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Tumor fractions deciphered from circulating
cell-free DNA methylation for cancer early
diagnosis

Xiao Zhou 1,3, Zhen Cheng 1,3, Mingyu Dong1, Qi Liu1, Weiyang Yang1,
Min Liu 1,2 , Junzhang Tian 2 & Weibin Cheng 2

Tumor-derived circulating cell-free DNA (cfDNA) provides critical clues for
cancer early diagnosis, yet it often suffers from low sensitivity. Here, we pre-
sent a cancer early diagnosis approach using tumor fractions deciphered from
circulating cfDNA methylation signatures. We show that the estimated frac-
tions of tumor-derived cfDNA from cancer patients increase significantly as
cancer progresses in two independent datasets. Employing the predicted
tumor fractions, we establish a Bayesian diagnostic model in which training
samples are only derived from late-stage patients and healthy individuals.
When validated on early-stage patients and healthy individuals, this model
exhibits a sensitivity of 86.1% for cancer early detection and an average
accuracy of 76.9% for tumor localization at a specificity of 94.7%. By high-
lighting the potential of tumor fractions on cancer early diagnosis, our
approach can be further applied to cancer screening and tumor progression
monitoring.

Despite recent advances in cancer treatment, early diagnosis has
been conclusively shown to improve the chances of patient sur-
vival, and it even offers clinicians the opportunity to cure cancer
through the surgical removal of a tumor. However, clinical cancer
screening still relies on non-molecular technologies such as gas-
troscopy, low-dose computerized tomography, and protein bio-
markers, while all suffer from low specificity and sensitivity1–3.
Due to the lack of effective cancer screening modalities, most
cancer patients are diagnosed late and thus miss the ideal treat-
ment period. As a liquid biopsy analyte, circulating cell-free DNA
(cfDNA) in peripheral blood plasma has emerged as a promising
biomarker for cancer early diagnosis due to its non-invasive
properties4–7. Generally speaking, the cfDNA in the plasma of
healthy individuals is derived from hematopoietic cells and nor-
mal tissues8,9. In contrast, in cancer patients, apart from normal
sources, the degraded DNA fragments from tumor cells are
released into the bloodstream and constitute a molecularly dis-
tinct DNA fragment from total cfDNA10. Nevertheless, the fraction

of tumor-derived cfDNA relative to the total plasma cfDNA
extracted from a cancer patient is not yet abundant enough for
routine diagnosis11.

To precisely assess tumor-derived cfDNA, copy number variations
(CNVs)12–14, specific mutations15–18 and methylation profiles19–22 are
broadly exploited as discriminative molecular features of cfDNA. Early
tumor fraction prediction approaches12,13 based on CNVs relied on
costly whole-genome sequencing (WGS) with ~100-fold sequence
coverage. The state-of-the-art methods, ichorCNA14 and ACE23, were
developed from low-coverage WGS to quantify tumor fractions in
cfDNA. However, both may fail to provide a robust estimate of tumor
fractions due to the lack of sufficient aneuploidy and chromosomal
instability24,25. Although tumor-derivedmutations in cfDNA can also be
utilized to distinguish potential cancer patients from normal controls,
they still remain challenging to detect sincemutations vary depending
on tumor type, cancer stages (Supplementary Note 1, Supplementary
Fig. 1), biological noise, and technical sensitivity6,26–28. Moreover,
mutation-baseddiagnosticmodalities have great difficulty in localizing
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the tissue-of-origin (TOO) of tumors, as many driver mutations are
shared by multiple malignant tumor types16. In contrast, acting as an
important epigenetic modification, DNA methylation signatures exhi-
bit significant differences between healthy individuals and those with
various diseases, especially malignant tumors6,29. As a result, recent
studies30–33 have analyzed the differentially methylated probes or
regions (DMPs/DMRs) that can differentiate healthy individuals from
patients with malignant tumors for cancer diagnosis. Since circulating
cfDNA has various sources, the methylation level of each CpG site is
essentially a mixed signal originating from blood cells and multiple
tissues, including tissues that give rise to the cfDNA associated with
tumorigenesis34. Therefore, it is feasible to estimate the TOO of cfDNA
by deconvoluting blended methylation signatures, which may make it
possible to predict the location of a primary tumor.

With the advent ofmachine learning in the field of computational
biology, recent studies31–33,35 have employed classifiers, such as logistic
regression, random forest (RF), and support vector machine (SVM), to
construct diagnostic models from cfDNA methylation signatures to
detect and localize potential tumors. These data-driven methods,
however, are not supported by adequate biological explanations, since
an elevated tumor fraction, i.e. the proportion of tumor-derived cfDNA
relative to the total cfDNA, essentially shapes the intrinsic character-
istics for distinguishing cancer patients from healthy individuals. To
estimate the fraction of tumor-derived cfDNA, reference-based
deconvolution is the most widely adopted methodology in previous
studies9,34,36. This approach requires a concatenation of discriminative
methylation patterns extracted from each pure tissue to yield a
reference database9, which is then exploited to deconvolve methyla-
tion signatures from circulating cfDNA by solving a nonnegative least
square (NNLS) problem. Unfortunately, this approach requires col-
lecting methylation profiles from various cells or tissues to establish a
reference database, and it still fails to fully cover themyriad of sources
of cfDNA. To address this limitation, the latestmethod, CelFiE37, which
was developed using whole-genome bisulfite sequencing data, man-
ages to estimate the proportions of known and unknown cell types
from cfDNAmethylation profiles. Another tissue-requiring approach is
CancerLocator38, which constructs a probabilistic distribution for each
methylation marker through the convolution of the two Beta dis-
tributions fitted from tumor tissue and normal plasma, respectively.
Compared with reference-based deconvolution, CancerLocator does
not require methylation profiles from normal cells/tissues, which
effectively reduces the cost of model construction, but it still needs
tumor tissues. Although considerably large datasets of array-based
DNAmethylation profiles from tumor tissues are available from public
resources, such as The Cancer Genome Atlas (TCGA)39, plasma data
needs to be analyzed from the same methylation sites as the public
dataset, which inevitably limits the merits of sequencing-based
methylation profiles.

In this work, we present a cancer early diagnosis approach
that employs cfDNA methylation profiles to decipher tumor
fractions and to localize a potential tumor. Instead of manually
concatenating a reference database from tissue data, we propose
a semi-reference-free deconvolution (SRFD) algorithm to auto-
matically learn a reference database from cfDNA methylation
signatures. With this developed strategy, we observed a sig-
nificant (p-value < 0.005) growth of the estimated tumor fractions
with cancer progression in two independent patient plasma
datasets including multiple cancer types. Drawing on the advan-
tages of both the tumor fractions and machine learning classifier
models, we established a Bayesian diagnostic model, named
SRFD-Bayes, to make a final diagnostic decision, and it out-
performed the classifier-based diagnostic models on the simula-
tions. Since advanced cancer patients are more common than
early-stage patients in clinical practices, we examined patients
with late-stage tumors to construct our diagnostic model and

validated this model using samples from early-stage patients. Our
approach achieved a sensitivity of 86.1% for cancer early detec-
tion at a specificity of 94.7%, which outperformed the previous
models33. Moreover, the average localization accuracy of normal
controls and all early tumors reached 76.9%. This represents a
significant breakthrough, as the detection sensitivity of machine
learning classifiers is often below 72%, while their average loca-
lization accuracy on early tumors is less than 55%. In summary, we
provide an effective tool that can be applied to monitor tumor
progression and has a great potential for large-scale cancer
screening.

Results
Cancer early diagnosis approach overview
Our cancer early diagnosis approach managed to decipher tumor
fractions, detect and further localize potential TOO from cfDNA
methylation profiles, as depicted in Fig. 1. In the first step, informative
markers were selected from a large amount of methylation sites. An
informative score (the details of propositions and the corresponding
proofs are described in Supplementary Note 2) based on matrix norm
was devised to identify type-discriminative (TD) and type-specific (TS)
methylation markers (Fig. 1a). Second, instead of manually construct-
ing a reference atlas, we propose to learn a reference database from
mixed plasma data using SRFD, in which the class labels imposed
structural constraints on the coefficient matrix (block I in Fig. 1b).
Third, employing this learned referencedatabase, the training samples
were deconvolved into separate source fraction vectors, in which each
tumor component was fitted as an independent Beta distribution,
while the original methylation profiles were fed into a machine learn-
ing classifier (SVM) to construct a pre-diagnostic model, as shown in
block II of Fig. 1b.

To further analyze test samples for cancer early diagnosis, the
learned methylation reference database was utilized to perform decon-
volution and decipher their source fraction vectors (Fig. 1c). Subse-
quently, the learned SVM classifier provided a diagnostic prior based on
the original profiles, meanwhile the fitted Beta distributions yielded a
conditional probability from the estimated source fraction vectors.
Finally, the prior and the conditional probability were fused to make the
Bayesian diagnostic decision for each test sample. The core contribu-
tions of our approach mainly consist of the following three aspects: the
reference database that was automatically learned by SRFD from plasma
cfDNA data instead of tissue data; the Bayesian diagnostic model (SRFD-
Bayes) that combined the advantages of both data-driven classifiers and
biomedical deconvolution; and the highly transferable training strategy
based on advanced tumor samples for early cancer diagnosis.

Informative methylation marker selection
Since publicly accessible plasma cfDNA methylation data from either
healthy individuals or cancer patients is limited, we first collected 656
normal blood DNA methylation profiles from GSE4027940, 8 normal
plasma pools from GSE121269 and 5 sets of tumor tissue DNA methy-
lation data from TCGA39, including Breast Invasive Carcinoma (BRCA),
Colon Adenocarcinoma (COAD), Lung Squamous Cell Carcinoma &
Lung Adenocarcinoma (LUNG), Liver Hepatocellular Carcinoma
(LIHC), and Prostate Adenocarcinoma (PRAD). Secondly, we randomly
split these normal blood DNA samples and tumor tissue DNA samples
into three sets at a ratio of 4:1:5 to generate simulation datasets for
training, validation, and testing, respectively (Supplementary Table 1).
The validation dataset was adopted to perform parameter studies
while the test dataset was utilized to perform comparative studieswith
other approaches. Third, to generate simulated cfDNA methylation
profiles for cancer patients, we computationally mixed tumor tissue
data collected from TCGA and cfDNA data from normal controls at a
random ratio, which was consistent with CancerLocator38. The num-
bers of simulated cfDNA data for validation and test were 100 and 400
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per category, respectively. More details on the generation of simula-
tion datasets with different levels of CNV events are illustrated in
Supplementary Fig. 2, Supplementary Note 3 and Supplementary
Tables 2, 3.

To select TD and TS methylation markers for each category, we
developed an informative score based on matrix norm (see Methods
and Supplementary Note 2) and applied it to the simulation datasets.
Figure 2a and Supplementary Fig. 3 illustrate the Top-1 TD, the Top-1
TS methylation markers and one non-informative site ranked by the
informative score. Most categories were differentially distributed on
the TD marker cg0484862, while a clear gap lay between the specific
type (normal/PRAD) and all other categories on the TS markers
(cg08052292/cg18082788). As for the non-informative site, all classes,
as expected, shared no distribution differences. It could be further
observed that the informative score of the Top-1 TDmarker was lower
than that of the normal/PRAD-TSmarker. This was largely because the
β value of methylation signatures was normalized in [0, 1] and pre-
sented a bimodal distribution. As a result, increasing the number of
tumor classes would lead to overlapped distributions, which
decreased the discriminability of a specific methylation site.

To demonstrate the advantages of TD markers selected based on
matrix norm (noted as TD), we compared themwith DMP-TDmarkers,
which were identified by the intersection of DMPs in every two cate-
gories, and ran NNLS to evaluate their deconvolution performance.
Figure 2b shows the comparative results employing the Top-500 TD
and Top-500 DMP-TD markers, in which normal and tumor fractions

were calculated by summing the normal and abnormal components of
the fraction vector, respectively. The source fractions were computed
by summing the corresponding components for each tumor type. We
observed thatour TDmarkers achieved a lower rootmean square error
(RMSE) for both normal fractions of normal controls and tumor/
source fractions of cancer patients, which furthermore raised the
Pearson Correlation Coefficients (PCC) of the latter by 4%, suggesting
that our TD markers outperformed DMP-TD markers for deconvolu-
tion tasks. Moreover, TD markers only required to traverse each
marker candidate once while the computational cost for DMP-TD
markers increased with category number. To further evaluate the
effectiveness of TDmarkers, we repeated NNLS 100 times, each with a
different reference, to quantify the deconvolution performance with
andwithout TDmethylation sites. It can be concluded fromFig. 2c that
after combining TD markers, the average RMSE declined on all pre-
dicted fractions, especially for normal fractions whose RMSE
decreased by 8%, suggesting that TD markers contributed to a more
precise deconvolution of mixed methylation signatures.

Deconvolution performance on a simulation dataset
Instead of manually constructing a methylation reference atlas from
massive cell types and tissues, we proposed to learn a reference
database by performing SRFD on cfDNA methylation signatures. The
details of SRFD aredescribed in theMethods section. Therewere three
critical parameters during the training process of SRFD, including
marker number, methylation pattern number and plasma sample
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Fig. 1 | The overview of cancer early diagnosis approach. a Informative marker
selection. Type-discriminative (TD) and type-specific (TS) markers are screened
from methylation sites. b Diagnostic model construction. Block I: A methylation
reference database, noted by W†, is first learned from plasma cfDNA methylation
profiles by semi-reference-free deconvolution (SRFD), where the structural coeffi-
cients are generated from the class label of each training sample. Block II: A
Bayesian diagnostic model is constructed for cancer early diagnosis, in which the
diagnostic prior is provided by a machine learning classifier established from the

trainingmethylation profiles. Meanwhile, the learned reference is employed for the
deconvolution of training samples to decipher their source fraction vectors, where
each tumor component is then fitted as an independent Beta distribution.
c Deconvolution and diagnosis on test samples. The test methylation profiles and
their corresponding tumor components are separately fed into the learned classi-
fier and the Beta distributions, to obtain a diagnostic prior and a conditional
probability, respectively, which contributes to the final Bayesian decision in cancer
diagnosis.
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number, which were configured by an elaborate parameter study. We
first explored the influence of the marker number and methylation
pattern number on deconvolution, meanwhile fixing the plasma sam-
ple number of each category to 1000 to simulate a scenario with suf-
ficient samples. Supplementary Fig. 4 and Fig. 2d separately display all
RMSE and minimum RMSE values among multiple parameter groups
with different marker and pattern numbers. Accordingly, the decon-
volution performance first improved and then descended as the
number of markers increased while achieving the lowest RMSE when
the Top-50 markers were selected for each category. Meanwhile, the
best performance on the validation dataset was achieved when the
numbers of normal and tumor patterns were set to 7 and 2, respec-
tively. As a result, we configured them as 7 and 2 throughout all the
experiments in this study.

Subsequently, we explored the influence of training sample
number and plotted the trend of deconvolution performance with
an increasing number from 10 to 500 for each category, as shown
in Fig. 2e. It can be concluded that the RMSE significantly
decreased as the number of training plasma samples grows, and
then gradually levelled off when more than 200 samples were
adopted. To ensure a robust performance, we chose 400 plasma
samples for each category in the following deconvolution experi-
ments on simulation datasets. The advantages of our approach
mainly consisted of two aspects. First, only plasma data was
required to yield the reference database, which greatly decreased
the cost of tissue collection. Second, more than one methylation
pattern was finally obtained for an individual cancer type, which
might reveal the heterogeneity of malignant tumors. The
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(DMP-TD) markers and TD markers, respectively. c Improvement of root mean
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values. Source data are provided as a Source Data file.
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configuration of other parameters in SRFD is described in Sup-
plementary Note 4.

We next compared SRFD with other up-to-date approaches,
including reference-based NNLS9 and CancerLocator38 (see the
implementation details in Supplementary Note 5 and Supplementary
Fig. 5). Because the requiring training samples are different between
reference-based approaches (cfDNA methylation from healthy con-
trols and tissueDNAmethylation fromcancer patients) and SRFD (only
cfDNA from normal individuals and cancer patients), the training tis-
sue data used for reference-based methods was also utilized to gen-
erate the corresponding simulated plasma data to ensure a fair
comparison (Supplementary Fig. 2).

The evaluation of predicted normal fractions for healthy indivi-
duals and tumor/source fractions for cancer patients among different
approaches is shown in Fig. 2f (30% CNV) and Supplementary Fig. 6
(10% and 50% CNVs). We found that the RMSE of predicted tumor
fractions was much lower than that of the source fraction over all
approaches, suggesting that the tumor fraction was more appropriate
to predict the true fraction. SRFD outperformed CancerLocator and
NNLS on both normal and tumor fractions by a large margin, which
highlighted that the methylation reference database learned from
mixed plasma data generated more precise estimate of tumor frac-
tions. More specifically, a comparative study on normal controls is
shown in Fig. 2g, in which 87% of healthy controls were estimated with
a normal fraction greater than 0.98 by our approach, while less than
75% was covered by CancerLocator or NNLS. In particular, our pre-
dicted normal fractions of healthy individuals were barely lower than
0.94, in contrast, NNLSprovidedmore than3%of healthy controlswith
<0.92 estimated source fractions. The overall RMSE of our approach
on normal controls was 0.0128, which was remarkably less than one-
third that of NNLS and one-fourth that of CancerLocator. This
demonstrated that when employing the same methylation markers,
our learned reference database contributed to a better deconvolution
performance on normal controls compared with a manually con-
structed reference database.

With respect to the simulated cfDNA data for cancer patients,
predicted tumor fractions should be equal to the corresponding pre-
set tumor fractions under different levels of CNV events, as shown in
Fig. 2h (30%CNV) and Supplementary Fig. 7 (10% and 50%CNVs). It can
be noted from the scatter and box plots that the tumor fractions
deciphered by NNLS and CancerLocator exhibited a large number of
outliers. Compared with the abovementioned approaches, the RMSE
between our prediction and the true fractions under 30% CNV events
had dropped by 8.7% and 22.1%, respectively. Moreover, our approach
also achieved the highest PCC across all CNV events.

Diagnostic performance on a simulation dataset
To consolidate the biological explanation of data-driven SVM classi-
fiers, the tumor fraction deciphered from methylation profiles was
introduced to establish a Bayesian diagnostic model, named SRFD-
Bayes, which is detailed in the Methods section. Since, practically
speaking, the number of plasma samples fromcancer patients fulfilling
inclusion criteria was very limited, we first designed an experiment,
named Diagnosis A, in which 40 cases from the simulated samples of
each tumor type were randomly selected to imitate a limited number
of cancer patients. Correspondingly, a total of 400 samples were uti-
lized to construct a diagnostic model that was evaluated on test
datasets including 2400 samples, as summarized in Supplementary
Table 3. We repeated every experimental group 100 times, eachwith a
random training dataset, to determine the average performance as
well as the robustness.

Next, to evaluate the capability of the estimated tumor fraction on
cancer detection, we first utilized the tumor fraction to directly dis-
tinguish cancer patients fromhealthy individuals and adopted the area
under curve (AUC) to quantify the detection performance. Figure 3a

illustrates that the AUC increased as the number of markers grew,
which, to a large degree, matched the decreasing trend of a minimum
RMSE with an increasing marker number in Fig. 2d. Moreover, a posi-
tive correlation (PCC =0.8198) occurred between the deconvolution
metric RMSE and the detection metric 1 - AUC, as shown in Fig. 3b,
suggesting that the AUC can also be used to quantify the accuracy of
predicted tumor fractions, especially for diagnosis using patient
cfDNA since their tumor fraction may be unquantifiable. Figure 3c
shows the comparative performance on cancer detection between
different approaches, where the orange and the blue dots represent
the experimental results achieved by estimated tumor fractions and
SRFD-Bayes model, respectively. It can be concluded that the tumor
fraction deciphered by CancerLocator and SRFD achieved comparable
median performances, which outperformed NNLS by a large margin,
while SRFD suffered from a larger standard deviation. This was
because SRFD directly handled plasma cfDNA to construct a reference
matrix, which could be undermined by cancer samples with con-
siderably low tumor fractions due to their similarity with normal
controls. Nevertheless, after performing Bayesian inference, SRFD-
Bayes significantly improved the robustness and further achieved a
higher median AUC that was close to 0.98. The median ROC curves of
all approaches are shown in Fig. 3d, in which a desired specificity
of 99.5%was selected to compare the sensitivity of cancer detection. It
is clear that SRFD-Bayes achieved the highest sensitivity of 92.1%,
which outperformed CancerLocator and NNLS by 3.3% and 16.3%,
respectively.

Consequently, we compared SRFD-Bayes with CancerLocator and
other popular machine learning classifiers, including RF, multi-layer
perception (MLP) and SVM methodologies to evaluate the cancer
localization performance. The machine learning classifiers shared the
identical training samples with SRFD-Bayes. The localization accuracy,
computedby themeanof the classification accuracy for each category,
was adopted to quantify the final performance. A comparison on all
test samples achieved by different methods is shown in Fig. 3e. It was
clear that SVM and CancerLocator outperformed the other two clas-
sifiers and achieved a comparable diagnostic accuracy of approxi-
mately 0.89. However, after integrating Bayesian inference based on
the estimated tumor fractions, SRFD-Bayes achieved the best locali-
zation precision, which was above 0.91.

Furthermore, to demonstrate the localization performance of our
approach for recognizing cancer patientswithdifferent levels of tumor
fractions, which may be related to tumor progression, we divided test
cancer samples into five subsets with increasing tumor fractions.
Figure 3f and Supplementary Fig. 8 individually show the performance
on different tumor fractions with 0.1 intervals. Interestingly, all the
approaches achieved a comparable localization precisionofmore than
0.92 on the cancer samples with a tumor fraction higher than 0.1
(θT > 0.1). However, a significant difference occurred in the group with
a tumor fraction less than 0.1 (θT ≤ 0.1), as shown in Fig. 3f, where
CancerLocator and our diagnostic model outperformed other data-
driven classifiers by at least 0.13 precision. There were two reasons
behind this improvement. First, cancer samples with θT ≤ 0.1 shared
very similar features with normal controls and the number of normal
controls was much larger, therefore the data-driven classifiers were
more inclined to misdiagnose these samples. More importantly, both
CancerLocator and SRFD-Bayes managed to excavate hidden infor-
mation, i.e. tumor fraction, to magnify the difference between normal
controls and cancer samples. Consequently, they were more sensitive
to cancer samples with low tumor fractions. Meanwhile, SRFD-Bayes
still achievedmorepromisingperformance thanCancerLocator for the
cancer samples with θT > 0.1, which was beneficial from classifiers. In
summary, SRFD-Bayes combined both data-driven methods and bio-
medical information to improvediagnostic performance.Consistently,
the radar plot in Fig. 3g shows the average localization accuracy of
different approaches on normal controls and the cancer patients with
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θT ≤ 0.1, in which all classifiers, including RF, MLP and SVM, almost
precisely diagnosed every normal control, while their localization
accuracy on tumor samples remained considerably limited. After
introducing tumor fractions, the localization accuracy of SRFD-Bayes
on normal controls barely decreased, while that on all other tumors
increased. In particular, nearly 75% of PRAD patients with θT ≤ 0.1 were
precisely localized using SRFD-Bayes.

Considering the fact that plasma samples from advanced cancer
patients were more accessible than those from early-stage patients,
we designed another experiment, named Diagnosis B, in which only
32 cases with θT > 0.1 of each cancer type were selected during the
training process to simulate this practical limitation. Figure 3h
exhibits the accuracy of predicted tumor fractions between

Diagnosis A and B. Both the RMSE and the AUC did not deteriorate
but rather improved when using cancer samples with θT > 0.1 for
training. In addition, the localization performance achieved by dif-
ferent methods is shown in Fig. 3j. We observed that SRFD-Bayes still
outperformed classifiers by a large margin on the average and had
better-categorized localization precision. When focusing on test
patients with θT ≤ 0.1, the localization precision of SRFD-Bayes sig-
nificantly outperformed other popular classifiers by at least 0.2, as
shown in Fig. 3k, enlarging the performance gap in Fig. 3f. This was
due to the generalization ability of machine learning classifiers being
highly reliant on the distribution of the training dataset. Therefore,
they struggled to recognize early-stage cancer patients that they had
not met during training. In contrast, SRFD-Bayes combined
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Fig. 3 | Diagnostic results on the simulation dataset. aArea under curve (AUC) of
cancer detection, achievedby tumor fraction, amongdifferent numbers ofmarkers
validated on the simulation dataset. b Correlation between RMSE of estimated
tumor fraction and one minus its corresponding AUC. c The performance com-
parisonof cancer detectionbetweendifferent approaches,while the orange groups
are achievedby the cut-off of tumor fraction and theblueonedenotes the results of
our Bayesian diagnostic model. d Receiver operating characteristic curves (ROCs)
of the median results shown in c. e Comparison of average localization precision
between Bayesian diagnostic model and other approaches, including CancerLo-
cator, random forest (RF), multi-layer perception (MLP) and support vector
machine (SVM). Error bars (in mean and standard deviation) were obtained by
statistically repeating experiments 100 times. f Comparison of localization per-
formance on cancer samples with tumor fraction less than 0.1 (0 < θT ≤0.1).
g Radar plot of the localization precision on each category achieved by different

approaches. h Accuracy comparison of predicted tumor fraction, evaluated by
RMSE (left) and AUC (right), when using tumor samples with all tumor fractions
(θT > 0) and with tumor fraction higher than 0.1 (θT > 0.1) as training dataset,
respectively. i The average localization precision and j its distribution on different
categories achieved by different approaches when using cancer samples with
θT > 0.1 as training dataset. Error bands (in mean and standard deviation) were
obtained by statistically repeating experiments 100 times. k The comparison of
localization performance testedon cancer samples with 0 < θT ≤0.1. The number of
test samples for each category is 400 in both Diagnosis A and B, while the number
of test samples with 0 < θT ≤ 0.1 is 80 for each type of tumor. Two-sided Welch’s t
test is used to assess the statistical significance of performance difference in c and
h. n = 100 independent repeats. The boxes are bounded by the first and third
quartile with a horizontal line at the median and whiskers extend to the maximum
and minimum values. Source data are provided as a Source Data file.
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biomedical explanations with data-driven classifiers to make a final
diagnostic decision. As a result, Diagnosis B inspired a training
strategy to diagnose early-stage cancer patients while training the
diagnostic model on advanced tumor samples for following experi-
ments on patient cfDNA data.

Deconvolution and diagnostic results on patient cfDNA
To validate the reference database learned from the simulation dataset
for deconvolution, we directly applied it to deconvolve patient plasma
cfDNA methylation profiles. The patient cfDNA datasets adopted in
this study are summarized in Supplementary Table 4. First, we
exploited the learned reference database, without anymodification, to
perform deconvolution on 10 treatment-sensitive and 19 treatment-
resistant PRAD patients from GSE10846241. Similarly, we also found
that the estimated tumor fractions of most treatment-sensitive
patients dropped significantly (p-value = 0.03) after treatment, while
those of treatment-resistant patients did not show a significant dif-
ference (p-value = 0.62) and a few patients even exhibited increasing
tumor fractions after treatment, shown in Fig. 4a. Our learned refer-
ence database was also employed to deconvolve a cfDNA methylation
dataset from 21 cirrhosis patients and 22 patients with both cirrhosis
and hepatic carcinoma (HCC) from GSE12937442. The difference in the
predicted tumor fractions between the patients with only cirrhosis and
the patients with both cirrhosis and HCC was statistically significant

(p-value = 0.0076), as shown in Fig. 4b. This suggested that the plasma
of the latter contained more liver/tumor-derived cfDNA than the cir-
rhosis patients, which provides a meaningful biological explanation to
distinguish HCC patients from cirrhosis patients via the use of cfDNA
methylation profiles. The comparison of ROC curves calculated by
exploiting predicted tumor fractions to classify patients with HCC as
well as cirrhosis and cirrhosis patients is shown in Fig. 4c, in which the
diagnostic performances of NNLS and CancerLocator were also eval-
uated using their tumor fractions. Although the tumor fraction dis-
tributions of cirrhosis and HCC patients overlapped, the best cut-off
value (0.129) of SRFD could still reach a sensitivity of 77.3% at a spe-
cificity of 81.0%, which outperformed NNLS and CancerLocator by a
large margin. To demonstrate the influence of marker and sample
numbers on patient cfDNA, we also summarized the comparative AUC
values in Supplementary Fig. 9, which exhibited a consistency with
Fig. 2d, e.

Subsequently, we utilized plasma cfDNA signatures from a large
cohort31, including 835 normal controls and 1050 HCC patients at
known cancer stages, to decipher their tumor fractions. Since each
plasma sample only contained 10 methylation sites, which did not
overlap with the markers we selected from simulation datasets, we
randomly selected a half of normal controls and the patients with late
cancer stages (III/IV) to learn another methylation reference database.
Afterwards, the reference database was employed to run
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SRFD (AUC = 0.758)
CancerLocator (AUC = 0.447)
NNLS (AUC = 0.717)

Fig. 4 |Deconvolution results onpatientplasmacfDNA. aAlteration of predicted
tumor fractions before and after abiraterone acetate (AA) treatment on the patients
with prostate cancer. The left graph suggests that confirmed treatment-sensitive
patients show a significant decline on tumor fraction after the AA treatment, while
no such phenomenon appears in the treatment-resistant patients (Right). Two-
sidedWelch’s t test for paired samples is used to assess the statistical significance.
b Comparison of predicted tumor fractions between cirrhosis patients and the
patients with cirrhosis as well as hepatic carcinoma (HCC). c Comparison of ROC
curves calculated by exploiting predicted tumor fractions to classify cirrhosis
patients and the patients with cirrhosis as well as HCC. d Significantly differential
distribution (p-value < 0.003) of predicted tumor fraction among normal controls
and HCC patients with different cancer stages, in which the median of predicted

tumor fractions increases as cancer progresses. e Comparison of ROC curves cal-
culated by SRFD and SRFD-Bayes when distinguishing HCC patients from normal
controls. f Significantly differential distribution (p-value < 0.001) of predicted
tumor fractions among normal controls, pre-diagnosis (asymptomatic participants
who were later diagnosed with cancer in the following one to four years) and
confirmed patients with early/late-stage cancers. The number of samples from
different categories is shown below each box. The boxes are bounded by the first
and third quartile with a horizontal line at the median and whiskers extend to the
maximum and minimum values. Two-sided Welch’s t test is used to assess the
statistical significance of predicted tumor fractions among different stages in
b, d and f. Source data are provided as a Source Data file.
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deconvolution on these methylation signatures and the experimental
results are displayed in Fig. 4d. It can be concluded that the estimated
tumor fraction of HCC patients was conspicuously higher than that of
normal controls, and more importantly, the tumor fractions were
observed to be significantly (p-value < 0.003) correlated with cancer
stages. The median of the predicted tumor fractions gradually
increased as the disease deteriorated, indicating that the progression
of cancer would coerce the tumor/normal tissue to release more DNA
into the peripheral blood. Similarly, we directly employed the tumor
fractions predicted by SRFD to distinguish HCC patients from healthy
individuals, and then further trained SRFD-Bayes model on normal
controls and patients with late stages (III/IV) to validate the perfor-
mance on patients with early stages (I/II). The corresponding ROC
curves are presented in Fig. 4e. It can be observed that the classifica-
tion performance of predicted tumor fractions was very limited, while
after applying our diagnosticmodel, the AUC reached 90.16% (i.e. 8.6%
improvement). Based on the previous parameter studies in simula-
tions, the marker number was a critical aspect affecting the deconvo-
lution and detection performance. Therefore, we believe that an
increasing number of markers in this dataset could improve the per-
formance of distinguishing early-stage HCC patients from normal
controls.

To evaluate our cancer early diagnostic approach on different
cancer patients, we collected plasma cfDNA signatures33 containing
414 normal controls, 223 cancer patients (colorectal 7, liver 23, eso-
phageal 68, lung 56, and stomach 69) with stage labels and 191 pre-
diagnosis patients (asymptomatic participants who were later diag-
nosedwith cancer in the following one to four years). In practice, early-
stage tumors usually lead to very mild symptoms that are easily
ignored. Accordingly, it is difficult to recruit enough early-stage cancer
patients unless a large-scale cohort study is carried out. Unfortunately,
at present, there is still no reliable clinical cancer screening modality
with high sensitivity. In this study, we adopted the patients with late-
stage tumors (III/IV) and a randomhalf of normal controls to construct
SRFD-Bayes diagnostic model. The tumor fractions for samples in
different disease situationswerefirst deciphered using SRFD, as shown
in Fig. 4f, where an apparent difference was observed between normal
controls and cancer patients. The mean tumor fraction of early sam-
ples was significantly (p-value < 0.001) lower than that of patients with
late-stage tumors. Moreover, the predicted tumor fraction of pre-
diagnosis patientswas exactly located between that of normal controls
and that of confirmed early-stage patients. It should be noted that
asymptomatic participants were not diagnosed with any cancers when
they were recruited. Their tumor fractions were consequently sup-
posed to be significantly lower than that of confirmed cancer patients.
Due to their later diagnosis withmalignant tumors in the following one
to four years, there might be a slight difference between their plasma
cfDNA signatures and those of normal controls. This difference was
presented in the predicted tumor fractions, as depicted in Fig. 4.
Overall, these discoveries demonstrated that the predicted tumor
fraction could potentially reveal cancer progression in a non-invasive
manner.

Secondly, we exploited the estimated tumor fractions of our
training samples, including all patients in late stages and half of normal
controls, to establish aBayesiandiagnosticmodel for cancerdiagnosis,
and then validated this diagnosticmodel on all early-stage patients and
the remaining half of normal controls. Since the number of training
samples in each category was severely imbalanced (only 5 cases for
colorectal cancer, while 45 and 207 cases for lung cancer and normal
controls, respectively), we utilized a synthetic minority oversampling
algorithm (Methods) based on the source fraction vectors. With this
strategy, the categories that contained less than 40 samples were
oversampled to 40 cases and thus all tumor types achieved a data
balance, while the number of total cancer patients was approximately
equal to that of normal controls. The comparison of ROC curves

calculated by SRFD and SRFD-Bayes on cancer detection is shown in
Fig. 5a. Since the marker number in this dataset was much larger than
that in the former HCC dataset31, the AUC of tumor fractions predicted
by SRFD achieved 0.877, which was 6.3% higher than that in Fig. 4e.
Additionally, SRFD-Bayes achieved much better performance than the
predicted tumor fraction, where the sensitivity of our diagnostic
model reached 86.1% at a specificity of 94.7%. In contrast, the sensi-
tivity of SRFD was less than 60% at the same cut-off threshold. The
influence of different sample numbers for the training period of SRFD
and SRFD-Bayes was also evaluated in both patient cfDNA datasets31,33

and presented in Supplementary Fig. 10.
The diagnostic results of early-stage patients and normal controls

are summarized in a confusion matrix, as depicted in Fig. 5b. It can be
stated that only 11 normal controls were misdiagnosed and 11 early-
stage patients were mis-detected, indicating an ideal specificity of
94.7% and a sensitivity of 86.1% for cancer early detection. However,
the original study PanSeer (part)33, in which a random half of the data
with all stages was utilized for training, achieved a specificity of 93.7%
and a sensitivity of 81.3% (Fig. 5c) for cancer early diagnosis (calculated
from its supplementary materials). To achieve a fairer comparison, we
reran PanSeer, whose key algorithm is logistic regression for cancer
detection, with our data-split strategy that late-stage patients for
training and early-stage patients for validation. It canbeobserved from
Fig. 5c that PanSeer suffered from false negatives and thus detected
only 72.2% of early-stage cancer patients. The pre-diagnosis partici-
pantswere additionally tested by SRFD-Bayes, as it wasdiscovered that
only 73 asymptomatic cases were diagnosed with cancer (Supple-
mentary Fig. 11). Moreover, compared with the diagnostic results
predicted by themachine learning classifiers (Supplementary Fig. 12b),
our approach still achieved 0.405, 0.241 and 0.139 higher sensitivity
than RF, MLP and SVM, respectively (Fig. 5c). The predicted tumor
fraction of every plasma sample is shown in Fig. 5d, where the early-
stage patients were mainly located at the low-fraction area of the dis-
tribution range for each tumor type. Figure 5e displays the comparison
of average localization accuracy between our approach and other
classifiers, while SRFD-Bayes model outperformed other approaches
by a largemargin and the average localization accuracy reached 76.9%.
Fig. 5f and Supplementary Fig. 12 show more specific comparison of
localization accuracy for each category. We observed that SRFD-Bayes
achieved the best localization accuracy for most tumor types. Com-
pared with classifiers that were inclined to misdiagnose cancer
patients, especially for esophageal and stomach cancers, SRFD-Bayes
had slightly degraded accuracy on lung cancer patients but sig-
nificantly reduced false negatives for other cancers. This decrease was
caused by the fact that tumor fraction vectors of test lung samples
improperly distributed on other tumor components, suggesting that
different tumor samplesmight share similar methylation features. The
above experimental results demonstrated that SRFD-Bayes could be
applied to establish a reliable cancer early diagnostic model with
employing cancer samples from only late-stage patients, which can
shorten the period for clinical recruitment.

Finally, to show the advantages of our model construction strat-
egy, we designed a control experiment in which a random half of all
categories were randomly selected as training samples for ten repeats.
The diagnostic performance is shown in Supplementary Fig. 13a,where
it is clear that our synthetic oversampling strategy could still increase
the diagnostic accuracy of all approaches. In addition, compared with
our strategy, in which only normal controls and late-stage patients
were adopted formodel training, the performance ofMLP, and SVM in
the control experiment achieved a conspicuous enhancement (Sup-
plementary Fig. 13b). The reasons for this phenomenonmight be that,
with respect to data-driven classifiers, randomly dividing the dataset
can provide a more consistent data distribution between training and
test samples. As a result, early cases in the training dataset could
promote the diagnostic accuracy on early-stage patients. Meanwhile,
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the diagnostic accuracy of SRFD-Bayes dropped from 0.78 to
approximately 0.67, but still outperformed individual classifiers.

Discussion
Reference-based deconvolution approaches require the methylation
signatures of pure tissues to manually construct a reference atlas,
which can be confounded by factors such as age or genotype43. On the
contrary, reference-free algorithms44,45 directly address mixed data,
but they cannot estimate the source fractions of individual samples43.
In this study, we propose a semi-reference-free deconvolution
approach based on nonnegative matrix factorization46 to auto-
matically learn a methylation reference database, which only requires
methylation signatures from mixed plasma cfDNA. Without directly
handling tissue data, our method is not restricted by the assumption
that the distribution of methylation signals detected from tumor-
derived cfDNA is identical to that from the corresponding tumor tis-
sue, which is the basis of reference-based approaches. Consequently,
our approach can establish a reference with a higher fidelity. In con-
trast to reference-free approaches,we introduce class labels of training
samples to shape the structural supervision for the coefficient matrix.
As a result, the methylation patterns for each category can be sepa-
rately arranged in a pattern matrix, which acts as the final methylation
reference database for the source fraction prediction of cfDNA. Con-
sidering that it was unnecessary to explore specific normal sources of
cfDNA when predicting tumor fractions, our approach could effort-
lessly construct multiple normal sources by adjusting the number of
methylation patterns for normal controls. Moreover, the learned
multiple patterns for individual tumor sources, to a certain extent,
could reflect tumor heterogeneity and a further analysis on the learned

tumor patterns might provide valuable clues for the causes and
consequences.

In this study, deconvolution results of cfDNA methylation sig-
natures extracted from cancer patients demonstrated that the esti-
mated tumor fraction of HCC patients was significantly higher than
that of cirrhosis patients, which could contribute to distinguishing
non-cancer diseases from malignant tumors. In addition to the differ-
ence of tumor fractions observed between normal controls and
patients with diseases37 /tumors9, we also found a significant growth of
tumor fractions as the cancer stage progressed in two independent
cfDNA methylation datasets, which may inspire an alternative
approach for monitoring tumor progression. It is noteworthy that the
cfDNA methylation data adopted in this study came from different
platforms, including array-based and bisulfite sequencing methods.
Essentially, our approach only required the (average)methylation level
of each site (region) to perform deconvolution and subsequent ana-
lysis, thus it was protected from differences in the data acquisition
platforms. Since genomic CNVs can lead to a change in DNA
methylation34, a potential improvement to our approach would be
simultaneously deciphering both the tumor fractions and CNVs from
circulating cfDNA methylation signatures. Combining these two
informative features might further improve deconvolution and diag-
nosis performance.

Compared with a recent study47 on cancer early diagnosis that
trains an SVM classifier for multi-cancer detection, our approach
exploited the biological explanation of tumor-derived cfDNA fractions
that exhibited significant differences between normal controls and
multiple cancers, thereby providing critical biological explanations for
cancer early diagnosis. Since it is easier to collect plasma samples from
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Fig. 5 | Diagnostic results on patient plasma cfDNA methylation profiles.
a Comparison of ROC curves calculated by SRFD and SRFD-Bayes when distin-
guishing cancer patients from normal controls. b Diagnostic results, illustrated by
confusion matrix, on normal controls and early-stage cancer patients. Only late-
stage cancer patients and a random half of normal controls are utilized as training
samples for model establishment. c Comparison of detection sensitivity and spe-
cificity on early-stage cancer patients between SRFD-Bayes approach and other
machine learning classifiers. PanSeer (part) denotes the cancer early diagnostic
results from the original study33. PanSeer represents the reproduced diagnostic

results under our data-split strategy.dVisualizationof predicted tumor fractions of
training samples (207 normal controls and 113 late-stage patients marked by col-
orful circulars) and test samples (207 normal controls and 79 early-stage cancer
patients marked by colorful triangles). e Comparison of average localization
accuracy on normal controls and early-stage cancer patients between different
approaches. f Localization accuracy of each category achieved by different
approaches. * represent a lung cancer patient with unknown stage. Source data are
provided as a Source Data file.
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late-stage cancer patients than that from early-stage patients, we
exploited late-stage patient data as training samples to build a cancer
early diagnostic model, aiming to reduce the cost and duration of case
collection. With this strategy, SRFD-Bayes was able to decipher the
biological origin of tumor-derived cfDNA that could, to a large extent,
correct the false negatives provided by classifiers. Therefore, although
cancer samples with low tumor fractions did not appear in the training
dataset, they might still be recognized by SRFD-Bayes since their esti-
mated tumor fraction vectors were differentially distributed after
deconvolution. The validation on the early-stage patients achieved the
best diagnostic performance that largely outperformed the current
machine learning classifiers. Due to data constraints, we only tested our
diagnostic approach on public datasets, in which the number of
patients with early-stage tumors was relatively limited. In the future, we
can apply our approach to large-scale cancer screening, where we
expect that the use of real-world data would enable promising diag-
nostic performance.

Methods
Informative methylation marker selection
Selecting informativemarkers frommassivemethylation sites is thefirst
step for epigenetic analysis. Type-specific (TS)9 and type-discriminative
(TD)48 markers are two kinds of informative markers for multi-class
samples. TheTSmarkers aim to exhibit a binary difference betweenone
category and all other categories while the TD markers are capable of
simultaneously distinguishing diverse categories, as shown in Supple-
mentary Fig. 14a.Wepropose an informativemarker selection approach
based on matrix norm, which neither requires model training nor fits a
probability distribution of each marker candidate.

Assuming that all samples are collected fromM categories and the
sample distribution of the mth category at a marker candidate can be
characterized as a statistical histogram vector am 2 RB× 1

+ , in which B
denotes the number of histogram bins. Correspondingly, the histo-
gram features of all categories can be concatenated into a matrix
A= ½a1,a2, . . . ,aM � 2 RB ×M

+ ðB⩾M > 1Þ. Subsequently, we define a mea-
sure to quantify the discriminability of individual marker candidate:

D=
kAk* � kAkF
M �

ffiffiffiffiffi
M
p ð1Þ

where ∣�∣* and ∣�∣F represent the nuclear norm and Frobenius norm,
separately. It can beproved (SupplementaryNote 2) that the value ofD
falls into [0, 1]. In particular, D=0 holds if and only if all the column
vectors ofA are linearly correlated, suggesting that all categories share
no difference at this marker candidate, shown in Supplementary
Fig. 14b. D= 1 holds if and only if all the column vectors of A are
orthonormal basis. In this situation, every two categories are sepa-
rately distributed and the samples in each category are highly con-
centrated at this marker candidate.

For each methylation site, we first judge if it could become a TS
marker for category t by checking whether the mean methylation level
of all other categories locate on the opposite side of the tth category.
And if so, all other categories are merged into one class. Equation (1) is
then adopted to calculate its binary discriminability Dt . Considering
that two methylation sites might share the same discriminability, we
introduce the minimum distance dt

min (Supplementary Fig. 14a)
between the mean methylation level of category t and that of other
categories to differentiate marker candidates. Meanwhile, we also cal-
culate the multi-class discriminability D* of this methylation site and
introduce the maximal inter-class distance d*

max. Hereafter, the infor-
mative score of the marker candidate acting as t-TS marker and TD
marker can be calculated by St

TS =d
t
minDt and S*

TD =d*
maxD*, respec-

tively. Comparing St
TS and S*

TD, the higher one suggests an optimal

marker of themethylation site and itsfinal informative score is given by:

S = maxðdt
minDt , d*

maxD*Þ ð2Þ

Semi-reference-free deconvolution (SRFD)
The methylation level of a CpG site in cancer patients’ cfDNA is sub-
stantially a linear combination of that in normal-derived and tumor-
derived cfDNA (Supplementary Note 6). Supposing that the cancer
patients’ cfDNA is derived from P types of normal sources and one
tumor tissue, the methylation level of the kth methylation marker can
be given by:

xk =
XP

p= 1

λpvk,p +θuk ð3Þ

where vk,p and uk represent the methylation level of the kth marker in
the pth normal-derived and the tumor-derived cfDNA, respectively. λp
and θ suggest the fraction of cfDNAderived from the pth normal source
and the tumor tissue, individually, and they are constrained by
PP

p = 1λp + θ= 1. Combining K methylation markers of cfDNA, we use
v1,v2, . . . ,vP 2 RK × 1

+ to denote the K-dimensional methylation patterns
for P normal sources. Considering the tumor heterogeneity, we assume
that the methylation signatures of the cfDNA derived from the tth
tumor consists ofQtmethylation patterns and denote its qth pattern as
ut
q 2 RK × 1

+ . Accordingly, the vector form of Eq. (3) can be given by:

x0
i =

XP

p= 1

λ0i,pvp,8i= 1, 2, . . . ,N0

xt
j =

XP

p= 1

λtj,pvp +
XQt

q= 1

θt
j,qu

t
q,8j = 1, 2, . . . ,Nt , t = 1, 2, . . . ,T

ð4Þ

where x0
i 2 RK × 1

+ and xt
j 2 RK × 1

+ represent the methylation vectors of

the ith normal sample and that of the jth cancer patient sample with

confirmed tumor type t, respectively. N0 and Nt denote the total

number of normal controls and cancer patients burdened the tth

tumor, respectively. λ0i,p indicates the linear combination coefficient of

the ith normal samplewith respect to the pth normal source andmeets

the constraint
PP

p= 1λ
0
i,p = 1, 8i= 1, 2, . . . ,N0. Similarly, λti,p represents

the linear combination coefficient of the jth sample burdened the tth

tumor projecting on the pth methylation pattern of normal sources.

θt
j,q suggests the tumor fraction of the jth sample burdened the tth

tumor with respect to the qth tumor-derived cfDNA methylation

pattern. λti,p and θtj,q are demanded to meet the con-

straint
PP

p= 1λ
t
j,p +

PQt
q= 1θ

t
j,q = 1, 8j = 1, 2, . . . ,Nt .

Themethylation vectors of bothnormal and cancer samples canbe
merged into one methylation matrix X = ½x0

1 , . . . ,x
0
N0
,x1

1, . . . ,

x1
N1
, . . . ,xT

1 , . . . ,x
T
NT
� 2 RK ×

PT

t =0
Nt . Correspondingly, we coalesce the

normal-derived and the tumor-derived cfDNA methylation patterns vp
and ut

q into one methylation pattern reference matrix

W= ½v1, . . . ,vP ,u
1
1, . . . ,u

1
Q1
, . . . ,uT

1 , . . . ,u
T
QT
� 2 RK × ðP +

PT

t = 1
Qt Þ. Further, all

the combination coefficients can be reshaped as a coefficient matrix

R 2 R
ðP +

PT

t = 1
Qt Þ×

PT

t =0
Nt

+ constrained by a fixed structure SR, which
demands each component in the coefficient vectors of normal controls
projecting on tumor patterns to be zero. Besides, in the coefficient
vector of the sample burdened the tth tumor, each component corre-
sponding to all other tumor patterns is demanded to be zero under the
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assumption that every patient suffers fromonly one type of cancer. The
structure of each matrix is exhibited in Fig. 1b, in which white regions
represent zero elements. As for a more concise representation, let

C =P +
PT

t = 1Qt and N =
PT

t =0Nt , then X 2 RK ×N , W 2 RK ×C and

R 2 RC ×N . We can rewrite Eq. (4) as a matrix form X = WR.

As a result, the SRFD algorithm is intuitively performed to learn a
methylation pattern reference W† from the given cfDNA methylation
profiles X consisting of normal controls and cancer patients. The
mathematical description is formulated by:

min
W,R

1
2 kX�WRk2F

s:t: Wij ⩾0,Rij ⩾0,

PC

i = 1
Rij = 18j,

Rij =08½i, j� 2 SR

ð5Þ

where Wij ⩾ 0 and Rij ⩾ 0 denote the nonnegative constraints.
PC

i = 1Rij = 18j demands that the sum of all coefficient vectors for one
sample equals to one. Rij =08½i, j� 2 SR suggests that R is supervised
by a structure SR yielded from class labels. The optimization in Eq. (5)
is essentially a nonnegative matrix factorization (NMF) variant with a
structural constraint49. In order to solve theminimization problem, we
transform the structural constraint into a penalty term adding to the
objective function. Besides,many studies49,50 report that the ‘2,p-norm-
based (0 < p < 1) minimization contributes to the robustness of the
solution. Therefore, the minimization problem can be rewritten by:

min
W,R

1
2 kX�WRkp2,p + η

2ΩðRÞ
s:t: Wij ⩾0,Rij ⩾0,

PC

i = 1
Rij = 18j

ð6Þ

where η represents a constant parameter and Ω(R) denotes the
structural penalty:

ΩðRÞ= kR �MSk2F ð7Þ

where⊙ is Hadamard product andMS represents a structural binary
mask, in which the positions of 1 are derived from the structural
constraint SR. We introduce Lagrange multiplier Ψ and Φ for the
matrix factors W and R due to their nonnegative constraints. Corre-
spondingly, a Lagrange function can be formulated by:

L=
1
2
kX�WRkp2,p +

η

2
kR �MSk2F +TrðΨWT Þ+TrðΦRT Þ ð8Þ

The partial derivatives of L with respect to the matrix factors W
and R can be calculated by:

∂L
∂W

= ðWRDRT � XDRT Þ+Ψ=0

∂L
∂R

=WT ðWR � XÞD+ηðR �MSÞ+Φ=0
ð9Þ

where D is a diagonal matrix with each diagonal entry as Dkk =
p

2∣zk ∣
2�p
2

,

Z=X-WR. Using theKuhn-Tucker conditionΨihWih=0andΦhjRhj=0,
we have:

ðWRDRT ÞihWih � ðXDRT ÞihWih =0

ðWTWRD�WTXDÞhjRhj +ηðR �MSÞhjRhj =0
ð10Þ

The corresponding updating rule for W and R can be given by:

Wih  Wih
½XDRT �ih
½WRDRT �ih

Rhj  Rhj
½WTXD�hj

½WTWRD�hj +η½R�MS �hj

ð11Þ

Subsequently, the iterative algorithm for SRFD is briefly described
in Supplementary Box 1.

With the learned optimal methylation reference W†, the fraction
vector h of a test cfDNAmethylation profile x 2 RK × 1

+ can be predicted
by:

min
h

1
2 ∣x�Wyh∣

2

s:t: hi ⩾0,
PC

i= 1
hi = 1

ð12Þ

The first P components in h represent the fractions of normal
sources while the rest components indicate the fractions of T tumor
sources. In our simulation experiments, the deconvolution perfor-
mance was evaluated in two respects, source fraction and tumor
fraction. The former separately sums the corresponding source com-
ponents of the specific tumor while the latter sums all tumor compo-
nents in the predicted fraction vectors.

Bayesian diagnostic model based on estimated tumor fractions
(SRFD-Bayes)
For a test cfDNA sample x and its estimated fraction vector h, we first
extract all tumor components of h to shape a predicted tumor fraction
vector θ̂. Inherently, the cancer diagnostic decision can be made by
maximizing the posterior probability:

max
y2Y

pðy∣x,θ̂Þ ð13Þ

where Y represents the label set. According to Bayes’ theorem, we
have:

pðy∣x,θ̂Þ= pðθ̂∣y,xÞpðy∣xÞpðxÞ
pðθ̂∣xÞpðxÞ

=
pðθ̂∣y,xÞpðy∣xÞ

pðθ̂∣xÞ
ð14Þ

Since pðθ̂∣xÞ is irrelevant to the labels, Eq. (14) can be simplified as:

pðy∣x, θ̂Þ / pðθ̂∣y,xÞpðy∣xÞ ð15Þ

where pðθ̂∣y,xÞ suggests the conditional probability distribution of θ̂
with the given label y and methylation data x. p(y|x) denotes the
probability distribution of the diagnostic decision without the gui-
dance of θ̂, which acts as the prior of the Bayesian inference and can be
obtained by training ordinary classifiers (SVM in this study) on the
original methylation profiles. Assuming that each component of θ̂ is
independent and conforms a Beta distribution, correspondingly,
Eq. (15) can be formulated by:

pðy∣x,θ̂Þ /Q
ipðθ̂i∣y,xÞpðy∣xÞ=

Q
iBetaðαi,βiÞpðy∣xÞ ð16Þ

where Betaðαi,βiÞ denotes the Beta distribution of θ̂i with parameters
αi and βi, which can be estimated from the tumor fraction vectors of
the training samples.

With respect to the training process of SRFD-Bayes, the input of
classifiers is the original methylation features of each training sample,
which is aK-dimensional vectorwith eachcomponent representing the
methylation level of a methylation site. By employing the reference
database W† estimated by SRFD, a C-dimensional fraction vector of
each training sample is obtained, where the tumor components are
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extracted to establish the conditional Beta distribution. SRFD-Bayes is
implemented and performed using MATLAB R2018b with Parallel
Computing Toolbox 6.13, Statistics and Machine Learning Toolbox
11.4, and Deep Learning Toolbox 12.0.

Synthetic minority oversampling
Synthetic minority oversampling is utilized to achieve the balance
among different categories in themodel training procedure. Instead of
direct oversampling on the original methylation signatures, we adopt
borderline-SMOTE algorithm51 to synthesize a new fraction vector ~hi

for the minority category i. Afterwards, the convolution Wy
~hi + εi is

employed to generate a new synthesizedmethylation profile, whereW†

denotes the learned reference database. εi suggests a reconstruction
error vector that is randomly sampled fromanormal distributionfitted
by the reconstruction errors in the semi-reference-free deconvolution.

Statistics & reproducibility
All the data used in this paper are collected from publicly accessible
datasets. No statistical method was used to predetermine sample size.
No data were excluded from the analyses. The experiments were not
randomized. The Investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Themain data supporting the results are available within this article as
well as its Supplementary information. All the datasets adopted in this
study are publicly available. The cfDNA-SNVdata analyzed in this study
were collected from Lung-CLiP52 [https://clip.stanford.edu/]. The DNA
methylation profiles of tumor tissues adopted in this study were col-
lected from TCGA [https://portal.gdc.cancer.gov/]. The normal blood
cfDNA methylation profiles were collected from GSE40279. The
plasma cfDNA methylation profiles were collected from GSE122126,
GSE108462, GSE129374 and the repository NCOMMS-20-10056-T on
GitHub [https://github.com/ncomms-20-10056-t/ncomms-20-10056-
t]. The plasma cfDNA with 10 methylation sites for HCC patients and
normal controls were collected from the Supplementary materials of
the previous study31 [https://www.nature.com/articles/nmat4997#
Sec19]. Source data are provided with this paper.

Code availability
The code of our approach is available on GitHub in the repository
SRFD-Bayes (https://github.com/Astaxanthin/SRFD-Bayes) and a
Zenodo repository https://doi.org/10.5281/zenodo.7357786.
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