
Article https://doi.org/10.1038/s41467-022-35323-0

Genetic architecture of heart failure with
preserved versus reduced ejection fraction

Jacob Joseph 1,2,3,13 , Chang Liu 4, Qin Hui 4,5, Krishna Aragam 1,6,7,
Zeyuan Wang4,5, Brian Charest1, Jennifer E. Huffman 1, Jacob M. Keaton8,9,
Todd L. Edwards 10, Serkalem Demissie1,11, Luc Djousse1,2, Juan P. Casas1,2,
J. Michael Gaziano1,2, Kelly Cho1,2, Peter W. F. Wilson5,12, Lawrence S. Phillips5,12,
VAMillion Veteran Program*, Christopher J. O’Donnell 1,2 & YanV. Sun 4,5,13

Pharmacologic clinical trials for heart failure with preserved ejection fraction
have been largely unsuccessful as compared to those for heart failure with
reducedejection fraction.Whether differences in the genetic underpinnings of
these major heart failure subtypes may provide insights into the disparate
outcomes of clinical trials remains unknown. We utilize a large, uniformly
phenotyped, single cohort of heart failure sub-classified into heart failure with
reduced and with preserved ejection fractions based on current clinical defi-
nitions, to conduct detailed genetic analyses of the two heart failure sub-types.
Wefinddifferent genetic architectures anddistinct genetic associationprofiles
between heart failure with reduced and with preserved ejection fraction sug-
gesting differences in underlying pathobiology. Themodest genetic discovery
for heart failure with preserved ejection fraction (one locus) compared to
heart failure with reduced ejection fraction (13 loci) despite comparable
sample sizes indicates that clinically defined heart failure with preserved
ejection fraction likely represents the amalgamation of several, distinct
pathobiological entities. Development of consensus sub-phenotyping of heart
failure with preserved ejection fraction is paramount to better dissect the
underlying genetic signals and contributors to this highly prevalent condition.

Heart failure (HF) affects ~64 million people worldwide and 6.2 million
adults in the United States1,2. While major advances in therapy have
reduced the morbidity and mortality due to heart failure with reduced
ejection fraction (HFrEF), there is significant residual risk of adverse
outcomes3. Therapeutic options are limited for heart failure with

preserved ejection fraction (HFpEF), which accounts for approximately
half of all cases of HF, with large-scale clinical trials largely failing to
demonstrate conclusive benefits4,5. Agents that have reduced the pro-
gression of myocardial remodeling and reduced adverse outcomes in
HFrEF have not demonstrated comparable benefit in HFpEF.
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Genomic analyses of large cohorts represent promising approa-
ches to better understand the pathobiology of HFrEF and HFpEF6,7. A
recent GWAS meta-analysis of multiple cohorts of European ancestry
has identified several genomic loci associated with unclassified HF,
although similar genomic analyses focused on HFrEF and HFpEF are
lacking8. The Million Veteran Program (MVP) is a large biobank linked
to extensive national Veterans Affairs (VA) electronic health record
(EHR) databases. Using algorithms developed to curate HFrEF and
HFpEF phenotypes in the national VA databases based on current
consensus definitions9, we extensively explored the genetic archi-
tecture of each HF subtype in a single large cohort in the MVP. In
addition to demonstrating the disparate genetic underpinnings of
HFrEF and HFpEF, our results highlight the marked heterogeneity of
the HFpEF phenotype, and the urgent need to develop consensus
approaches to subphenotype HFpEF to enable pathophysiological and
therapeutic discovery.

Results
The primary study population for the GWAS consisted of 258,943
controls, and cases of unclassified HF (n = 43,344), HFpEF (n = 19,589),
and HFrEF (n = 19,495) from the MVP cohort, and 8227 HF cases and
379,788 controls from the UK Biobank cohort, all of European genetic
ancestry. The genome-wide significant (GWS) associations of unclas-
sified HF, HFrEF and HFpEF were then examined in the MVP non-
Hispanic African Americans and a recent HF GWAS in Europeans from
the HERMES consortium (Figs. 1 and 2). The MVP control and HF
cohorts were predominantly male. In both MVP and UK Biobank, the
HF cohorts tended to be older with a higher prevalence of cardiome-
tabolic risk factors and comorbidities than the control populations
(Table 1 and Supplementary Data 1 and 2).

GWAS of unclassified HF
In unclassified HF, the meta-analysis of MVP and UK Biobank GWAS
results (Supplementary Figs. 1 and 2) identified 20 genome-wide sig-
nificant (GWS) loci including 10 novel loci (Table 2 and Supplementary
Data 3 and 4). The regional association plots of each GWS locus are
shown in Supplementary Fig. 3A–T. We replicated all 12 GWS inde-
pendent SNPs associatedwithHF froma recent HFGWASpublication8,
(Bonferroni-corrected p-value <0.05; Supplementary Data 5).

GWAS of HFrEF and HFpEF
We conducted GWAS in cohorts of HFrEF and HFpEF curated based on
the current definitions. First, we compared the output of GWAS for the
more and less restrictive HFpEF definitions and observed high, overall
genetic correlation (r = 0.981, p < 2 × 10−16) between these phenotypes,
including among the top 110 HFpEF-associated SNPs (r = 0.995,
p < 2 × 10−16; Supplementary Fig. 4). We therefore used the less
restrictive (and better-powered) HFpEF definition as the primary
HFpEF phenotype for all subsequent analyses.

In the GWAS among the MVP participants of European ancestry,
we identified 13 GWS loci associated with HFrEF and one GWS locus
(FTO) associatedwithHFpEF (Fig. 3; Table 3; Supplementary Fig. 5A, B).
The regional association plots of each GWS locus are shown in Sup-
plementary Fig. 6A–N. Two lead SNPs in the FTO locus for HFrEF
(rs7188250) and HFpEF (rs11642015) were in linkage disequilibrium
(r2 = 0.873). Among these thirteen loci associated with HF subtypes,
seven loci (NFIA, E2F6, MITF, PHACTR1, METTL7A, PNMT, and BPTF)
have not been reported in previous HF-related GWAS, of which four
loci (NFIA, MITF, PHACTR1, and METTL7A) were GWS only in GWAS of
HFrEF cases. A scatterplot illustrating the comparison between the
effect sizes of the GWS loci for HFrEF and HFpEF is shown in Supple-
mentary Fig. 7, with effect sizes with standard errors for HFrEF and
HFpEF on X- and Y-axis, respectively.

Among 13 HFrEF-associated loci, nine loci had different associations
with HFrEF and HFpEF (p-value <0.0038, corrected for 13 tests, Table 3).

Fig. 1 | Study schema. Schematic diagram detailing datasets and analyses used in
the study.

MVP Cohort (non-Hispanic White with 
genotypic data) 

N=324,205 

HF cohort 
N=65,262 

HF Code ever 

HF + EF Value ever 
N=62,456 

EF Exclusions 
No EFs recorded within 6 
months of index diagnosis OR 
>2 EF values on same day OR 
2 EF values on same day with 
more that 5% difference 

YES NO 

Fig. 2 | Algorithm for phenotyping of cohorts for genetic analyses. Consort
diagram describes the methodology utilized to accurately phenotype the case
cohorts (unclassified HF, HFrEF, HFpEF, restrictive case definition of HFpEF) and
controls included in the study from the Million Veteran Program.
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For example, the risk allele of the BAG3missense variant (rs2234962) was
associated with higher risk for HFrEF (OR 1.12, 95% CI 1.09–1.15, p-value
9.02× 10−18), but was associated with lower risk for HFpEF (OR 0.97, 95%
CI 0.94–0.99, p-value 6.42× 10−3). Only four loci, including LPA, FTO,
PNMT, and BPTF, were not differentially associated with HF subtypes.

We observed moderate genomic inflation (λ) for unclassified HF
(λ = 1.263), HFrEF (λ = 1.152), andHFpEF (λ = 1.118), onpar with GWASof
phenotypes with similarly large sample sizes. The LDSC intercepts
were 1.044 (SE 0.010), 1.013 (SE 0.008), and 1.028 (SE 0.008) for
unclassified HF, HFrEF, and HFpEF, respectively, indicating that most
of the inflation was due to polygenicity of HF and subtypes.

Replication in MVP African Americans and other HF GWAS
Among MVP African Americans, all but two of the SNPs identified
in the GWAS of unclassified HF in the European ancestry had
genetic associations with unclassified HF in the same direction,
and two (rs3176326-CDKN1A and rs12150603-PNMT) were sig-
nificant after Bonferroni correction (Supplementary Data 4); four
(rs4717903-GTF2I, rs12933292-NFAT5, rs1002135-SMG6, and
rs1999323-MAP3K7CL) were replicated in the recent HF GWAS8

after Bonferroni correction.
Among 13 GWS loci associated with HFrEF, 11 had genetic effects

in the same direction in the MVP African American cohort (Supple-
mentary Data 6), including three (rs1763610-HSPB7, rs4151702-
CDKN1A, and rs2234962-BAG3) which were test-wise significant after
Bonferroni correction. Interestingly, the sentinel SNP of the FTO locus
was significantly associated with HFpEF (rs11642015, OR 1.10, 95% CI
1.03–1.17, p-value 6.30 × 10−3), but not associated with HFrEF
(rs7188250, OR 1.06, 95% CI 0.99–1.12, p-value 0.11).

Genetic associations with HFrEF and HFpEF in candidate genes
and loci
Out of 12 GWS loci reported in the recent HERMES study of unclas-
sified HF, all were associated with HFrEF, but only four were sig-
nificantly associated with HFpEF including the FTO locus
(Supplementary Data 5). Other loci replicated in HFrEF were ZBTB17/
HSPB7 locus (closest gene of SRARP discovered in our study) and
HCG22 locus10 (OR 1.05, CI 1.03–1.08, P = 7.83 × 10-5). We did not
replicate previously reported associations of FRMD4B or USP3 region
with HF6,11. Among 17 autosomal genes related to cardiomyopathy12,13,

we found significant associations in HFrEF with TMEM43, BAG3,
MYBPC3, TTN, and in HFpEF with DSG2 and PRKAG2 (Supplementary
Data 7, Supplementary Fig. 8).

Associations of HFrEF- and HFpEF loci with cardiovascular risk
factors
As shown in Fig. 4 and Supplementary Data 8, several of the 13 loci
associated with HFrEF and HFpEF also demonstrated genetic associa-
tions with risk factors as previously reported (PHACTR1, LPA, and
CDKN2B-AS with CAD; CDKN1A with AF); and FTO with BMI, T2D, and
HDL cholesterol. Althoughmost lociwere associatedwithmultiple risk
factors, the BAG3 locus was only associated with blood pressure traits,
and the MITF and METTL7A loci were associated with eGFR. Three
novel loci, SRARP, NFIA, and E2F6, were not significantly associated
with any tested HF risk factors. Genome-wide significant loci for
unclassified HF and subtypes associated with ~2400 traits tested in the
UK Biobank (searched in PheWeb browser, https://pheweb.org/) with
p < 1 × 10−6 are listed in the Supplementary Data 9.

Genetic correlation between HFrEF and HFpEF and heritability
Using LDSC and the MVP GWAS summary statistics, we estimated the
heritability (h2) of unclassified HF, HFpEF and HFrEF as 3.7% (SE 0.3%),
1.9% (SE 0.2%), and 3.1% (0.3%), respectively. Heritability of HFpEF was
substantially lower than that of unclassified HF and HFrEF. We also
identified a modest positive genetic correlation between HFrEF and
HFpEF (0.57 ± 0.07). The LDSC ratios for unclassified HF, HFrEF, and
HFpEF are 0.1381 (SE of 0.0295), 0.0723 (SE of 0.0456), and 0.2184 (SE
of 0.0592), respectively.

We estimated the SNP-based heritability using GREML-LDMS-I in
MVP non-HispanicWhites. Assuming a prevalence of HFrEF and HFpEF
of 2.5%, 5%, and 7.0% in the population, we derived similar heritability
on the liability scale between HFrEF (0.25, 0.31, 0.34, respectively) and
HFpEF (0.22, 0.26, 0.29, respectively) (Supplementary Fig. 9).

Mendelian randomization association analysis of HF risk factors
We present the MR association results from the inverse-variance-
weighted method (Fig. 5) since the assumption of zero-intercept was
not violated in the Egger regression (Supplementary Data 10 shows
results of all 3MRmethods). In primaryMR analyses (inverse-variance-
weighted estimates), CAD had a stronger causal association with

Table 1 | Characteristics of HF patients and non-HF controls in the MVP participants of European Ancestry

Group Control (N = 258,943) HFpEF (N = 19,589) HFrEF (N = 19,495) Unclassified HF (N = 43,344)

Age (years), mean±SD 62.74 ± 13.76 69.88 ± 9.77 69.29 ± 9.74 69.61 ± 9.74

Male (%) 92.14 95.74 97.85 96.92

Body mass index (kg/m2), mean ± 29.20 ± 5.53 31.95 ± 6.98 30.20 ± 6.38 31.08 ± 6.73

Underweight (<18.5) % 0.56 0.47 0.59 0.52

Normal (18.5–24.9) % 20.25 13.43 18.79 16.05

Overweight (25.0–29.9) % 40.66 29.71 35.09 32.44

Obese (30.0–34.9) % 24.70 27.08 25.62 26.37

Morbidly obese (≥35.0) % 13.84 29.31 19.91 24.62

LVEF, mean ± SD NA 56.97 ± 5.65 29.33 ± 9.36 43.36 ± 15.05

Atrial fibrillation (%) 6.33 30.80 37.83 34.44

Coronary artery disease (%) 22.47 63.87 74.63 69.72

Chronic kidney disease (%) 9.54 37.21 35.75 36.43

Diabetes (%) 20.61 48.54 45.06 46.76

Hyperlipidemia (%) 66.9 87.75 88.20 88.04

Hypertension (%) 62.97 93.22 91.69 92.51

Peripheral vascular disease (%) 15.18 42.47 42.27 42.47

Stroke/TIA (%) 8.26 25.29 24.33 24.93

HFpEFheart failurewith preserved ejection fraction,HFrEFheart failurewith reducedejection fraction,HFheart failure,SD standarddeviation, LVEF left ventricular ejection fraction, TIA transient ischemic attack.
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HFrEF, and all lipid parameters as well as T2DandDBP had a significant
causal association only with HFrEF. While AF, BMI, and SBP demon-
strated similar causal associations with both HF subtypes, PP was sig-
nificantly associated with HFpEF only. Similar results were observed
from the median weighted method (Supplementary Data 10). Sensi-
tivity analysis using Egger regression showed consistent effect esti-
mates but larger confidence intervals (Supplementary Data 10).

Conditional analysis and credible set analysis
We identified a secondary SNP in two loci on chromosome4and6 after
conditional analysis on the sentinel SNP from unclassified HF GWAS
(Supplementary Data 11). However, there was no evidence of second-
ary independent variants at anyGWS loci of HF subtypes in conditional
analyses.

We performed a credible set analysis of all GWS loci for unclas-
sified HF, HFrEF, and HFpEF to identify candidate causal variants. The
results are summarized in Supplementary Data 12.

Proxy and putative functional variants
The prediction scores for non-synonymous substitution of amino acid
were summarized as effects on protein (SupplementaryData 13A, B). In
addition to the knownmissense variant (rs2234962) in the BAG3 locus
for dilated cardiomyopathy, we identify deleterious or damaging
protein-coding variants in genes SYNPO2L, ERBB2, and STARD3 in
strong LD with sentinel SNPs (LD R2 > 0.8).

Functional annotation of eQTL, pQTL, and enhancers
For unclassifiedHF, sentinel SNPs rs6795366 and rs34432450were not
found in the database. We used proxy variants passed GWS threshold
with strong LD for the search. All sentinel SNPs except rs2634073,
rs4977575 and rs79329549 showed evidence of eQTLs in at least one
issue type. ForHFrEF, all but sentinel SNPs rs2261792, rs56286049, and
rs4977575 had significant eQTLs. Identified eQTLs and their tissue
types were summarized in Supplementary Data 14. Using the Feland
database, we identified 416 pQTLs (p < 0.0005) for identified GWAS
loci (Supplementary Data 15). We identified 17, 10, and 1 GWS loci
overlapping with human enhancers for unclassified HF, HFrEF and
HFpEF, respectively (Supplementary Data 16).

Genetically predicted gene-expression analysis
Common variants from the different HF subtype GWAS were used to
evaluate the association of genetically predicted gene-expression
levels with HFrEF and HFpEF across 48 tissues using S-PrediXcan. We
identified 49 statistically significant (P < 5 × 10−7) gene-tissue combi-
nation pairs genetically predictive of HFrEF risk (Supplementary
Data 17), including several gene-expression levels in HFrEF-related
tissues such as CLCNKA expression in the coronary artery (5.26 × 10−11),
PPP1R1B (3.52 × 10−8), and PGAP3 (1.63 × 10−7) expression in left atrial
appendage, PROM1 (5.57 × 10−8), BPTF (9.70 × 10−8), and PGAP3
(1.44 × 10−7) expression in the left ventricle. Hypergeometric enrich-
ment analysis showed that most enriched gene-expression signals
(false discovery rate < 0.05)were in three brain tissues, cortex, cervical
spinal cord, and substantia nigra. However, we did not identify any
genetically predicted gene-expression levels associated with HFpEF.

Colocalization analysis
Additionally,weusedCOLOC to identify the subset of significant genes
where therewas a highposterior probability that the set ofmodel SNPs
in the S-PrediXcan analysis for each gene were both causal for gene
expression and HF subtypes. This analysis refined our S-PrediXcan
analysis by excluding results that may be the consequence of LD
between causal SNPs for gene expression and HF subtypes. All six
aforementioned gene-tissue pairs significantly associated with HFrEF
has high posterior probability (P4 > 0.9) of colocalization, covering
five distinct genes' expression in coronary artery, left atrial appendage
and left ventricle.

Gene-set and pathway enrichment analysis
To identify pathways and tissues overrepresented in the GWAS of
HFrEF andHFpEF, weused theDEPICT gene-set enrichment tool, using
all SNPs with p-value less than 10−4 for the respective subtype. We
identified four gene sets significantly associated (false discovery
rate < 0.05) with HFrEF (Supplementary Data 18) including protein-
protein interaction subnetworks. No gene sets were significantly
associated with HFpEF using the same approach. We also identified six
and six tissue types suggestively associated (false discovery rate < 0.2)
with HFrEF and HFpEF, respectively (Supplementary Data 19). The top
enriched tissue types including heart and endocrine glands for HFrEF,
and blood vessels, epithelial cells, and blood for HFpEF.

Discussion
In our large-scale genetic association analysis of clinical HF subtypes,
we found pronounced differences in the genetic architectures of
HFrEF and HFpEF. The very limited genetic discovery in HFpEF in spite
of a large cohort size similar toHFrEF, suggests thatHFpEF as currently
clinically defined is a heterogenous phenotypewith varying underlying
pathobiology across the phenotype (Fig. 6).

Our genetic analyses of the associations between HF risk factors
and HF subtypes, and causal relations of HF risk factors to HFrEF and
HFpEF confirmed current epidemiologic data and the validity of our
cohorts. For example, we found strong genetic associations of CAD

Fig. 3 | Genome-wide associations ofHFrEF andHFpEF.Genome-wide significant
loci association studies of HFpEF and HFrEF among non-Hispanic White veterans.
Sentinel SNPs and thenearestmappedgenes are shown. Y-axis shows chromosomal
position. Sentinel SNPs and their nearest genes are shown. All tests were two-sided
without adjustment for multiple comparisons. *: novel HF locus; #: unique locus in
the HFrEF GWAS but not in the HF meta-analysis; dashed vertical line indicates
genome-wide significance threshold (P = 5 × 10−8).
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and lipid with HFrEF. Conversely, genetically-determined pulse pres-
sure was more associated with HFpEF. Atrial fibrillation and BMI were
causally related to both HFrEF and HFpEF. At the level for individual
variants, for e.g., in case of the myocardial variant BAG3, different
associations were seen with HFpEF and HFrEF. Our finding that the
direct genetic correlation between HFrEF and HFpEF was modest (r2

~32%) reinforces our findings at the genomic level that HFrEF and
HFpEF have different genetic architecture.

In addition, to ensure that our findings were not due to issues in
curating the HFpEF phenotype from the EHR, we used the more
restrictive phenotype utilized in our previous epidemiologic studies
based on measurement of natriuretic peptides and use of diuretics
which had a positive predictive value of 96% on blinded analysis14 and
repeated GWAS in this more restrictively curated sub-group of HFpEF,
and found similar genetic associations but less statistical power (due to
smaller sample size) comparing to the main HFpEF cohort (Supple-
mentary Fig. 4). Using LDSC and the GWAS summary statistics, we
found that the genetic correlation between the two HFpEF definitions
wasvery high (r = 0.981,p < 2 × 10−16). Among top 110HFpEF-associated
commonSNPs (p < 10−6,MAF > 1%), the genetic effects between the two
HFpEF GWAS were highly correlated (r = 0.995, p < 2 × 10−16). Mostly
driven by a larger number of HFpEF cases in the original definition
(19,598 vs. 12,119), the p-values of 109 out of 110 SNPswere lower in the
original HFpEF GWAS conducted in the less restrictive cohort.

The novel genetic associations with HFrEF confirm known
pathophysiology and indicate novel biology that merits further
investigation. Myocardial remodeling is driven by inappropriate acti-
vation of various neurohormonal systems, including the sympathetic
nervous system and its effector hormones, the catecholamines epi-
nephrine and norepinephrine15,16. Blockade of the adrenergic beta
receptor to decrease action of these hormones has substantially

improved survival in HFrEF. The PNMT gene encodes phenylethano-
lamine N-methyltransferase, which catalyzes the N-methylation of
norepinephrine to epinephrine. Sequencing of the PNMT gene has
found several SNPs including non-synonymous SNPs in the coding
region that affected transcription17. Previous studies have associated
polymorphisms of the PNMT gene to catecholamine levels and
hypertension. Cui and colleagues found that the allelic frequency of an
SNP was different between hypertensives and normotensives among
African Americans but not among other ethnic groups18, while Huang
et al. found an association of the risk of hypertension with PNMT
polymorphisms in Han Chinese population19. Polymorphisms of the
PNMT gene also influence the levels of post-exercise surge in cate-
cholamine levels20. Our data are the first, to our knowledge, that
demonstrates an association of PNMTgenetic variationwith the risk of
HFrEF. The gene E2F6 codes for a member of the E2F family of tran-
scription factors that regulate cardiac development, cardiomyocyte
growth, andmyocardialmetabolism21–23. Overexpression of E2F6 in the
mouse myocardium leads to cardiomyopathy21, which is associated
with decreased glycolytic activity and increased expression of
β-hydroxybutyrate dehydrogenase, an enzyme that regulates ketone
metabolism22. In contrast to the deleterious effects of E2F6 over-
expression during cardiac development, in vitro studies have shown
that E2F6 may protect against cardiotoxic agents23. Preclinical studies
have shown thatmicrophthalmia transcription factor (MITF) regulates
the hypertrophic response of the myocardium24, and that the effect of
MITF on the myocardial hypertrophic pathway may be mediated epi-
genetically by the microRNA miR-54125. Another potential mechanism
of action of MITF onmyocardial hypertrophy is via an interaction with
four-and-a-half LIM domain protein (FLH2) thereby influencing the
expression of ErbB2 interacting protein (Erbin)26. While GWAS have
shown an association of the PHACTR1 locus with multiple vascular
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Fig. 4 | Genetic associations between HFrEF/HFpEF risk variants and HF risk
factors. The genetic associations were identified from published GWAS of HF risk
factors. All tests were two-sided without adjustment for multiple comparisons.
*Beta: beta coefficients for continuous risk factors, log (odds ratio) for binary risk
factors, percent change in eGFR. CAD coronary artery disease, AFib atrial
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triglycerides, SBP systolic blood pressure, DBP diastolic blood pressure, PP pulse
pressure, eGFR estimated glomerular filtration rate.
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diseases such as hypertension27 and coronary calcification28, down-
regulation of PHACTR1 function in vascular cells did not lead to vas-
cular pathology in preclinical studies29. The transcription factor NFIA,
which has major roles in glial cell development, has been associated
with ventricular electrical activity (QRS duration on electro-
cardiogram) by two population genomic studies30.31, In a genetic study
of renal and cardiometabolic disease in Zuni Indians, NFIA was asso-
ciated with diastolic blood pressure32. While the function of Methyl-
transferase Like 7 A (METTL7A) is not well understood, other
methyltranferases such as METTL3 and -14 methylate N6-adenosine
moieties in RNA and oppose the action of FTO, a N6-adenosine
demethylase, which is the only gene that was significantly associated
with HF, HFrEF, and HFpEF33; myocardial changes in N6-adenosine
methylation of mRNA is associated with progression to HF34.

There is a developing consensus that HFpEF as currently defined
may not represent a cohesive pathophysiology, rather, that HFpEF
represents a heterogenous entity comprised of multiple phenotypes.
Multiple large randomized clinical trials utilizing medications that were
found to be effective in preclinical models of HFpEF did not demon-
strate beneficial effects4. The contrast with HFrEF is a major reason to
conclude that HFpEF may be a heterogenous disease. Although both
HFpEF and HFrEF are associated with risk factors and comorbidities,
animal models of HFrEF have identified drug targets which have been
conclusively proven to reduce morbidity and mortality by large clinical
trials15. This is in stark contrast to HFpEF, in which the animal models
while recapitulating the cardiac pathophysiology, have failed to identify
drug targets that benefit HFpEF, suggesting that the pathophysiology of
HFpEF may not be as uniform as seen in HFrEF. Our study also showed
that despite increased phenotypic refinement of unclassified HF into
HFpEF and HFrEF cohorts of similar size, the yield of GWS loci in HFpEF
was even lower than in unclassified HF and in contrast to the increased
genetic discovery in the HFrEF cohort. We recognize that this does not
directly translate into a conclusion of pathophysiologic heterogeneity
since many factors influence the pathway from genotype to phenotype,
and it is also possible that appropriate drug targets have yet to be
identified for HFpEF; however, these findings do suggest that patho-
physiologic heterogeneity may have played a significant role in our
findings. Our findings suggest an urgent need to develop consensus
subphenotyping strategies to resolve the heterogeneity of HFpEF as
currently defined, as will be the focus of the recently initiated National
Institutes of Health HeartShare Program (https://grants.nih.gov/grants/
guide/rfa-files/RFA-HL-21-015.html).

Initial studies that applied unsupervised clustering approaches to
clinical and biomarker data mainly derived from HFpEF clinical trials
suggest that different subphenotypes may underlie HFpEF35–38. For
example, Cohen and colleagues used latent class analysis on data from
the TOPCAT Trial (Treatment of Preserved Cardiac Function Heart
Failure with an Aldosterone Antagonist Trial) and identified three
subphenotypes of HFpEF, with one of the subphenotypes associated
with better response to spironolactone36. Based on these initial results,
it is possible that artificial intelligence/machine learning approaches
applied to clinical, imaging, biomarker, and -omics data may identify
specific subphenotypes of HFpEF that may be benefited by specific
drug therapy. While artificial intelligence/machine learning approa-
ches applied to clinical and biomarker data may resolve some of the
heterogeneity of HFpEF, biologically based approaches to address the
potential for rare genetic variants to influence disease pathogenesis
and the complexity of the path from genotype to phenotype using
multi-omics, epigenomics and chromatin dynamics, and single cell
approaches, may be needed to truly uncover the pathobiology
of HFpEF.
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AFib

T2D

BMI

HDL

LDL

TC
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SBP

DBP
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eGFR

0 0.5 1 1.5 2 2.5
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Fig. 5 | Mendelian randomization analysis of HF risk factors in relation to
HFpEF and HFrEF. X-axis shows odds ratios (ORs), with error bars showing 95%
confidence intervals. CAD coronary artery disease, AFib atrial fibrillation, T2D type
2 diabetes, BMI body mass index, HDL high-density lipoprotein cholesterol, LDL
low-density lipoprotein cholesterol, TC total cholesterol, TG triglycerides, SBP
systolic blood pressure, DBP diastolic blood pressure, PP pulse pressure, eGFR
estimated glomerular filtration rate.
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Fig. 6 | Limited genetic discovery in HFpEF due to pathophysiological heterogeneity. All tests were two-sided without adjustment for multiple comparisons.
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Study limitations
Our findings should be interpreted in the context of the strengths and
limitations of the study. Our HFpEF cohort had less women compared
to epidemiologic studies and recent clinical trials; however, the
genetic and causal associations of risk factors withHFpEF as compared
toHFrEFmirrored associations seen inepidemiologic studies. Sincewe
utilized natural language processing to capture all recorded LVEFs
including measurements performed outside the VA, our cohort of
HFpEF excluded any participants with previously reduced and cur-
rently normal LVEF. In addition, we compared GWAS findings between
amore restrictive HFpEF phenotype and the less restrictive phenotype
used in the main analysis and found very high correlation confirming
the validity of the HFpEF phenotype used for the main GWAS. Hence
our findings indicate that the issue with reduced genetic discovery in
our cohort was not secondary to impurity of the phenotype due to
EHR-based curation, but that HFpEF as currently defined may be a
collection of subphenotypes with multiple independent disease
mechanisms. Our case and control cohorts, since they were recruited
from a hospital setting, had a higher prevalence of comorbidities
compared to a population-based cohort. We could not externally
replicate our findings since currently there are no other large pheno-
typed cohorts of HFpEF and HFrEF.

In conclusion, the genetic architectures of HFpEF andHFrEF differ
significantly. HFpEF as currently clinically defined is a pathophysiolo-
gically heterogenous disease that requires further characterization
into consensus subphenotypes to enhance genetic discovery. Better
genetic understanding of HF subtypes will lead to precise diagnosis,
accurate risk assessment, and effective treatment andmanagement of
the global pandemic of heart failure.

Methods
All research procedures complies with all relevant ethical regulations
and were approved by the Institutional Review Boards of Atlanta VA
Medical Center and VA Boston Healthcare System.

Datasets
Million Veteran Program. The design of MVP has been previously
described39. Veterans were recruited from over 60 Veterans Health
Administration medical centers nationwide since 2011. A unique fea-
ture of MVP is the linkage of a large biobank to an extensive, national,
database from 2003 onward that integrates multiple elements such as
diagnosis codes, procedure codes, laboratory values, and imaging
reports, which permits detailed phenotyping of this large cohort. MVP
has received ethical and study protocol approval by the Veterans
Affairs Central Institutional Review Board in accordance with the
principles outlined in the Declaration of Helsinki.

UK Biobank. UK Biobank is a prospective study with over 500,000
participants aged 40–69 years recruited in 2006–2010 with extensive
phenotypic and genotypic data40.

Phenotyping of heart failure, HFrEF, and HFpEF
HF patients were identified as those with an International Classifi-
cation of Diseases (ICD)-9 code of 428.x or ICD-10 code of I50.x and
an echocardiogram performed within 6 months of diagnosis
(median time period from diagnosis to echocardiography was
3 days, interquartile range 0–32 days). Since the accurate classifi-
cation of HF into HFrEF and HFpEF is dependent on capture of LVEF
values, we used a comprehensive approach based on natural lan-
guage processing (NLP). As previously described, an NLP tool was
developed and validated in the national VA database to extract LVEF
values from echocardiogram reports41. We utilized NLP to capture
LVEF values from nuclear medicine reports, cardiac catheterization
reports, history and physical examination notes, progress notes,

discharge summary notes, and other cardiology notes, to ensure
that we captured LVEF values measured outside the VA42. Using
analysis of patient records by blinded physician reviewers, we vali-
dated the accuracy of the NLP algorithms to capture LVEF and
correctly classify HFpEF42. Compared to our previous studies, we
utilized a wider time frame between HF diagnosis and first recorded
LVEF for this study to ensure that we captured LVEFs recorded
outside the VA soon after HF diagnosis but entered into the VA
medical records later. We classified HFpEF as presence of HF diag-
nostic code and first recorded EF of ≥50% and HFrEF as HF diag-
nostic code with first recorded LVEF of ≤40%.

Our HF phenotyping algorithms utilize both structured and
unstructured data to ensure accuracy of the HF diagnosis, and natural
language processing to ascertain all measurements of left ventricular
function from imaging studies (i.e., echocardiograms) and from clin-
ical notes, with the latter permitting capture of left ventricular ejection
fractions (LVEF) measured outside the VA system14,42,43. Capture of all
LVEFs ensured thatwe truly obtained the LVEFmeasured at the timeof
diagnosis of HF to allow proper identification of HFpEF and exclude
any veteran with recovered LVEF from the HFpEF cohort. In the algo-
rithm for identification of HF patients, we used documentation in EHR
of theorderingof B-typenatriuretic peptide as oneof the criteria, since
evaluation of practice patterns indicated that ordering of B-type
natriuretic peptide increased the likelihood of the patient having
clinical HF, as validated by blinded review42. For this study, to increase
the number of HFpEF patients included in the study, we utilized a less
restrictive definition recently utilized in a study44 that did not require
that all LVEFs recorded after the baseline measurement also be ≥50%,
or the use of diuretics and/or measurement of B-type natriuretic
peptide at baseline (Fig. 2). To ensure adequacy of this definition, we
compared the genetic associations obtained in the cohort to genetic
associations obtained in a cohort curated with the more restrictive
definition used for our previous epidemiological studies14,41,42,45.
Comorbid conditions were curated using International Classification
of Diseases (ICD)-10 or ICD-9 codes as in our previous studies and
described in the Supplementary Materials42.

In the UK Biobank, we defined HF as the presence of self-reported
HF/pulmonary edema or cardiomyopathy at any visit; or an ICD-10 or
ICD-9 billing code indicative of heart/ventricular failure or a cardio-
myopathy of any cause, as described and validated previously, and
consistent with that used in a recent, international collaborative
effort8,46 Assessments of LVEF were not available in the majority of UK
Biobank participants to permit classification into HFpEF and HFrEF.

Genetic data production, quality control, and imputation
DNA extracted from participants’ blood was genotyped using a cus-
tomized Affymetrix Axiom® biobank array, the MVP 1.0 Genotyping
Array. The array was enriched for both common and rare genetic
variants of clinical significance in different ethnic backgrounds.
Quality-control procedures used to assign ancestry, remove low-
quality samples and variants, and perform genotype imputation were
previously described47. We excluded: duplicate samples, samples with
more heterozygosity than expected, an excess (>2.5%) of missing
genotype calls, or discordance between genetically inferred sex and
phenotypic gender47. In addition, one individual from each pair of
related individuals (more than second degree relatedness asmeasured
by the KING software)48 were removed. Prior to imputation, variants
that were poorly called (genotype missingness > 5%) or that deviated
from their expected allele frequency observed in the 1000 Genomes
reference data were excluded. After pre-phasing using EAGLE v2.449,
we then imputed to the 1000 Genomes phase 3 version 5 reference
panel (1000G) using Minimac450. Genotyped SNPs after quality con-
trol were interpolated into the imputation file. Imputed variants with
poor imputation quality (r2 < 0.3) were excluded from further analyses.
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Assignment of racial/ethnic groups in the MVP
TheMVPparticipantswere assigned tomutually exclusive racial/ethnic
groups using HARE (Harmonized Ancestry and Race/Ethnicity), a
machine learning algorithm that integrates genetically inferred
ancestry (GIA) with self-identified race/ethnicity (SIRE)51. HARE defines
ethnicity-specific strata by a two-step process: an initial training step in
which a support vectormachinemodel was built andmade to learn the
correspondence between genetically inferred ancestry (GIA) and SIRE;
and a second assignment step in which HARE was derived from SIRE,
GIA, and the output from the support vector machine.

Genome-wide association analysis
Figure 1 demonstrates our study schema. Imputed and directly mea-
sured single nucleotide polymorphisms (SNPs) with minor allele fre-
quency >1% were tested for association with HF, HFrEF, and HFpEF
assuming an additive genetic model using PLINK252 and adjusting for
age, sex, and the top ten genotype-derivedprincipal components. InUK
Biobank analyses, genotyping array was included as an additional cov-
ariate.Wemeta-analyzedGWAS results ofHF fromMVPandUKBiobank
using inverse-variance weighted fixed-effects model implemented in
METAL53. Jointmeta-analysis resultswere reported for unclassifiedHF to
improve the power for GWAS discovery54. GWAS results were sum-
marized using FUMA, a platform that annotates, prioritizes, visualizes
and interprets GWAS results55. Genome-wide significant SNPs
(P < 5 × 10−8) were grouped into a genomic locus based on either r2 > 0.1
or distance between loci of <500 kb using the 1000Genomes European
reference panel. Lead SNPs were defined within each locus if they were
independent (r2 < 0.1). We considered loci as novel if the sentinel SNP
was of genome-wide significance (P < 5 × 10-8) and located >1Mb from
previously reported GWS SNPs associated with HF8,46. For novel loci, we
used the genomic base-pair position of each sentinel SNP tomap to the
closest gene within a 500kb region as the candidate gene. The physical
base-pair location (GRCh37/hg19) and alleles were used to uniquely
identify a genetic variant to replicate previous reported genetic asso-
ciations with HF, and with HF risk factors.

For replication of unclassified HF, we conducted genome-wide
association testing among UK Biobank participants passing sample
quality control, comparing unclassified HF cases with non-HF controls.
Procedures for genotyping and genotype imputation in the UK Biobank
have been described previously40. For genetic association testing, we
included SNPs with minor allele frequency (MAF) > 1% available in the
Haplotype Reference Consortium (HRC), and imputation quality
(INFO) >0.3. We restricted analyses to samples of European genetic
ancestry, defined by a combination of self-reported race and genetic
principal components of ancestry. Specifically, we selected samples with
genetic data who self-reported as white (British, Irish, or Other) and
applied an outlier detection protocol (R package aberrant) to three pairs
of principal components (PC1/PC2, PC3/PC4, and PC5/PC6), as generated
centrally by theUKBiobank.Outliers in any of the three pairs of PCswere
excluded fromanalysis to ensure that the study populationwas relatively
homogenous in terms of genetic ancestry. Additional sample exclusions
were implemented for 2nd-degree or closer relatedness (Kinship coeffi-
cient >0.0884), sex chromosome aneuploidy, and excessmissingness or
heterozygosity, as defined by the UK Biobank. Association analyses were
performed using PLINK2 (https://www.cog-genomics.org/plink/2.0/) 25
on imputed genotype dosages, and a logistic regressionmodel was used
adjusting for age at enrollment, sex, genotyping array, and the first
10 principal components of ancestry. After merging with the phenotypic
data, a total of 8227 unclassified HF cases were compared to 379,788
non-HF controls. Test statistic inflation was investigated by genomic
control and inspection of quantile-quantile plots.

Genetic correlation and heritability
We estimated genetic correlations between these complex traits using
cross-trait LD Score Regression and European ancestry-based GWAS

results of HFpEF and HFrEF56,57. A reference panel consisting of 1.2
million HapMap3 variants was used to merge with GWAS summary
statistics filtered to variants with MAF >0.01, Hardy-Weinberg equili-
brium P > 10-20 and imputation R2 > 0.5. Using LD Score Regression and
GWAS summary statistics, we also estimated the inflation factor of
unclassified HF, HFpEF and HFrEF.

We used GREML-LDMS-I as implemented in Genome-wide Com-
plex Trait Analysis (GCTA) 1.93.0beta to estimate themulticomponent
heritability of unclassified HF, HFrEF, and HFpEF in our MVP partici-
pants of European ancestry. GREML-LDMS-I was shown to be the least
biased and one of themost accurate heritability estimationmethods58.
Restricted by computing memory requirements, we randomly selec-
ted 50,000 unrelated MVP non-Hispanic Whites to perform GREML-
LDMS-I analysis59,60. We then estimated heritability within each group
after applying identical quality-control procedures. SNPs that were
multi-allelic, had MAC<6, or call-rate <95% were removed. LD scores
were computed on each autosome using an r2 cutoff of 0.01, and the
genome-wide LD score distribution was used to assign SNPs to 1 of
4 LD quartile groups, where groups 1–4 represented SNPs with higher
LD scores. Within each LD group, SNPs were further stratified into 6
MAF bins ([0.001, 0.01], [0.01, 0.1], [0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4,
0.5]) and a genetic relatedness matrix (GRM) was constructed from
eachbin, creating 24GRMs. Finally, GCTA -remlwas used to fit amodel
of HF case status basedon the 24GRMs,with age and sex as covariates.
Total observed heritability estimates were transformed to estimate
disease liability scale across a range of presumed HF subtypes pre-
valence estimates (2.5% to 7% for each HF subtype).

Mendelian randomization analysis of HF risk factors
To assess differential causal associations of risk factors with HFrEF and
HFpEF, we conducted two-sample Mendelian Randomization (MR).
ForMR,weutilizedgenetic instrumental variables reported inprevious
GWAS of the following traditional HF risk factors: coronary artery
disease (CAD)61, atrial fibrillation (AF)62, type 2 diabetes (T2D)63, body
mass index (BMI)64, lipids65, blood pressure66, and estimated glo-
merular filtration rate (eGFR)67. The GWS sentinel SNPs from each
GWAS were selected as the genetic instrumental variables (GIVs) for
each HF risk factor. We estimated the MR association of each risk
factor using three complementary methods: inverse-variance-weigh-
ted, median weighted, and MR-Egger regression, as implemented in
the R package TwoSampleMR68. MR-Egger regression was used to
identify the horizontal pleiotropy measured by the intercept of the
regression. Random-effects model was used to estimate the MR asso-
ciation between HF risk factors and HF outcomes for IVW and MR-
Egger regression. To avoid sample overlap in the two-sample MR
design, we used summary statistics of unclassified HF, HFrEF, and
HFpEF from the MVP study, and summary statistics of risk factors in
previous GWAS without the MVP, all from studies of European ances-
try. We considered nominal p-value of 0.05 as suggestive evidence for
MR association for each HF risk factor. We applied a stringent Bon-
ferroni correction for 12 tested factors (p-value < 0.05/12 = 0.0042)
acknowledging that some factors are not independent.

Conditional analysis and credible set analysis
To determine the presence of independent secondary signals within
the GWS loci of HF and subtypes, we conducted a conditional analysis
using -cojo-cond command implemented in the genome-wide com-
plex trait analysis (GCTA) tool. A secondary independent signal is
defined as a SNP with the conditional p-value less than 5 × 10−8

within a ± 500 kb flanking region of the sentinel SNP of each
identified locus.

We generated a list of credible sets of SNPs at all GWS loci of
unclassified HF, HFrEF, and HFpEF in European ancestry using a
Bayesian approach for credible set analysis69. We first calculated
approximate Bayes factors for each variant within a 500 kb region
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centered on the sentinel SNP using the beta, standard error, and
sample size from the METAL meta-analysis of unclassified HF and the
MVP GWAS of HFrEF and HFpEF. We then estimated the posterior
probability of each variant being causal using the Bayesian factor.
Lastly, a credible set was defined as the smallest set of SNPs for which
the sum of posterior probability reached 95%.

Proxy and putative functional variants
For each region, we explored the effect of non-synonymous
coding SNPs on protein function using the variant annotation
tool SNPnexus (https://www.snp-nexus.org/v4/), including
molecular function and polymorphism phenotyping predictions
from SIFT70 and PolyPhen71, within a 500 kb region centered
around the sentinel SNPs72.

Functional annotation of eQTL, pQTL, and enhancers
Using GTEx database including a set of 49 tissues, we searched for the
eQTLs for the genetic variants associated with unclassified HF and its
two subtypes at p < 0.0005.We obtained protein-quantitative trait loci
(pQTLs) from the Fenland study, a genome-proteome-wide association
study in 10,708 European-descent individuals. The genome-proteome-
wide association study was performed using 10.2 million genetic var-
iants including plasma abundances of 4775 distinct protein targets
measured using the SOMAscan V4 assay in plasma73. The SOMAscan
assay employs single-stranded oligonucleotides (aptamers) with spe-
cific binding affinity to a single protein. We retrieved functional
annotations from the Fenland proteo-genomic study for each SNP we
identified for unclassified HF, HFpEF, and HFrEF, matched by chro-
mosomal position and reference allele (p < 0.0005). We also searched
193,218 enhancers regions from 295 cell/tissue types from
EnhancerAtlas74 for all identified sentinel SNPs.

Genetically predicted gene-expression analysis
Genetically predicted gene expression was estimated using
S-PrediXcan, an approach that imputes genetically predicted gene
expression (GPGE) in a given tissue and tests predicted expression for
association with a trait using GWAS summary statistics. For this ana-
lysis, input included results for common variants in our heart failure
GWAS and gene-expression references for 48 tissues fromGTEx75. Our
analyses incorporated covariance matrices based on the 1000 Gen-
omes Project European populations to account for LD structure76.
Bonferroni-corrected significance threshold was 1.93 × 10−7 for these
analyses.

Colocalization analysis
The hypothesis that a single variant underlies GWAS and
expression quantitative trait loci (eQTL) associations at a given
locus (i.e., colocalization) was tested using coloc77, a gene-level
Bayesian test that evaluates GWAS and eQTL association sum-
mary statistics at each SNP at the locus and provides gene- and
SNP-level posterior probabilities for colocalization. For this
analysis, input included results for common variants in our GWAS
and eQTL summary statistics corresponding to the gene-
expression references used in S-PrediXcan analysis.

Gene-set and pathway enrichment analysis
Gene-set and pathway enrichment analysis was performed using
DEPICT for HFrEF and HFpEF with both genome-wide significant SNPs
(p < 5 × 10−8) and suggestive signals using a less stringent threshold
(p < 10−4)78. Common SNPs with MAF>0.01, HWE p > 10−20 and impu-
tation R2 > 0.5 were included in the analysis.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Due to US Department of Veterans Affairs (VA) regulations and our
ethics agreements, the analytic datasets used for this study are not
permitted to leave the Million Veteran Program (MVP) research
environment and VA firewall. This limitation is consistent with other
MVP studies based on VA data. However, the MVP data are made
available to researchers with an approved VA andMVP study protocol.
The full summary level association data genome-wide association
analyses in the MVP and the meta-analysis from this report will be
available through dbGaP (accession number phs001672). The only
restriction is that use of the data is limited to health/medical/biome-
dical purposes, anddoes not include the study of population origins or
ancestry. Use of the data does includemethods development research
(e.g., development and testing of software or algorithms) and
requestors agree tomake the results of studies using the data available
to the larger scientific community. We used publicly available data
from GTEx (https://gtexportal.org/home/).

Code availability
We utilized publicly available software for all analyses, and software
used in this study is described in the Methods section.
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