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Standard genome-wide association studies (GWASs) rely on analyzing a single
trait at a time. However, many human phenotypes are complex and composed
by multiple correlated traits. Here we introduce C-GWAS, a method for com-
bining GWAS summary statistics of multiple potentially correlated traits.
Extensive computer simulations demonstrated increased statistical power of
C-GWAS compared to the minimal p-values of multiple single-trait GWASs
(MinGWAS) and the current state-of-the-art method for combining single-trait
GWASs (MTAG). Applying C-GWAS to a meta-analysis dataset of 78 single trait
facial GWASs from 10,115 Europeans identified 56 study-wide suggestively
significant loci with multi-trait effects on facial morphology of which 17 are
novel loci. Using data from additional 13,622 European and Asian samples, 46
(82%) loci, including 9 (53%) novel loci, were replicated at nominal significance
with consistent allele effects. Functional analyses further strengthen the
reliability of our C-GWAS findings. Our study introduces the C-GWAS method
and makes it available as computationally efficient open-source R package for
widespread future use. Our work also provides insights into the genetic
architecture of human facial appearance.

Standard genome-wide association studies (GWASs) rely on analyzing
asingle trait at a time. However, many human phenotypes are complex
and composed by multiple correlated traits. A common approach in
dealing with correlated traits in GWAS is to separately conduct GWASs
for the different traits and use the minimum p-values of multiple
GWASs (MinGWAS) with a more stringent significance threshold.

However, because MinGWAS cannot exploit genetic information
underlying correlated traits, it is of limited power in detecting genetic
variants with multi-trait effects.

Several methods were previously developed to enable integrated
analysis of multiple traits based on single-trait GWAS summary
statistics', which are more flexible than dimension reduction of
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individual-level data. Such methods have shown increased power than
MinGWAS in detecting genetic associations, but have limitations. The
most prominent example is the current state-of-the-art method for
integrated GWAS named multi-trait analysis of GWAS (MTAG)’. MTAG
distinguishes true effect and estimate error and obtains higher power
than other competing methods. However, MTAG relies on the key
assumption that all SNPs share the same variance-covariance matrix of
effect sizes across all of the traits tested. Both, the statistical power and
the type-l error rate (a) of MTAG are sensitive to the parameters
related to this assumption. Moreover, accurate estimation of these
parameters requires high-powered input GWASs. When the assump-
tion is satisfied but the input GWASs do not have sufficiently high
statistical power, which often is barely achievable with tens or even
hundreds of thousands of samples, MTAG is expected to have limited
power and unstable a. Furthermore, the key assumption of MTAG is
violated as soon as different SNPs are associated with different traits of
different effect sizes, which is likely the case for many if not all complex
traits. When this assumption is violated, MTAG also has limited power
and unstable a.

Aiming to overcome the limitations of previous methods, we
developed C-GWAS, a method to combine GWAS summary statistics
of multiple potentially correlated traits. We implemented C-GWAS as
an R package that can effectively handle a large number of traits in a
parallel manner by optimizing load splitting and memory manage-
ment. We performed extensive computer simulations under a variety
of scenarios to assess the performance of C-GWAS in comparison
with MinGWAS and MTAG. To empirically exemplify its practical
suitability, we applied C-GWAS to a previously published summary
statistic dataset of 78 GWASs of correlated facial traits with mediocre
statistical power (N =10,115 Europeans)* and compared it with MTAG
and other competing methods. We used new and previously pub-
lished data (N = 13,622 Europeans and Asians)*¢ for replicating the
C-GWAS findings and accumulated functional evidence to further
strengthen the reliability of the novel genetic face loci we discovered
with C-GWAS.

Results

Overview of C-GWAS

C-GWAS represents a complete solution for investigating potential
multi-trait effects of SNPs based only on the summary statistics of K
GWASs (Supplementary Fig. 1). For optimizing statistical power, it is
necessary to partition the correlation matrix of the T statistics from K
GWAS:s into two matrices that differentiate the ‘effect correlation’ I
caused purely by true allelic effects from the ‘background correlation’
W under the null. Both W and I are K by K symmetric matrices, where
Yy, i€l 2,..,Kandj € {1, 2,..., K} (in brief ¢), indicating the corre-
lation between the T statistics of ith GWAS and jth GWAS caused only
by non-genetic effects and similarly /7; (or m) indicating the correlation
caused only by true allelic effects. In standard meta-analysis, the off-
diagonal elements of W would be zero. In C-GWAS, however, the off-
diagonal of W may deviate from zero in presence of sample overlap
and/or non-genetic phenotype correlations caused by shared envir-
onmental or unknown factors. C-GWAS and MTAG have an important
similarity in distinguishing I from W as key parameters in combining
GWAS:s. Note that the true effect Q and the estimate error X in MTAG
are also K by K symmetric matrices and ideally, /7;=0Q;/, /Q;Q; and
Wi=y/ Vi Different from MTAG that generates genome-wide p-value
vectors with the same number of input GWASs, C-GWAS generates a
single vector of genome-wide p-values testing for each SNP if the null is
deviated (HO: absence of any effect on all traits, H1: deviation from
zero for at least one trait). In addition, different from MTAG that per-
forms joint analysis of all GWASs at once, C-GWAS use two-step design
where separately employs an iterative decision-making algorithm and
truncated test strategy to take into account that SNPs may have dif-
ferent effects in different subsets of GWASs.

Two-step design. Full details regarding formulation, derivation, and
simulation can be found in the “Methods” section. In brief, C-GWAS
uses a two-step design to achieve high power in detecting multi-trait
effects under various complex scenarios with the emphasis that SNPs
may have different effects in different subsets of potentially correlated
GWASs. The first step is to use iterative Effect-based Inversed Covar-
iance Weighting (i-EbICoW) to combine subsets of K GWASs in which I
can be distinguished from W. EbICoW is originated from traditional
Inversed Variance Weighting (IVW) based meta-analysis with three
extensions. For each SNP, let 6=(0,,0,,...,0,)", n=(n,n,,...,n)"
and t=(t,t,,....t;)" be the vectors of standard errors, sample sizes,
and T statistics from K GWASs for one SNP, the combined T statistic of
IVW is expressed as .., =W't/~/wTw, where w is a vector of weights,
which are usually chosen from w = (A}, /Ay, ...,\/Ag) or
w = (1/0,,1/0,,...,1/0)". The first extension of EbICoW guarantees
the standard normal distribution under the null for combining corre-
lated GWASs, i.e., the presence of non-zero off-diagonal elements of W.
The revised combined T statistic can be derived as a function of W and
w and t from the original IVW.
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The second extension optimizes the statistical power when ele-

ments in the vector of expected true effects 6=(6,,6,,...,6,)" are

different. Let b be a vector of 1 with length K, and H be a K by K

covariance matrix of & among the genome-wide SNPs, where
H;=E(5,6)).
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The third extension accounts for different effect directions of the
expected &. For k€1, 2,..., K},
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here the function sign for a variable x is defined as sign(x) =1whenx >0
and sign(x) = -1 when x < 0, so that for a matrix X, [sign(X)]; = sign(X).
Note that Egs. (1), (2), and (3) are all equivalent to the original form of
IVW when all GWASs are uncorrelated and all expected & are the same
(see “Methods”).

C-GWAS then iteratively applies a decision-making algorithm to
find and combine subsets of K GWASs that are suitable for EbICoW, i.e.,
when off-diagonal elements of Il are difficult to be distinguished those
from W. It iteratively combines a pair of GWASs with the max [7-y|
until none of the GWAS pairs is suitable for EbICoW.

The second step is to use Truncated Wald Test (TWT) to combine
the revised GWASs in a SNP-specific manner. For each SNP, TWT
identifies its most significant subset and produces a single combined p-
value by applying the Wald test’ (Wald) to all subsets satisfying a series
of preset thresholds. Different from i-EbICoW, in which the T statistics
asymptotically follow the standard normal distribution, TWT results
obtained without calibration do not follow any known distribution due
to procedures for selecting SNP-specific subset.

Parameter estimation and distribution calibration. Coming with C-
GWAS, three methods were additionally developed as functions for
estimating inflation (get/), ¢ (getPsi), and for calibration of unknown
distributions (getCoef). The get/ removes potential inflations of input
GWASs utilizing the relationship between the distribution of the true
effect-excluded GWAS and the standard normal distribution. The
getPsi partitions the correlation matrix of GWASs into W and I in such
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a way that ¢ is estimated as the correlation of two GWASs by only
focusing on non-significant SNPs in the joint distribution of the two
GWASs. The getCoef function calibrates TWT p-values according to
quantile specific coefficients between an empirically simulated null
and the uniform distribution. This guarantees that final p-values from
C-GWAS are directly comparable with those from any standard GWAS.

C-GWAS performance via computer simulations

Extensive computer simulations were carried out to assess the per-
formance of C-GWAS in terms of statistical power (scenarios 1-5),
parameter estimation (scenarios 6-7), and type-l error (scenarios
8-10), in comparison with MTAG and MinGWAS whenever
appropriate.

Scenario 1 is designed to compare the power between two inter-
mediate forms of EbICoW (Egs. 1 and 2) for combining summary sta-
tistics of two GWASs (Supplementary Fig. 2). The simulations confirm
that (1) is a special case of (2) when the true effects and the sample sizes
are the same between the two GWASs. When they are different, the
power of (2) is almost always higher than that of (1). The larger the |

m-y| is, and the larger the difference of true effects, the larger the
power of (2), particularly when the sample sizes are the same. These
results demonstrate that (2) has a higher power than (1) in most
circumstances.

Scenario 2 compares the power between an intermediate (2) and
the final form of EbICoW (3) for combining summary statistics of two
GWASs (Supplementary Fig. 3). The simulations showed that when
>y, the power of (3) is the same as (2), and when the <y, the power
of (3) is the same as negative signed (2), which has a higher power than
(2). The power gain is increasingly considerable when the true effects
become large. These results demonstrate that (3) has the same or
higher power than (2).

Scenario 3 explores the power relationship between EbICoW and
Wald under different m and ¢ when combining summary statistics of
two GWASs (the central panel of Fig. 1 and Supplementary Fig. 4).
Simulations showed that the power of both EbICoW and Wald increase
with |r-¢|, but the power of EbICoOW increases in a faster rate than that
of Wald. Hence, the power of EbICoW is larger than that of Wald when |
m-y| is large. In contrast, the power of Wald is higher than that of
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Fig. 1| Power comparison between EbICoW and Wald test for combining two
GWASs under the same true effect via simulations. The summary statistics of two
GWASs with the same true effect configuration, i.e., E(y*) = 1.3, were simulated, each
consisting of 50,000 SNPs with 10% having true effect, according to the following
parameter grid: ¢ and m{-0.98, -0.9, -03,...,-0.1, 0, 0.1,..., 0.8, 0.9, 0.98}. For
each of the 441 (21x21) different combinations of  and ¢, 1000 replicates were
carried out. The power relationship between EbICoW and Wald is illustrated using a
heat map in the center panel. The maximum power of the two methods is pro-
portional to the block size in the heat map. The power ratio of EbICoW and Wald is
expressed by color from red to blue. Taking seven specific combinations of m and ¢

as examples, we show in detail the performance of EbICoW and Wald (panels (a-g)
surrounding the central panel). For illustration purposes, each surrounding panel is
a scatter plot of the test statistics from the two GWASs consisting of 2000 SNPs
with 50% increased true effect compared with the corresponding cell in the heat
map, in which the null SNPs are indicated in gray dots and the SNPs with true effects
are indicated in colored crosses. Different colors are used to distinguish the sig-
nificance of EbICoW and Wald, i.e., orange for both significant, blue for EbICoW
only significant, green for Wald only significant, and black for non-significant
results. The areas outside of the blue lines are the detection range of EbICoW and
the area outside of the green ellipse is the detection range of Wald.
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EbICoW when |[r-¢| is small, especially when two GWASs have the same
true effect. The statistical nature of EbICoW and Wald when combining
two GWASs is illustrated in panels (a-g) of Fig. 1 and Supplementary
Fig. 4. Notably, Wald only uses the joint distribution of null to deter-
mine its detection range, where the null is determined only by ¢. In
contrast, EbICoW uses the joint distributions of both null and true
effects to determine its detection range, which are determined by both
mand ¢. This explains the power gain of EbICoW relative to Wald when
|r-y| increases.

Scenario 4 compares the power between TWT, Wald, and Min-
GWAS for combining multiple GWASs (here we simulated ten GWASs)
under the same a (Supplementary Fig. 5). Simulations showed that
TWT has a similar or higher power than Wald and MinGWAS in all
scenarios investigated. One extreme scenario is the presence of only
one GWAS having a true effect and the absence of background cor-
relations. Under this scenario, the power of TWT is almost the same as
MinGWAS. Here the loss of power due to the extra burden of dis-
tribution calibration for TWT is negligible. Another extreme scenario is

the presence of equally distributed true effect for all GWASs and the
absence of background correlations. Under this scenario, the power of
TWT is almost the same as Wald. For all other simulated scenarios,
TWT has the optimal power. A general pattern is that compared with
Wald, the gain of power in TWT decreases with the increase of m and
increases with the increase of ¢.

Scenario 5 compares the power between EbICoW, TWT, MTAG
and MinGWAS for combining two GWASs (Supplementary Fig. 6) as
well as for combining multiple GWAS (here we simulated ten GWASs,
Fig. 2) under the same a. For combining two GWASs, a general pattern
is that when |m-¢|=0, the power of TWT >MTAG=MinGWAS >
EbICoW, and when |m-¢| becomes large, the power of EbICoW >
MTAG > TWT > MinGWAS. The exception is that when the difference of
true effect between two GWASs is large (E()(%lz) =1.1/1.6), the power of
EbICoW is always the highest, regardless of |m-¢|. For combining
multiple GWASs, we observed the following patterns. First, MinGWAS
almost always performs the worst. Second, the power of MTAG is not
the highest at any time, either lower than EbICoW or lower than TWT.

Pattern 1 Pattern 2 Pattern 3 Pattern 4
0o 20% 20% i a 10% 10% 10%
100% 10%  10% 10%  10%
9x0% 60% 7 x0% 10%
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— MTAG
037 ™WT
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0.1+ L v J/ /
0 =
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0:3
014 s T~ .
9] —
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Fig. 2 | Power comparison between EbICoW, MTAG and TWT via simulations.
The summary statistics of ten GWASs were simulated, each consisting of 50,000
SNPs with 10% having true effect. We evaluated the power of EbICoW, MTAG, TWT
and MinGWAS at a = 0.05/50,000 under two different ¢ € {0, 0.5} and four different
patterns of true effect. For pattern 1, one GWAS with true effect E(y?) = 2 and nine
GWASs under the null E(y?) =1 were simulated; for pattern 2, three GWASs with true
effect E(y?) € {1.6, 1.3, 1.1} and seven GWASs under the null were simulated; for
pattern 3, six GWASs with true effect E(y?) € {1.3,1.2,1.2, 1.1, L.1, 1.1} and four GWASs
under the null were simulated; for pattern 4, all ten GWASs were simulated with true
effect E(x?) = 1.1. For each of the 8 different combinations of ¢ and pattern of true

effect, 1,000 replicates were carried out. The x-axis is 7 and the y-axis is the power.
Each column has the same configuration of the true effect and each row has the
same . The configuration of the patterns of true effect is displayed in the top row.
Note that the E(y?) is the sum of mean x? of true effect and the mean y? under the
null, the latter is always 1.0. The power estimates of EbICOW, TWT, MTAG, and the
MinGWAS of ten GWASs are indicated in orange, green, blue, and black dots,
respectively. Dots were fitted using local polynomial regression curves. Note that
the p-values from MTAG, TWT, and the MinGWAS of ten GWASs were additionally
adjusted to have the same a with EbICoW.
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Third, when m is large, EbICOW performs the best and when m is small,
TWT performs the best. Fourth, when ¢ # 0, the relative power of TWT
increases with the proportion of GWASs with true effects. The excep-
tion is the pattern 1, i.e., when only one GWAS has a true effect, in which
case EbICoW always performs the best regardless of other parameters.
These results convincingly demonstrate that a combined use of Ebl-
CoW and TWT as done in C-GWAS outperforms MTAG and MinGWAS,
which also likely holds true when comparing C-GWAS with any statis-
tical approach that is originated purely from the IVW or the Wald.

Scenario 6 assesses the performance of our function for esti-
mating inflation (get/, Supplementary Fig. 7). Simulations showed that
getl always produces unbiased estimation, although the estimation
error negatively correlates with the size of true effect and positively
correlates with the proportion of SNPs having true effects. On the
other hand, it is obvious that the genomic control method produces an
increasing bias with the increase of the true effect and with the
increase of the proportion of SNPs having true effects.

Scenario 7 assesses the performance of the function for estimat-
ing ¢ (getPsi, Supplementary Fig. 8). Simulations showed that getPsi
always produces unbiased estimation of ¢ with very high accuracies.
Simply computing the correlation between two GWASs using all test
statistics' is not only biased but also has large estimation errors,
especially when true effects are large. Computing the correlation
between two GWASs by only focusing on nominally non-significant
SNPs in their marginal distribution’ also produces biased results, i.e., it
tends to over-estimate ¢ when < 0 and under-estimate ¢ when > 0.

Scenario 8 explores the a of all intermediate results from C-GWAS,
i.e., results from EbICoW and TWT, under three different levels of
estimation errors of get/ and getPsi (Supplementary Fig. 9). These levels
were ascertained according to our simulation results from Scenario 6
and Scenario 7 to cover the whole range of estimation errors. Simu-
lations showed that the study-wide a of both EbICoW and TWT are
stable at 5% or slightly higher than 5%. Larger estimation errors of
inflation and ¢ indeed led to an increased a, with a slightly pronounced
effect for EbICoW. In the absence of estimation errors, « is always
stable at 5%, while in the presence of estimation errors, the increase of
the number of phenotypes slightly increased the study-wide a. These
results demonstrate that the intermediate results of C-GWAS (EbICoW
and TWT) have highly stable study-wide a.

Scenario 9 evaluates the performance of getCoef in adjusting for
the final p-values from C-GWAS (Fig. 3). Simulations confirmed that the
final p-values produced by getCoef always follow the uniform dis-
tribution under the null, regardless to the W and regardless to the
shape of the initial distribution. In multiple-trait studies, a commonly
used approach for multiple testing correction is to adjust for the
number of independent tests, which can be derived either analytically
using the matrix spectral decomposition analysis® or empirically using
simulations’. Our simulations showed that using the number of inde-
pendent tests guarantees a uniform distribution under the null only for
correcting MinGWAS without background correlations, but is slightly
biased at least in the presence of background correlations leaving
alone other types of unknown initial distributions.

Scenario 10 assesses the performance of C-GWAS and MTAG in
combining GWASs of overlapping samples under extreme settings, i.e.,
we attempt to combine three GWASs of the same phenotype, which are
conducted in fully overlapping, partially overlapping, or non-
overlapping sub-samples. Our simulations showed that under all
investigated settings, the test statistics from C-GWAS for combining
the three sub-sample GWASs tightly followed those from the GWAS
conducted in the union of three sub-samples (Supplementary Fig. 10).
Instead of providing a single vector of combined test statistics as done
in C-GWAS, MTAG provides three sets of combined test statistics for
combining the three GWASs. In fully overlapping samples, the results
of MTAG also tightly followed those from the GWAS. When the sample
overlapping substantially reduces, MTAG results slightly deviated

from GWAS results, as explained by increased errors in estimating ¢
and m (Supplementary Fig. 10).

C-GWAS R package and computational efficiency

C-GWAS was implemented as a user-friendly, publicly accessible,
OS-independent, and parallel R package called “C-GWAS”, https://
github.com/Fun-Gene/CGWAS. We assessed the performance of
C-GWAS and compared it with MTAG using simulated data of 6
million SNPs; 5, 10, 20, 30, 40, and 80 GWASs; and 1, 2, 4, 8, and 16
paralleled threads. C-GWAS appeared more computationally
effective than MTAG as indicated by several patterns (Supple-
mentary Fig. 11). First, C-GWAS utilizes multi-threads in parallel to
reduce computational time, while MTAG only runs in serial. Sec-
ond, the peak memory usage of C-GWAS becomes much smaller
than that of MTAG when the number of GWASs increases e.g.,
exceeding 20. Third, the computational time of C-GWAS become
much less than MTAG when the number of GWASs exceeds 20,
already under the single-thread setting. Fourth, MTAG becomes
impractical when the number of GWASs exceeds 30 due to out of
memory (>256 GB), while C-GWAS completed the analysis of 80
GWASs in 1.3 hours with 16 threads in parallel and peak memory
usage of 32 GB.

C-GWAS outperforms MinGWAS in real data of the human face
To empirically demonstrate the power gain of C-GWAS indicated in the
simulations, we applied C-GWAS to real data for which MinGWAS have
been conducted previously®, thereby allowing direct method com-
parison in the very same dataset. Human facial variation represents a
multidimensional set of correlated and mostly symmetric traits with
high heritability. The previous MinGWAS was conducted in
10,115 samples from four European cohorts®, which involved 78 GWASs
of different facial traits representing pair-wise distances between 13
anatomically meaningful facial landmarks (Fig. 4a). The previous
MinGWAS had identified 6 study-wide significant loci and 24 study-
wide suggestively significant loci*.

For a fair comparison, we adjusted the previous MinGWAS, which
is by definition inflated under the null, using our getCoef function. A
simulation analysis imbedded in C-GWAS confirmed that under the
null, both C-GWAS and the adjusted MinGWAS tightly followed the
uniform distribution (Fig. 4b, c). This means that the comparison
among the two approaches is very strict under the same a. Therefore,
the traditional genome-wide significance threshold of (5 x 107®) used in
a standard GWAS corresponds to our study-wide significance thresh-
old. Note that when applying the threshold of 5 x 1078 in the adjusted
MinGWAS, which corresponded to an unadjusted p-value of 7.52 x
107, i.e., the same number of SNPs survived 7.52 x 10™° before and 5 x
1078 after the getCoef calibration, is in fact 1.6 folds more stringent than
the study-wide significance threshold of 1.2 x 107 in the previous
MinGWAS. This observation is consistent with our simulation scenario
9 showing that adjusting for MinGWAS using the estimated number of
independent traits is prone to inflation under stringent thresholds.
Below, MinGWAS refers to our getCoef calibrated MinGWAS unless
otherwise specified.

Under the study-wide significance threshold (5 x 1078), C-GWAS
identified 1200 SNPs from 23 distinct loci, while MinGWAS only iden-
tified 155 SNPs from 6 distinct loci. Not unexpected, the 6 loci identi-
fied by MinGWAS were the same 6 loci previously identified in the
original study of Xiong et al.*. Moreover, they were included in the 23
loci identified by C-GWAS. Among the 17 loci exclusively identified by
C-GWAS, 3 (18%) were novel and 14 (82%) were reported in previous
single-trait face GWASs** including the study of Xiong et al.*.

Moreover, under the study-wide suggestively significant thresh-
old estimated for C-GWAS at 3 x 107, C-GWAS identified a total of 2591
SNPs from 56 distinct loci compared to only 418 SNPs from 17 distinct
loci identified by MinGWAS (Fig. 4d-f), of which the majority (13)
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column) were obtained at ¢ = O (the upper row) and ¢ = 0.5 (the lower row). The
crude p-values (blue), the p-values after the Tippett's method based correction of
the number of independent tests obtained from the getNtest function (green), the
p-values calibrated using the getCoef function (orange), and the uniform distribu-
tion (black) are distinguished in different colors. The median and 95% intervals at all
quantiles are indicated using dots and dashed lines respectively.

overlapped with C-GWAS findings. Similar to the study-wide significant
threshold of 5 x 1078, the threshold of 3 x 10 in our MinGWAS is 1.15
folds more stringent than the study-wide suggestive significance
threshold of 5 x 1078 in the study of Xiong et al.*. The 13 loci over-
lapping between C-GWAS and MinGWAS all showed an order of mag-
nitude enhanced significance in C-GWAS compared to MinGWAS. A
prominent example is rs55674676 near 12q24.21 TBX3 which demon-
strated p-value enhancement from 2.58 x 108 in MinGWAS to 3.11 x
107 in C-GWAS. The 4 MinGWAS-only identified loci were all reported
in previous GWASs. Of the 43 C-GWAS-only identified loci, 17 (40%)
were novel and 26 (60%) were reported in previous GWASs™*
including the study of Xiong et al.*.

We double-checked our results using the LD-score regression
method®’, which estimated the LD-score intercepts close to 1.0 for
both C-GWAS and MinGWAS. This analysis confirmed that the signals
from both C-GWAS and MinGWAS cannot be explained by potential
population sub-stratifications and other unknown factors. Compared
with MinGWAS, C-GWAS gained 54% extra statistical power as

estimated using the increase in the mean y? statistic method described
in Turley et al.>.

We looked up in our C-GWAS results the 327 previously estab-
lished face-associated SNPs that were identified in traditional single-
SNP GWASs**?, For these SNPs as well, C-GWAS p-values deviated
further from the null than those from MinGWAS (Fig. 4g). The obser-
vation that C-GWAS boosted the significance of MinGWAS findings and
re-identified a much larger number of previously established loci than
did MinGWAS empirically confirmed a substantial gain in statistical
power and strengthened the reliability of the C-GWAS-identified novel
loci, in line with our simulation results.

Next, we performed replication analyses for the 56 regional lead
SNPs identified by C-GWAS with study-wide suggestively significance
in a total of 13,622 individuals not overlapping with Xiong et al.*. These
replication data included the Rotterdam Study (N = 1174 Dutch Eur-
opeans), 2774 individuals of European descent from two cohorts’, and
9674 Chinese from three cohorts®. Combining replication evidence
from all 6 cohorts revealed an overall highly significant deviation from
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Fig. 4 | C-GWAS analysis of 78 correlated facial traits and replication. C-GWAS is
applied to combine summary statistics of 78 GWASs based on 10,115 samples from
four European cohorts®. a The 78 correlated facial traits were derived as the pair-
wise Euclidean distances between 13 well-defined facial landmarks. b, ¢ A simulation
analysis derived the null distributions of C-GWAS and MinGWAS in terms of crude
p-values (gray) and p-values calibrated using getCoef (orange), which are compared
with the uniform distribution (black). Median values and 95% intervals at all
quantiles are indicated using dots and dashed lines. After distribution calibration,
the C-GWAS results (upper part of e) and the MinGWAS p-values (lower part of e)
are plotted using an overlayed Q-Q plot (d) and Miami plot (e). The study-wide
significance threshold (p = 5 x 107®) is indicated using dashed lines and the study-

wide suggestive significance threshold (p = 3 x 10°°) is indicated using solid lines.
The overlapping between previously established and novel loci is illustrated in a
Venn diagram. The closest genes to the regional lead SNPs are listed in (f) (orange
for novel). A list of 327 previously established face-associated SNPs was looked up
in the C-GWAS and MinGWAS results (N = 10,115, g). The regional lead SNPs at 56
loci from C-GWAS were looked up in the combined replication dataset (N = 13,622,
h). One-side Kolmogorov-Smirnov test is used to test if the observed p-value dis-
tribution is deviated from the uniform distribution under the null. In the replication
sample of 1174 individuals of RS, the facial variance explained by C-GWAS polygenic
risk score (PRS) (i) is compared with that explained by MinGWAS PRS (j).

the expectation under the null (KS test p = 9.7 x 107, Fig. 4h). More-
over, among the 56 SNPs, 91% (51/56) showed consistent allele effects
with the discovery cohort and 82% (46/56) was replicated at nominal
significance (p < 0.05). Focusing on the 17 novel SNPs identified by
C-GWAS also showed an overall significant deviation from the expec-
tation under the null (KS test p = 8.6 x 1073, Fig. 4h), with 82% (14/17)
showing consistent allele effects with the discovery cohort, and 53%
(9/17) replicating at the nominal significance (p < 0.05).

C-GWAS outperforms MTAG and other methods in real data of
the human face

Next, we compared the performance of C-GWAS and MTAG in the real
face data. To this end, because MTAG could not complete the analysis
of all 78 GWASs within our computational capacity, we focused on a
subset of 30 GWASs largely covering the left side of the strongly
symmetrical human face. Although the HO of C-GWAS and MTAG are
different, a fair comparison was achieved by adjusting the minimal p-
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value of MTAG using the same getCoef function as in C-GWAS. In
addition, we compared C-GWAS with four competing statistics,
including mixAda, mixFisher and mixTippett proposed by Liu et al.”
and Sy, proposed by Zhu et al.? (Supplementary Table 1). These four
statistics test the same HO as C-GWAS, but do not distinguish IT and W
as C-GWAS and MTAG. Both C-GWAS and Sy consider GWAS subsets
whereas others do not.

Under the study-wide significance threshold of 5 x 1078, C-GWAS
identified 649 SNPs from 16 distinct loci, all (100%) of which represent
previously established facial loci. MTAG only identified five SNPs from
two loci, one (50%) of which has been previously established (Sup-
plementary Fig. 12). The mixAda appeared the best performing among
the three statistics proposed by Liu et al.”?, which identified 18 SNPs
from 12 loci, one (8%) of which has been previously established. The
Shec identified 252 SNPs from 16 loci, 12 (75%) of which overlapped with
previously established loci. The 2q31.1 MTX2 was the only locus over-
lapping between all methods.

Considering the study-wide suggestive threshold of 1.35 x 107°%,
C-GWAS identified 1,043 SNPs from 32 distinct loci, 22 (69%) of which
represent previously established facial loci. MTAG only identified 55
SNPs from 15 loci, 3 (20%) of which has been previously established
(Supplementary Fig. 12). The mixAda again was the best performing
statistic among those proposed by Liu et al.”, which identified 160
SNPs from 61 loci, 9 (15%) of which have been previously established.
The Sy, identified 880 SNPs from 56 loci, 18 (32%) of which overlapped
with previously established loci. The 2q31.1 MTX2 and 12q24.21 TBX3
were the only loci overlapping between all methods.

The LD-score intercept of C-GWAS was very close to 1.0 as
expected, whereas the MTAG showed severe deflation (mean of 30 LD-
score intercepts = 0.83; sd = 0.04). In contrary, the Sy, showed severe
inflation (1.07) and the three statistics proposed by Liu et al. also
showed non-negligible inflation (>1.04) (Supplementary Table 1).

Finally, we looked up the 327 previously established face-
associated SNPs and it was obvious that C-GWAS p-values deviated
much further from the null than did MTAG and mixAda p-values, the
latter two were largely non-significant (Supplementary Fig. 12).
C-GWAS replicated considerably more SNPs (49) than did Sy, (33)
after Bonferroni correction (p = 2 x 10™), although Sy p-values also
significantly deviated from the null (Supplementary Fig. 13).

The observation that MTAG showed severe deflations and re-
identified only a small number of previously established loci appears
surprising and suggests that the GWAS dataset of Xiong et al. is not
suitable for MTAG. Note that the extra multiple testing burden posed
to MTAG by forcing it to test our HO had negligible impact given that
MTAG performed similarly poor even without adjusting for the 30
facial traits. Complex patterns of SNP effects across different facial
traits likely led to violation of the assumption in MTAG. The fact that
Sher outperformed MTAG and mixAda indicates that considering
GWAS subsets is important when the number of GWASs is large.

C-GWAS outcome increases proportion of facial phenotype
variance explained

Next, we compared C-GWAS and MinGWAS in their outcomes to
genetically explain the facial phenotype variance in RS based on a
polygenic risk score (PRS) analysis. The PRS consisting of the 57 sug-
gestively significant SNPs from C-GWAS (56 regional lead SNPs plus
onein low LD) and explained on average 2.28% and up to 4.51% sex- and
age-adjusted facial variance (Fig. 4i). In contrast, the PRS based on
MinGWAS consisting of 17 suggestively significant lead SNPs only
explained on average 0.84% and up to 2.37% of facial variance (Fig. 4j).
The PRS based on MinGWAS consisting of 57 top-ranked SNPs
explained on average 2.03% and up to 4.33% sex- and age-adjusted
facial variance (Supplementary Fig. 14), but is significantly lower than
the PRS based on 57-SNP suggestively significant SNPs from C-GWAS
(two-side paired Wilcoxon rank-sum test p = 9 x 107).

We then compared face PRSs between Europeans (EUR), Sub-
Saharan Africans (AFR) and East Asians (EAS) in totally 1668 samples
from the 1000-Genomes Project. Although the face PRSs were solely
derived from Europeans, when applied to non-European populations,
the C-GWAS PRS largely assembled the facial features in major con-
tinental groups®***, which appeared more consistent with anthro-
pological knowledge than the MinGWAS PRS (Supplementary Fig. 14).
For example, genetically, AFR mouth appeared larger and AFR face
appeared wider than those of EUR and EAS, EUR mouth appeared
smaller and EUR nose appeared narrower and more protuberant than
those of AFR and EAS, and EAS face was overall less distinct, largely in
the middle between AFR and EUR. Overall, these trends appeared more
obvious in C-GWAS PRS than MinGWAS PRS (Supplementary Fig. 14).

Multi-trait facial effects of C-GWAS outcome

To empirically test whether C-GWAS indeed identified loci with multi-
trait effects, as expected based on the method design, we developed a
statistic to empirically estimate multi-trait effect (MTE, see “Methods”).
We then estimate MTE of the 56 study-wide suggestively significant
SNPs identified by C-GWAS, including 13 suggestively significant also in
MinGWAS. Overall, 26 eigen vectors were derived to represent the 78
GWAS:s after removing background correlations (see “Methods”). The
43 C-GWAS-only identified SNPs were more enriched with larger MTE
(>0) values than the 13 significant SNPs identified by both C-GWAS and
MinGWAS (two-side Fisher’s exact test p = 0.026, odds ratio = 5.06). In
addition, the 17 SNPs from novel loci identified with C-GWAS were
significantly more enriched with larger MTE (>0) values than the 39 re-
discovered SNPs reported in previous GWASs (two-side Fisher’s exact
test p = 0.025, odds ratio = 8.4, Fig. 5a).

Eight examples were examined in more detail, including two
novel loci, EIF4G3 and CDK2API with suggestively significant asso-
ciation and large MTE as well as six re-identified previously estab-
lished loci with study-wide significant association and varying MTE:
PAX3, SFRP2 (large MTE), TBX3, SIX2 (moderate MTE), INTU and RPE6S
(small MTE, Fig. 5b). Their allelic effects of the regional lead SNPs on
the 26 eigen vectors displayed two clear patterns. First, the further a
SNP effect deviated from the null, the more significant its association
was in C-GWAS (example, PAX3 vs EIF4G3, both with large MTE).
Second, the earlier a SNP effect deviated from the null, the larger its
MTE value was (example, PAX3 vs TBX3 vs INTU, all established loci
with study-wide significant association). Consistently, SNPs with
large MTE values were generally associated with a larger number of
facial traits with different effects, which was seen not only for the
examples mentioned here (Fig. 5c), but also for other face-associated
SNPs from C-GWAS (Supplementary Fig. 15). These results empiri-
cally demonstrate the multi-trait effects of C-GWAS findings and
illustrate the power of C-GWAS in identifying genetic variants with
various degrees of multi-trait effects.

Biological annotations of C-GWAS and MinGWAS findings

Gene ontology analyses were conducted for comparing the C-GWAS
(83 genes in 56 loci) and MinGWAS (24 genes in 17 loci) findings in
Gene Ontology (GO), Human Phenotype (HP), and Mouse Phenotype
(MP) databases. Overall, C-GWAS loci harbored genes significantly
enriched with a larger number of facial morphogenesis relevant terms
relative to MinGWAS loci (Fig. 6a), with the term “abnormality of
external nose” being the most significant in HP (p =3.36 x10°°). For the
significant biological terms found by both C-GWAS and MinGWAS,
those from C-GWAS were generally more significant than those from
MinGWAS. The vast majority of terms from MinGWAS-identified loci
were covered by terms from C-GWAS-identified loci. The unique terms
from C-GWAS-identified loci not only revealed the facial morphogen-
esis pathway, but also revealed the nervous development pathway
including ‘central nervous system development’ and ‘nervous differ-
entiation’, which is consistent with the recent observation of
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Fig. 5 | Multi-trait effects of the face-associated SNPs with examples. The esti-
mated multi-trait effect (MTE, y-axis) of the 57 C-GWAS-identified study-wide sug-
gestively significant regional lead SNPs were plotted against their —log;o(p) from

C-GWAS (—log(p¢), x-axis, a). SNPs are indexed according to their closest genes
for illustrative purpose. SNPs are distinguished with two colors of orange for pre-
vious known face-associated loci and blue for novel loci. The boost of significance
of C-GWAS in relative to MinGWAS (—log;o(pc/p¢)) is indicated using the dot size.
The SNPs that are suggestively significant in both C-GWAS and GWAS are indicated
using circles with solid lines. The squared projected effects (y°) are plotted against

the quantile of the expected effects on the 26 projected vectors (see “Methods” for
details, b). The expected effects under the null are indicated using black dots
connected by black lines. The observed effects are detailed for eight examples with
large or small values of MTE, including EIF4G3, CDK2AP1, PAX3, SFRP2, TBX3, SIX2,
INTU, and RPE6S5, which are distinguished using different colors and dot shapes. The
effect of the lead SNPs in terms of the T-statistic from GWASs on 78 facial traits are
superimposed on face maps (c). Face maps of full 57 C-GWAS lead SNPs are avail-
able in Supplementary Fig, 15.

overlapping findings between GWASs of facial traits and those of brain
traits®.

Cranial neural crest cells (CNCC) reflect a migratory cell popula-
tion at early human development involving peripheral nervous system,
skin pigment cells, and craniofacial bones. Previously, CNCC reg-
ulatory activity in face-associated loci has been used to elucidate their
functional roles in facial morphogenesis**". Here, we applied the
recently published regulatory network of CNCC” to annotate our
C-GWAS and MinGWAS findings. Among 56 C-GWAS-identified loci, 26

(46%) were found to contain CNCC-associated regulatory elements
(REs), while only 5 (29%) out of 17 MinGWAS-identified loci contained
CNCC-associated REs (ISTAT?® enrichment p = 2.16 x 107 for C-GWAS
and p = 0.04 for MinGWAS). Furthermore, the subnetwork obtained by
C-GWAS-identified loci regulates more target genes (TGs) than the one
obtained by MinGWAS-identified loci (54 vs. 8 TGs, Fig. 6b, c). For
example, ALX1 and TCF4, which are involved in CNCC development®
and identified in regulatory network of CNCC* as the core transcrip-
tion factors®, are exclusively from C-GWAS. These results
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Fig. 6 | Biological annotation of significant findings. a Gene ontology (GO),
human phenotype ontology (HP), mouse phenotype ontology (MP) terms enrich-
ment analyses were carried out based on C-GWAS (83 genes in 56 loci) and Min-
GWAS (24 gene in 17 loci) findings. Biological terms with their Bonferroni corrected
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TF - RE - TG regulation

TF D] —> TG

RE locus

p =0.05. A regulation network in CNCC is derived based on C-GWAS finding (b, 56
loci) and MinGWAS finding (c, 17 loci). Transcription factor (TF)—regulation ele-
ment (RE)—target gene (TG) regulation triplets are superimposed on chord dia-
grams and are distinguished using colors. The TF-RE edge width represents the
number of REs associated with TF. TGs linked to their RE are highlighted and the
number of RE-TG is proportional to arrows size. Closest genes to lead SNPs are
highlighted in orange text. The genes that are both TF and TG are marked using “*”.

demonstrated that C-GWAS loci were more biologically interpretable
than MinGWAS loci.

Finally, we investigated the colocalization of genetic association
at 56 C-GWAS-identified loci with eQTL signals by using expression
data from 22 classified tissues potentially relevant to facial morpho-
genesis. Previously, a smaller scaled colocalization analysis had been
conducted for 20 face-associated loci in 6 tissues®, which highlighted
EEFSEC with evidence of colocalization. Our study confirmed this
finding and additionally revealed many novel loci with evidence of
colocalization in various tissues. Overall, 38 genes in 17 loci were
identified with large posterior probabilities (PP4>0.7) of colocalization
in at least one tissue (Fig. 7a). These included 23 genes in 7 novel loci
identified by C-GWAS, i.e., 1g42.3, 2q32.1, 2q34, 4pl6.3, 11q12.2,
12g24.31, and 13q14.3. Two novel (RP11-410E4.1 at 2q32.1 and DLEU7-
ASI at 13q14.3) and two previously established face-associated genes
(RPGRIPIL at 16q12.2 and KCTDIS at 19q13.11, Fig. 7b—e) colocalized
with eQTLs in a large number of different tissues (=9). Thirteen out of
the 17 loci contained at least one colocalized genes that were different
to the genes closest to the regional lead SNPs. These results provided

direct evidence for functional involvement of some of the face-
associated SNPs, proposed a different set of functional candidate
genes, and strengthened the reliability of 7 novel loci from C-GWAS.

Novel loci highlighted by C-GWAS

Among the 17 novel loci identified by C-GWAS, 13 are worth high-
lighting as they were supported by the replication study, the CNCC
network analysis, or the colocalization analysis (Supplementary
Data 1), of which we mention the most prominent locus here and the
other 12 in Supplementary Note 1. The strongest supportive evidence
was observed at the novel locus 12q24.31, where the lead SNP
rs10773002 is an intron variant of CDK2API. The A-allele of
rs10773002, minor in Europeans (f = 0.24) and Asians (f = 0.25) but
major in Africans (f = 0.79), was nominally significantly associated
with a wide spread of facial phenotypes, mainly contributing to
reduced facial width and increased facial length (Fig. 5c). The multi-
trait effect of this SNP was successfully replicated (p = 6.9 x10™*). The
REs in the vicinity of the face-associated SNPs at this locus regulate
several nearby genes, including CDK2API in the CNCC subnetwork.
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Fig. 7 | Colocalization analysis of C-GWAS significant findings. Colocalization
analysis was carried out for the 56 loci from C-GWAS in 22 tissues from GTEX.

a Posterior probabilities in the heatmap are indicated using the box size and the
gradience in color (posterior probabilities > 0.7 in solid boxes). Closest genes to the
regional lead SNPs are indicated using orange text. Four examples of eQTL
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colocalizations at distinct loci in different tissues (b-e), where the regional lead
SNPs were cis-associated with gene expressions (lower right) and were simulta-
neously associated with facial variation in C-GWAS (upper right), suggesting that
these SNPs are responsible for both the cis-eQTL signal and the C-GWAS sig-

nal (left).
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Face-associated SNPs in this locus colocalized with eQTLs of
CDK2AP1 and nearby genes in testis (PP4 = 0.97) and other tissues.
The protein encoded by CDK2API is a cyclin-dependent kinase 2
-associated protein, which plays a role in cell-cycle, embryonic stem
cell differentiation and epigenetic regulation. SNPs in this gene have
been associated with educational attainment and waist-to-hip ratio in
previous GWAS**%,

Discussion

In this study, we introduce C-GWAS, a method to integrate GWAS
results of multiple correlated traits with an increased statistical power
in detecting multi-trait effects. EbICoW is originated from the inverse
variance weighting method with three extensions, which allows using
the joint distributions of both null and true effects to detect multi-trait
effects. This is particularly powerful when m can be clearly differ-
entiated from ¢, e.g., when the genetic determinants shared between
traits are substantial and/or when samples do not overlap or partially
overlap. When it is difficult to distinguish 7 from ¢, Wald, which does
not rely on the joint distribution of true effects, is more powerful, e.g.,
when traits are mainly determined by their own unique genetic factors
and/or when samples overlap completely or mostly. Utilizing the sta-
tistically complementary properties of EbICoW and Wald, C-GWAS
provides excellent power in a variety of complex situations, as we have
demonstrated via simulations and in real face data.

In C-GWAS, the decision on whether or not using EbICoW to
combine a given pair of GWASs in each iteration is made via a self-
adaptive data-driven approach. Such decisions, optimal regarding data
fitness, may not always fit the true underlying genetic architectures of
the studied traits. This may affect the power in detecting multi-trait
effects, but not the p-value distributions under the null, as double
guaranteed by both the statistical nature of EblICoW and our approach
for distribution calibration.

Coming with C-GWAS, three methods were additionally devel-
oped for inflation estimation, background correlation estimation, and
distribution calibration, respectively. The first two methods provide
accurate estimates of inflation and background correlation, which is
critical for C-GWAS to work properly. Compared with previous LD
score-based methods****, our methods abandon LD-related calculation
for computational efficiency, while maintaining similarly levels of
accuracy and estimation error. More importantly, our methods have
less limitations in the presence of GWASs with different genomic
backgrounds. The third method for distribution calibration uses a
quantile-based function that can convert any given distribution to a
uniform distribution, which guarantees unbiased estimates as long as
the null can be obtained via simulations, which allows fair comparisons
between C-GWAS, MinGWAS, and any given standard GWAS. These
methods are generic and flexible (requiring only summary statistics),
so that they can be widely applied to genetic studies of complex traits.

C-GWAS has the flexibility to be conducted as a whole or by parts
considering only EbICoW or TWT. We recommend to carry out
C-GWAS as a whole when the expected differences between Il and W
among a large number of GWASs are largely unknown, so that our self-
adaptive decision-making algorithm can assist in optimizing statistical
power. In cases of non-overlapping GWASs where all traits are
expectedly highly correlated, we recommend using EbICOW only.
Generalization of C-GWAS to other omics data requires the null fol-
lowing multidimensional standard normal distributions.

Methods

Ethnic statement

This study complies with all relevant ethical regulations. The Rotterdam
Study has been approved by the Medical Ethics Committee of the
Erasmus MC (registration number MEC 02.1015) and by the Dutch
Ministry of Health, Welfare and Sport (Population Screening Act WBO,
license number 1071272-159521 PG). The Rotterdam Study has been

entered into the Netherlands National Trial Register (NTR; www.
trialregister.nl) and into the WHO International Clinical Trials Registry
Platform (ICTRP; www.who.int/ictrp/network/primary/en/) and under
shared catalog number NTR6831. All participants provided written
informed consent to participate in the study and to have their infor-
mation obtained from treating physicians. Other data used here come
from previous publications*®, where the respective ethics statements
are provided.

Definition of background and effect correlations

Consider K GWAS of M SNPs, under the null, for each SNP, its T sta-
tistics from different GWASs follow a sum of two multidimensional
normal distributions including the estimate error and the inflation as
t=(t,,t5,...,t)". The covariance matrix of the estimate error has a
diagonal of 1 and an off-diagonal of zero, which may deviate from zero
in presence of sample overlap and non-genetic phenotype correlations
(p), e.g., caused by shared environmental or unknown factors. The
mean squared inflation is zero and may deviate from zero in the pre-
sence of cryptic relatedness and population stratification. In the
absence of inflation or when inflation is well controlled, the correlation
¢ (K = 2) or the correlation matrix W (K > 2) between the summary
statistics of GWAS T statistics, TE(T;, T»,..., Tk), is defined as ‘back-
ground correlation’. For two GWASs of sizes N; and N, with an over-
lapping sample of size N, ideally ¢ = NCN p. Therefore, when the
sample does not overlap at all or in the absence of non-genetic phe-

notype correlations, W is an identity matrix.

Under the polygenicity, a proportion of SNPs additionally has true
effects in at least one GWAS. Similar to ¢ or W, the correlation i (K = 2)
or the correlation matrix I (K > 2) between the true effects of T is
defined as ‘effect correlation’. With these definitions, the relationship
between any given numbers of GWASs can be described using W and I.

C-GWAS flowchart

The C-GWAS flowchart is shown in Supplementary Fig. 1. Consider K
GWASs G&(Gy, G,,..., Gk), where G; contains effect sizes, standard
errors, and T statistics of the GWAS i, C-GWAS takes G as the input,
which is passed to i-EbICoW followed by TWT and distribution cali-
bration. The important parameters for i-EbICoW include the vector of
inflation factors s=(s,s,,...,s,)" for all GWASs, estimated using the
getl function; the background correlation matrix W, estimated using
the getPsi function; the effect correlation matrix I, estimated using the
getPi function, and the effect vector h, estimated using the getH func-
tion. i-EbICoW iteratively combines GWASs in pairs, and the order of
combination is determined by the matrix D, which is the difference
between I and W. The core functions of i-EbICoW involve EbICoW,
optimize, and evaluate. EbICoW combines two GWAS based on an
effect-based inversed covariance weighting method. Optimize opti-
mizes the result of EbICoW within three possible choices of h. Evaluate
makes the decision whether or not accepting the result from Optimize
by comparing the resultant p-values with those from Wald and Min-
GWAS. D is updated in each iteration until all elements of D are suffi-
ciently small. In such a way, i-EbICoW generates a set of new G so that
no result from Optimize for any pair of G are accepted by Evaluate.
These newly derived G are further passed to TWT and distribution
calibration. TWT analyzes i-EbICoW results in a SNP-specific manner.
For each SNP, TWT takes the subset of G with the minimal p-value from
i-EbICoW as the initial subset, then extends to a series of subsets under
a gradient (n = Q) of preset p-value thresholds r=(ry,r,,...,rg), and
then conducts the Wald test on all subsets to obtain the combined p-
values of all subsets. The analysis for each SNP under Q thresholds is
realized through a nested loop. The distribution calibration is achieved
in an empirical manner via simulations through two progressive steps.
The first step is to correct all intermediate results to make them
comparable with each other. It uses getNtest to estimate the number of
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independent tests from a larger number of dependent hypothesis
testing results via simulations, then uses the Tippett function to correct
the p-value for each TWT combinations using the number of inde-
pendent tests. The second step is to guarantee the final results from
C-GWAS under the null follow the uniform distribution. It uses getCoef
to build a correction model by fitting the observed distribution under
the null (via simulations) with the uniform distribution for all quantiles.
Then the minimal p-value of all results from the first step is further
corrected based on the quantile specific coefficients from getCoef. In
this way, C-GWAS produces the final results as a single vector of
combined p-values, which follows the uniform distribution under the
null, so directly comparable with the p-values from any standard GWAS.

Effect-based inversed covariance weighting (EbICoW)

We propose EbICoW to allow joint analysis of multiple correlated
phenotypes with overlapping samples. Let B be the vector of effect
sizes from K GWASs for aSNP, B=(B,,5,, . .. ,ﬁK)T. The null of EbICoW is
the absence of any effect i.e., Ho: B = 0, and the alternative is that at
least one element of the effect vector deviates from 0. Below, we
formulate EbICoW and show that the test statistics from EbICoW
asymptotically follow the standard normal distribution. We prove that
the traditional Inversed Variance Weighting (IVW) based meta-analysis
is a special case of EbICoW when the off-diagonal of W is 0 and the off-
diagonal of ITis 1. We also prove that the Sy, proposed by Zhu et al % is
a special case of EbICoW when the true effect is the same for all GWAS
and the off-diagonal of I is 1.

For each SNP, the traditional IVW based meta-analysis combines
results from K non-overlapping GWASs of the same phenotype,
requiring that the off-diagonal of W is 0 and the off-diagonal of I is 1.
The combined effect B, from the meta-analysis represents the weigh-
ted sums of K effects, B. = w'B, where B-N(0,V), V is a K by K diagonal
matrix, and the vector of weights w=(w,,w,,...,w,)" is inversely
proportional with the variance of B, i.e., diagonal elements of V, and
the sum of elements in w' is set to 1. In practice, w" can be constructed
using the vector of reciprocal standard errors v=(1/0,,1/0,, ...,1/0k)
or the samples sizesn=(n;, n,, ..., ny) from K GWASs. Let b be a vector
of 1 with length K,

VoV
wT_

b'vow)'

b'nT

“@)

For each SNP, the test statistics of IVW (¢,) can be described using
B and v or using t and n as

(= B. _ VoV
,= -
\/ Var () \/ b'vow)'
M t= WV, /)

t, =
' \/bT(vowT Vb'nT

Under the null, ¢, asymptotically follows the standard normal
distribution.

When the off-diagonal elements of W is not O, B~N(0,C), where Cis
the covariance matrix of p under the null, w' can be derived under the
same frame of weighted sums using the Lagrange multiplier method
(Supplementary Method A). Thus, we have

or

bTc!
wi= 2% ®)
b'c'b
The revised statistics . is expressed as follows,

B. b'c! eTy!
te= A= B= =¢
\/Var(ﬁc) Vb'Cb  VeTw e

(6)

where e is the vector of weights only relying on n, i.e., v' or
(VAL /T, - .. ,/Tig)", but not on W or M. Under the null, the revised ¢.
in (6) also asymptotically follows the standard normal distribution. The
Shom Proposed by Zhu et al. has the same null as ours thus directly
comparable with ours. Sy, is based on a chi-squared statistic with 1 df,
which is in fact equivalent to the tZ in (6) when it uses v' or
(VLM ... ,M)T as weights. The only difference here is that the
effects can be directly estimated as w'B using our revised weight but
not available from Sym. Although this ¢ statistic can be used for joint
analysis of multiple GWASs when the off-diagonal of W is not O, it has
limited power when expected true effect 8=(6,,6,,...,6;)" is not the
same for all GWAS or the off-diagonal of Il deviates from 1. The loss of
power becomes obvious when the K-based weights are the same across
all GWAS but the true effects are different. The loss of power also
become obvious when the off-diagonal of N is negative, and
particularly pronounced when it is approaching -1. To overcome these
limitations, we made two improvements. First, we introduce an effect
vector, h = (h,h,,...,h)", which is a projection of the true effect
covariance matrix H as h = b'H. H is a K by K covariance matrix of &
among the genome-wide SNPs, where H; =E(6;6)), i € {1,2,...,K} andj €
{1, 2,..., K}. We use h to revise w' as

r+_ hc?!

wi= @)
hC™'b

A nice feature of (7) is that h only affect power but not a. In
practice, h can be estimated using the summary statistics from GWAS
(details see estimation of h section). It can be shown that (5) is a special
case of (7) when & is same across all GWAS,

_bTHC! _ (bTobl)c! prc

w'= - = 8
b"HC 'b (bTobT>c71b b'c'b ®)

It can also be empirically shown that when the 8 is different across
GWASs, the test based on (7) has higher power than that based on (5) in
most circumstances.

The second improvement is that we take the direction of combi-
nation into consideration, i.e., by changing the direction of combina-
tion if i is smaller than ¢ while keeping w'sign(IT-W); equals to b,
where the function sign is defined as sign(x) =1 when x > 0 and sign(x) =
—1whenx <0 for a variable x so that[sign(X)]; = sign(X ) for a matrix X.
For kefl, 2,..., K3,

T hc!
w = —_
hC lsign(ll — ),

where h =sign(lT-W),H. In this way, the direction of elements in the
effect covariance matrix is changed by comparing the effect and
background correlations. It can be empirically shown that when 1 is
smaller than g, the test based on (8) has higher power than that based
on (7) in combining two GWASs. However, (8) does not generate
unique combined results for combining more than two GWASs,
meaning that for obtaining one-dimensional summary statistics in the
form of traditional GWAS, an iterative procedure is preferred (see
Combining multiple GWASs section). Summing up, the revised ¢z of
our proposed EbICoW is expressed as

B. _ hct (hoeNHw!

tr= = = t
‘ JVar(B) VRCThTT /o enwihoen)

Note that a statistically desired feature of EbICoW is that t¢
asymptotically follows the standard normal distribution under the null
regardless to h.
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Wald test, Wald(G)

EbICoW uses additional information provided by effect correlation I
and effect-based factor to improve the power of detecting SNPs with
true effects. However, the increase of power depends on |I[1-W|. For
example, considering two GWAS, the smaller |r-¢| is, less obvious is
the power improvement of EbICOW. To overcome this limitation, we
used the multi-trait chi-squared statistic proposed previously by
Bolormaa et al.' when all elements of [[1-W| are small. The nature of the
multi-trait chi-squared test is Wald’s test. For each SNP, the test sta-
tistic of the Wald test for combining multiple test statistics from K
GWAS asymptotically follows the chi-squared distribution with K df,
and can be estimated by considering only the background correlation,

t,=tTWlt ~ x2 9)

The fact that the Wald test does not rely on I compensate the
power loss of EbICOW when all elements of [I1-W| is small.

Combining multiple GWASs

C-GWAS uses both EbICoW and Wald to improve the power of
detecting SNPs with multi-trait effects. Here the key concepts involve
the decision-making, subset identification, and distribution calibra-
tion. Below we present an algorithm with two consecutive modules to
achieve these purposes. The first module is iterative EbICOW (i-Ebl-
CoW), which iteratively apply a decision-making algorithm to select
subsets suitable for EbICoW, resulting in a set of EbICoW combined
GWAS and potentially some individual GWAS, in such a way that all
GWAS pairs from i-EbICoW are no longer suitable for applying EbICoW.
The second module is a truncated Wald test (TWT) in combination
with distribution calibration. TWT further analyze i-EbICoW results in a
SNP-specific manner, which produce all possible SNP-specific subsets
using a series of predefined thresholds. Then a series of multiple
testing corrections, using getNtest and Tippett, are carried out for all
intermediate results to ensure all threshold-based subsets have the
same level of a. The choice of best subset is made according to the
levels of significance from TWT of all subsets after adjusting. Finally,
getCoef guarantees that the final results from C-GWAS are fully adjus-
ted for the number of GWASs and for all intermediate iterative steps,
thus directly applicable using the traditional genome-wide significant
threshold as our study-wide significance threshold.

The first module: i-EbICoW

Theoretically, [m-¢|€[0, 2]. The more |m-y| is deviated from O, the
higher the power of EbICoW than that of Wald and vice versa. We
introduce a decision-making algorithm for the choice of using EbICoW
by taking |m-y| as one of the key parameters into consideration. In
addition, when combining a large number of GWAS, the relationships
between IT and W tend to be complex. SNPs unlikely share the same I
across all GWAS and |mr-y| may be sufficiently large only in a subset of
GWAS. This requires finding the subsets best suitable for EbICoW,
which is achieved using a data-driven approach by iteratively applying
our decision-making algorithm.

Consider K GWAS G € (G, G,, ...,Gy), where G; contains all
summary statistics of the GWAS k, including the test statistic vector Ty,
the effect vector By, and the p-value vector P, of genome-wide SNPs,
derived W, I, and h using functions W = getPsi(G), I = getPi(G), and h=
getH(G). The getPsi, getPi and getH functions are described in details in
the Estimation of ¢ and Estimation of m and h sections. Define F as
minimum difference of m and ¢ allowed for combined analysis in each
iteration. Default of F is set to 0.05. Set U=0, U is a count of iterations in
which evaluate returns TRUE, and D=|I-W|, D is a K by K symmetric
matrix of diagonal of O to reflect difference of m and ¢ for each pair of
GWASs. The process of i-EbICoW is described below:

while any element in D > F {

(i, j) = which(Max(D)); # get the index of the maximal element of D

G = optimize(EbICOW(G;, G;, W, I, h));

Pw = Wald(T;, T)); # using (9) for t of each SNP

Pa = Min(P;, P)); # get the minimal p-value of each SNP

if evaluate(Gg, Pw, Ga) is TRUE {

Remove(G;, G;) from G; G = (G, Gg);

W = getPsi(G); I = getPi(G); D = IN-W|; U = U+1;

} else {D;=0}};

The optimize function (Supplementary Method B) is to select the
optimal weight for EbICoW (5) to combine two GWAS where the effect
correlation m and effect vector h is chosen from three our proposed
ones, Gy =EbICOW(G;, G;, W, I, h,y);  Ggig =EDICOW(G;, G;, W,
Mg hgip); G = EDICOW(G;, Gy, W ey, hgep,). The proposal of the
three mand h is described in detail in the Estimation of r and h section.
The evaluate function make decision whether accept combined result
from optimize via evaluating the power and robustness of Gg (Sup-
plementary Method C). i-EbICoW returns K-U newly obtained GWAS
(Gy, Gy, ..., Gg_y)- All pairs of updated G are no longer suitable for
applying EbICoW and these results are further passed to the second
step analysis.

The second module: TWT and distribution calibration

TWT analysis is carried out on the K-U newly obtained GWAS
(G, Gy, ...,Gg_y) from i-EbICOW. Set a vector of thresholds as
r=(ry,ry...,rq), where re[l, 0) in the descending order. In default
r,=10797 and Q=18, where q = (1,2, ..., Q). For each SNP me{l, 2,.., M3,
the vector of p-value and T statistics are p=(Pp1,Pp2r---» Prx_v)"
and t=(T 1, Tpar---» Tm,K_U)T. The vector of combined p-values
cp = (cpy, Ccpy, - - - ,ch)T from a series of r-based subsets is derived as
cp = TWT(p,t), where TWT is a function of p and t as defined below:

For each element r; in r {

id = which(pr,);

if (length(id)=0) {cp, = NA};

else {cp, = Fxlze“g‘md)(tid(wid,id)_ltid)}};

Return cp;

FXzy(x) denotes the cumulative distribution function of a chi-
squared random variable x with Y degrees of freedom. The minimal p-
value of p can be regarded as a one-element subset. Therefore,
CPq+1=Min(p). After applying TWT to all SNPs on the genome, we have
a p-value matrix CP with M rows (the number of SNPs) and Q+1 col-
umns (the number of preset thresholds add one of minimum),
where CP = [CP;,CP,, ...,CP,,[".

The next idea is for each row CP,, to find the best subset under the
threshold r,, which corresponds to the minimal p-value in this row.
However, the results from this selection procedure deviate from any
known distribution. Multiple testing correction and distribution cali-
bration is necessary to guarantee all columns of CP and final best-
subset-based results are comparable at the same a. To achieve this we
firstly adjusted all columns empirically in CP using NS rounds of
simulations as below:

For ns in 1 to NS {tsmy ~NOW); Psimu=Fy(simu © tsimu);
spns =TWT (psimu' tsimu) };

For g in1to Q+1{CP, =Tippett(CP,,getNtest(SP,))};

tsimu iS @ random vector of length K-U generated from multi-
variable standard normal distribution with updated W (after i-EbICoW)
in each round of simulations, and SP is p-value matrix with NS rows and
Q+1 columns containing all simulation results. Multiple testing cor-
rection methods Tippett and getNtest function used here is detailed
in Supplementary Method D. With the adjustment described above,
the best subset can be obtained from the adjusted CP. Take
the minimum of each CP, as the final output minCP=
(min(CPy), min(CP,),..., min(CPy,)) with study-wide significance, we
further adjust minCP to guarantee its null distribution and a are same
as any conventional GWAS, i.e., uniform distribution and a = 5 x 108
respectively. The selection of minimal p-value among the adjusted p-
values in all combinations obtained by TWT inevitably results in a non-
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uniform null and the inflation of this non-uniform null is quantile
specific in nature. In order to make all final p-values from C-GWAS
follow the uniform distribution under the null, we obtain the non-
uniform null via the same NS rounds of simulations and then calibrate
the simulated non-uniform null to a uniform distribution using a
quantile-based method (getCoef function, Supplementary Method D)
as below:
For g in1to Q+1{SP, =Tippett(SP,, getNtest(SP,))};

minCP = minCP o predict(rank(minCP)/M, getCoef(minSP));

This method guarantees a uniform null for any arbitrarily defined
statistics as long as the true null can be obtained via simulations.
Therefore, the final minCP from C-GWAS is directly comparable to the
p-values from a standard GWAS where the conventional 5 x 10°® sig-
nificance threshold is applied. The getCoef is generic and we also use it
for correcting the minimal p-values from MinGWAS. The empirical
calibration is sufficiently accurate when NS is large. We suggest use at
least 100 times of independent SNP number for NS. In C-GWAS, the
default of NS is set to 10°.

Estimation of Inflation, getl(G)

Accurate estimation of inflation is a prerequisite for accurate estima-
tion of r and h. We propose a fast and accurate method for estimating
inflation. Compared with the genomic control method, our method is
less likely affected by the presence of true effects, thus less con-
servative. Compared with the LD score method described by Bulik-
Sullivan et al.”%, our method has the same level of estimate error with
higher computation efficiency because it does not require LD infor-
mation, as detailed below.

Following the polygenicity model described in Bulik-Sullivan
et al.”?, we modeled the test statistics T from a GWAS using a mixed
distribution of three normal distributions, including the estimated
error N(O, e), inflation induced by genetic drift assumed to be normal
distributed N(0, /), and true effect assumed to be normal distributed
N(0, A). We additionally assume that p is the proportion of the SNPs
(including those in LD) having true effects. For a SNP m, where me{l,
2,..., M}, we have

{ N(0,e) +N(O, 1) The probability is1— p
™| N(0,e)+N(0,/)+ N(0,4) The probability is p

The moments of T can be expressed by /, A and p,

E(T2)=1+1+pA (10)

Var(T2) :z(E(T§1>)2 +34%p(1 - p)

where T is known for individual GWASs, and /, A, p are unknown. Our
expression of E(T%) here corresponds to the expression of
NR>/M+Na+1 as described in Bulik-Sullivan et al.”>. Note that the
inflation term Na is simplified as /in (10) and true effect term Ni? /M is
simplified as pA in (10). Next, / (or inflation factor s=/1) can be
determined using an iterative search algorithm with the moments of T
and a series of quantiles of T o T (Supplementary Method E). All GWAS
can be pre-adjusted using GWAS-specific s (T,q;=T/+/s) before
C-GWAS analysis.

Estimation of {, getPsi(G)

Accurate estimation of ¢ is a prerequisite for combining correlated
traits. We propose a fast and accurate method to estimate ¢. Com-
pared with the methods which directly compute correlations using
GWAS statistics, such as Zhu et al.? and Bolormaa et al.!, our method is
less likely affected by the true effect. Compared with MTAG, which

estimate covariance of the estimate error using LDSC*, our method
has a similar level of estimate error but does not require LD informa-
tion, thus more computationally efficient, especially for the analysis of
a large number of GWAS.

The idea of our method is similar to that of Park et al.’, which
select a set of marginally insignificant SNPs from two GWAS. Our
approach selects a set of insignificant SNPs from the joint distribution
of two GWAS, thus more tightly fitting the true null. This is achieved
using an iterative optimization algorithm. Consider T statistics of two
GWAS for genome-wide SNPs T; and T,, let ¢ be the correlation
between Ty and T, as ¢, = cor(Ty, T,), ¢, = 0, and £ = 10*. The process
of the getPsi is described as below,

while [@o-¢| > € {

Yo = P Wo =[(1o), (Yo, 1)];

formin1to M{CT ;= (T 1, Tin2)Wo (Tt Ta)'hs

id = which FX§CT > 0.55:

P =cor(Tiqy, Tig2)};

@ is estimated as ;. In a C-GWAS analysis, W is derived only once
and does not change. Therefore, W is the same for all SNPs throughout
the C-GWAS analysis.

Estimation of  getPi(G,W) and h getH(G,W,IT)

Let B and Z both be a K by K covariance matrix of  and t among the
genome-wide SNPs, where B; =E(B,8)) and Z;; =E(¢;t;). H and C denote
the covariance matrix of & and Bnun (B under the null) among the
genome-wide SNPs as described above. The basic idea of estimating
and h is similar to the estimation of covariance of true effect in MTAG,
i.e., to estimate the expected overall difference (I, and hy,)) between
observed effects and the estimation error, i.e., H = B-C. For each SNP,
we assume W and I is fixed but h can vary with different o to keep a
unified null distribution while accounting for potential heterogeneity
of the statistical power of SNPs in different GWASs. Therefore,

H=B—C=(Z-W)occ"; let [1;=H;/\/H;H; and My = I’

hyy =sign(M,, — W), H=sign(M, — ¥), (Z — W)oca")

These estimators fits best under polygenicity, i.e., all SNPs share
the same II. In deviation of polygenicity, e.g., major gene effect, or
when dealing with low-powered GWAS, the power may not be optimal.
To overcome this limitation, we provide an alternative estimator (Isig
and hgig) which focus on the SNPs with more significant effects rather
than genome-wide SNPs,

H=B — C=(Z—Wyqg) 000"; let [T;=Hy//HyHy and Mg =11

hg =sign (nsig - ll1>kH =sign (nsig - w)k((z — W) 0 06T

Where W,,qsig is the covariance matrix of the non-significant SNPs
among K GWASs. Here the ‘significant’ is defined as p-value of Wald test
using (9) below a predefined threshold L. These estimators is expected
to perform better in the presence of major gene effect and when
dealing with low-powered GWAS.

Alternatively, to improve the robustness of estimation, when the
estimation error of H is large, setting I to a square matrix of 1 (Ig) or
assuming the same & as usually done in the most of previous multi-trait
analysis method may provide stable or higher power. In this case, hgig
can  be  derived as YK _(04\/Zix—Dh,  where
h =(0,/Zy—1,0,/Zp —1,...,0¢\/Zxx — 1). Because the choice of
I and h does not influence a but has an effect on power, the selection
of Il and h is data-specific and can be achieved empirically using a data-
driven approach (details see combining multiple GWASs section).
Similar to W, I is the same for all SNPs. However, different from W, I is
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continuously updated in each iteration of i-EbICOW so that different
GWAS subsets may have different 1. For example, consider 5 GWASs
with estimated W and I, the W of the GWAS subset 1,2,3 used in the full
process of C-GWAS is W;.3, 1-3; While the Il of this subset after updated
in i-EbICoW may be different from initial Ijy-3, 1-3;.

Simulations

We conducted extensive simulations to investigate the performance of
C-GWAS under a variety of scenarios. For simulation scenarios 1-9, the
core of our simulations is to simulate the test statistics of N indepen-
dent SNPs on K GWAS (simT, a matrix with N rows and K columns)
under the null by generating K null vectors of length N, which follow
the multivariate standard normal distribution with a predefined
background correlation matrix W, so that for one simulated vector of
test statistics simt, we have simt - N(O,W). For a GWAS simTy, a vector
of test statistics which follow normal distribution with variance / is
added to simulate inflation, so for a SNP sim7,,, in GWAS simT,, we
have simT ,; ~N(0,1)+N(0,/). To add true effects, a proportion (p) of
the N SNPs were set to have effects by adding a matrix of test statistics
which follow multivariate normal distribution with covariance matrix
100", where 0 is a preset vector of standard deviation of each column
of the added effect matrix, so that we have

simT,,, ~N(0O,l1o08")+N(O,W), where nl e (1,2,...|pN])

simT,, ~ N(O,W), where n2 € {[pN],[pN]+1,...,N}

The mean y* statistics (E(x?)) of simulated GWAS k can be derived

as 1+ p6;. The ratio of variance of true effect & can be set via multi-
plying preset ratio between elements of @ o @ and vectors of squared

var(s;) _ 67se?
" var(§)  Gise
ferent nine scenarios are specified in Supplementary Method F, and
the core was replicated 1,000 times for every cell of the grid in
1-9 scenarios.

standard errors se-se, i.e.

The parameter grids in dif-

For scenario 10 assess the performance of C-GWAS and MTAG in
combining GWASs of overlapping samples, we used the real chromo-
some 1 genotype data (526,822 SNPs) of 10,000 participants randomly
selected from the Rotterdam Study (total 14,926 participants). We
simulated a normally distributed variable as the phenotype in such a
way that 10% of the phenotypic variance is explained by 1% of all SNPs,
whose true effects follow a normal distribution. We created three sub-
datasets according to different configurations of sample overlapping,
(1) non-overlapping with sizes of 2000, 3000, and 5000; (2) partially
overlapping with sizes of 5000, 7000, and 8000; and (3) almost
complete overlapping of 9950 each. We compared the results of
C-GWAS and MTAG in combining the three GWASs in sub-datasets with
the GWAS in all samples.

C-GWAS specifications in real applications

The getl and getPsi functions use unlinked SNPs via multiple rounds of
systematic sampling. For input GWASs with E(x?) <1.001, C-GWAS
forces E(x? = 1.001 to avoid failure of getH. To avoid abnormal values
when solving large W in the presence of strong collinearity, GWAS pairs
with ¢?>0.5 (default) are forced combined using optimize function
regardless to evaluate function.

C-GWAS implementation and performance

C-GWAS was implemented as a user-friendly, publicly accessible,
operating system independent and parallel R package called “C-
GWAS”, https://github.com/Fun-Gene/CGWAS. The idea of improving
computational efficiency is to locate all independent parts from the
whole serial calculations and parallelize them using R package

“foreach” and “doParallel”. In general, all independent loops are par-
allelized. For the computational hotspot getPsi, since it is nested in the
iterative decision-making structure of i-EbICoW, we designed fine-
grained parallelization within each iteration for calculating ¢ between
multiple GWASs. For the hotspot getNtest of the TWT module, because
NS simulations are independent, the parallelization is designed at a
coarse-grained level. For controlling peak memory during paralleliza-
tion, 1) we minimized the duplicated data between the sub-threads and
main thread, optimized the balance between the overall computa-
tional efficiency and the loads of sub-threads based on a hierarchical
load distribution; 2) reduced the number of slave threads for simple
calculations but requesting large memory.

We assessed the performance of C-GWAS and MTAG on a machine
with 72 cores Intel Xeon CPU at 2.30GHz and 256 GB RAM, using
simulated data (6 million SNPs; 5, 10, 20, 30, 40, and 80 GWASs; 1, 2, 4,
8, and 16 paralleled threads). Scenarios in each configuration were
replicated testing for 3 times, and the mean performance was reported
in Supplementary Table 2.

C-GWAS analyses in 78 facial shape GWASs

We applied C-GWAS to combine the summary statistics of 78 GWAS of
facial traits, which were conducted in 10,115 individuals of European
decent as described in Xiong at al*. Prior to C-GWAS, we dropped SNPs
with sample sizes smaller than 60% of the total sample sizes from
7,029,494 to 5,308,962. This is because a reduced sample size in a
subset of SNPs may increase the estimation error of I and thus hamper
the power of EbICoW. A simulation analysis imbedded in C-GWAS was
conducted to obtain the true null of our C-GWAS application. In brief,
the null summary statistics of 78 GWAS were simulated, each con-
sisting of 1,000,000 unlinked SNPs without true effect, where the
background correlations were simulated according to the W estimated
from the real GWAS data using the getPsi function. The same GWAS
sets and corresponded w' of each combination in i-EbICoW of real
GWAS data were used to combine simulation data. This step derived
the same EbICoW GWAS with the real application but using simulated
null. Next, C-GWAS obtain the true null by applying TWT and dis-
tribution calibration as described above and finally adjust the appli-
cation p-values using the outcome of getCoef from simulation to
ensure that C-GWAS results are directly comparable to a standard
GWAS. To calculate genome-wide significant threshold for each
i-EbICOW combination in C-GWAS final p-values, we derive multiple
testing and calibration burden estimated in getNtest and getCoef
function as 27.13 and 2.22 respectively (Supplementary Method D),
which results the threshold as 5x1078 x27.13x2.22=3x10"°. Under
this threshold, C-GWAS and MinGWAS results are provided in Sup-
plementary Data 2. Regional lead SNPs (56) were selected based on the
FUMA clumping algorithm® with default parameter as detailed in
Supplementary Data 3. Univariate LD score regression* was applied to

z-transformed GWAS p-values, z=,/ F;zl(l — p). The LD score inter-
1

cepts of C-GWAS and MinGWAS were estimated as 0.985 (0.007) and
0.998 (0.006) respectively. The gain of power for C-GWAS was esti-
mated according to the increase in the mean x? statistic method
described in Turley et al.%. In brief, the power ratio between two GWASs

E(XE;WASl)_E(XEMU)GWASI. In our study E(XZ ) =1.142
EQXGwas2) ~E0 owas2 ’ C-GWAS

and E(X2;,.6was) = 1.1, so that 114220985 =1 54,

can be derived as

Replication of C-GWAS findings and previous GWAS findings

The RS is a population-based cohort study of 14,926 participants aged
45 years and older, living in the same suburb of Rotterdam, the
Netherlands™®. The present study includes 1,174 participants of Dutch
European ancestry, for whom high-resolution 3dMDface digital pho-
tographs were taken. Note that these samples have not been used in
the previous GWAS". Genotyping was carried out using the Infinium Il
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HumanHap 550K Genotyping BeadChip version 3 (Illumina, San Diego,
California USA). Microarray-based genotyping according to the man-
ufacturer’s instructions was performed at Erasmus MC™. All SNPs were
imputed using MACH software (www.sph.umich.edu/csg/abecasis/
MaCH/) based on the 1000-Genomes Project reference population
information™. After all quality controls, the current study included a
total of 6,886,439 autosomal SNPs (MAF > 0.01, imputation R2 > 0.8,
SNP call rate > 0.97, HWE > 0.0001).

The Rotterdam Study has been approved by the Medical Ethics
Committee of the Erasmus MC (registration number MEC 02.1015)
and by the Dutch Ministry of Health, Welfare and Sport (Population
Screening Act WBO, license number 1071272-159521 PG). The Rot-
terdam Study has been entered into the Netherlands National Trial
Register (NTR; www.trialregister.nl) and into the WHO International
Clinical Trials Registry Platform (ICTRP; www.who.int/ictrp/
network/primary/en/) and under shared catalog number NTR6831.
All participants provided written informed consent to participate in
the study and to have their information obtained from treating
physicians.

The raw 3D facial images of participates were acquired using a
3D photographic scanning system manufactured by 3dMD (http://
www.3dmd.com/). Participants were asked to keep their mouths
closed and adopt a neutral expression during the acquisition of the
3D scans. Software package MeshMonk* was then used to derive the
13 facial landmarks. The description of these 13 landmarks are in
Supplementary Table 3. Association tests were conducted between
the 78 3D facial distance measurements (after scaled GPA) and
6,886,439 SNPs. GWAS was performed using linear regression under
the additive genetic model while adjusting for sex, age, and the first
four genomic PCs. C-GWAS analyses was then conduct use default
parameters.

In addition, we reached out and obtained the GWAS summary
statistics® from 2,774 individuals of European descent from the Penn-
sylvania State University (PSU) cohort (N = 1990) and the Indiana
University-Purdue University Indianapolis (IUPUI) cohort (N = 784),
which have not been used in our previous study* and are thus not
included in our C-GWAS discovery dataset used here. The data con-
tains 63 sets of GWAS summary statistics corresponding to the 63
facial segments. In addition, we downloaded the summary statistics
from a recent facial variation GWAS of Chinese population®, which
included 9674 Chinese individuals from 3 cohorts, i.e., the National
Survey of Physical Traits (NSPT), the Northern Han Chinese (NHC) and
the Taizhou Longitudinal Study (TZL). The data also contains 63 sets of
GWAS summary statistics for 63 facial segments. We then carried out
our replication analysis for the 56 SNPs in RS, PSU+IUPUI, and NSPT
+NHC+TZL.

We select 56 lead SNPs C-GWAS p-value in RS C-GWAS result as
replicated evidence from RS. We use Bonferroni and Fisher’s combined
test to combine the evidence of replication and account for the trait
differences between our landmarks-based study and the previous
facial segment-based studies. In brief, we first adjust the minimal p-
value of the 63 segment-based p-values using Bonferroni correction of
the numbers of independent traits as reported in corresponding stu-
dies. We then use Fisher’s combined test to combine the RS p-value
derived from C-GWAS, the adjusted minimal p-value from PSU+IUPUI,
and the adjusted minimal p-value from NSPT+NHC+TZL. In short, the
test statistic of the Fisher’'s combined test Tr of N independent tests
with p-value p, follows a chi-squared distribution of 2N degrees of
freedom as T;= —25N_ log(p,) ~ x3y- Replication results are
detailed in Supplementary Data 3. For 56 independent observations,
the p-value of uniform null distribution at their expected quantile were
generated from beta distribution. For 327 SNPs that have been asso-
ciated with facial variation in previous GWASs and also available in our
GWAS data, we looked up their p-values from our C-GWAS and Min-
GWAS analysis of 10,115 individuals.

Comparison with other multi-trait analysis methods using
facial data

C-GWAS and MTAG have an important similarity in distinguishing
the effect correlation I (true effect Q@ in MTAG) from the back-
ground correlation W (estimate error X in MTAG) with the advan-
tage in better estimating true null, whereas other methods do not.
In addition, when I and W are different, both methods provide
additional statistical power, while the other methods do not. It is
therefore desirable to compare the statistical performance of the
two methods. C-GWAS and MTAG analyses were carried out using
GWAS summary statistics generated previously, which consisted of
10,115 individuals of European decent. Because MTAG cannot
complete the analysis of 78 facial GWASs within our computational
capacity, we focused on a subset of 30 GWAS covering the left side
of the face. Because MTAG generated 30 GWAS outcomes (one
outcome per trait), we selected the minimal p-values and adjusted
them using the getCoef function. C-GWAS setting was the same with
those used in all 78 GWAS application. To calculate genome-wide
significant threshold for each i-EbICoW combination in C-GWAS
final p-values, we derive multiple testing and calibration burden
estimated in getNtest and getCoef function as 12.44 and 2.17
respectively (Supplementary Method D), which results the thresh-
old as 5x1078x12.44x217=135x10"%. Under this threshold,
C-GWAS and MTAG results are provided in Supplementary Data 4.
We additionally compared C-GWAS with four competing statistics,
including mixAda, mixFisher and mixTippett proposed by Liu et al.
using R package ‘MPAT’> and Sy, proposed by Zhu et al. using R
script ‘CPASSOC™. We also looked up the 327 previously established
SNPs in C-GWAS and results from all competing methods described
above. Note that due to SNP filtering of MTAG, only 271 SNPs
retained for comparison.

Polygenetic score and facial variance explained

Multivariable and polygenic score analyses were conducted in the same
1,174 participates from RS which described above. 57 lead SNPs in C-
GWAS, 57 and 17 lead SNPs in MinGWAS were involved in analyses
below. We calculated PRS using the selected n SNPs and the effect sizes
estimated from the GWAS summary of 10,115 individuals, that is
S 1B:A;. Then proportion of phenotype explained for 78 facial traits
were assessed by r? between MinGWAS based and C-GWAS based PRS
and sex-, age- adjusted face phenotypes. 95% confidence intervals of r*
were obtained from 1000 times randomly sampling with replacement.
PRS z score test were then conducted by cooperating r* value and
standard deviation of sampling results. Next, we calculated PRS for
AFR, EUR, EAS individuals of the 1000 Genomes Project using 57 lead
SNPs in C-GWAS, 17 lead SNPs in MinGWAS and effect sizes as
used above.

Estimation of multi-trait effects

We developed a statistic to quantify multi-trait effect (MTE) for the
positive findings from C-GWAS. The idea is to use the skewness of the
independent phenotypic effects of each SNP to represent its multi-trait
effect, i.e., the more independent phenotypes a SNP is associated with
(less skew), the larger its multi-trait effect is. The skewness statistic of a
vector X can be estimated _using the skew function,
Skew(X) =E(X — E(X))>/(E(X — EX)?)°, as proposed previously*.
However, because the phenotypes are correlated due to background
correlations, steps to remove background correlations are necessary.
To achieve this, we firstly construct an uncorrelated null space of eigen
vectors set Von W, so that all vectors in this space have no background
correlations under the null. In our application, we derived top 26 eigen
vectors with decreased eigen value from 78 eigen vectors of W to form
V for eliminating the noise from the eigen vectors with small eigen
value. Number of derived eigen vectors was ascertained by keeping the
accumulated eigen value over 95% of total 78. Next, for each significant
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SNP, its phenotypic effects t = (¢, t,,...,t;5)" is projected to the null
space as pt = (pt;,pt,,...,pty) and then is scaled using the eigen
value g¢-»¢) to ensure that they are comparable (same variance) under
the null, i.e., pt;=t"V;/ . /g;, where icfl, 2, ...,26}. Finally, we calculate
the skewness of squared projected effects (eliminate the impact of
sign, focus on absolute effect) for each significant SNP, then centralize
these skewness values to that under the null. Noted that the squared
projected effects under the null follow the chi-squared distribution
with one degree of freedom. Therefore, the skewness value undeg/tzhe
null can be directly calculated as E(x? — E()(f))3/(E(xf - E()(f))z) =
(EQD)’ = BEQDVar(rd) — (Ex3)’)/Var(d)”* = (15 — 6 — 1)/29/2=
2+/2. The inverse of the centralized skewness of each SNP is considered
as a quantification of its multi-trait effect, MTE=2v2-Skew(ptept). MTE
< 0 indicates insufficient evidence supporting the presence of multi-
trait effect. MTE values for each C-GWAS lead SNP are in Supplemen-
tary Fig. 15.

Gene ontology analysis

To reveal and compare the potential functional roles of the C-GWAS
and MinGWAS findings, we investigate the enrichment of nearby
genes from MinGWAS and C-GWAS loci in three otology databases,
including Gene Ontology (GO), Human Phenotype Ontology (HPO)
and Mouse Phenotype Ontology (MPO). The gene sets used for
C-GWAS (total 83 genes from 56 loci) and MinGWAS (total 24 genes
from 17 loci) represented the unions of three non-exclusive sets,
including the closest genes to regional lead SNPs (57 for C-GWA, 17
for MinGWAS), annotated genes from ‘SNP2GENE’ function in
FUMA® (64 for C-GWAS, 12 for MinGWAS), and cis-regulated genes
proposed by GREAT* based on lead SNPs (70 for C-GWAS, 22 for
MinGWAS). The enrichment analysis was performed using the R
package’clusterProfiler*? in GO and using GREAT in HPO and MPO.
All Bonferroni adjusted significant (p<0.05) enriched terms are in
Supplementary Data 5. The resultant GO terms were classified into 4
groups according to functionality, ‘morphogenesis’, ‘development’,
‘differentiation’, and ‘regulation’, whereas all the resultant HP and
MP terms could be classified into one group ‘abnormality’.

Colocalization analysis

We performed Bayesian colocalization analysis between C-GWAS loci
and eQTL dataset from GTEx* including 22 tissues from brain, skin,
adipose, muscle skeletal and glands using R package ‘coloc™**. This
method evaluates whether a shared causal variant is responsible in
both GWAS and gene expression in a genomic region of interest. Each
C-GWAS locus was defined as a region with upstream and downstream
500kb from the regional lead SNP. The prior probabilities are set by
default. A posterior probability was obtained for every gene around a
region and a high posterior probability (PP4>0.7) suggested strong
evidence of colocalization. Colocalizations in all 22 tissues of the loci
with high posteriori probability (PP4>0.7) in at least one tissues are in
Supplementary Data 6. Colocalization plots were generated using R
package ‘locuscomparer’®,

Analysis of CNCC regulation network

The regulatory network of CNCC was downloaded at https://github.
com/AMSSwanglab/hReg-CNCC. We used ISTAT® to compute the
enrichment of detected loci in the regulatory element of CNCC. The
loci associated regulatory was obtained according to their intersection
with regulatory elements proposed in regulatory network of CNCC?.
For every locus, we checked every TF-RE-TG triplet and extracted it if
the RE was intersected with this locus. Extracted triplet based on
C-GWAS and MinGWAS loci are in Supplementary Data 7. All loci
associated TF-RE-TG triplets were pooled to form the loci associated
regulatory subnetwork of CNCC.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

C-GWAS p-values of the study-wide suggestively significant SNPs are
provided in Supplementary Data 2. Full C-GWAS summary statistics are
publicly available via figshare at https://doi.org/10.6084/m9.figshare.
21559086. Full GWAS summary statistics of the 78 facial traits used in
discovery phase of C-GWAS application are available on GWAS Catalog
with the access number 31763980. The summary statistics of the
Pennsylvania State University (PSU) and the Indiana University-Purdue
University Indianapolis (IUPUI) are available on GWAS Catalog with the
access number 33288918. The summary statistics of the National Sur-
vey of Physical Traits (NSPT), the Northern Han Chinese (NHC) and the
Taizhou Longitudinal Study (TZL) are available on the National Omics
Data Encyclopedia with NODE number OEP002283. The cis-eQTL
results in 22 tissues were downloaded from GTEx V7 database at
https://www.gtexportal.org/home/datasets. The regulatory network of
CNCC is publicly available at https://github.com/AMSSwanglab/
hReg-CNCC.

Code availability
CGWAS is implemented as an open-source R package available at
https://github.com/Fun-Gene/CGWAS.
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