlap between BCC and SCC, refer to
Tables 1, 2.

Gene-set pathways
After multiple correction testing (P =0.05/18,188 genes; 2.75 × 10−6),
gene-set analysis revealed curated and gene ontology (GO) pathways
that are important in the development of keratinocyte cancer (Sup-
plementary Table 1). A number of pathways are involved in melano-
genesis (e.g. melanin biosynthesis, melanin biosynthetic process and
melanosome membrane); a process which influences the nature of
pigmentation traits and response to UV exposure. Genes in the

“response to trabectedin” pathway are likely to play an important role
in DNA damage response. Trabectedin is an alkylating agent used to
treat certain cancers resulting in DNA damage. Other pathways are
important in the downregulation of the immune response (e.g. GO
negative regulation of regulatory T cell differentiation), and
enhancement of the immune response (IL2-PI3K pathway, MHC class II
receptor activity, and nuclear factor of activated T cells (NFAT) path-
way for development and function of regulatory T cells).

BCCMTAG-derived polygenic risk score for KCprediction in the
Canadian longitudinal study on aging (CLSA)
During the validation of the PRSs, S5 (i.e. P < 10−4 with 273 SNPs for the
MTAGPRS and462SNPs for theUKBPRS)was theoptimalPRSmodels for
both MTAGPRS and UKBPRS with Nagelkerke R2 of 10.65 and 9.55%
respectively (Fig. 7a). The total number of SNPs in both PRS was dif-
ferent because theMTAG results havemore power than the single BCC
analysis and therefore it has more SNPs reaching significance. How-
ever, based on 'the nearest gene' analysis, 154 SNPs (Supplementary
Data 8) overlapped between theMTAGPRS and UKBPRS. The correlation

Fig. 4 | Concordanceof the log (OR) effect estimates forMTAGversusUKsingle-
traitGWASand23andMe replication.Figure4 shows the comparisonof the effect
estimates in log (odds ratio) for both basal cell carcinoma (BCC) and squamous cell
carcinoma (SCC) based on the respective MTAG approach results versus UKB
single-trait GWAS and replication results from 23andMe. The blue line is the line of
best fit with the 95% confidence intervals. The blue dots represent loci that overlap
between BCC and SCC, whilst the red dots show the loci that are respectively
unique to BCC or SCC. The dotted purple lines represent null effects (i.e. log
(OR) = 0). The Y- and X- axes represent log (OR). a Shows BCC MTAG versus UKB

BCC effect estimates, yielding a high concordance with a Pearson’s correlation of
0.93 (95%confidence interval [CI] = 0.89–0.96, two-sided test).b ShowsBCCMTAG
versus BCC replication (23andMe) effect estimates, yielding a high concordance i.e.
Pearson’s correlation = 0.97 (95% CI = 0.95–0.98, two-sided test). c Shows SCC
MTAG versus UKB SCC effect estimates, yielding a high concordance; Pearson’s
correlation = 0.71, 95% CI = 0.57–0.81, two-sided test). d Shows SCC MTAG versus
SCC replication effect estimates, also resulting in a high correlation i.e. 0.69 (95%
CI = 0.55–0.80, two-sided test). UKB- United Kingdom Biobank, and MTAG- multi-
trait analysis of GWAS. Source data are provided as a Source Data file.
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of the effect size for the PRS SNPs across the two sets was consistent or
high (e.g. for the overlapping 154 SNPs, Pearson’s correlation = 0.94,
95% CI = 0.92–0.96, P < 2.2 × 10−16), meaning the extra MTAG SNPs are
consistent but just better powered.

The SNPs for the optimal models are presented in Supplementary
Data 6 and Supplementary Data 7 for the UKBPRS and MTAGPRS,
respectively.Whenwe tested theperformance for both theUKBPRS and
MTAGPRS in the CLSA (N = 18,933), the MTAGPRS outperformed the

Table 1 | BCC susceptibility novel loci that replicated at P <0.05 in 23andMe cohort

rsID Locus CHR BP EA NEA EAF log (OR) SE P value Nearest gene(s) eQTL gene (skin) eQTL gene
P value

rs12142181 2 1 41,912,985 T C 0.08 −0.092 0.015 2.86E-09 EDN2 (−31kb) |
FOXO6 ( + 63 kb)

EDN2** 6.26E-05

rs2369633 7 1 205,181,062 C T 0.10 −0.100 0.015 9.81E-12 DSTYK ( + 0.33 kb) CNTN2 4.96E-06

rs2111485 13 2 163,110,536 G A 0.40 −0.052 0.009 3.46E-09 FAP ( + 10 kb) |
IFIH1 (−13 kb)

– –

rs2373232 16 3 46,444,383 A G 0.32 −0.050 0.009 4.77E-08 CCRL2 (−4 kb) |
CCR5 ( + 26 kb)

CCR2/CCR5 8.61E-6/7.88E-9

rs9878566 19 3 156,493,213 T C 0.48 0.048 0.009 2.36E-08 LINC00886 (0) LINC00886 1.56E-24

rs6889986 24 5 90,207,399 A G 0.44 −0.054 0.009 5.44E-10 GPR98 (0) – –

rs706779 47 10 6,098,824 C T 0.48 0.058 0.009 1.43E-11 IL2RA (0) FHIT (eQTL Gen) 8.16E-07

rs7098111 51 10 119,573,178 T C 0.15 −0.080 0.012 6.19E-12 RAB11FIP2 (−191 kb) – –

rs10766301 52 11 16,217,413 T C 0.38 0.054 0.009 2.93E-10 SOX6 (0) – 6.15E-11

rs174570 53 11 61,597,212 T C 0.16 −0.081 0.013 2.67E-10 FADS2 (0) |
FADS1 ( + 12 kb)

– –

rs2924552 56 11 68,889,367 T C 0.41 0.061 0.009 3.50E-12 TPCN2 ( + 31 kb) TPCN2
(eQTL Gen)

2.18E-5/8.94E-157

rs4409785 58 11 95,311,422 C T 0.19 −0.073 0.011 9.51E-11 FAM76B (−190 kb) SESN3
(eQTL Gen)

5.37E-62

rs73008229 59 11 108,187,689 A G 0.16 −0.071 0.012 5.40E-09 ATM (0) C11orf65 3.18E-05

rs10876864 61 12 56,401,085 A G 0.41 0.055 0.009 2.56E-10 SUOX ( + 1.78 kb) |
IKZF4 (−13 kb)

RPS26/
IKZF4/SUOX

3.92E-251/9.86e-9/
3.97e-54

rs17425489 62 12 89,015,138 A G 0.09 −0.091 0.015 4.54E-10 KITLG ( + 40 kb) –

rs10774625 64 12 111,910,219 G A 0.48 0.053 0.009 4.03E-10 ATXN2 (0) ALDH2 (blood) 1.58E-08

rs11059675 65 12 122,668,326 A G 0.44 −0.049 0.009 1.21E-08 LRRC43 (0) |IL31( + 9 kb) LRRC43 6.92E-06

rs7301141 66 12 133,138,503 G A 0.46 0.052 0.009 6.21E-09 FBRSL1 (0) P2RX2 4.76E-06

rs1136165 69 14 103,988,180 T G 0.38 0.054 0.009 1.11E-09 CKB (0) CKB/MARK3 1.88E-22/3.15E-31

Genes are formatted in italics.
CHR chromosome, BP base pair position, EA effect allele,NEA non-effect allele, EAF- effect allele frequency,OR odds ratio (two-sided test),SE standard error, P P value after multiple correction test
for a million tests (0.05/1,000,000), eQTL expression quantitative trait loci.

Table 2 | SCC susceptibility novel loci that replicated at P < 0.05 in 23andMe cohort

rsID Locus CHR BP EA NEA EAF log (OR) SE P Nearest gene eQTL
gene (skin)

eQTL gene
P value

rs3768321 3 1 40,035,928 T G 0.19 0.041 0.007 1.32E-09 PABPC4 (0) PABPC4 2.65E-28

rs12142181 4 1 41,912,985 T C 0.08 −0.054 0.010 2.41E-08 EDN2 (−31.46 kb) EDN2 6.26E-05

rs17391694 6 1 78,623,626 T C 0.10 0.054 0.008 2.12E-12 GIPC2 ( + 20.51 kb) FUBP1 5.49E-15

rs3851290 13 1 205,149,508 T C 0.39 −0.039 0.006 1.17E-12 DSTYK (0) DSTYK 5.52E-18

rs1260326 14 2 27,730,940 C T 0.41 −0.030 0.005 3.57E-08 GCKR (0) NRBP1 3.09E-18

rs9878566 18 3 156,493,213 T C 0.48 0.034 0.005 3.52E-10 LINC00886 (0) LINC00886 1.56E-24

rs6889986 24 5 90,207,399 A G 0.44 −0.041 0.005 6.75E-14 GPR98 (0) – 8.94E-11

rs77758638 33 8 42,014,917 T C 0.11 0.045 0.008 4.35E-08 AP3M2 (0) POLB/AP3M2 4.39E-26

rs35563099 40 10 119,572,403 T C 0.15 −0.046 0.007 1.19E-10 RAB11FIP2 (−192kb) –

rs2924552 42 11 68,889,367 T C 0.41 0.049 0.005 3.19E-19 TPCN2 ( + 31.3 kb) TPCN2 2.18E-05

rs10899466 44 11 78,013,674 A G 0.18 −0.061 0.007 1.47E-16 GAB2 (0) GAB2 1.24E-13

rs10876864 47 12 56,401,085 A G 0.41 0.031 0.005 5.95E-09 SUOX ( + 1.78 kb) |
IKZF4 (−13 kb)

SUOX/IKZF4 3.97E-54/
9.86E-9

rs142004400 53 14 50,829,560 C A 0.03 −0.109 0.014 4.83E-14 CDKL1 (0) CDKL1
(eQTL Gen)

1.13E-19

rs10141120 55 14 103,923,008 C T 0.35 −0.047 0.006 5.18E-17 MARK3 (0) MARK3/CKB 7.60E-39/
3.33E-31

rs472385 57 15 44,186,844 A G 0.25 −0.035 0.006 1.37E-08 FRMD5 (0) AC011330.5 5.74E-19

Genes are formatted in italics.
CHRchromosome,BPbasepair position,EAeffect allele,NEAnon-effect allele, EAF effect allele frequency,ORodds ratio (two-sided test),SE standard error,PPvalue aftermultiple correction test for
a million tests (0.05/1,000,000), eQTL expression quantitative trait loci.
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UKBPRS in terms of association with KC risk, KC risk prediction, and
stratification. For example, after adjusting for age at recruitment,
sex and the first ten PCs, the MTAGPRS outperformed the UKBPRS

for association with KC risk i.e. MTAGPRS OR = 1.66, 95% CI = 1.55–1.79,
P = 1.95 × 10−41 versus UKBPRS OR = 1.56, 95% CI = 1.45–1.67,
P = 3.38 × 10−33 (Fig. 7b). In addition, the net reclassification index for
KC riskwas greater forMTAGPRS than theUKBPRS (Fig. 7c), when added
to the base model containing age, sex and ten PCs. Consequently, the
MTAGPRS compared to the UKBPRS reclassified more participants for

KC risk to the appropriate risk group (low risk, moderate risk and high
risk) (i.e. percentage of people reclassified; MTAGPRS = 36.57%, 95%
CI = 35.89–37.26% versus UKBPRS = 33.23%, 95% CI = 32.56–33.91%)
(Fig. 7d).

Discussion
In this large multi-trait GWAS analysis, we show that cutaneous
melanoma, 'any-cancer', pigmentation traits, autoimmune diseases
and other serum metabolic biomarkers are genetically correlated

Fig. 5 | Basal cell carcinoma loci and biological pathways. The broad biological
pathways included; pigmentation, immuno-regulatory, cardiometabolic and

cancer development and progression. FBRSL1, KITLG, ATM, GPR98 and DSTYK are
not shown in this figure.

Fig. 6 | Squamous cell carcinoma loci and biological pathways. The broad bio-
logical pathways included;pigmentation, immuno-regulatory, cardiometabolic and

cancer development and progression (cancer devt**). GPR98 and DSTYK are not
shown in this figure.
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with BCC and SCC. We have leveraged this genetic correlation using
theMTAG approach to identify 78 and 69 independent genome-wide
significant loci for BCC and SCC risk, respectively, themost common
skin cancers among fair-skinned people. Nineteen BCC and 15 SCC
loci were previously unknown for any KC and replicated in the
23andMe cohort, indicating our study uncovers important findings
relevant to KC biology.

First, we identify previously unknown loci in the pigmentation
pathways for both BCC and SCC susceptibility. Due to the importance
of sun exposure in keratinocyte cancer biology29, several new loci for

BCC and SCCwere linked to pigmentation traits, including skin colour,
red hair, skin tanning response and sunburns. The gene-set analysis
results also confirmed we identified biological pathways involved in
melanin biosynthesis and DNA damage response.

Second, our study affirms the role of immune-regulatory pro-
cesses and pathways in BCC and SCC susceptibility. We show that the
previously unknown loci for BCC and SCC are implicated in immune-
regulatory processes (Supplementary Information), including; HIV
viral loadmodulation30,31, innate immune response (through IFIH1)32–34

and autoimmunity. These cellular immune responses are important in
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cancer initiation and progression35. We also highlight a previously
known locus (CTLA4) which is an immunotherapy target (anti-CTLA4
medication) in melanoma treatment36. Therefore, our identified loci
implicated in immune response may be potential targets to improve
immunotherapy for skin cancer. However, further functional genomic
studies will be needed to establish their potential role in skin cancer
prevention and treatment.

Third, immunosuppressive medication, including azathioprine
and cyclosporin A have been implicated in BCC and SCC risk37,38. While
we uncovered KC loci linked to immune-related medication use,
including; anti-asthmatic inhalants and thyroid preparations39, it is
likely that medication-related loci underpinned here are just a proxy
indicator for the autoimmune disease. Thus, these medications are
unlikely to cause BCC or SCC. In addition, even if these diseases were
all treated with drugs that greatly increased the risk of KC, they are (a)
too rare to lead to a cryptic genetic correlation as large as what we see
here e.g. for hypothyroidism (rg = −0.19, P = 1.05 × 10−4) (Supplemen-
taryData 1) and (b) the genetic correlation e.g. for hypothyroidismwas
negative with BCC where a drug-induced cryptic overlap would give a
positive genetic correlation.

Fourth, our study also highlights the potential role of cardiome-
tabolic biomarkers in BCC/SCC risk. Besides the PUFA levels, whose
causal association link with the BCC risk has been established through
a Mendelian randomisation study40, our results highlight a potential
causal relationship between cardiometabolic biomarkers, including;
diastolic and systolic blood pressure, lipids, serum glucose, choles-
terol and adiposity, and the risk of BCC and SCC. As is the case for
PUFA, downstream metabolism of these cardiometabolic biomarkers,
such as lipids and cholesterol, results in oncogenic inflammatory bio-
markers (e.g. prostaglandins E, thromboxane A2 and leukotriene B).
However, some risk genetic variants or loci for the cardiometabolic
pathway could be influencing BCC and SCC risk through already
known pigmentation and immune-regulatory biological pathways e.g.
rs1136165 in CKB and rs10774625 in ATXN241–44.

Fifth, we also unveil important genes with a potential role in BCC
and SCC initiation and progression e.g. FAP, CDKL1,MARK3, RAB11FIP2,
GAB2, SUOX and SOX6. Although some genetic variants within these
genes have pleiotropic effects with pigmentation traits, the afore-
mentioned genes have established roles in cancer cell proliferation,
migration and invasion, and downregulation of apoptosis in mela-
noma, colorectal cancer and breast cancer45–51. Some of these loci are
potential drug targets. For example, a previous study identified a
potential drug 'PCC0208017' as an inhibitor of MARK3, suppressing
glioma progression both in vitro and in vivo52. Fostamatinib, a drug
used for treatment of chronic immune thrombocytopenia53, is an
inhibitor ofMARK354. Further studies are warranted to test these drugs
for any anti-tumour activity in KC.

Our results further emphasise the shared biology between cuta-
neous melanoma and KC. In total, four previously unknown loci for
BCC and SCC at ATM, DSTYK, GPR98 and SOX6 are known for CM20,55,56.
Our MTAG results have also highlighted shared biology between BCC
and SCC whereby almost half (7) of the previously unknown loci are

shared between BCC and SCC. However, our work also highlights loci
distinct to either BCC (12) and SCC (8), indicating unique biological
pathways (see results) for each cancer.

We also note the difference in the replication success between
BCCandSCC.Given the relatively highgenetic correlationbetween the
two traits, similar replication results are expected.However, at a subset
of loci, the input datamay suggest that a particular SNP is only strongly
associatedwith say, BCCbut no SCC. Givenwe have substantiallymore
input data onBCC than SCC, powermay also play a part in the strength
of the results, and replication success. We have previously shown that
BCC is twice as heritable as SCC (SNP-heritability estimates for
BCC= 13.1%, 95% CI = 9.7–16.5% versus 6.8%, 95% CI = 0.9–12.7% for
SCC)13, and it is more polygenic8,57. We believe the reasons contributed
to the differences in replication success.

One strength of the MTAG method is the increase in statistical
power to identify several loci that a standard single-trait GWASwould
not have done. For example, using MTAG, we increased our sample
size by 2.6 times and 8.3 times for BCC and SCC, respectively. Owing
to the great improvement in statistical power, our MTAG-derived
BCC PRS outperformed (for KC risk stratification) the one derived
from a single-trait BCC GWAS. We and others have previously
shown that the KC PRS generated from the general population
effectively stratify them for KC risk and multiplicity58–60. The opti-
mised MTAG-derived PRS is likely to improve KC risk stratification in
high-risk subpopulations, as previously shown in solid organ trans-
plant recipients.

One caveat with the MTAG approach is that it assumes that the
genetic variants have a homogeneous effect across all the included
traits so that the results arenot driven by a certain trait to result in false
positives15. Firstly, when we compared the genetic correlation (Sup-
plementary Fig. 1), and theMTAG results (Supplementary Fig. 2) before
and after excluding genomic regions (HLA, ASIP, IRF4, MC1R, SLC45A2
and CDKN2A) with very large effect sizes for skin cancers and pig-
mentation traits, and there was a high concordance (Supplementary
Fig. 2). Secondly, there was good replication of our results in an
independent cohort, which counters concerns of false positives. In
addition, in order tominimise biases arising fromusing several cohorts
which might have phenotypes with different measures15, we selected
only traits where the magnitude of the genetic correlation was larger
than 0.1 (or less than −0.1 for negatively correlated traits); we also
required the correlation to at least reach nominal significance
(P < 0.05), as a priori. Also, studies with small sample size were not
considered, as including such traits would only negligibly increase our
effective sample size.

In conclusion, leveraging the genetic correlation between skin
cancers, autoimmune diseases, pigmentation traits and serum bio-
chemistry biomarkers revealed previously unknown susceptibility loci
for SCC and BCC, implicated in KC development and progression,
pigmentation, cardiometabolic and immune-regulatory pathways. We
also report an optimised PRS for effective risk stratification for KC,
which could facilitate skin cancer surveillance in high-risk subpopula-
tions such as transplantees.

Fig. 7 | Validation and application of the basal cell carcinoma MTAGPRS and
UKBPRS in participants in the Canadian Longitudinal Study on Aging (CLSA).
PRS refers to polygenic risk score,UKB-UnitedKingdomBiobank,MTAGmulti-trait
analysis of GWAS, CI confidence intervals, SD standard deviation, % percent and
BCC basal cell carcinoma. The red colour represents the UKB PRS version whilst
cyan indicates theMTAG-derived PRS. The error bars represent the 95% confidence
interval in 6b (odds ratio, two-sided test), c (net reclassification improvement
index) andd (percentage reclassified). aValidationof theBCCMTAGPRS andUKBPRS

models to select the best performing index based on clumped SNPs at S1
(P < 5×10−8), S2 (P < 10−7), S3 (P < 10−6), S4 (P < 10−5), S5 (P < 10−4), S6 (P < 10−3), S7
(P < 10−2) and S8 (P < 10−1) on the x-axis. The y-axis represents Nagelkerke’s R2 (%), a
measure for model fitness. PRS model S1 and S5 are the optimal PRS models for

UKBPRS andMTAGPRS, respectively, in a selected validation sampleofCLSA (N = 1911
individuals). b Shows and compares the association between the UKBPRS and
MTAGPRS and KC risk in CLSA (N = 18,515 individuals) expressed in odds ratios per
standard deviation (y-axis) increase in the PRS, and adjusted for age, sex and the
ancestral 10 PCs. c Illustrates that the MTAGPRS performs better than the UKBPRS

based on both the categorical and continuous net reclassification improvement
indices in CLSA (N = 18,515 individuals). d Compares the percentage of people
reclassified to an appropriated KC risk group after adding the MTAGPRS vs the
UKBPRS to a model with age, sex and 10 ancestral principal components in CLSA
(N = 18,515); MTAGPRS reclassified 36.57%, 95% CI = 35.89–37.26% of individuals
compared to 33.23%, 95%CI = 32.56–33.91% by UKBPRS. Source data are provided as
a Source Data file.
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Methods
Cohorts
Discovery cohorts. Participants that contributed to the phenotype-
specific genome-wide association studies were of homogenous Eur-
opean ancestry drawn fromdifferent cohorts fromAustralia, Europe and
America. While there was sample overlap across the included GWAS,
MTAGadjusts and corrects for biases due to sample overlap15. Themajor
cohorts used included; the UK Biobank (UKB)18,19, QSkin Sun and Health
Study (QSkin) (Olsen et al. 2012), eMERGE (dbGaP, study accession:
phs000360.v3.p1) and GERA (dbGaP, study accession: phs000674.v3.
p3), amelanomameta-analysis consortium(Supplementary Information;
Supplementary Table 2)20 (dbGaP accession study code: phs001868.v1.
p1), as well as publicly available GWAS summary statistics from inter-
national cohorts and consortium. Details for each cohort, including
ethics oversight, are described in the Supplementary Information.

Replication cohort: 23andMe Research Cohort. 23andMe, Inc. is a
direct-to-consumer genetic company that collected both self-reported
phenotypes and genetic data from participants who provided
informed consent and participated in the research online, under a
protocol approved by the external Association for the Accreditation of
Human Research Protection Programme (AAHRPP)- accredited Insti-
tutional Review Board (IRB), Ethical & Independent Review Services
(E&I Review). The BCC cohort included 2,523,630 participants of Eur-
opean ancestry; 251,963 BCC cases and 2,271,667 controls, and 44.65%
males. The SCC dataset included 2,529,399 participants of European
ancestry; 134,700 SCC cases and 2,394,699 controls, and 44.65%
males. Further details on data collection, validation, genotyping,
imputation and quality control have been published before8,57.

BCC PRS application cohort: the Canadian Longitudinal Study on
Aging (CLSA). The Canadian Longitudinal Study on Aging (CLSA) is a
prospective large population-based cohort in Canada comprising
about 50,000 participants (45–85 years) randomly recruited between
2010 and 2015 from ten provinces61,62. More information about the
cohort has been published elsewhere61,62 and summarised here. It
consists of two cohorts; the 'Tracking cohort' of ~20,000 participants
recruited through a telephone questionnaire in ten provinces, and the
“Comprehensive cohort” with ~30,000 individuals who provided data
through an in-person questionnaire, clinical/physical tests and biolo-
gical samples (e.g. for genetic data) in seven provinces.

In general, at baseline, information on relevant variants, including
age and sex, were recorded, and participants were also asked whether
they had been diagnosed with any cancer, including KC (yes/no), by a
health professional. Between 2015 and 2018, the first follow-up assess-
mentwas conducted andparticipantswere asked again if they hadbeen
diagnosed with cancer, and KC during the follow-up period. Thus, the
CLSA dataset we used included the 'Baseline Comprehensive Dataset
version 4.0' and 'Follow-up 1 Comprehensive Dataset version 1.0'. At the
time of analysis, ~30,000 individuals had genetic data available, geno-
typed using 820KUKBiobank AxiomArray (Affymetrix)61, and imputed
using the TopMed imputation server63. The CLSA is overseen by the
Canadian Institutes ofHealth Research (CIHR) and its protocol has been
reviewed and approved by 13 research ethics boards in Canada. All
participants provided written informed consent.

Firstly, for purposes of validation and selection of the optimal PRS
models (as described below in Stage 6 analysis) we randomly selected
1523 cancer-free controls and 388 prevalent KC cases at the baseline.
Thus, our validation sample included 1911 participants with amean age
of 65.81 years (sd = 10.25) and 52.75% males.

Secondly, we tested the BCC PRSs in a second sample (unrelated
to the validation dataset) of 18,933 participants of European ancestry,
with a mean age of 61.80 years (sd = 9.84), followed up for a mean
duration of 2.9 years (sd =0.3) and 49.63% males. Only participants
with complete data on age, sex, cancer status and KC diagnosis were

included. Thus, 18,139 controls with no history of any cancer (at follow
up 1) and 794 participants who developed KC during follow-up.

Statistical analysis
Stage 1: GWAS for BCC, SCC and related traits. We conducted two
case-control GWAS using UKB data for BCC, N = 307,684 (20,791 cases
and 286,893 controls) and SCC, N = 294,294 (7402 SCC cases and
286,892 controls)of European ancestry.We adjusted for age and sex as
well as the first ten ancestral principal components (PCs) in order to
control for biases frompopulation stratification.We used Scalable and
Accurate Implementation of GEneralised mixed model (SAIGE) soft-
ware for the analysis since it controls for sample relatedness and case-
control imbalance25. Analysis was restricted to single nucleotide poly-
morphism (SNPs) with minor allele frequency (MAF) >1% and an
imputation quality score of 0.3. BCC/SCC cases were drawn from UK
cancer registries. Further details on case ascertainment and definition
are described in Supplementary Information.

In addition, we conducted GWAS for pigmentation traits (e.g. skin
colour, hair colour, tanning response, skin burn, sunburn, etc.), all-
cancer, autoimmune conditions, and blood biochemistry biomarkers
(e.g. C-reactive protein, vitamin D, glucose, albumin, aspartate ami-
notransferase, gamma-glutamyl transferase, etc) using data from
international cohorts including; UKB, QSkin, and GERA as described in
Supplementary Information, Supplementary Data 2, 3. We also con-
ducted GWAS on KC and all-cancer after accessing data from eMERGE
(dbGaP, study accession: phs000360.v3.p1) and GERA (dbGaP, study
accession: phs000674.v3.p3) cohorts respectively (Supplementary
Information). We also accessed publicly available GWAS summary
statistics e.g. for cutaneous melanoma20, smoking28, education
attainment27, body mass index64, hypothyroidism, type 1 diabetes,
rheumatoid arthritis25 and vitiligo26 (Supplementary Information,
Supplementary Data 2, 3).

Stage 2: Genetic correlation between BCC, SCC and related traits.
We used LDSC version 1.0.165, to compute the genetic correlation (rg)

16

between BCC and a range of other traits, including; other skin cancer
types, pigmentation traits, autoimmune traits and biochemistry bio-
markers (recently released in the UKB). We then repeated this process
for SCC instead of BCC.We used data frompublicly available GWAS, as
well as GWAS data from international cohorts of participants of Eur-
opean ancestry (conducted in stage 1 above). Traits with a statistically
significant (P < 0.05) rg greater than 10% with either BCC or SCC were
selected and included in the MTAG model (Fig. 1 and Supplementary
Table 1). We further sought additional traits that were genetically
correlated with BCC or SCC using data from the LD hub catalogue17.
Out of about 700phenotypes, no additional phenotypeswere selected
to be included in the final MTAG model.

In total, 22 traits, including the initial input BCC and SCC GWAS
from different cohorts of European ancestry, met the inclusion criteria.
The 22 genetically correlated traits included; BCC, SCC, skin colour, hair
colour excluding red hair, hypothyroidism, type 1 diabetes, gamma-
glutamyl transferase, aspartate aminotransferase, serum vitamin D
levels, albumin, C-reactive protein and glucose in the UK Biobank19, KC,
red hair and mole count in the QSkin21, KC in eMERGE (dbGaP, study
accession: phs000360.v3.p1), all-cancer in GERA cohort (dbGaP, study
accession: phs000674.v3.p3), melanoma risk as measured by the latest
and largest melanoma risk gwas meta-analysis20, vitiligo26, education
attainment27 and smoking28. All the above studies excluded23andMe, to
enable us to utilise the 23andMe data as a replication set. Details on the
phenotypic measurements and definitions are described in Supple-
mentary Information and Supplementary Data 2, 3.

Stage3:Multi-trait analysis ofGWASsummary statistics. Next, using
a total of 22 genetically correlated traits, we conducted a multi-
phenotype analysis of GWAS summary statistics (generated at stage 1
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analysis and selected in stage 2) using MTAG software version 1.0.815.
MTAG default settings were used. MTAG combines GWAS summary
statistics for genetically correlated traits into a meta-analysis while
accounting for genetic correlation, sample overlap, maximising power
to identify loci associated with the trait(s) of interest (here BCC and
SCC)15. MTAG generates trait-specific results for each phenotype inclu-
ded in the model. BCC and SCC GWAS summary data from UKB from
stage 1 were included as trait 1 and 2, respectively in the model below;

MTAGmodel:BCC+SCC+melanoma+pigmentation traits

+ autoimmune traits + . . . . . . :+ traitn:

After the quality control measures, the analysis was restricted to
5,301,239 SNPs common in all the 22 GWAS with a minor allele fre-
quency of >1%, and no ambiguous alleles. MTAG boosts the statistical
power of the single-trait GWAS15. We assessed the increase in the sta-
tistical power/effective sample size or the GWAS-equivalent sample
size when MTAG was applied to the single-trait GWAS, by comparing
the average chi-squared before and after MTAG for BCC and for SCC
using the following formula recommended by the MTAG authors:15

ð1� average χ2 MTAG outputÞ=ð1� average χ2 MTAG inputÞ

Where MTAG input corresponds to the input for either BCC or
SCC GWAS in the UKB dataset, and χ2 is chi-squared.

We took forward the a) BCC and b) SCC MTAG output summary
statistic results for further post-GWAS analysis in stage 4 and replica-
tion in stage 5. BCC and SCC Manhattan plots are presented in Figs. 2
and 3, respectively.

Stage 3.1: Sensitivity analyses. MTAG assumes a homogeneous effect
across all the included traits15. However, due to their strong association
with some input traits, the following genomic regions were removed;
CDKN2A, SLC45A2, IRF4 and HLA for autoimmune, and ASIP and MC1R
for pigmentation or CM, violate this assumption. We conducted sensi-
tivity analyses excluding these regions before implementing ourMTAG
model. Using the stage 1 BCC GWAS summary statistics, we removed
extended regions forASIPonchromosome20 (30–36megabases (mb)),
MHC regions on chromosome6 (25−36mb), andMC1Ron chromosome
16 (87–90.3mb). We also removed 2mb around the most significant
SNP in the following regions; rs12203592 (6:396321) in the IRF4 region
on chromosome 6, rs3731239 (9:21974218) in the CDKN2A region on
chromosome 9, and rs16891982 (5:33951693) in the SLC45A2 region on
chromosome 5. We compared the genetic correlation between BCC/
SCC before and after removing the genomic regions with known strong
associations and high LD (Supplementary Fig. 2), before running the full
MTAG model of 22 traits described above. The MTAG results with and
without the above genomic regions were also compared (Supplemen-
tary Fig. 1).

Stage 4: Post-GWAS analysis. We used FUMA v.1.3.666, to identify
independent, genome-wide significant SNPs and the genomic risk loci,
and performed annotation of candidate SNPs in the genomic loci and
functional genemapping.We also conducted gene-based and pathway
analyses usingMAGMAv.1.7, as implemented in FUMA v.1.3.667. For the
genepathwayanalysis, gene ontology (GO) and curated gene sets from
MSigDB (v5.2)68 were used and corrected for multiple testing. GWAS
catalogue69 and Open Targets platform70 were used to annotate the
loci and their relationship with other traits.

Stage 5: Replication of the BCC and SCC MTAG results. Next, we
sought to replicate the BCC and SCC susceptibility loci in a large
independent cohort usingdata from the 23andMe research cohort. For
BCC, the replication cohort included 251,963 self-reported cases and
2,271,667 controls, while the SCC replication comprised 134,700 cases

and self-reported cases and 2,394,699 controls of European ancestry
filtered to remove close relatives.

Previous studies have shown high accuracy of 23andMe BCC/SCC
self-reported cases8 andhigh genetic correlation (rg > 0.9) between the
histologically confirmed UKB BCC/SCC data and 23andMe data13. Age,
sex, and population stratification using five PCs were adjusted for in
both analyses in a logistic regression i.e.

BCCor SCC∼genotype+ age + sex +pc:0+pc:1 +pc:2 +pc:3 +pc:4

+ v2 platform+ v3 0 platform+ v3 1 platform+ v4 platform:

The V2 genotyping platform was a variant of the Illumina
HumanHap550 +BeadChip with ~560,000 SNPs, including about
25,000 custom SNPs selected by 23andMe. The V3 platform included
Illumina OmniExpress + BeadChip with ~950,000 SNPs and custom
content SNPs. The V4 is the current and fully customarrayof ~950,000
SNPs and includes a lower redundancy subset of V2 and V3 SNPs71.

The BCC results were adjusted for a genomic control inflation
factor λ = 1.286. The equivalent inflation factor for 1000 cases and 1000
controls λ1000= 1.001, and for 10000, λ10000= 1.006. In a similarway,
the SCC results were adjusted for a genomic control inflation factor
λ = 1.172. The equivalent inflation factor for 1000 cases and 1000 con-
trols λ1000= 1.001, and for 10000, λ10000= 1.007. Thus, this inflation
factorwas not concerning as it is proportional to the large sample size72.
We also explored any evidence of inflation in the discovery GWAS by
assessing the LDSC intercept73, which showed no inflation (not sub-
stantially above 1) for both BCC (LDSC intercept =0.96, 95%
CI = 0.94−0.99) and SCC (LDSC intercept = 0.77, 95%CI =0.75−0.79).

We also compared the concordance of the effect sizes (log OR) for
the MTAG results versus the replication results (Fig. 4b, d). We further
analysed thenumber of loci that replicated at a genome-wide significant
level (P = 5.0 × 10−8), after multiple testing correction (i.e. Bonferroni
correction P =6.49 × 10−4 for BCC; correcting for 77 loci, and
P = 7.24 × 10−4 for SCC; correcting for 69 loci) and at a nominal P=0.05.

Stage 6: Development and validation of the BCC Polygenic Risk
Score in a selected sample of participants inCLSA. To construct two
comparable polygenic risk scores (PRSs) for BCC, we separately used
the BCCMTAG output (generated in stage 3) and the UKB BCC single-
trait GWAS (generated in stage 1) summary statistics as the discovery
data sets. MTAG15 drops SNPs with extremely significant associations
with any input trait, which resulted in a number of previously reported
pigmentation-associated SNPs being dropped from the model. Hence
in both the MTAG and UKB discovery GWAS summary statistics, we
also included two functional SNPs (rs1805007 for MC1R, and
rs12203592 for IRF4) that would otherwise have been dropped in the
PRS using theweights fromapreviously published BCCPRS74. They are
removed during the MTAG analysis as it filters out SNPs strongly
(P < 10 × 2.22−308) associated with input traits, but this same strong
association confirms they are important for a PRS for BCC. A sensitivity
analysis results excluding these SNPs, and still, the MTAG BCC PRS
reclassified skin cancer cases to a higher risk group (41.27%) better
than the single BCC PRS (37.95%).

Next, using autosomal, non-ambiguous, and bi-allelic SNPs over-
lapping in the CLSA cohort (MTAG discovery = 5,300,872 SNPs and UKB
discovery = 5,300,868 SNPs), we performed LD clumping based on
(r2 = 0.005 and LD window=5000kb, P= 1) to yield 62,494 and 62,884
independent SNPs for MTAGPRS and UKBPRS models respectively. PLINK
1.90b6.875 for clumping.Using theclumped independentSNPsabove,we
generated PRS models at varying p value thresholds i.e. S1 (P< 5× 10−8),
S2 (P< 10−7), S3 (P< 10−6), S4 (P< 10−5), S5 (P< 10−4), S6 (P< 10−3), S7
(P< 10−2) and S8 (P< 10−1) in validation sample of 1911 participants split
from the CLSA cohort using log odds ratio (from the respective dis-
coveryGWAS;MTAGorUKB) asweights. PLINK2 (v2.00a3LM5May2021
release)75 was used for generating the PRS scores.
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For bothMTAG andUKBPRSmodels, weusedNagelkerke’s R276,, a
metric for model fitness used for selecting the optimal model. We
computed theR2 by comparing themodelfitness betweenmodelswith
PRSs (BCC~MTAGPRS or UKBPRS + age + sex + 10 Pcs) and a null model
using predictABEL package77 in R software version 4.0.278.

Stage 7: Applying BCC polygenic risk score and keratinocyte can-
cer risk prediction in the Canadian longitudinal study of aging. To
determine the ability of our MTAG GWAS data to predict skin cancer,
we used 18,933 participants of European ancestry with data on KC risk
in the Canadian Longitudinal Study of Aging (CLSA). We included
18,139 controls with no history of any cancer (both at baseline and
follow-up) and 794 cases who developed KC during the 2.9 years (on
average) follow-up following baseline recruitment. Separate BCC and
SCC data were unavailable in this cohort, and as ~80% of KC cases are
BCC cases79, we tested the performance MTAGPRS vs UKBPRS derived
for BCC to predict the risk of KC.

Using PLINK2 (v2.00a3LM 5 May 2021 release)75, we generated
individual scores for CLSA participants for both the BCCMTAGPRS and
UKBPRS weighted by their respective effect sizes (log odds ratios). The
genetic scoreswere standardised to a varianceof 1 in order to interpret
the associations as odds ratio per standard deviation increase in the
PRS. We compared the performance of the two BCC PRSs (MTAGPRS vs
UKBPRS) based on the magnitude of the association (odds ratios) and
the net reclassification improvement for KC risk using R version
4.0.278. For net reclassification improvement, we compared the net
reclassification index and the percentage of the participants who got
reclassified to an appropriate risk group/tertile i.e. the low risk (bottom
tertile), moderate risk (middle tertile), and high risk (top tertile) after
adding the MTAGPRS vs UKBPRS to the base model containing age, sex
and the ten PCs.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The full GWAS summary statistics generated in this study have been
deposited in the NHGRI-EBI GWAS Catalogue under accession code
GCST90137411 for BCC and GCST90137412 for SCC. The PRS gener-
ated in this paper are provided with this paper in Supplementary
Data 6, 7. The BCC and SCC independent genome-wide significant
SNPs (both for the discovery of MTAG results and replication from
23andMe) generated in this study are provided with this paper in
Supplementary Data 4, 5 files, respectively. Source data for the figures
are provided with this paper in the Source Data File. Genotype and
phenotype data for the UK Biobank are available through application
via https://www.ukbiobank.ac.uk/, for the Canadian Longitudinal
Study on Aging (CLSA) at www.clsa-elcv.ca, and for QSkin through
application to Prof. David Whiteman (David.Whiteman@qimrber-
ghofer.edu.au), the principal investigator. Data from the Resource for
Genetic Epidemiology Research on Aging (GERA) Cohort (dbGap
accession phs000674.v3.p3), and the Electronic Medical Records and
Genomics Network (eMERGE) (dbGaP, study accession: phs000360.
v3.p1) can be accessed from dpGAP. The cutaneous melanoma GWAS
summary statistics used in this paper were from ref. 20, are publicly
available from dbGap (accession study code: phs001868.v1.p1). The
following trait-specific GWAS summary statistics were also used in this
paper and are publicly available through the following consortia or
resources; educational attainment by ref. 27 (downloadable from the
SSGAC website http://ssgac.org/Data.php), smoking (cigarettes
per day) by ref. 28 (downloadable from the GSCAN Consortium web-
site https://genome.psych.umn.edu/index.php/GSCAN), and auto-
immune traits from by ref. 25 (available at ftp://share.sph.umich.edu/
UKBB_SAIGE_HRC/). Source data are provided with this paper.

Code availability
The custom code used to generate the key results in this study can be
freely accessed at https://github.com/mathiasS-hub/KC_MTAG_
NatComm_Code.
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