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Unconventional self-similar Hofstadter
superconductivity from repulsive
interactions

Daniel Shaffer1, Jian Wang1 & Luiz H. Santos 1

Fractal Hofstadter bands have become widely accessible with the advent of
moiré superlattices, opening the door to studies of the effect of interactions in
these systems. In thisworkweemploy a renormalization group (RG) analysis to
demonstrate that the combination of repulsive interactions with the presence
of a tunable manifold of Van Hove singularities provides a newmechanism for
driving unconventional superconductivity in Hofstadter bands. Specifically,
the number of Van Hove singularities at the Fermi energy can be controlled by
varying the flux per unit cell and the electronic filling, leading to instabilities
toward nodal superconductivity and chiral topological superconductivity with
Chern number C = ±6. The latter is characterized by a self-similar fixed tra-
jectory of the RG flow and an emerging self-similarity symmetry of the order
parameter. Our results establish Hofstadter quantum materials such as moiré
heterostructures as promising platforms for realizing novel reentrant Hof-
stadter superconductors.

It has long been theoretically suggested that, contrary to the conven-
tional view1–3, superconductivity (SC) can reemerge in Landau levels in
the presence of strong magnetic fields, provided there are attractive
interactions4. More recently it has been proposed that such reentrant
SC in reconstructed electron bands forming Landau levels can theo-
retically occur in magic angle twisted bilayer graphene (TBG)5. TBG
and other 2D moiré superlattices are particularly attractive for realiz-
ing reentrant SC as they can host SC at zero magnetic field at low
density carrier regimes6, such that only relatively modest magnetic
fields are required to achieve the quantum limit of Landau levels.
However, several challenges have stood in the way of observing
reentrant SC in experiment, among them the role of repulsive inter-
actions that make quantum Hall states natural competitors of such
reentrant SC in Landau levels.

In this work we propose that this issue can be circumvented in
Hofstadter bands that, unlike Landau levels, have a finite bandwidth
W7,8, allowing a weak-coupling renormalization group (RG) treatment
of repulsive electronic interactions. This is especially relevant for
moiré systems since their nanometer scale unit cells enable the reali-
zation of Hofstadter bands in experimentally accessible magnetic
fields at which the magnetic flux per super unit cell Φ = BAuc is

comparable to the flux quantum Φ0 = 2πℏ/e = 2π in natural units9–15.
Beyond the rich phenomena in Hofstadter-Chern insulators16–30, a
recent classification31 has shown that Hofstadter bands may support
novel Hofstadter superconductors (HSC) characterized by sponta-
neous breaking of the magnetic translation group (MTG)
symmetries32–34, leading tomulti-componentfinitemomentumCooper
pairing similar to pair-density wave states35. HSCs embody a new form
of reentrant superconductivity in Hofstadter bands, in which the large
flux per unit cell makes the magnetic length comparable to the lattice
scale, thus generalizing the Landau level reentrant SC state.

Although pairing in Hofstadter bands has been studied earlier
using mean-field calculations with phenomenological attractive
interactions36–42, no microscopic mechanism leading to this attraction
has so far been proposed. Here we show that HSCs can arise from
repulsive interactions due to the competition of electronic orders near
Van Hove singularities (VHS) that provide a logarithmic enhancement
of the density of states (DOS)43. Such a scenario of competing orders
near VHSs underlies several proposed mechanisms of unconventional
superconductivity through repulsive interactions, for example in
cuprates44–46, doped graphene47–50, and moiré graphene
superlattices51–59. Furthermore, we go beyond mean field by using an
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RG analysis60–62, extending it to the new realm of Hofstadter electronic
bands and uncovering a new pathway to realize reentrant super-
conductivity in moiré superlattices. This approach allows us to treat
the interplay of all logarithmically divergent instabilities on equal
footing, and thus to additionally study the competition of super-
conductivity with charge/spin density wave (CDW/SDW) orders, thus
going beyond earlier mean-field studies of CDW and SDW in Hof-
stadter systems in refs. 63 and 64,65, respectively. The RG analysis also
provides an alternative scenario to fractionalization in Hofstadter
bands66–75.

Famously, the Hofstadter spectrum has a fractal nature character-
ized by a self-similar structure as a consequence of the MTG
symmetries8,76. We find that, remarkably, some aspects of this self-
similarity are passed on to the RG flow and some of the resulting
instabilities. First, we find that for all flux values, the RG flow has a par-
ticular fixed trajectory that is equivalent tomultiple copies of the RGflow
in the absence of the magnetic flux. We therefore refer to it as a self-
similar fixed trajectory. As there are in principle many other fixed tra-
jectories of the RG flow, it is not a given that the self-similar trajectory is
reached for given set of interactions. Nevertheless we find that the self-
similar trajectory is reached in ourmodel in some cases. Second, in those
cases the superconducting instability occurs by the same VHS mechan-
ism as proposed in cuprates44–46, but the resulting order parameter also
repeats in a self-similar fashion in the magnetic Brillouin zone. The self-
similarity of the order parameter can be expressed as an emergent
symmetry, which we call the self-similar symmetry, and which we show
implies a highly non-local character of the order. These self-similarity
properties illustrate how the MTG symmetries of the Hofstadter system
can lead to novel phenomena via the VHS patch RG mechanism.

As a proof of principle, we work with the repulsive fermionic
square-lattice Hofstadter-Hubbard (HH) model with on-site interaction
U >0 and fluxΦ= 2πp/q that is a rational multiple of the flux quantum.
Importantly, we focus on the regime q ~ 1 in which the Hofstadter bands
have a bandwidth W comparable to that of the original band at zero
field, which allows us to investigate electronic instabilities in a con-
trolled weak-coupling regime U/W≪ 1. While a hexagonal lattice would
better approximate twisted bilayer graphene, which is the best studied
superconducting moiré system, we establish our results on the square
lattice since it still allows us to capture the essential correlation effects
in Hofstadter bands while working with a simpler band structure, as
shown in section Hofstadter-Hubbard VHS patch model and interac-
tions. Nevertheless, we stress that while the competition of electronic
orders and their resulting instabilities can depend on the underlying
lattice and interactions, the weak-coupling RG framework developed
here is of general applicability, and thus represents an important step
towards the investigation of electronic instabilities in a wider class of
two dimensional Hofstadter superlattices, including moiré graphene.

Additionally, the square HH model can more easily be realized in
cold atom systems77–86, although the focus in that field has been on
bosonic87–92 and time-reversal invariant fermionic93–98 HHmodels (note
that the latter coincides with the regular fermionic Hofstadter-
Hubbard model at q = 2, i.e., at π-flux). In addition, more recently sin-
gle layer cuprates exhibiting critical temperatures close to their bulk
values have been fabricated99, opening an avenue for realizing twisted
cuprate moiré systems with square lattices for which our model may
be directly applicable. Such twisted heterostructures have recently
been studied theoretically100–104, with few-layer twisted interfaces
already realized in experiment105,106. It remains to be seen whether
Hofstadter physics can be realized in twisted cuprates, but, if it is, a
reentrant HSC phase may be possible in this system.

The MTG symmetries play a key role in our analysis. In particular,
they imply the presence of 2q VHSs per Hofstadter band, as shown in
Fig. 1. The magnetic fluxΦ = 2πp/q thus acts as a knob controlling the
number of VHSs in the system,which completely alters theRGflowand
thus the possible instabilities of the system. This is well illustrated by

the two distinct reentrant HSC phases that we find at π-flux (i.e., q = 2)
and at 2π/3-flux (q = 3). For the former case, we identify a nodal SC
phase that respects allMTG symmetries as thewinningRG instability at
1/4 and 3/4 lattice filling, even with perfect nesting in the competing
SDW channel that is degenerate with the SC channel in the absence of
themagnetic field107. For q = 3, we find that, at 1/6 and 5/6 lattice filling,
SC and SDW are nearly degenerate when both are at perfect nesting,
while SDW is strongly favored at half-filling. A small symmetry-allowed
detuning from perfect nesting in the SDW therefore favors the pairing
instability at 1/6 and 5/6 filling, which necessarily breaks a subset of the
MTG symmetries31. We find that the resulting SC state is a fully gapped
chiral topological phasewith Chernnumber C = ±6 that preserves aZ3

subgroup of the MTG. Surprisingly, this phase realized for q = 3 also
possesses an emergent self-similarity symmetry due to the RG flow
approaching a special self-similarfixed trajectory that exists as another
consequenceof theMTG symmetries.We identify this self-similarfixed
trajectory for all q, implying that long-range self-similar HSC states can
be competing instabilities at flux values beyond those studied
numerically in this work.

Results
Hofstadter-Hubbard VHS patch model and interactions
We consider the nearest-neighbor square-lattice repulsive HH Hamil-
tonian

H = �
X
hrr0iσ

t e2πiArr0 cyrσcr0σ +h:c:� μ
X
rσ

cyrσcrσ +

+U
X
r

nr" nr# =H0 +Hint ,
ð1Þ

Fig. 1 | Van Hove singularities and relevant interactions in the square Hof-
stadter model. VHSs are shown at a zero, c π, and d 2π/3-flux, and e–g the cor-
responding peaks in the density of states at indicated fillings. Due to the MTG
symmetry, the magnetic Brillouin zone (MBZ) splits into q (energy degenerate)
reduced magnetic Brillouin zones (rMBZ) labeled with ℓ =0,…, q − 1. In each band
there are a total of 2q VHSs occurring atmomentaK‘,v = ð1 + vÞ πq ,ðv + 2p‘Þ πq

� �
, such

that there is a pair of VHSs in each rMBZ labeledwith a VHS index v = 0, ± 1, with the
identification of VHS ℓ, 1 and ℓ + 1, − 1. Arrows in a and the Feynman diagrams in
b show the types of interaction processes considered in the RG analysis: intra-VHS
processes g1 and g10 (red and light red); inter-VHS forward scattering g2 (blue);
exchange g3 (magenta); and pair-hopping g4. The VHS index color-coded in a and
b as red/green/blue for v = 1, 0,− 1, respectively, and the black diagram shows the
additional rMBZ indices ℓ,m,n =0,…, q − 1 carried by the coupling constants gð‘Þ

mn, ℓ
denoting the total momentum of the interacting pair.
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withU >0whereμ is the chemical potential,nrσ is the number operator
with spin σ =↑,↓ at site r = ðx, yÞ 2 Z2, andArr0 =

R r0

r A � dr=Φ0 =
p
q xð1�

δyy0 Þ corresponding to a flux per unit cell Φ = 2πp/q that is a rational
multiple of the flux quantum Φ0. We work in the Landau gauge with
vector potential A= xBŷ and set the lattice constant a = 1. Note that
while time-reversal symmetry (TRS) is broken by the orbital effect, we
neglect the Zeeman splitting in our analysis and retain the full SU(2)
spin rotation symmetry, implying that our weak-coupling analysis is
applicable in the regime EZ ≪Δ≪W, where EZ is the Zeeman splitting
andΔ is the characteristic energy scale of the electron instabilities. The
interesting regime of spin polarized Hofstadter bands case merits a
separate discussion which is outside the scope of this work.

In addition to TRS, the vector potential breaks the translation
symmetry Tx along the x direction. However, the magnetic translation
T̂x =Txe

2πiaBy=Φ0 remains a symmetry of the Hamiltonian. T̂x and the
unbroken translation Ty = T̂ y along the y direction generate the non-
Abelian magnetic translation group (MTG) satisfying T̂xT̂y =ω

p
qT̂yT̂x

with ωq = e2πi/q being the qth root of unity. Point group symmetries of
the original Hamiltonian in the absence of the magnetic field similarly
give rise to their magnetic versions with appropriate gauge transfor-
mations of the vector potential. For example, this includes inversion
symmetry that guarantees a logarithmic pairing instability, as well as
the original C4 symmetry that becomes Ĉ4 =C4e

�2πixyB=Φ0 , where the
additional gauge transformation rotates A= xBŷ ! yBx̂. The Ĉ4 sym-
metry will play a role belowwhenwe consider the instabilities of the π-
flux Hofstadter Hamiltonian.

The commutation relations imply that T̂
q
x and T̂ y commute with

each other and the Hamiltonian, effectively enlarging the unit cell
along the x direction. We correspondingly define operators
cR,s,σ = csx̂+R,σ with s = 0,…, q − 1 being the sublattice index defined
modulo q and R = (qj, y) with j,y 2 Z labeling the extended unit lattice
cites. Bloch’s theorem then applies to theseoperators andwe canwrite
the Hofstadter Hamiltonian H0 in momentum space using
cksσ =

1ffiffiffi
N

p
P

Re
�ik�ðsx̂+RÞcsx̂+R,σ , with N being the total number of unit

cells and where the quasi-momentum k is defined on the folded
magnetic Brillouin zone (MBZ) k = (kx, ky)∈ [ −π/q,π/q) × [ −π,π). In
this basis

H0 = �
X
ks

ð2t cosðky + sQÞ+μÞcyksσcksσ�

�
X
khss0i

te�ikx ðs�s0 Þcyksσcks0σ ,
ð2Þ

and themagnetic translation symmetries act as T̂xcksσ T̂
y
x = e

�ikx ck+Q,s + 1,σ

and T̂ ycksσ T̂
y
y = e

�iky cksσ , with Q = 2πp
q ŷ.

The Hofstadter Hamiltonian H0 can then be diagonalized as
H0 =

P
kασεαðkÞdy

kασdkασ using a unitary transformation

dkασ =
X
s

Us
αðkÞcks : ð3Þ

Note that there is a large freedom in choosing the U(1) phases in Us
αðkÞ.

For concreteness, we take Us + 1
α ðk+QÞ=Us

αðkÞ, which endures a cano-
nical transformation under MTG for the band operators:
T̂xdkασ T̂

y
x = e

�ikx dk +Q,α,σ and T̂ ydkασ T̂
y
y = e

�ikydkασ . Furthermore, we fix
the remaining gauge freedom by taking U1

αðkÞ 2 R. This choice makes
it clear that the T̂x symmetry implies a q-fold degeneracy of each band,
εα(k) = εα(k +Q). This means we can further restrict the quasi-
momentum to a reducedmagnetic Brillouin zone (rMBZ) p= ðpx ,pyÞ 2
�π=q,π=q
� �2 and define dpℓασ = dp+ℓQ,ασ where ℓ =0,…, q − 1 is the
magnetic patch indexdefinedmoduloq asdefined in ref. 31 (see Fig. 1c,
d)). We also refer to ℓ as the rMBZmagnetic flavor index to distinguish
it from the VHS indices introduced below.

Unlike earlier mean-field analyses of the fermionic HH
model36–39,41,63–65 (see also ref. 108 who studied SC in the related

Aubry-André model), here we investigate the instabilities driven by
repulsive on-site interactions due to diverging DOS at the VHSs. In the
square-lattice Hofstadter model, the VHSs occur at electron fillings
that are odd multiples of 1/(2q) (counting spin), i.e., in half-filled Hof-
stadter bands. In each band there are a total of 2q VHSs occurring at
momenta K‘,v = ð1 + vÞ πq ,v π

q

� �
+ ‘Q which we label with the VHS index

v = 0, 1109. Note that the VHSs thus lie at the images of the original VHSs
of the square lattice at zeroflux under a rescaling of themomentumby
1/q, which is a consequence of the self-similarity property of the Hof-
stadter spectrum16,76 that also implies that the Fermi surfaces are
composed of q touching squares for any Hofstadter band (see
Fig. 1a, c, d).

Within this weak-coupling framework we can project the inter-
actions onto the Fermi surfaces formed by a single band α, neglecting
all other bands and expand the dispersions aroundpatches centered at
the VHS momenta Kℓ,v, obtaining a VHS patch model that we will
analyze in section RG analysis using fermionic RG44,45,47,62,110. We thus
define the patch model operators dp‘vασ =dp +K‘,v ,α,σ

with p a small
momentum expanded around a patch centered at Kℓ,v. For book-
keeping purposes, we include a redundancy in our description and
allow v = − 1 with the identification Kℓ,−1 ≡Kℓ−1,1 which makes the VHS
andmagneticflavor indices conservedquantities in Feynmandiagrams
we use in the RG analysis.

We then project Hint in Eq. (1) onto the patches obtaining an
effective interaction Hamiltonian

Hint ! HðαÞ
int =

1
2

X
‘mn

uvw,σσ0

gðα; ‘,uÞ
m,v;n,wd

y
‘+n,u +w,α,σd

y
�n,�w,α,σ0d�m,�v,α,σ0d‘+m,u + v,α,σ , ð4Þ

where ℓ,m, n =0,…q − 1 are magnetic flavor indices, u, v, w = 0, ± 1 are
the VHS indices, and

gðα; ‘,uÞ
m,v;n,w =U

X
s

Us
α K‘+n,u +w

� �Us
α K�n,�w

� �Us*
α K�m,�v

� �Us*
α K‘+m,v

� �
ð5Þ

are the coupling constants corresponding to interactions between
electrons with total momenta u(π,π)/q + ℓQ, dressed by form factors
originating from the unitary transformation Eq. (3). Henceforth we will
consider a fixed band α and drop the index where it is clear from
context.

As there are 2q VHSs, the number of coupling constants grows
quickly with q, which manifests the MTG action in momentum space.
Taking hermiticity, MTG symmetries, and redundancy of the VHS
indices into account, there are a total of Oðq2Þ independent coupling
constants that can be classified into five processes according to their
VHS indices:

gð‘Þ1
mn = g

ð‘,0Þ
m,0;n,0 gð‘Þ10

mn = gð‘,0Þ
m,1;n,1

gð‘Þ2
mn = gð‘,1Þ

m,0;n,0 gð‘Þ3
mn = gð‘,1Þ

m,0;n,�1

gð‘Þ4
mn = gð‘,0Þ

m,0;n,1 ,

ð6Þ

as shown in Fig. 1b. g1 and g10 correspond to intra-patch processes for
v = 0, ± 1 VHSs, respectively, g2 (g3) is an inter-patch process without
(with) exchange, and g4 is a pair-hopping process. Note that in the
absence of TRS, not all coupling constants are necessarily real. In
addition to relations imposed by hermiticity, the coupling constants
also satisfy gð‘Þ j

mn = g
ð‘+ 2Þ, j
m�1,n�1 as a consequence of the MTG action on the

fermion operators T̂xdp‘vσ T̂
y
x = e

�ipx dp,‘ + 1,vσ . In particular, for odd q all
coupling constants can be expressed in terms of gð0Þ j

mn . For even q, all
coupling constants can be expressed in terms of either gð0Þ j

mn or gð1Þ j
mn ,

with an additional relation gð‘Þ j
mn = g

ð‘Þ j
m�q=2,n�q=2; see the Supplementary

Material for further relations satisfied by the coupling constants. By
virtue of the MTG symmetries the coupling constants Eq. (6) thus
organize into processes that resemble those in zero magnetic field.
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Aswewill see in section RG analysis, this has the important implication
that the RG equations exhibit a degree of self-similarity that we will
elucidate below.

RG analysis
In this section we extend the RG analysis developed previously for the
half-filled square lattice44,45,107 and the quarter-filled hexagonal lattice47

with 2 and 3 VHSs, respectively, to the patch model with 2q VHSs
presented above. The competing instability channels fall into two
classes: particle-particle channels with momentum transfers ℓQ; and
particle-hole channels with momentum transfers (π,π)/q + ℓQ. Due to
the MTG symmetries, all the susceptibilities are independent of the
magnetic flavor indices ℓ, and the two relevant susceptibilities are
Πppð‘QÞ≈ ν0ln2Λ=T and Πphððπ,πÞ=q+ ‘QÞ≈dphν0ln

2Λ=T where Λ is
the high energy cutoff, T is the temperature and ν0 lnΛ=E is the DOS at
energy E above the VHS47,56,107. Here we introduce the standard phe-
nomenological detuning parameter dph =Πph/Πpp∈ [0, 1] to account
for possibly imperfect nesting in the particle-hole channels due to
additional symmetry-allowed terms that break particle-hole symmetry
at half-filling or for chemical potentials slightly away from the VHSs107.

Performing the one-loop RG procedure (see Supplementary
Material) and keeping only the most diverging ln2 corrections, we
obtain the flow equations for the coupling constants. The full expres-
sions are given in the Supplementary Material and can be represented
symbolically as:

_gð‘Þ1
mn = � gð‘Þ1

mkg
ð‘Þ1
kn � gð‘Þ4

mk g
ð‘Þ4*
nk

_gð‘Þ10
mn = � gð‘Þ10

mk g
ð‘Þ10
kn � gð‘Þ4*

km gð‘Þ4
kn

_gð‘Þ2
mn =dph gð‘+n�kÞ2

mk gð‘ +m�kÞ2
kn + gð‘ +n�kÞ4*

k,m�1 gð‘ +m�kÞ4
k,n�1

� �

_gð‘Þ3
mn =2dphg

ð‘ +m +n+ kÞ3
�n�k,�m�k gðkÞ2

m,�n�k � gðkÞ3
mn

� �
+dphg

ð‘ +m +n+ kÞ4
�n�k,�m�k gðkÞ4*

n,�m�k � 2gðkÞ4*
n,m�1

� �

+dphg
ð‘+m+n+ kÞ4
�n�k,�n�‘�1g

ðkÞ4*
n,m�1

_gð‘Þ4
mn = � gð‘Þ1

mkg
ð‘Þ4
kn � gð‘Þ4

mk g
ð‘Þ10
kn +dph gð‘ +n�kÞ2

k�‘�m�n,�‘�ng
ð‘ +m�kÞ4
kn + gð‘ +n�kÞ4

mk gð‘+m�k�1Þ2
k + 1,n+ 1

� �

+dphg
ð‘+m+n+ kÞ4
�n�k,�m�k gðk�1Þ2

�m�k + 1,n+ 1 � 2gðk�1Þ3
1�k�m,�k�n

� �
+dphg

ð‘ +m +n+ kÞ4
�n�k,�n�‘�1g

ðk�1Þ3
1�k�m,�k�n +

+dphg
ð‘+m+n+ kÞ3
�n�k,�m�k g

ðkÞ4
�m�k,n +dph gð‘ +m +n+ kÞ,2

�n�k,�n�‘
� 2gð‘ +m+n+ kÞ3

�n�k,�m�k

� �
gðkÞ4
mn :

ð7Þ

The dot denotes the derivative with respect to the running RG time
t =ΠppðEÞ= ν0ln2Λ=E, with high energy modes integrated above the
energy scale E. For q = 1, i.e., zero flux, Eq.(7) reduces to the standard
result for the half-filled square lattice in ref. 44 (in this case g10 = g1 by
C4 symmetry that is otherwise broken at non-zero flux). Recall that in
that case repulsive Hubbard interactions lead to degenerate d-wave SC
and SDW orders, with the degeneracy being lifted either by imperfect
nesting or subleading terms in RG44.

For q ≠ 1 the RG equations (7) in principle allow for a large number
of fixed trajectories that characterize the instabilities of the Hofstadter
metal. Despite the apparent complexity of these equations, by
grouping the coupling constants into the gð‘Þ1

mn , g
ð‘Þ10
mn , g

ð‘Þ2
mn , g

ð‘Þ3
mn , g

ð‘Þ4
mn

processes according to the VHS patch index structure, we see that the
formof these equations is similar to theRG equations in the absenceof
themagneticflux, i.e., for q = 1. In particular, it can be verified that they
admit a fixed point trajectory characterized by gð‘Þj

mn = gj=
ffiffiffi
q

p
, i.e., cou-

pling constants independent of the magnetic flavor indices and
depending only on the VHS patch indices. Plugging this ansatz into the
RG equations (7), one can directly verify that gj satisfy the same set of
equations as for q = 1. As a consequence, the resulting instability and its
properties such as critical exponents are identical to those in the
q = 1 system, and we thus refer to such solutions as self-similar fixed
trajectories. We note that this property extends to all classes of Hof-
stadter systems beyond the one studied here, given that the MTG
symmetries are preserved and provided the weak-coupling regime
is valid.

Though we show that the self-similar solutions exist, at the
beginning of the RG flow local interactions produce bare couplings
gð‘Þj
mnðt =0Þ that in general have a dependence on the magnetic flavor.

It is therefore not a given that the self-similar trajectory is reached by
the RG flow, and we find for example that it is not reached with
repulsive Hubbard interactions for q = 2. We do find, on the other
hand, that with the same repulsive Hubbard interactions in top and
bottom Hofstadter bands for q = 3, the coupling constants do tend
asymptotically to this self-similar fixed trajectory. The existence of
such nontrivial self-similar behavior in the RG equations and their
relation to unconventional SC is one of the main results of this work.

Vertices and susceptibilities
Under the RG flow some of the coupling constants diverge at some
finite RG time tc, indicating an instability of the Fermi surface (see
Fig. 2a and c). To study these instabilities, we introduce the following
test vertices and study their flow:

HSC =Δ
ð‘Þ
m;viσ

y
σσ0dy

‘+m,v,σd
y
�m,�v,σ0 +h:c:

HCDW =ρ½‘�
m;vd

y
‘ +m,�v,σdm,1 + v,σ

HSDW =M½‘�
m;v � σσσ0dy

‘+m,�v,σdm,1 + v,σ0

ð8Þ

with summation over the indices implied. Δð‘Þ
m;v, ρ

½‘�
m;v, and M½‘�

m;v are the
SC, CDW, and SDW order parameters respectively with momentum
transfers ℓQ for SC and (π,π)/q + ℓQ for the densitywaves. Note that by
hermiticity, ρ½‘�

m;0 = ρ
½1�‘�*
m+ ‘;1, and similarlyM ½‘,j�

m;0 =M
½1�‘,j�*
m+ ‘;1 , which therefore

belong to the same channel in the RG flow. As shown in the Supple-
mentary Material, the CDW and SDW flow equations decouple into q2

channels each: ~ρ½‘�
k;v =

P
mω

mk
q ρ½‘�

m;v for CDW and similarly for SDW. This
is consistent with the fact that being charge-0 instabilities, CDW and
SDW transform as 1D irreducible representations (irreps) of the MTG.
Similar CDWorders have been found numerically in a real-spacemean-
field analysis of a spinless fermionic HH model on a hexagonal lattice,
although their MTG irreps have not been established63. Note also that
we do not find the previously proposed (π,π) SDW as a potential
instability64,65.

As shown in ref. 31, unlike the charge-0 orders, the charge-2 SC
orders transform according to q or q/2 irreps of the MTG for odd and
even q, respectively. This means that in general there are q or q/2
degenerate flows in the SC channels corresponding to each choice of ℓ
in Eq. (8), with even and odd ℓ being non-degenerate for even q. In
addition, when q is even the SC order parameter decouples into

Δð‘, ± Þ
m;v =Δð‘Þ

m;v ±Δ
ð‘Þ
m+q=2;v, with Δð‘, + Þ

m;v (even under T̂
q=2
x ) and Δð‘,�Þ

m;v (odd

under T̂
q=2
x ) flowing independently, consistent with the fact that there

are four q/2-dimensional irreps in this case31.
The vertex RG flow equation are shown schematically in Fig. 3.

Observe that the coupling constants gð‘Þ1
mn and gð‘Þ10

mn only contribute to
theflowof the SCvertices, gð‘Þ3

mn only contributes to theCDWflow,while
gð‘Þ2
mn contributes to the flow of both CDW and SDW vertices. gð‘Þ4

mn , on
the other hand, contributes to all the channels, with a similar structure
in the flow of the coupling constants themselves in Eq. (7). SC is thus
generally favored by negative gð‘Þ1

mn and gð‘Þ10
mn . Importantly, although

these are positive initially in the repulsive Hubbard model, they can
potentially change sign due to the ∣g4∣2 term in their flow in Eq. (7). We
indeed find this to be the case for q = 2 and q = 3, as shown in Fig. 2a
and c.

In order to establish which instability actually takes place, we
additionally consider the flow of the susceptibilities χI where
I =Δð‘Þ

m;v, ~ρ
½‘�
k;v,

~M
½‘�
k;v corresponding to the instability. The susceptibilities

flow as _χ I =dI ∣IðtÞ=Ið0Þ∣2 with dΔ = 1 and else dI = dph56,62. The leading
instability corresponds to χI that diverges most strongly at tc, around
which they generally diverge as χ I ðtÞ / ðtc � tÞ1�2αI with some critical
exponent αI that needs to be larger than 1/2 for the instability to occur.
A representative flow for q = 2 (q = 3) is shown in Fig. 2b, d. In that case
we find that SC is the leading instability with critical exponent
αSC ≈0.73 (αSC ≈0.65). The exponent is computed as the final value of
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αI ðtÞ= 1� logtc�tχ I
� �

=2,with a representative plot ofαI(t) shown in the
inserts of Fig. 2b and d.

Resulting instabilities
We studied the RG equations for p/q = 1/2, 1/3 and 2/3, with the
results summarized in Table 1. For zero flux, q = 1 and we recover
the results for the square lattice with repulsive interactions at half-
filling44,45,107. In that case it is found that a d-wave SC and SDW are
degenerate within one loop at perfect nesting in the SDW channel,
dph = 1, with d-wave SC winning for any dph < 1. This has been
interpreted as SDW fluctuations leading to an effective attraction in
the d-wave SC channel. In the flow of the coupling constants this is
reflected in the initial growth of g4 that pushes g1 to become
negative and eventually diverge. We observe a qualitatively similar

RG flow for q = 2 and 3 as seen in Fig. 2a and c. We now analyze the
resulting instabilities for those cases.

Unlike the q = 1 case, for q = 2 we find that an SC instability
occurs already at perfect nesting in both Hofstadter bands (with
critical exponent αSC ≈ 0.77 > 0.5). As shown in ref. 31, in this case
the SC orders belong to one of four one dimensional irreducible
representations (irreps) of the MTG determined by the gap
function being even or odd under T̂y and T̂x . The SC phase that
wins in our RG calculation is even under both T̂y and T̂x , which
corresponds to Δð1Þ

m;v = 0 and Δð0Þ
0;v =Δ

ð0Þ
1;v respectively. Furthermore,

we find that Δð0Þ
m;0 = � Δð0Þ

m;1 (see Fig. 4a), which implies that the gap
function is odd under the magnetic Ĉ4 rotation. We note that this
is an exceptional case, as for q > 2 the gap function necessarily
breaks one of the MTG symmetries, and must either break the Ĉ4

symmetry or break the remaining MTG symmetry31. Only when the
gap function is both even or both odd under T̂x and T̂y, as in the
present case, can it also have a well-defined Ĉ4 symmetry.

The RG analysis only determines the gap function at the VHSs, so
our approach does not determine the gap function Δð0Þ

m ðpÞ along the
entire Fermi surface (with Δð0Þ

m;v =Δ
ð0Þ
m ðK0,vÞ). In principle, this issue can

be addressed by using amethod that extends the RG calculation to the
entire Fermi surface, for example a function RG calculation or a two-
step RG approach combinedwith a randomphase approximation type
calculation (see e.g., ref. 111); however, this is an involved computation
that is beyond the scope of this work. For q = 2 we can circumvent this
issue by using the fact that a T̂x and T̂y symmetric gap function odd
under Ĉ4, which we refer to as a d-wave gap function, has a unique
nearest-neighbor form in the cks basis, namely:

ΔðdÞ
ss0 ðkÞ=Δ0 cos kxσ

x
ss0 � cos kyσ

z
ss0

� �
ð9Þ

The anti-symmetry of this order parameter under Ĉ4 symmetry can be
checked directly by using

Ĉ4cp+ ‘Q,sσ Ĉ
y
4 =

1
q

X
s0‘0

ω�pðss0 + ‘s0 + ‘0sÞ
q c�p + ‘0Q,s0σ ð10Þ

Fig. 3 | The 1 loop Feynman diagrams contributing to the SC and CDW vertex
corrections.The VHS index structure is shown (green for v = 0, red/blue for v = ± 1,
respectively). SDW Diagrams for SDW vertex corrections are the same as the CDW
diagrams withM instead of ρ, except for the loop diagrams in the second lines that
vanish for SDW vertices. The propagators additionally carry the magnetic flavor
indices, not shown in thefigure (these canbe found in the SupplementaryMaterial).

Fig. 2 | RG flow of coupling constants and susceptibilities. The flow of the
coupling constants gð‘Þj

mn with ℓ =0, 1 (solid and dashed lines, respectively),
j = 1,10,2,3,4 (red, light red, blue, magenta, and green, respectively), and m, n =
0,…, q − 1 are shown for a q = 2 at 1/4 filling at perfect nesting dph= 1; and for c q = 3
at 1/6 filling with dph=0.8 (U = 1 in arbitrary units in all plots). The instability occurs
at tc =0.98 and tc = 1.46 for q = 2 and 3, respectively. The flows for q = 2 and 3 are
otherwise qualitatively similar, and both are similar to the flow in the absenceof the
magnetic field: note that while all coupling constants are initially positive or van-
ishing, gð0Þ1

mn and gð0Þ10
mn eventually change sign, leading to effective attraction in the

pairing channel. The inset in c shows the q = 3 flownormalized by gð0Þ4
00 which shows

that the self-similar fixed trajectory gð‘Þj
mn = gj=

ffiffiffi
q

p
is reached at the end of the flow, as

indicated by curves of the same color approaching the same value (we also find

g1 = g10 ). b q = 2 RG flow of the susceptibilities χI with I corresponding to SC with
Cooper pairs with zero momentum (ℓ =0, red) or momentum Q = 2πp

q ŷ (ℓ = 1,
magenta), SDW (green) or CDW (blue). Initially χSDW is the fastest growing sus-
ceptibility, but eventually The ℓ =0SC susceptibility takesover. The inset shows the
corresponding critical exponents αI = 1� logtc�tχI

� �
=2 for the same range of RG

times t. The largest exponent at the end of the flow is αSC,ℓ=0(tc) ≈0.73. (d) Shows
that analogous plots for q = 3, but in this case the ℓ =0 and 1 SC channels are
degenerate so only the former is plotted; in this case red and magenta colors
indicate the suscpetibilities at v = 0 and 1VHSpoints, respectively,whichcontribute
to the same SC channel. The largest exponent at the end of the flow is αSC(tc) ≈0.65.
Color online.
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where �p= ð�py, pxÞ (one can also check that the RHS in Eq. (10) is an
eigenstate of T̂x). Figure 4b shows the corresponding gap function
ΔR,s;R0 ,s0 in real-space in the cRs basis. The gap function Δð0Þ

m ðpÞ is then
obtained by projecting ΔðdÞ

ss0 ðkÞ onto the band basis dkα (see Supple-
mentary Material for details). Importantly, the resulting gap is nodal
(see Fig. 4d).

A gap function of this form has been considered as a toymodel of
a nodal d-wave superconductor in a magnetic field in ref. 112, but
without a microscopic justification or a consideration of its symme-
tries presented here (indeed, the gap function in that model does not
transform as a proper irreducible representation of theMTG for q > 2).
The π-flux superconductor on a square lattice has also previously been
studied using quantum Monte Carlo at half-filling, i.e., at the Dirac
nodes of the normal spectrum,where a so-called ds* SC phase has been
found113. The corresponding gap function, which we simply refer to as
s-wave, has the form ΔðsÞ

ss0 ðkÞ=Δ0 cos kxσ
x
ss0 + cos kyσ

z
ss0

� �
and we find

that it is precisely the T̂x , T̂y symmetric gap that is even under Ĉ4, and
therefore distinct from the phase we find in RG at VHS fillings.

For q = 3, the ~M
½0�
2 and ~M

½1�
1 SDW susceptibilities (degenerate by

hermiticity) diverge first in the middle band, while SC and ~M
½0�
0 (or the

degenerate ~M
½1�
0 , again by hermiticity) SDW diverge first in the top and

bottom bands. This suggests strongly competing instabilities in the
top and bottombands that likely remain degenerate at perfect nesting
as in the q = 1 case, and a small detuning fromperfect nesting generally
favors SC instabilities. We find that for dph =0.8, SC is a clear winner in
the top and bottom bands at 1/6 and 5/6 fillings, but SDW remains the
apparent leading instability at half-filling. Remarkably, we find that
when SC is the winning instability, the RG flow approaches the self-
similar fixed trajectory gð‘Þj

mn = gj=
ffiffiffi
q

p
within numerical accuracy, as

shown in the inset in Fig. 2c. We therefore expect the results for the
q = 1 case to generalize in this case. Observe that this is unlike the q = 2
case for which the self-similar fixed trajectory is not reached.

Fig. 4 | Properties of the gap functions. aGap functions at the VHS obtained from
the RG analysis for q = 2 at perfect nesting (left) and for q = 3 at dph=0.8 in the top
and bottom Hofstadter bands (right). In both cases the gap function changes sign
between the two VHSs v = 0, 1. Herewe focus on pairing with zero total momentum
ℓ =0,with pairings for ℓ ≠0determinedbyMTGsymmetries.bReal-space structure
of the gap function forq = 2 evenunder T̂ 1 and T̂2 andoddunder Ĉ4, shownwithina
single magnetic unit cell (the pattern repeats in all cells). c Profile of the gap
function ΔRx x̂,s;0,s0

for q = 3 as a function of the horizontal magnetic unit cell
separation Rx between Cooper pairs (with lattice constant a = 1). Note that the gap
function oscillates between each unit cell and decays as 1=R2

x at long distances. See
the Supplementary Material for more details. d The projection onto the Fermi
surface of the gap function for q = 2 shown in b as a function of the angle θp along

the Fermi surface within the rMBZ (note that Δð‘Þ
m are equal within each patch m).

Note that the gap crosses zero, indicating nodes in the fermionic spectrum. e, f The
projection onto the Fermi surface of the model gap function for q = 3 for the top
(red) and bottom (blue) bands that agrees with the gap function found in the RG
analysis (color online). Note that the magnitude of the gap function never vanishes
as shown in e, implying that the fermionic spectrum is fully gapped (the sharp
features at θp =0,π are due to the corners of the Fermi surface). The phase of the
projected gap functions, however, winds by ± 4π around the Fermi surface in the
top and bottombands respectively, as shown in f, implying eachΔð‘Þ

m contributes ± 2
to theChern number. Plots (c–e) are given in arbitraryunits as themagnitudeof the
gap function is not determined within the weak-coupling theory.

Table 1 | Summaryof instabilities I=Δ, ~M
½‘�
k , and ~ρ½‘�

k , (SC, SDW, andCDW, respectively) found in theRGanalysis forq = 2 (column
two) and q = 3 at (dph = 1, next three columns) and away from (dph =0.8, last three columns) perfect nesting in the particle-hole
channels

q = 2, dph = 1 q = 3, dph = 1 q = 3, dph =0.8

1/4, 3/4 1/6 1/2 5/6 1/6 1/2 5/6

I Δ(d) ~M
½0�
0 , ~M

½1�
0

~M
½0�
2 , ~M

½1�
1

~M
½0�
0 , ~M

½1�
0 Δ ~M

½0�
2 , ~M

½1�
1 Δ

αI 0.77 0.68 0.71 0.68 0.65 0.65 0.65

Symmetries T̂x , T̂y , Ĉ4ð�1Þ T̂xðω�1=2
3 Þ T̂xðω�1=2

3 Þ T̂xðω�1=2
3 Þ T̂x T̂yðωn

3Þ, Ŝ T̂xðω�1=2
3 Þ T̂xT̂yðωn

3Þ, Ŝ
T̂yðω�1=2

3 Þ T̂yðω3=2
3 Þ T̂yðω�1=2

3 Þ T̂yðω3=2
3 Þ

Forq = 3 the subcolumns indicate the filling corresponding to theVHSs at which the instabilities are found (forq = 2 the same instability occurs at both 1/4 and3/4 VHSfillings). Second row indicates
the critical exponent αI of the corresponding instability and the last row shows its symmetry; values in parentheses indicate the phase picked up by the order parameter under the symmetry, e.g.,
ΔðdÞ !Ĉ4 �ΔðdÞ. Recall that ωq = e

2πi/q.
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Indeed, the SCphasewe find in the top and bottombands satisfies
Δð0Þ
m;v =Δ

ð0Þ
m+ 1;v and Δð0Þ

m;0 = � Δð0Þ
m;1, similar to the q = 2 and q = 1 cases.

Unlike those cases, however, there is no natural interpretation of these
relations in terms of MTG and Ĉ4 symmetries. As shown in ref. 31, in
this case the gap function transforms according to a 3D irrep of the
MTG and necessarily breaks at least one of T̂x or T̂y, and any Ĉ4

symmetric gap breaks all of the MTG symmetries. In order to deter-
mine the symmetries of the resulting degenerate ground states it is
necessary to include fourth order terms in the Ginzburg-Landau free
energy, which goes beyond the 1 loop RG analysis. Computing the
fourth order term using an approximation scheme outlined in
the Supplementary Material, we find that there are three degenerate
ground states symmetric under ωm

q T̂xT̂y with m = 0, 1, 2, and Ĉ4 is
therefore broken. This determines the rest of the Δð‘Þ

m;v order para-
meters for ℓ ≠0, so below we will focus on the form of Δð0Þ

m;v only.
The Δð0Þ

m;v =Δ
ð0Þ
m+ 1;v condition extended to Δð0Þ

m ðpÞ=Δð0Þ
m+ 1ðpÞ on the

full rMBZ implies an additional symmetry that emerges under the RG
flow, which we refer to as a self-similarity symmetry Ŝ. This symmetry
acts on the gap function as

ΔðpÞ!Ŝ T̂xðpÞΔðpÞT̂xð�pÞ ð11Þ

(in contrast to the canonical action of T̂x itself, which acts as
ΔðpÞ!T̂x T̂ xðpÞΔðpÞT̂

T
x ð�pÞ31). Stated another way, Ŝ acts as T̂x on the

particle sector but as T̂
�1
x on the hole sector in the Nambu space of the

Bogoliubov-de Gennes (BdG) formalism. We refer to this symmetry as
self-similarity because in momentum space it implies that the gap
function is independent of the magnetic flavor index and thus repeats
three times (or q times generalized to other q).

Though the self-similarity symmetry Ŝ acts in a simple way in
momentum space, its action on the gap function in the sublattice basis
cks is not trivial and it takes Δð‘Þ

ss0 ðkÞ!
Ŝ
Δð‘Þ
s�1,s0 + 1ðk+QÞ. In the real-space

basis cRs, the action of this symmetry has a highly non-local character:
ΔRs;R0s0 !

Ŝ
e�iQ�ðR�R0 ÞP

X2qZsinc
π
q ðX +2Þ

h i
ΔR,s + 1;R0 +X x̂,s0�1, where

sincðxÞ= sin x=x (see SupplementaryMaterial for details of the change
of basis transformation). In particular, ifΔRs;R0s0 is symmetric under Ŝ, it
decays as 1=ðRx � R0

xÞ2, implying a long-range order and anobstruction
to constructing fully localized Wannier states of the BdG Hamiltonian
(see Fig. 4c).

As for q = 2, our method does not determine the form of the gap
function along the whole Fermi surface, and either a chiral or a nodal
form of the gap within the rMBZmatches the Δð0Þ

m;0 = � Δð0Þ
m;1 relation. In

this case symmetry does not completely fix the form of the gap
function, but we find that the simplest form of the extended gap
function respecting the Ŝ symmetry and matching the RG result at

VHSs can be obtained in the sublattice basis:

Δð0Þ
ss0 ðkÞ=Δ0 1� cos kx � cosðky � ðs � s0ÞQÞ

h i
ð12Þ

Though asmentioned above this gap function cannot be written down
in real space using nearest-neighbor terms, it can be constructed using
an extended s-wave gap function ΔðSÞ

rr0 =Δ0ðδrr0 �
P

aδr,r0 + a=2Þ where a
is summed over all nearest neighbors of the square lattice. The real-
space order parameter can then be obtained by repeatedly applying
the Ŝ symmetry, ΔRs;R0s0 =

P
j Ŝ

j
ΔðSÞ
rr0

h i
. We then obtain the extension

Δð0Þ
m ðpÞ by projecting onto the band basis dpℓα (see Supplementary

Material), and find that the resulting order parameter is fully gapped
and chiral, Δð0Þ

m ðpÞ∼ e± 2iθ with ± for the upper and lower bands
respectively, contributing a Chern number of ± 2 (see Fig. 4e–f). An
important consequence of the Ŝ symmetry is the three-fold degen-
eracy of the BdG spectrum of the fermionic excitations, which
therefore implies that the total Chern number of this phase is ± 6.
We verify this numerically for the T̂xT̂y symmetric gap function by
computing the BdG spectrum with cylindrical boundary conditions
periodic in the x direction and open in the y direction (taking
advantage of the gap function being short-ranged in the latter). The
resulting spectrum is shown in Fig. 5.

Discussion
To summarize, we have investigated the nature of electronic instabil-
ities on the square-lattice Hofstadter-Hubbard model using a weak-
coupling renormalization group analysis to characterize competing
electronic orderswhen the Fermi level is brought near amanifold of 2q
VHSs and the flux per unit cell isΦ = 2πp/q. The RG analysis allows for
the treatment of competing instabilities on equal footing, revealing
how the progressive elimination of high energy modes renormalizes
the bare repulsive interactions and opens low energy instability
channels. One of the main results of our analysis is the demonstration
of the existence of self-similar fixed trajectories of the RG flow related
to the RG equations at zero field. Remarkably, we find that the self-
similar fixed trajectory is reached by the RG flow for q = 3 (but not for
q = 2) when the SC instability occurs. The existence of a self-similar
structure in the RG flow of Hofstadter systems is a novel result that
illustrates the power of themagnetic translation group in constraining
the low energy instabilities.

We analyzed the RG equations for two representative cases, with
the results summarized in Table 1. First, for p/q = 1/2 corresponding to
the TR-symmetric π-flux phase we have identified nodal d-wave
superconducting instabilities near 1/4 and 3/4 fillings. The nodal
order parameters are odd under the magnetic rotation Ĉ4 and have
unusual real-space structure (see Fig. 4b) giving rise to a gapless
spectrum of Bogoliubov quasiparticles that manifest themselves in a

Fig. 5 | Edge modes in the BdG spectrum of the Hofstadter SC for q = 3.
Cylindrical boundary conditions open in the y direction were taken for the self-
similar T̂x T̂y symmetric gap function Eq. (12) at a 5/6 and b 1/6 filling (chemical
potential μ = ± 2.44, respectively, with t = 1 and Δ0 = 0.02 in a and 0.2 in b, taking
100 extended unit cells along the y direction; see Methods for details of the BdG
Hamiltonian and Supplementary Material for more details of the calculation). The
spectra are colored according to a weighted inverse participation ratio with green
and red indicating states localized to the top and bottom edges of the cylinder,

respectively, while blue indicates bulk states. In a there are pairs of crossing edge
modes at zero energy around px = ± 2π/9, and we find that each is three-fold
degenerate, corresponding to Chern number 6. In b there are six right-moving and
six left-moving zero energy edgemodes are located around px = ±π/6, giving a total
Chern number −6. Observe that the edge modes of the same color move in
opposite direction in a and b. Localized edgemodes at higher energies that do not
cross zero energy are the normal state edge modes that connect to higher energy
Hofstadter bands not shown in the figure.
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linear-in-temperature specific heat. Importantly, unlike the zero flux
case, the SC instability is leading evenwhen thenesting is perfect in the
density wave channels. Second, for p/q = 1/3, 2/3 corresponding to ± 2
π/3-flux lattices our analysis uncovers the existence of a novel chiral
topological superconductors near 1/6 and 5/6 fillings. These TRS bro-
ken paired states break Ĉ4 symmetry while preserving a Z3 subgroup
of theMTG, thus realizing aZ3 Hofstadter superconductor classified in
ref. 31. Having a gapped bulk spectrum, these novel phases are char-
acterized by a bulk Chern number topological invariant C = ±6, which
accounts for a chiral phase with 6 net chiral Majorana edge modes. A
universal experimental signature of suchphases is a quantized thermal
Hall coefficient κxy=T =6× ðπ2k2

B=3hÞ. Even more remarkably, the
chiral phases occur when the system flows to the self-similar trajectory
of the RG equations and as a result possess a self-similarity symmetry Ŝ
defined in Eq. (11) that forces the real-space order parameters to be
long-ranged, providing another experimental signature of these pha-
ses. Moreover, since the self-similar trajectory is present for all q, the
self-similar HSC instability is viable for all values of the magnetic flux.
The prediction of unconventional nodal and self-similar topological
superconductivity in partially filled Hofstadter bands from intrinsic
electronic interactions are the two main results of this work.

In addition, we found several closely competing spin density wave
instabilities that break MTG symmetries and that may be of experi-
mental interest in their own right. Below the transition temperature,
these states can coexist with the HSC states and can give rise to rich
and complex phase diagram similar to those of high Tc
superconductors114.Moreover, themulti-component natureof theHSC
order parameters implies that vestigial density wave orders may
appear in the vicinity of the SC instability and can provide an experi-
mental signature of these phases115.

Recently, Hofstadter systems have experienced a renaissance
caused by the advent of 2D moiré superlattices realizing large mag-
netic fluxes in laboratory accessible magnetic fields. For nearly four
decades, Hofstadter bands have been predominantly studied as plat-
forms for the quantum Hall effect, following the seminal work of
Thouless and collaborators116 that showed that it is a consequence of
the topology of filled Hofstadter bands. However, the connection
between Hofstadter systems and the quantum Hall effect is but one
aspect of the physics embodied by fractal electronic bands. This work
invites a broader view on the potentialities of Hofstadter quantum
materials. Rather surprisingly, our RG analysis predicts that super-
conductivity can be driven by repulsive interactions in Hofstadter
systems, surprising not only just because of the role played by elec-
tronic interactions, but also because it implies the formation ofCooper
pairs in large magnetic fields that cause a strong orbital effect com-
monly viewed as detrimental for superconductivity. Our analysis
therefore establishes a newmicroscopicmechanism for the realization
of reentrant superconductivity inHofstadtermaterials, which could be
within near-term experimental reach in moiré superlattices.

In particular, our theoretical findings on the square-lattice Hof-
stadter-Hubbard model may directly inform the realization of reen-
trant Hofstadter superconductivity in a number of experimental
platforms, including optical lattices78,81–83,86 and twisted cuprate moiré
systems105,106. Moreover, the RG framework developed here for the
square lattice can be directly generalized to other Hofstadter systems.
A particularly interesting direction is to extend this formalism to
effective lattice models describing the band structure of magic angle
twisted bilayer graphene where 2π/3 and π flux lattices can be realized
at accessible magnetic fields B ~ 8 T and B ~ 12 T, respectively. Similar
fields would be required away from the magic angle in which case the
bands are not as flat and our weak-coupling analysis may apply more
directly. In that regard, the experimental observation117 of reentrant
behavior in twisted bilayer graphene and other moiré systems with
small Zeeman splitting (≲2meV)mayoffer a promising route to search
for emergence of Hofstadter superconductivity, enabled by the

competition of electronic orders in the complexmanifold of VanHove
singularities present in moiré Hofstadter superlattices.

The RG theory can also be extended to the case of spin polarized
bands for materials in which the Zeeman splitting is strong. In that
regime triplet Hofstadter superconductivity may become possible.
Recent observations of triplet SC in twisted trilayer graphene118,119 as
well as Bernal stacked bilayer graphene120 indicate that this may be
another promising route to realizing HSCs. Of course in all these
systems, including TBG, strong correlation effects may play an
important role, which are known to affect the Hofstadter
spectrum75,121,122 and have been seen to lead to fractional and ferro-
magnetic states in experiment in the Hofstadter regime13,14,21.
Recently, Hofstadter superconductivity has also been studied in the
strong coupling limit using a mean-field theory123. Including these
strong coupling effects in the RG framework is likely necessary to
properly study Hofstadter superconductivity in magic angle TBG due
to the presence of flat bands. This is a challenging task we leave for a
future study, but we expect a nontrivial interplay of HSC with these
strongly correlated states that can give rise to even more uncon-
ventional phases.

Methods
In this work we extended the standard parquet RG analysis of VHS
patch models previously used to study SC from repulsive interactions
on square and hexagonal lattices44,45,47,56,58,62,107 to the HH model with
half-filled Hofstadter bands. The details of this calculation are pre-
sented in the accompanying Supplementary Material. In this analysis
we introduce test vertices corresponding to all possible instabilities of
the Fermi surface and study their RG flow. The resulting flows are
shown in Fig. 2. The chief advantage of this method is that it allows us
to go beyond mean field and study all possible instabilities on equal
footing, letting the system decide which instability wins. Throughout
the RG analysis we make extensive use of the MTG symmetries to
identify different channels of the RG flow.

Since the RG calculation only determines the order parameter at
the VHS points, it is necessary to extend it in some way to determine
the nature of the resulting phase (chiral or nodal). In principle, one
needs to extend the RG calculation to the whole BZ, which is compu-
tationally prohibitive already for moderate q. Even solving the self-
consistent gap equation for a constant Hubbard interaction numeri-
cally is quite challenging. We therefore adopt a simpler approach and
construct an ansatz gap function in real space in the crσ basis first (e.g.,
standard s- or d-wave gap functionswith up to nearest-neighbor terms,
etc.) consistent with the symmetries of the ground state, and then
projecting onto the Hofstadter band of interest via dkασ =

P
sUs

αðkÞcksα
with theband indexαfixed. Thedetails of this projection arepresented
in the Supplementary Material and the resulting gap function exten-
sions are presented in Fig. 4.

With the gap function extension we can then study the
Bogoliubov-De Gennes (BdG) spectrum of the fermionic excitations
of the system, including its topological properties. The BdG spec-
trum is also needed to deriveGinzburg-Landau free energy. As shown
in ref. 31, due to the HSC order parameter belonging to a multi-
dimensional irreducible representation of the MTG for q > 2, it is
necessary to expand the free energy up to fourth order in powers of
the order parameter (the one-loop approximation in the RG being
equivalent to a second order approximation of the free energy). We
use this in order to establish the MTG symmetry of the q = 3 HSC
phases, as outlined in the Supplementary Material. The BdG Hamil-
tonian with the gap function extension expressed in real space also
allows us to study the system on a cylinder (i.e., with periodic
boundary conditions along the x direction but open in the y direc-
tion) in order to identify the topological edge modes. The resulting
edge modes are shown in Fig. 5, with the details of the calculation
presented in the Supplementary Material.
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