nature communications

Article

https://doi.org/10.1038/s41467-022-35248-8

Theory of optical axion electrodynamics and
application to the Kerr effect in topological
antiferromagnets

Received: 19 June 2022

Accepted: 23 November 2022

Junyeong Ahn®"' , Su-Yang Xu®?2 | & Ashvin Vishwanath'

Published online: 09 December 2022

M Check for updates

Emergent axion electrodynamics in magneto-electric media is expected to
provide novel ways to detect and control material properties with electro-
magnetic fields. However, despite being studied intensively for over a decade,
its theoretical understanding remains mostly confined to the static limit. Here,
we introduce a theory of axion electrodynamics at general frequencies. We
define a proper optical axion magneto-electric coupling through its relation to
optical surface Hall conductivity and provide ways to calculate it in lattice
systems. By employing our formulas, we show that axion electrodynamics can
lead to a significant Kerr effect in thin-film antiferromagnets at wavelengths
that are seemingly too long to resolve the spatial modulation of magnetism.

We identify the wavelength scale above which the Kerr effect is suppressed.
Our theory is particularly relevant to materials like MnBi,Te,4, a topological
antiferromagnet whose magneto-electric response is shown here to be
dominated by the axion contribution even at optical frequencies.

In a medium where spatial inversion and time reversal symmetries are
both broken, magnetic and electric fields couple in a way that is fun-
damentally different from the electromagnetic induction described by
Maxwell’s equations in vacuum, thus leading to exotic electro-
dynamics. A topic of particular interest in magneto-electric coupling
phenomena recently is axion electrodynamics. Axion electrodynamics
is theoretically proposed to be realized in a class of topological
materials called axion insulators'® for sufficiently slowly oscillating
electromagnetic fields. In particular, the static axion magneto-electric
coupling is quantized by a multiple of the fundamental constant €/
2h"°, which originates from the half-quantized Hall conductance of the
topological surface states. While such a quantized magneto-electric
coupling has not yet been directly observed, experimental progress
has been made to observe its consequences in the static limit'°¢.

In contrast to the static limit, the emergent axion electrodynamics
at generic optical frequencies remains largely unexplored theoreti-
cally. Formulating a theory of optical axion electrodynamics has to
overcome the challenge that the axion coupling is ill-defined in peri-
odic three-dimensional systems, making it hard to calculate and
understand. The static axion angle can be calculated by the Chern-

Simons integral of the non-abelian Berry connection®"'® at the cost of
being gauge dependent. Despite its gauge dependence, the Chern-
Simons integral is well-defined as an angular variable taking a value
between O and 2, because a gauge transformation changes its value
only by a multiple of 2m. This is a manifestation that the static surface
Hall conductance changes by a multiple of €%/h under deformations.
However, at optical frequencies, a similar approach does not seem
feasible. This is because the optical surface Hall conductivity is fre-
quency dependent, and thus a generic surface deformation changes
the surface Hall response by a non-quantized amount. Owing to this
difficulty, theoretical understanding of the optical axion electro-
dynamics has remained elusive to date®.

In this paper, we make two important steps toward the complete
formulation of the optical axion electrodynamics. First, we show that
a proper definition of the optical magneto-electric coupling allows
us to calculate the optical axion angle in a fully gauge-independent
way in a system with finite thickness. Although the optical axion
electrodynamics is a part of the linear-response optical magneto-
electric effects, it is distinguished from the other contributions. Non-
axionic magneto-electric effects are described within the well-
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established theory of gyrotropic birefringence and natural optical
activity, which are based on the bulk current response’2.. On the
other hand, the optical axion electrodynamics is a surface phe-
nomenon and thus is not captured by those theories”. We therefore
define the well-define optical axion angle by analyzing the surface
response. Using the well-defined axion angle, we can understand the
optical axion electrodynamics of thin films and also that of bulk
crystals by increasing the thickness. Second, in systems with peri-
odic boundary conditions along all three directions, we find the
optical axion angle at high optical frequencies can be estimated by
the optical layer Hall conductivity that we define in the main text.
These findings present advantages in numerical calculations as well
as conceptual advances.

Our development of a theory of optical axion electrodynamics
opens the door to understanding novel axion-induced optical phe-
nomena. Here we provide a concrete example. Magneto-optic effects
make electromagnetic waves powerful probes of the magnetic struc-
ture in materials. Conventionally, both Kerr and Faraday effects are
attributed to the optical Hall effect and thus commonly perceived as
probes of net magnetization’>?. Although not well known, previous
theoretical studies proposed that the magneto-electric effect can also
lead to the Kerr effect, providing a novel way to probe fully compen-
sated antiferromagnets whose symmetries strictly prohibit the Hall
effect and net magnetization’**%, Still, however, there are two
aspects that need further investigation. First, axion electrodynamic
contribution to the Kerr effect has not been well understood. Second,
since previous studies have focused on three-dimensional bulk sys-
tems, magneto-optic Kerr effects in quasi two-dimensional antiferro-
magnets remain elusive. We present theoretical analysis revealing the
precise conditions for realizing the optical axion electrodynamic Kerr
effect as well as quantitative numerical analysis allowed by our gauge-
invariant formulas.

Our results apply broadly to both topological and non-topological
media because optical magneto-electric effects, as non-quantized
phenomena, are not sensitive to the topological nature of the ground
state. Therefore, our work provides a theoretical basis for the detec-
tion and manipulation of antiferromagnetism in a large class of
materials, thus having potential for wide applications to anti-
ferromagnetic spintronics and the study of magnetic structure in
quantum materials

Meanwhile, topological antiferromagnets need special attention
as they are ideal platforms for optical axion electrodynamics. To
understand this, we note two aspects. First, it is desired to have anti-
ferromagnets having bulk symmetry that reverses an odd number of
spacetime coordinates and is broken on the surfaces (e.g., spatial
inversion symmetry), because such a symmetry suppresses bulk
magneto-electric effects but not the axion magneto-electric effect.
This condition is similar to the requirement of the quantization of the
static axion angle but additionally requires that the quantizing-
symmetry is broken at the surface to allow for a nonzero value. Sec-
ond, spatially spreading of electronic quantum states is needed, in
order to show a response distinguished from that of decoupled
layered or Mott antiferromagnets. This condition is again satisfied in
topological antiferromagnets. We thus apply our theory to a model of
MnBi,Te,4, which is the only experimentally realized axion topological
antiferromagnet to date, and show that the Kerr effect in this material
is significant.

Results

Optical magneto-electric coupling

Motivated by the equivalence between the surface Hall conductivity
and the axion angle in the static limit, we study the surface current
response to define the optical axion angle. We consider currents
generated by electromagnetic multipole moments. Electromagnetic
responses from multipole moments are smaller for higher order

moments”: electric dipole P;> electric quadrupole Q; and magnetic
dipole M;> higher orders. Here, we consider only up to the electric
quadrupole-magnetic dipole order, giving the leading-order magneto-
electric effect. The bulk current density is related to the multipole
moments by: J;=P; — $0;Q; + €;;0;M,. While electric quadrupole and
magnetic dipole moments do not generate macroscopic currents in
macroscopically homogeneous lattice systems, they generate currents
on the system boundary where the material property changes spatially.
The induced multipole moments have the following form in the fre-
quency domain:

. 1 . 7 el
P;= EJ:(X,J — iXHE;+ E%:(a,.jk — i )V E; + Ej:(c,.j - iG))B;,
Q= (@ +iay)Ey, )
k

M= (G +iGyE;,
7

where ;=X and x; = — x}; are the electric susceptibility tensors, G
and G’ are magneto-electric coupling, and Ay = Ay and ax = ay; are
electrlc quadrupolar susceptibility tensors. Here, we are interested in
the magnetic magneto-electric effects described by G; and @jir which
occur only when time reversal symmetry is broken while being
compatible with spacetime inversion PT symmetry. Therefore, we
assume PT symmetry to neglect the complications arising from the
bulk Hall conductivity and natural optical activity, both of which
are excluded in this symmetry setting, i.e., x;=0 and G}j:a,-jk:O
(Table 1). This assumption does not affect our key results (see Methods
for discussions without PT symmetry). As we show below, magneto-
electric effects occur in combination with electric quadrupole
responses at optical frequencies, requiring the consideration of the
combination of G; and aj.

Let us consider the surface at z=0 of a three-dimensional
homogeneous material with the outward normal direction Z (Fig. 1).
The surface current density j° = as/ 22 dzJ, where d; is the character-
istic thickness of the interface wﬁere response functions change
rapidly as functions of z, is related to the multipole moments through

jf((l)) = Z |:6ij(0)) + Z g 6‘kz'l(Saj/'lz((“)):| ekziEj(w)
o : @
+ 3" [05(@) — i015(@)| E,(@),
J

where 8f=f(-dy/2) - fidg2) and f =[f(—d,/2) +f(d,/2)]/2 are the dif-
ference and average of the material property f(z) across the interface,
and oy and oy = i(€j Ty + €T 1) + wS;j are the bulk conductivity tensors
defined by Ji= o,E +3, koykq,Ek+ O(qz) for light wave vector g, where
Ty=Gy— 3655 %-10u — 0 0 1-1 Gy aNd Sy = (@ + @y +
aky)/?’w 21

Table 1| Symmetry properties of electromagnetic linear
response functions

Tensor P T PT Phenomena Kerr  Faraday
i + o+ 4 Refraction and absorption No No
X; = = Hall effect Yes Yes
Gj.aj - -+ Optical magneto-electric effect  Yes No
Gu,a,,k + - Natural optical activity No Yes

Response functions are defined in Eq. (1). The sign in the second column shows that parity of the
response functions under spatial inversion P, time reversal T, and spacetime inversion PT. Kerr
and Faraday in the last column indicate the optical rotation of the light polarization plane in
reflection and transmission, respectively (i.e., the Kerr and Faraday effects). Kerr and Faraday
effects are allowed when T and PT symmetry are broken, respectively®>°**,

Nature Communications | (2022)13:7615



Article

https://doi.org/10.1038/s41467-022-35248-8

Kerr rotation

surface current (%

Magneto-electric
medium

birefringence!

|

Fig. 1| Optical magneto-electric effect. Magneto-electric (ME) coupling leads to
different electrodynamics within the bulk and on the surface. Inside the magneto-
electric medium, two linearly polarized light propagate with different speeds
because the wave equation is modified by origin-independent magneto-electric
coupling T; and electric quadrupole susceptibility Sy (this effect is called gyro-
tropic birefringence”). On the surface, axion magneto-electric coupling 8% comes
into play additionally, contributing to the surface Hall conductivity. This is most
readily seen by writing the action for optical axion electrodynamics allowing for a

ME-induced surface conductivity

GY=09+(T&S)
N

axion electrodynamics  gyrotropic
birefringence

spatially varying 6 parameter, Sox = (€2/21th)[6(x)E-B. Integrating by parts in the
presence of an interface along the z direction where the axion angle jumps at the
interface 66 and identifying the coefficient of A; with the surface current density we
find J= — (¢2/2mh)66z x E. Thus an electric field parallel to the surface sets up a
current in the orthogonal direction along the surface, indicative of a surface Hall
effect. Soa does not modify the propagation of electromagnetic fields within the
bulk medium where 6 does not vary spatially.

We neglect the 6F term because it is a bulk response whose con-
tribution to the interface vanishes as d;~> 0. The form of the surface
current density in Eq. (2) suggests defining surface-sensitive magneto-
electric coupling by

G (@)= Gy (w) — wa,yzw)
3)

1 /
Gy (0)= Gy(@) + 5 0, (@),

where the superscript (2) explicitly shows that these quantities depend
on the choice of the surface normal direction [(z) and (-2) are the same,
though]. The zz component of this surface-sensitive magneto-electric
coupling is defined from the response of the surface charge. Using
p=-V. P+ 30,0,Q;+ ..., we obtain pS=G,B;+%(a),, — ay,)B, +
§a,,,B, — zszy + ... where the ellipsis includes the electric dipole
term Xuik; the symmetric (OjEk + OiE)) terms, and higher-order multi-
pole terms. From this, we define

ngz)(w) =Gy (w)+ %w [aj/;xz(w) - a:\fyz(w)] “@)

as well as G3;) =G, + wa,,,/2 and G})) = G, — wa,,, /2.

While varlous components of the magneto -electric coupling are
related to the surface optical conductivity, there is a unique compo-
nent that manifests itself only at the surface: the axion angle. We define
the optical axion angle by the trace part of G;7.

09(w) = n%l 23: G?(w) (5)
eZ 3 —~ i .
To see that this only manifests itself at the surface rather than the bulk,
we note that the bulk current response by the magneto-electric and
electric quadrupole susceptibilities is determined only through 7; and
Sii- Because of this, previous studies focusing on bulk magneto-
electric effect did not capture optical axion electrodynamics®>. See
Supplementary Note 1 for more details on the bulk response. The
surface-sensitive magneto-electric coupling is fully determined by

these bulk-response quantities and the axion angle:

G = S 070 T) - 25, 0),
=
GE@= o 07 (@) Ty (@) + %sxyz«»»

2 (6)
z) (2)
GA(w)= 2nh0 (w) T,,(®),

G”(w)— Tj(w) — ,,k(w) o forizjand j#3.

Since Tj; is traceless, it does not contribute to the trace of G(Z) Note
that G(Z)(w) transforms as a tensor under magnetic layer group actions
but not under the full three-dimensional magnetic space group
actions.

Magneto-electric coupling with open boundaries in one
direction
Defining the combination G’ of G; and aj, has an advantage in
practical calculations as well as in the formulation. As Gf.f) characterizes
the surface current response which is measurable, it admits a gauge-
invariant form in three-dimensional lattice systems with open bound-
aries along one direction, or in quasi-two-dimensional systems. This
nice property is absent in the diagonal magneto-electric coupling G,
making it hard to calculate.

The bare magneto-electric coupling G;;=0p/0B; and ay =
0Qy/OE; at zero temperature have the following form according to
linear response theory (see Methods).

Gj(w)= Z f”’" Ren|P|m (m|M;|n),
wm @mn

f ) @)
Ty(@)= — Z p— I m (P m) (m|Qeln),
where V is the volume of the system, n,m are indices for energy
eigenstates with eigenvalue fiw,, fun =f. —fm is the difference between
the Fermi- Dirac distribution of the n and m states. P,= —ei'/V,
M = — (e€ ,dr ) /2+m )/V, and ij— — el /V are electric dipole,
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magnetic dipole, and electric quadrupole density operators, respec-
tively, where ¥ and v are the position and velocity operators of
electrons, and rr’ is the spin magnetic moment operator. Equation (7)
can be calculated for molecular systems”?, meaning finite systems
with open boundary conditions along all directions, by using the real-
space representation of f and the relation v= — ik '[¢, H], where H is
the Hamiltonian of the system.

In periodic systems, however, G; and ay, are not well defined
separately because the position operator is not well-defined because
the position is not uniquely defined. This manifests through the
momentum-space representation of the position operator
W IT1Prk) = — EniOx Ok + Orerc (Ui |10k |ty ), whose diagonal matrix
element is not well defined because of 9, 6y,. On the other hand, the
diagonal matrix elements of the position operator do not appear in the
response functions that have a well defined physical meaning in peri-
odic systems. Tj; and Sy are such examples that characterizes the bulk
current response”. Since G® characterizes the surface response, one
can expect that it is well defined in quasi-two-dimensional periodic
systems.

After doing some algebra that we relegate to Methods, we can
write G’ in two-dimensional momentum space as

e 1, yr oz o s
GO(w)= W Z wfniike[r;mupm(kmkyﬂ75(,),2”2:»”)+m§\zpmk”ky))}
n#mk, k, - mn
e f, 1, vz ozn N
@ (gy= £ nm y it S
Gy (@) W 22 4 Omn —ake |:rnm<wm(kx,ky)|2 ("7 +770Y) +my|wn(kx,ky)>}
e 1
W= S T re|d S (i - st - 5o 9) i
hv n#mk .k, Oy — @ 2 PiEy#E

®

where ri = (@, |'|¢,) and vi,,=(,|0'l¢,) are matrix elements of
the position and velocity operators, |t/1,1(kxyky)) is the Bloch state, the
subscripts n,m and p are band indices. While the position operator
matrix element is not well defined in momentum space®, the diagonal
matrix elements of 7 and 7 do not appear in Eq. (8), so that the surface-
sensitive magneto-electric coupling is well defined in two-dimensional
momentum space. Combining equations in Egs. (5) and (8), we can
obtain the optical axion angle. In simple tight-binding models where #*
commutes with 2, GZ)(0) reduces to the expression of G,(0) derived by
Liu and Wang®. To our knowledge, our formulas represent the first
expressions for calculating the diagonal components of the optical
magneto-electric coupling in crystalline (periodic) systems.

The form of Gf) and G;) suggests that their orbital magneto-
electric part may be interpreted as a real-space dipole of the Berry
curvature. This idea works exactly for two-band systems in the limit of
decoupled layer systems, where the matrix element part can be written
as the product of the Berry curvature F,,= — 2Im[r,r},] and the z
component of the position eigenvalues r; or r3,. We apply this idea
below to the case where the z direction is also periodic.

Intra-cell magneto-electric coupling and optical layer Hall
conductivity

In fully periodic lattice systems where the z direction is also periodic, it
is hard to calculate the full orbital part of Gﬁf)(w) because 7 is not well
defined in momentum space. Nevertheless, we can still define and
calculate the magneto-electric coupling of the unit cell, which we call
the intra-cell magneto-electric coupling. Note, this treatment will be
necessarily approximate, in contrast to our previous discussion of the
slab geometry, but provides an physical understanding for the results.
For example, the use of the intra-cell magneto-electric coupling makes
the relation concrete between the axion angle and the anti-
ferromagnetism in inversion symmetric systems. Ultimately we must
compare the results between this approach and the previous slab
calculation as we do in another section below.

Let us begin by giving a physical intuition that a nonzero axion
angle is natural in a fully compensated antiferromagnet®’. To see
this, recall the analogy between electric polarization in 1D and the
axion theta angle 6 in 3D. The former can be defined in a system
free of net charge, by stacking alternate positive and negative
charges. Similarly, if we stack alternate planes with Hall con-
ductance J_rg)’;g, such that the net Hall conductance vanishes, the
axion magneto-electric coupling becomes well defined and is the
analog of electric polarization of the alternating planes. In fact,
with an applied magnetic field perpendicular to the planes, the
induced polarization from having alternating charges in the ig)’jy
layers, leads to a finite electric polarization which is readily
calculated as gﬁ,rSaz/az, where 8a, is spacing between alternating
antiferromagnetic planes versus the vertical size of the unit cell
a,. The charge in each flux quantum area is gy(h/e). For an anti-
ferromagnet where spacing between planes=1/2a,, this is
just 6=2mg¥ /2.

To present a more detailed analysis, let us decompose the posi-
tion operator into the intra-cell polarization and unit cell position parts
by rz, =A%, +R;, .. Namely,

o [P 11) = Siie D Wkl W) A () (Wi | Prae)
Ba

)
+ Z(lpmk’ IwaR)Rz<waR|wnk>
aR

where |w,g) is the Wannier state with the collective index a for spin
and orbital (cf. n and m are band indices), [p) =N Y% Y g e*Rlw,r),
and A%, (K)= Y g (WpolF*|weg)e™®. The second term in Eq. (9) vanishes
for n#m as one can see by writing it as —i0,,,,0;: 6y - This decom-
position is independent of choosing the basis a within the unit cell,
where each unit cell is labeled by a given lattice vector R. However, the
decomposition depends on the choice of the unit cell, which we
discuss below.

The intra-cell polarization term, the first term in Eq. (9), defines
the magneto-electric coupling of the unit cell. This intra-cell magneto-
electric coupling depends on the choice of the unit cell. In our case,
choosing a unit cell corresponds to fixing the value of the Wannier
centers (w,o|7 |w,e), Which is ambiguous by respective lattice trans-
lations of the Wannier states |w,q). A physical interpretation of this
multi-valuedness is similar to that of electric polarization®> The
magneto-electric coupling depends on how we open the boundary,
and there exists a preferred choice of the unit cell for each boundary
condition (Fig. 2(a)).

The unit-cell position term has the form ZRIRZa)ﬁ’y(RZ), where
oY, =(0,,—0,)/2 is the Hall conductivity, and o)’zv(@;) =
_ezfrl V_IZn;tm,kx,kyfnmwmn/(wmn - w)illm[rﬁm’%ﬂpﬁz , and P =
20k, R, |War) (Wagl 18 the projection to R®. This term is also multi-
valued'in periodic systems because the unit cell position R is not
uniquely defined in periodic systems. This part, however, does not
contribute to the magneto-electric coupling when the Hall con-
ductivity of the unit layer vanishes, which is the case in PT-sym-
metric systems. When the boundary is introduced, the Hall
conductivity of the surface unit layer can be nonzero even when the
bulk Hall conductivity vanishes (Fig. 2(b)). This change of the R*
term is the main source of the difference in the magneto-electric
couplings between finite-size systems and periodic lattice systems.
This effect is significant especially in the static limit of axion insu-
lators, where the emergent Dirac surface states modify the low-
frequency surface Hall conductivity in the order of e*/2h.

As we derive below, in inversion-symmetric even-layer antiferro-
magnets, the intra-cell contribution to the magneto-electric coupling
is simplified to the optical layer Hall conductivity. Namely, the optical
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Fig. 2 | Intra-cell and unit-cell-position contributions to optical magneto-
electric coupling. a Preferred choices of the unit cell with open boundaries.
Arrows represent the average moment of a layer, where we bipartition the degrees
of freedom within the unit cell into the upper and lower parts, each of which defines
what we call a layer. The left-hand-side and middle even-layer systems are related by
spatial inversion symmetry and also by the translation of the blue-arrow layers by a

Wave function of
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lattice constant if the deformation of the electronic states at the surface is
neglected. The right-hand-side odd-layer system is inversion symmetric. The
inversion centers are shown as yellow stars. b Hall conductivity of the unit cellin the
presence of surface states. The vertical displacement R, of a unit cell times its net
Hall conductivity contributes to diagonal magneto-electric coupling G, G;,j,’,
and G2).

axion angle is

%@”(w)z %aza}(;'(w) + ; R o’ (R,) for inversion-symmetric AFM,

10)

where q, is the vertical lattice constant, and o, is a three-dimensional
conductivity taking the unit of conductance (unit of €%/h) divided by
the length. As for the definition of layers, we note that there are two
inversion-invariant values of the vertical displacement z within a,. We
refer to the two quasi-two-dimensional bipartite regions centered at
those two invariant z values as layers (Fig. 2(a)). The layer Hall
conductivity is then defined as 0%}l = (0" — 0f4)/2 from the bulk
optical Hall conductivity projected to the single layer [=u, d:

Y Ll ).

H,l

0, (W)= Py

y _ nn
hv ek, Wy — @

an

where Pix’n(k) = Za,k;r;nellayers <¢nk|waR) <waR|¢’n’k>' |waR>5 are

inversion-symmetric Wannier states, and r§'R=(waR|i; |wer) is the
Wannier center.

To obtain Eq. (10), note that the unit cell for even-layer systems is
symmetric under the combination of inversion and a lattice translation
of either the u layer by —a, (or the [ layer by + a,) (Fig. 2(a)). If we focus
on the intra-cell part (the A part), the combined symmetry gives a
constraint 67 (w) = — 69 (@) — a,0f,¢(w), where the last term is due to
the transformation property of the axion angle 66 (w) =dzo,’;’y(w)
under the translation by a vector d. As we consider antiferromagnets
with zero net Hall conductivity, such that ofj?= — ol = — o'}, we
arrive at Eq. (10). Another useful way of understanding this result is to
think of the electric polarization generated by applying a uniform
magnetic field, and then the displacement of layers of one sign of the
Hall effect obviously contributes to change in electric polarization, as

we explained at the beginning of this section.

Magneto-optic effects in fully compensated antiferromagnets

The optical axion angle manifests directly through the magneto-optic
Kerr effect. To gain some intuition for this, recall that the change in
axion angle at the surface leads to a surface Hall effect

O3y = (66/2m)e? /h. Clearly, such a surface Hall conductance will lead to
a Kerr effect. We present a more systematic analysis below.

Let us consider the reflection at the single interface between
two media1and 2 (Fig. 3). For simplicity, we assume that both media
have M,T, Cs,, and PT symmetries, which are shared by magneto-
electric materials Cr,O; and MnBi,Te,. We also assume normal
incidence (i.e., light is incident along —2). Then there is no bire-
fringence because of the symmetry we require, so the propagation
of light within each medium is then characterized by a single
complex-valued refractive index n,, where p=1,2 labels the two
media (See Eq. (6)).

The electric field in medium 1 consists of incident and reflected
fields E; and E, while that in medium 2 is the transmitted field E,

E = E+E =(1+nFE,

) (12)
E,= E =(E,

where r and t=1+r are 2 x2 Jones matrices for reflection and trans-
mission, respectively. E; = E, at the interface because electric fields are
continuous by Faraday’s law, because we consider normal incidence
such that electric fields are parallel to the interface. The contribution
from the surface conductivity is encoded in the boundary condition of
the magpnetic field at the interface.

B'=B +B" +y2 %} 13)
Here, we consider only the surface currents induced from the bulk, i.e.,
zxj* =05 E, where 0%,=GZ*~* — GZ*~'. By solving the boundary
condition equations, we obtain

(ny — ny)(ny +ny) — (pocaf(y)z
(o€, +(ny +1y)?
21, (1C03,)
(o035, +(ny +ny)*

XX

14)

rxy

Magneto-electric coupling appears in the reflective Jones matrix
through the surface conductivity, which is a manifestation that the
Kerr effects here are surface phenomena.

The complex Kerr angle is defined by ¢y=@+ing=
tan*l(rxy/rxx). Its real part measures the rotation of the light
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Fig. 3 | Reflections by PT-symmetric magneto-electric media. We assume PT
symmetry to exclude natural optical activity, for simplicity. a Single interface. The
light propagation within each medium is determined by the refractive index n and
origin-independent magneto-electric coupling T; and electric quadrupole sus-
ceptibility S tensors. We consider the case where no birefringence occurs such

E,B ... E, B

+
(n,T,S)

et\ /e

(n, T,,S,)

+

V4
+

that the light propagation is described by a unique refractive index in each medium.
b Double interfaces. Infinite reflections occur between the top and bottom surfaces
of medium 2. Light obtains the complex phase ¢ = kd = n,wd/c while propagating
the distance d in medium 2.

polarization plane while its imaginary part measures the circular
dichroism, i.e., the intensity imbalance between the reflected left and
right circularly polarized light. The Kerr angle is O(uqcos,) in general,
but it can be much enhanced when n; = n, because of the suppression
of Iy

When the sample thickness is much larger than the wavelength of
light, it is enough to suppose that reflection occurs at a single interface.
However, when thickness d is comparable to or less than wavelength A,
which is the case particularly relevant for thin films, we need to con-
sider the response from the whole sample including top and bottom
surfaces (cf. When the photon energy is smaller than the band gap,
double interfaces can be relevant even for d>A for an insulating
medium' because then light incident on the top reaches the bottom
without attenuation.).

To study this case, we consider three media with refractive index
n,, where u=1,2,3, as shown in Fig. 3b. We again assume M,T, Cs,, and
PT symmetries for each media. The Jones reflection matrix of the
sample for light incident from medium 1 is then the infinite sum of
multiple reflections.

r=rp+ @014y (1— 0 ry) A+, as)

where we use trg=1+rrg and t;=1+r}, and @=n,wd/c is the
complex-valued phase obtained by the one-way propagation through
the sample thickness d. Here, the subscripts T and B indicate the top
and bottom of the sample, and the prime indicates the process where
the light is incident to the top surface from below (we follow the
notation in ref. 13). See Methods for the expression of Jones matrices
rr, r'y, and rg. Similarly, for transmission,

t=+rg)(1— 0ryry) (1 +rp). (16)

Note that t#1+r when ¢ #0.

Considering the case where only medium 2 is magneto-electric,
we set G2 = G273 =0 and G&? = G # 0. We first consider |6n| < |¢],
where én = n; — ny. The Kerr and Faraday rotation angles are then given

by
20,11, cG)
N O
n-n +(HoCGyy)
@ o
tan gy = — HoCOyy Sin ¢ én+0(6n%),

2 . .
(nf +13 + (1o cGE)) ) sing+2in;n, cos ¢

a7

where tan @, =t,,/t,,. A nonzero Faraday rotation requires 6n=0
because PT symmetry needs to be broken®. On the other hand, the
Kerr rotation can be nonzero with én = 0 because it is compatible with
PT symmetry (Table 1). The Kerr rotation is independent of ¢ in the
leading order of én when 6én is sufficiently small as if the response
comes from the top surface only, while it actually comes from multiple
reflections between the top and bottom surfaces. In this limit, the way
the Kerr effect goes away is highly nontrivial as the thickness goes to
zero (i.e., || > O with |@| > |6n|). The Kerr angle stays constant, but the
amplitudes of the reflected signals ultimately vanish. Therefore, a finite
Kerr effect can be observed from a thin film when optical equipment is
highly sensitive.

However, a nontrivial ¢ dependence appears when ¢ is the
smallest parameter (|6n| > |¢|), where we have

4in ;3 cG?
ande= 1(nzﬂ_0 nz))(x o O<¢2)’
24 3 G(z) (18)
__lny — ny)pecGe 2
tan ¢ 00, * 113) ¢+O(¢ )

which show that both Kerr and Faraday rotation vanish for ¢=0.
Therefore, a nonzero ¢ is necessary for the Kerr effect as well as the
Faraday effect in fully compensated antiferromagnets. Note that, while
the Kerr angle in Eq. (17) is independent of ¢, it applies only
when || > |6n|.

The crossover between two regimes respectively described by
Egs. (17) and (18) occurs when |@| - |6n|. The corresponding wavelength
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is much larger than the sample thickness d when |6n| < 1. This is
remarkable because one might naively expect that, because the
response from the spatially separated top and bottom layers are not
resolved when 1> d, the Kerr effect is vanishingly small in that regime
and scales linearly with d/A. However, our analysis shows that a much
stricter A> A" is required for the suppression of the Kerr angle. To
explain how this works, we note again that the Kerr angle and the
amplitude of the Kerr rotated signal can behave differently. While the
amplitude of the Kerr rotated signal (= ry,) is indeed suppressed for
A>d, the amplitude of the non-rotated signal (=r,,) is also suppressed
in the same limit. Their suppression at large wavelengths compensate
each other to keep the ratio @ =ry/ry as long as A is smaller than a
larger length scale A", above which the Kerr angle ultimately gets
suppressed.

In thin film axion insulators, Eq. (18) is typically more relevant at
photon energies below the surface gap. The surface gap of experi-
mentally realized axion insulators are about 50 meV'****, For example,
if we take n,=5 and d=1 nm, we obtain a very small value
|| <1.27 x 1072 at hw < 50 meV, which is typically smaller than |5n]. On
the other hand, in the infrared and visible regime where the photon
energy is in the order of eV, equation (17) can become relevant. We
demonstrate this in the following section.

Model calculations
Let us apply our theory to study the optical axion electrodynamics in
MnBi,Te,;. MnBi,Te, is the only stoichiometric compound that experi-
mentally realizes the intrinsic antiferromagnetic axion insulator***,
which has now become an attractive platform for studying axion
magneto-electric effects®™**, As it is a layered antiferromagnet, its
few-layer behavior and layer number dependence is also of interest™*°.
Here we calculate its magneto-optic properties based on the low-
energy model in refs.36,41. The goal of our calculations here is to
cement the validity of our new theory by providing a concrete model
example as well as to understand qualitative features (e.g., the dom-
inance of the axion contribution and the significant Kerr and negligible
Faraday effects) of the magneto-optic response in MnBi,Te,. Our
model is expected to quantitatively capture the low-energy properties
of the material. On the other hand, at photon energies much larger
than the band gap, a precise quantitative calculation of the magneto-
optical spectrum will require a model, like the full ab-initio model, that
captures all the significant optical transitions involving those states
neglected in our model. With this in mind, we consider a nearest-
neighbor tight-binding Hamiltonian on a layer-stacked triangle lattice

H="Co(ho)eglis — > é?atzpéjﬂ' (20)
iap (ij)ap

where i,j are the site indices, (i) means that the summation is over
nearest neighbors, and a, 5=1, ..., 4 run over two spin and two orbital
degrees of freedom at each site.

As the non-magnetic state has space group R3m (No. 166), we
impose time reversal T=isK, inversion P=t1, and threefold
Cs, = exp(—ins,/3) and twofold C,,=-is, rotational symmetries,
where s; and ; are Pauli matrices for spin and orbital, respectively. The
onsite Hamiltonian satisfying all the symmetries of the nonmagnetic
state is ho = eg + es7,. Along the z direction, the nearest-neighbor hop-
ping matrices are T, = ¢*J =¢Z +it}s,1, + ti1,, where a,= (0,0, a,),
a, is the out-of-plane lattice parameter. For the in-plane directions, the
hopping matrices are &7MJ =ty +it;s, T, +it, T, + tsT, = (61 M),
¢+%) =C,,T,C5}, and ¢4/ =C,,T,C; 1, where a;=(a, 0, 0), a,=C3,a;,

a3 = (3,a,, a is the in-plane lattice parameter (see Methods for further
details).

We consider the effect of the layer-alternating (i.e., A-type) anti-
ferromagnetism by adding (-1)""'mo, to ho, where n is the layer index.
While this term breaks time reversal symmetry, inversion symmetry
remains the symmetry of the lattice system. However, finite even-layer
systems break inversion symmetry and have non-zero axion angle
according to Eq. (10).

Figure 4a shows the orbital part of the axion angle calculated with
the tight-binding parameters of MnBi,Te, derived in ref. 36 (We make a
momentum-dependent overall energy shift to obtain an insulating
filling at half filling as we describe in Methods. The band structure and
electric susceptibility are shown in Supplementary Figs. 1 and 2.). At
high energies above 1 eV, the axion angle is well approximated by the
optical layer Hall conductivity for any number of layers. However, the
axion angle deviates significantly from the optical layer Hall con-
ductivity as the photon energy gets lower below 1 eV. The deviation at
the low energy increases with the number of layers because the surface
massive Dirac fermion is then more localized at the surfaces and
increases the second term in Eq. (10), making the static axion angle
reach the quantized value 6=m.

T« and spin magneto-electric coupling are much smaller than the
axion angle, as shown in Fig. 4b,c, respectively. This is consistent with
our expectation that these origin-independent magneto-electric cou-
plings are strongly suppressed in systems with local inversion sym-
metry. Furthermore, they decrease inversely with the number of layers
N7, because only O(1/N,) portion of layers near the top and bottom
generates a nontrivial response. This contrasts to the case with a finite
Ty for N;»> =, where the response is coming from O(N,) layers.

As T, is relatively small, optical axion electrodynamics dominates
the Kerr and Faraday effects in this system. Figure 5 shows the Kerr and
Faraday rotation angles calculated with the magneto-electric coupling.
We consider the case where the model system (medium 2) is encap-
sulated by medium 1 and medium 3, having frequency-independent
refractive indices n; =2.2 and n3 = 2.4, respectively, corresponding to
those of the hexagonal Boron nitride and diamond at photon energy
around 1eV****, The calculated Kerr rotation angle ¢y is about 0.02 at
photon energies larger than 1 eV, which is about one order of magni-
tude smaller than @, <1° in typical ferromagnets although our anti-
ferromagnetic system has zero net magnetic moment. The Kerr angle
in real MnBi,Te, can even be much enhanced because of the con-
tributions from higher-energy bands that we do not include here. As
we consider n; # ns, the Faraday rotation is nonzero because the can-
cellation between the top and bottom surfaces is incomplete. The
Faraday effect is two orders of magnitude weaker than the Kerr effect.

Discussion
Our theory of optical axion electrodynamics fills a crucial missing piece
in the macroscopic theory of magneto-optic effects in antiferro-
magnets developed mostly by Graham and Raab?-*%. They used only
origin-independent T; and Sy to ensure physically meaningful results
such as the consistency with the reciprocal relations. However, our
approach shows that we can include the origin-dependent axion
magneto-electric coupling in the theory, and it is precisely the axion
angle that controls the Kerr effect in antiferromagnets with local
inversion symmetry. As we show by using the low-energy tight-binding
model of MnBi,Te,, the omission of the axion electrodynamics can
underestimate the Kerr effect by orders of magnitudes. In general, the
same suppression of Tj; and Sy is expected in systems with bulk
symmetries that reverses an odd number of spacetime coordinates. As
long as those symmetries are broken at the surfaces, the axion
magneto-electric coupling is not much affected by the symmetries,
such that axion electrodynamics dominates the response.

In fact, the trace part of the magneto-electric coupling was
included in the study by Hornreich and Shtrikman®* prior to
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model itself is obtained from the electric dipole susceptibility through

ny(w) = /1+ X (@)/€,. For LH, we calculate the axion angle from the layer Hall
conductivity with periodic boundary conditions and use the thickness of 50 layers
for ¢ = nywdj/c. All optical response functions are calculated with y =10 meV to
broaden the resonance through w > w +iy.

refs. 21,25-27, However, their estimate of the effect was four orders of
magnitudes smaller than the value experimentally observed
subsequently**. This inconsistency lead to the appearance of theories
based on different approaches* %, all of which do not include the

axion electrodynamics. Our introduction of the surface-sensitive
magneto-electric coupling and the study of double interfaces allow
for precise quantitative understanding of the Kerr effect including the
axion electrodynamics, especially for thin films.

Nature Communications | (2022)13:7615



Article

https://doi.org/10.1038/s41467-022-35248-8

While we focus on the Kerr effect due to macroscopic magneto-
electric coupling for fully compensated antiferromagnets, there is
another microscopic mechanism based on the spatial modulation
(phase change as well as the attenuation) of the electric field
E(z)=Eye*:?**, where k,=nw/c is complex valued. However, the
microscopic mechanism produces only minor effects. To see this, let
Pk o be the Kerr rotation angle by a single layer with net magnetization
in A-type antiferromagnet. Considering the reflection of each layer as
well as the complex phase rotation during the propagation, one
obtains the Kerr angle ¢y =@y o(1— e¥k:a: +etikea: _ gbikaaz 1 y/
(1+€2k:0: + g4kt 1 g6iket; 1+ )= _ ik a ¢y o +O((k,a,)>)for an even
number layers?, where a, is the layer spacing. This Kerr angle is smaller
than the axion-induced @ = @ o because a, <A for the wavelength
down to the UV regime.

In the static limit, both Faraday and Kerr effects are often con-
sidered as manifestations of the axion electrodynamics®>™, It is because
the systems under consideration have finite net Hall conductivity. The
same sign of the Hall conductivity is induced on the top and bottom
surfaces of a Z, topological insulator by either external magnetic fields®"
or coupling to ferromagnets'. The main focus of those studies is the
manifestation of the half-quantized surface Hall conductivity, rather
than the magneto-electric response of antiferromagnets.

An open question we leave for future studies is to formulate a
quantum geometric theory of optical axion electrodynamics in peri-
odic systems, generalizing the Chern-Simons integral in the static limit.
A drawback of calculating intra-cell optical magneto-electric coupling
through Eq. (9) (or calculating the layer Hall conductivity) is that it
does not capture the topological magneto-electric effect because we
drop the second term in Eq. (10). A unified formula that captures both
intra-cell optical magneto-electric coupling and topological magneto-
electric effect is desired, and it is likely to require extending the
quantum geometric formulation for electric dipole moments® to
magnetic dipole and electric quadrupole moments and defining a
proper optical Chern-Simons integral. However, this may not be fea-
sible, in which case we are forced to work with quasi-two-dimensional
systems.

Finally, we note that the optical axion angle we define should be
distinguished from the dymanical axion fields*. In our optical axion
electrodynamics based on linear response theory, the effective action
Soa = [ dwdx8(w, X)E(w, X) - B(w, x) for non-absorptive media describes
the propagation of the electromagnetic fields modified by elastic scat-
tering by the medium. The optical axion angle is a ground-state prop-
erty, which is non-dynamical. On the other hand, the dynamical axion
field interacts spacetime-locally with the electromagnetic fields through
Sdynamic = | dtdx0(t, X)E(¢, x) - B(t, x). This describes Raman scattering
where the energy or momentum of the incoming electromagnetic field is
tranfered to the dynamical axion field. The interplay between the two
distinct phenomena is an interesting research direction.

Methods

Generalization to include natural optical activity
Electromagnetic multipole moments. Let us consider electric dipole
pi» €lectric quadrupole Qy;, and magnetic dipole M; moment densities
induced by electric and magnetic fields*:

&;;=Gj;, &= — G, The ellipsis "...” indicates electric-octupole/mag-
netlc quadrupole or higher-order multipole contributions that we
neglect here. Here, the primed susceptibility tensors transform
oppositely under time reversal compared to the non-primed ones.
For example, while x; is even under time reversal, X is odd under time
reversal.

Electromagnetic multipole moment densities are defined by*

p;= efi/ v,

Q= —et'¥ /v,

= he (F2° ) e (22)
_ Morb Mspm

i ’

where we split the orbital magnetic and spin parts, which respectively
originates from the minimal couplingV->V+ieA and the explicit
dependence on B independent of the minimal coupling.

]orb_ 1 aFIl
i T VA Bfixed’
VoA, " 3
~ spin_ 1 0H
M= _VTB’,|Aﬁxed‘

Surface-sensitive magneto-electric coupling. By generalizing the
procedure in the main text to include both natural optical activity and
gyrotropic birefringence, we define

~(2)
G (@)= Gy(w) — wa,yz(w)
Gy (@)= Gy(@) + 7w&m(w), (24)
&2 .
(w) Gzz(w) [azxy(w) - azyx(w)}
from the surface response
AV
" .
Jx= Z<®yi - zwaxzi)fi"' s
i=1
3 .
s - [ 25
-/;_ _Z(®xi+§wayzi)fi+-~r 25)
i=1
o= i . N i i
p=G,B; — iw(uzxy - Clzyx)Bz - iwayzsz + jwaxzsz o
where Cy =Gy — iGy, 05 =G;+iGy, Q= ag, — iay,, and dg =a;;+
ia;. We can also deﬁne
(z 2) _~ i - .
(@) =Gyu(w) — 503 4, (W)€, fori=x,y, (26)
k

which is distinguished from G.;(w). However, we focus on G.; (&)
because we are interested in current generatlo? rather than the charge
fluctuation on the surface. We decompose G, into

(Z )

0 1 G(@)= 5 9(2)((‘)) T o(@) — { 02(@) + Ty, (w)] ’
Pi: Pi +XUEI+ ankaEJ+GUBj (Z) ~ ©
T )= 2090+ Ty ()4 2 [Sul@) 7@,
+ 0 \XGE + S dy ViE; + GB; ﬂh w2 Y
Xikj ™ 5 A Vi T Gyby 1) o ez )
Q= Q) +ay i+ 0 a Ey Co @)= 52 67(@)+T (), 27)
g~ ey Ty kK
. w ; -
M;= M+ SE; + 0 '\ SE; .. Giy(@)= ,,(w)+ €2j[Siiz(@) + il (w)], fori,j € 1,2,
. . o . 0 C(Z.)(w):i'(wﬁgz:e i[Soax(@) — iay, ], fori e 1,2
for monochromatic electromagnetic fields in time domain, where P;, 2 y 24~ kzi |Pzzk kzz]» e
Qj, and M{ are permanent multipole moments, a; =y, o = — @
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where

Uije = Qe + Qg — Ay,

1,3 3 /
= Gy — §6ykzckk 6w Z k[akll (GU -
=1

k=1

3 1
Z €jkt 5 wakli) ,

KI=1
(28)

and 67 (w)=2mhe 2y}, G (@)/3 and Sy (@)= }[a}, (@) + &) (@) +
aky(a{)(] are the same as in the main text.

G;;"(w) have nontrivial dependence under the change of the spa-
tial origin by d = (d,, d,, d) because

6609 (w)= — ol (w)d,,

5<_%wr,~,~z(w)> = 07" (w)d,, (29)

i
6 <_ i wakzz((‘))) - = O'Z);m(w)dzr

where 0;(w)= — iwX;(w) is the complex-valued optical conductivity
tensor, and 0{}’ (W) =[0;(w) — 0;(w)]/2= — wxy(w) is its anti-
symmetric part.

The origin dependence shows the ambiguity of defining the
surface degrees of freedom. Let us recall that we define the surface
current density j°= d /2 de (z) over the region—-dy/2<z<dy2.
While we can define a physncally meaningful value of ds based on the
surface property of a system, this value is still not completely
uniquely defined (e.g., if d; is the surface thickness, 1.01d, also makes
sense as a surface thickness). Because of the ambiguity of d;, the
amount of the bulk-conductivity contribution to j* can also vary. For
example, let us consider the xy component of the surface con-
ductivity. It has a bulk-conductivity term as well as the magnetic
dipole and electric quadrupole contributions. Let us suppose that the
surface is defined as the interface between medium 1 (at z<0) and
medium 2 at (z>0).

dg/2
03@)= B (-d,/2) - 8(dy/2)+ [ dzog(w2)
—d,/2

s

d 30
- 85,2~ 83(d,/2) 4 0,y B 000 % 0
(Z) 2) (Z) ~(2)
yy1+6®yy1 yy2_5®y2'
where
@
86, = — 0 (w)d, @31

is the change of sty by the shifting of the origin by d = (O 0) d,). This
shows that, while we can define o3, (w) as the difference of Qﬁyy between
two media for any value of d, we have to shift the spatial origin by — d/
2 and dy/2 for medium 1 and medium 2, respectively.

Quantum mechanical expressions of the magneto-electric
coupling

Linear response theory. The susceptibility tensor for the linear
response of an operator A to the external field Fg

where B=0H(F)/dF 8lr,=0 is conjugate to the external field. Here, we
take the Heisenberg picture O(¢) = et Qe—#t

In the frequency domain, the susceptibility tensor can be written
as

Xas(@)= / dEe™ 0% (e — t)
. (n|Ajm) (m|B|n)

32 S AL

mn

(34)

+(FS terms),

where |n) is the energy eigenstate of the unperturbed Hamiltonian with
energy E,=hw,, Wmnpn=0n—0, and f,,=f,—fm is the difference
between the Fermi-Dirac distribution function f of the |n) and |m)
states, and the FS terms originate from the Fermi surface, i.e., they
have momentum-space derivatives acting on the Fermi-Dirac distribu-
tion function (04f,) in the momentum space representation. The
derivation goes as follows. At zero temperature, we have

)}As(w+ir)=/ dte@ Oy (e —t)
= ——/ dt' et — t)(At),B(t))
= —zz / _ded e DEOf (A mIB(E )i — (miB(E)im) (mIA©In)
T %Zm / de'el @ DOf e om O A lm) (miBlm) — e (n|Bim) (mIAlm)

i 1 - - 1 N N
=- ;"men (7_,@, T A B — <n\BIm>(mIAIn))

L ~fum(nlAlm)(mBiny 1 (nBim)(mlA|n) f (nlA|m)(m|Bln)
hést Wy — (@+ID) hs " W+l + Wy, M@+l + @y,
famtnlAlm) (miBlny 11 -
Hr G- @*ID) ha)ﬂl'zf"(nl[B"'A"”")
_ 1 O (MIAIM) (MBI
N hzf""’ © Wy —(@+IN)
(35)

where we introduce a finite relaxation rate I' for convergence of time
integral, O, =P, 0P, with P, =|n)(n| is the projection of O to states |n),
and ann (nl[Bn'An“n) = Zn#mfnmAntmn

It is often convenient to separate the real and imaginary parts of
(n|A|m)(m|B|n) as follows.

n— @ Wy,

[ Orn ""’f w} Re {(n|ﬁ\m)(m|3|n)}

ISE s\»-A

Xap(@)= — hanm
- — wm" PR L L —
Zh”Zm:f,,m [wm,,—w+w }lm[n|A|m m|B|n]

— 1 mn
- (% mn

= Xap(@) —

. 5 i Onn /0
2R (mAlm) B | + £ m

<n|A|m><m|B|n>D

iA/,/‘lB(w)!

(36)

where we assume A and B are Hermitian operators.
Let us take electric susceptibility x; as an example, which is

defined by
Pity= <Pi>5:0

Then, A=P; is the electric polarization density and B= — P,V is the
polarization, so we have

+ [ dtx,(t — OFL). 37)

- 4 5 B
Fo©)= 1> Fam o™ P ) @mlP )

A=(40)_  + [ deue—OFy ) (32) .
) . .
= T a2 g Re| niPim) miPyin)| .
is given by o
_ i o +’*an7w2’”"_ lm{n|P|m m|P|n}
Xapt =)= — ge(f —){[A©),BE)), (33)
= Xj(@) — ix;(w)
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Similarly, other susceptibility tensors are given by

- 4 , N .

(W) = %anm Wm"_w) (n|P;im)(m|Qy|n) = ayy — iay,
nm 'mn

~ 4 @ mn - & _ .,

(@)= — > fram———"—(n|Qym)(m|Py|n) = ay; + iay;,

h 4— (W, — W) 39)

~ |4 w ~ {, /

Gy(w)= %anm Wmn_w) (n|Pim)(m|M;|n) = G; — iGy;,
nm 'mn

~ 4 0] > D Yol

&,(w)= %anmw(wi’"”_w) (n|M;|m)(m|P;|n) = G;; +iG};.
nm 'mn

Structure of the optical magneto-electric coupling. The bare
magneto-electric coupling can be decomposed into three parts as
follows.

Gy(w) = G(w) + G(w) + Gj(w)

v i

neocc,meunocc,k m"

_sze|:Zrnm mn ""+Zrm mm' mn:|

e w? .
mn i ek Ll
Wejk[ Z 2 @2 Im I:rnmrmn’rn’n}
n,n’eocc,meunocc,k — Mn
2 2
€ W Wmn ara
+ v ikt 5Re [r"mrmn] U+ Upy)-

2 2
neocc,meunocc,k ((‘)mn — w?)

(40)

The K-term and C-term correspond to the Kubo-like and Chern-Simons
terms in ref. 19 of the static limit. The last A-term is nonzero only when
w#0. While the C-term was called the Chern-Simons term, it has
additional terms, actually. In the static limit,

Hcse

i 2mh “h

1 X ; &2
Gy(0)=5; + 36k I [0a(@)] + g€ / kakgilr
Here, fcs is the axion angle given by the Chern-Simons integral in the
three-dimensional Brillouin zone""®

2 .,
Ocs= — 4lvey.klmTr ldda

3
_ 1 3 il e, ik
= ] _d kKA 2t LA

> ajRe(ﬁaiwnwn,)Aﬁ,n)},

n,n’eocc

42)

where P is the projection to the occupied states, and Af,,,, = (U, |i0k|uy,)
is the non-abelian Berry connection for the occupied states. Since the
last term vanishes in insulators with vanishing Chern number, only the
Chern-Simons integral remains in the expression. The quadrupole

term takes the form lim,,_ ¢ [wa} ,(@)] = — % jk,lmTr[Pik Q#'F]. Lastly,

8= neocemeunocelhm Fn is the quantum metric of the occupied
states. The quantum metric term in Eq. (41) cancels the Fermi surface
contribution from the quadrupole term (the quantum metric
contribution in electric quadrupole responses was discussed in*"*%),
such that there is no Fermi surface contribution to the magneto-
electric coupling Gy In comparison, note that its time-reversal-

which follows from the Wannier representation:

> €0 WmlOxtpy) = ykN > RiRe KRR (1) g W)
Jik JkRR
KRR 44
_5mnﬁzezk<k R)ZeykRij (44)
R Iy

=0.
Using this identity, we can show that

> euTrim [PFPEPH] = = 3" ¢ Trim[Pi'P Q|

ik ik
- Zeﬂne{( b~ O,10)) S }

l 0
Zekke[ b 5 P = 0bl) (ajAﬁn—z(A'Ak)nrn)}

ijk

> e [ b 3 P 00 1) AR — @Re(daiwn\wnrmﬁ/n)]
ijk

Zk:e,k[ - ZF’,,kn —ix Tr[Pr PP 'A"A*} 7a,Re(<ia,~<p,,|¢,, )Af,,,,)]
1/

:%ZeykTrlm[Pi"PifPf] Zelk[Tr<A‘ Fr+ A’A’A)
ik

ik

— R (i0¢altpn 14K, ) -

(45)
It follows that
1 el
3TrG= S5 €5 Trim (PP Pi] 6

el il g .
= S5 [Tr(A S+ 34 A’A") - 6jRe<(1i),~zpn|¢n,)Aﬁ,")}

This is equivalent to Eq. (42). At finite w, the trace part of the magneto-
electric coupling is not represented as a Chern-Simons integral by the
same approach.

Gauge-invariant expressions. Since Cf;)((u) and Cﬁf'z) (w) are origin
dependent only along the z direction, they can be calculated gauge
independently when the z direction has open boundaries. Here we
derive such gauge-invariant expressions. We focus on the orbital
magneto-electric coupling to simplify expressions. It is straightforward
to include spin parts as the spin magnetic moment is well defined in
momentum space. The expressions of Ty, T; and S are also given for
completeness.
Let us begin with Ci)(w).

G @)= (@) — 5 01 (@)

N Zf nm
n#m
- iz fnm

hvﬂ*m —w

_é fnm i V/yer 2y 1oy s
= o rmy (P - Y L )i

hVn#m -0

= Z fnm

n#m

(1P, M) (mli|n) — £ @, (nIP M) (M| Q) )
Oy — ©

R I P
<rj,m(m|i(r"v - FP)In) —%w,,,,,r,,m(m|ryr’:|n)) 47)

,,,,,(m\ ( P - F0)n).

Similarly,

symmetric counterpart G;-j has a Fermi surface contribution, which 'Z) G Fom Lo, i 48
+ - —(U'F + .
gives rise to natural optical activity in metals, termed gyrotropic y (0)=Cy(@) wam(w) fl/n‘zm n — @ "’"<m|2( i) (48)
magnetic effect*>*°, The quadrupole and quantum metric terms were For the 2z component. we obtain
missed in previous studies”®, but they do not affect the axion angle. p ’
Let us derive Eq. (42). A key equation in our derivation is o ;
G (@)= Gyy = 50y (@) — Bpa(@)]
. , _ _ (49)

> eyk<laj¢m|¢p> (@plidn) = € (00m0xp,) =0, (43) = szf"'z = {rf,,,,r;‘,,pu{,,, — Pl — (X ey)}

Jk Jjk n#m - mn PiEy#En
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by using

-V (AP, m) (m|M )
G, = sznm W

ZhVZb)mfnnm w nm LE:( mp' pn - rJ;rlpU;n)+iwmn(r:;lmr¥Vln - r'ynmr;(nn):|
ZhVZ fnm [nmz( ‘mp prl mp pn)+iwmn<{(’}ﬁ)nm Z np pm:| ‘mn (X"J/)>:|
=
Som
2hVZm - [

+ il‘) [azxy(w) - azyx(w)} .

> oV = PV = 0 >~ [Foplim

PEyEn, Py E

—x o), }

(50)

For the zx component, we can follow the strategy for the zz
component

Zf (P, \m) (m|M, |n)

n=m o)mfl @
- memfn mLZmrymp AW mwmrmr;"}
. m i i [ )|
prm P prm
P DMLl D SR SRR T SN R
n#m pE #E P PE,Ey
+ i(’)ﬁzyz(w)
(51
to define
Y- ¢, ——way”(w)
- - r
ZhV n Py T > piEEn e

Similarly, we define

~ ( 2) ~
G : Gzy 2 wuxzz(“))

Decomposition of the position operator

Here we derive Eq. (9). Let us consider the matrix element of the
position operator in the Bloch state basis. We transform it to the
Wannier basis |w,g) by

@ 1P 1) = Mznwmkrlwm(wﬁnwf‘ tWaR) (War | Pri)
- Mzk<wmkr|wm><wﬁowf;f T lom w) Wer @)
= ﬂrnrz"nwmr|wm><R16aﬂ6R,Rr + (Wl | Wamr)))(War | ¥rac)
= ﬁynz"n<wmkrlwm><wpo\f’ |t aR-r)) (War P i) * kammwmm’ (Rl

(57)

where we use |w,g)=Tg|We) in the second line, where Ty is the
translation operator by R, and use T 7* T =7 +R and the ortho-
normality of the Wannier states (Wgg [Wqg) = 8,36g g in the third line.
To get Eq. (9) from Eq. (57), we define AZ, (k)= Z WpolF* |wog)e™R,
such that

. 1 _ik

(Wpo 7 |Wer) = NZAZa(k)e &R (58)
K

where Nis the number of k points. Then, the first term in the last line of

Eq. (57) becomes

> Wk 1 Wpr Y (Wpo | 1War R (War k)

BR:aR

= > Wulwgo) NZ Ay (K")e K R-R)gilk R KR (W0l
BR:aR

= Z (e 1Wpo)

aBR

= BN Y~ Wkl Wpo) MG () (Weo | W)
apB

= Sk P Ppi) NG 10 W1 Pi)
af

F (KRR e MR (1 1)

59)
fnm v4
= —— r reov, — e v | — rrre veo|.
ZW m Omn = © [ (ﬂ;fm v zl’: " pn) pg;fm e and we arrive at Eq. (9).
(53)
Wt 1719 = S D Wi W) A (K (W )
Note that G2 = G%? while G2 # G\*? for i=x, . mk e Tkk BZ,,: mk ¥ Ak alynk 60)
Fully origin- mdependent bulk response functions Ty, T;; and Sy .
|w g ) RE (W, .
can be calculated from the bulk conductivity tensor deﬁned by ;(‘I’mkl ar )R (War [P
Ji= Yk
) The second term is nonzero only when n=m because
Tj(w)= 3; k1Ot
_1 k,—k;)R
T;j((‘)): éejkl [Z(Gikl — Uki[) — (O — Ulki)]' (54) Z(lpmk'lwak)kz(waklwnk) - N Z el( (pmk W)ak1 (wakz W}nk)
aR Rk K,
1
(@)= — OO 1 i(k—K')
k(@)= = g (O + i+ O+ O+ i+ O = Nzkje“" ORRE Xa)wmkflwak/)(waklwnm ©6l)
where = —"akf‘sk,k'Za:<¢mk’|wak'>(¢ak|‘/)nk>
= — 6,040k i
ik k w; k
O = /fnm|: ("j,.man) +r‘nt/mn) %rlnmrmn(umm+unn):|
2 =~ ©) where we wuse that 0,:6,, #0 requires k' —k, and
;ZZZ/ akfn 'nn ,m Ea<wmk|¢ak><wak|¢nk>:6mn
(55)  Macroscopic electrodynamics in the medium
Electric displacement D and magnetic field H satisfying Maxwell’s
and equations
Bkl 2 <Zrmp pn Zump pn> (56) v D:pf' (62)
VxH=} +D
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are defined by

D i T\/E
( ) (AT ( ) 63)
H U x/\B
where F=F — if’ for F=A, T, U, X, and
Aj=€ob;+Xy+ 3 (ayk i + ks
Ay =Xy
1 ,
Ti=Gy — 5 iiGkk — & Vi
T;=Gy — 5 W€x Ayis (64)
Uy= —Up
Uy=Up
X :yalrﬁ,-j,
X}j =0

up to electric quadrupole-magnetic dipole order. While Maxwell’s
equations do not uniquely specify the form of D and H, additional
requirements from the reciprocity relations and spatial-origin inde-
pendence gives Eq. (64) as shown in*. Here, the free charge and
current ¢ and J are boundary charge and current appearing due to the
change of material properties across the interface thatis not described
by T, Uy, and Sy, = (@ T + A1) /3.
ln PT-symmetric systems where Gy =a; =0,

Pf= _Bjai<Gij_

i /
+ iEka,-aj(aky-

1 , ] ,
T;— j%‘kl%u) * 5 OjE i + O£y — Sy)

— S, (65)

a) /
Ji= E;0; [eikl(cjl = Tj) =5 @y — Sjik)] ,

Wave equation. The wave equation up to electric quadrupole/mag-
netic dipole takes the following form*:

[6U+651)?y+iu0ncZKk6ij~k + (KK — 6,-1-)} Ei= (66)
k
where x; =x; — ix}; satisfying x;=x; and x;= — x;;, k;=ki/K| is the

propagation direction of light, nis the refractive index, 6 = o — zayk

is the complex bulk conductivity coefficient defined by
5y(q)=60(0)+5yqu+ ., and
1
Ok = { it Ojt * €kt Gy — 5 (@ + @) | = i
1 (67)
O = { €t Gy + €1 Gy + 50 — ajik)} = — Ojj-

Let us assume C;, and C,, symmetries for simplicity. We further
impose that the bulk Hall response is zero, i.e., X;=0,in order to focus
on the magneto-electric and electric-quadrupole effects. For k= + 2,
the wave equation is

for circular polarization + =x+iy.

Reflection and transmission from a single interface. We consider the

interface of medium 1 (z>0) and medium 2 (z<0) with the surface
normal z. For normal incidence, in the circularly polarized basis,

<Zi>:uic<_ﬂ06ﬁ0 )(i) (70)

within the media i =1or 2, where n. depends on the sign k., and k, = -1
for incident and transmitted light, while k. =1 for reflected light. Here,

i K, 0

—poCTh +inl k

T 1 1 / 7 s~

Txx = g(Gxx - Gzz) - gw(ayzx - azyx) - l|:Gxx E(‘)(ayzx - azyx):|
_i 1,
- gozxy - ioxyz'

(71)
As we consider light incident from medium 1to medium 2, the electric
field in medium 1 consists of incident and reflected fields while that in

medium 2 is the transmitted field.

E=E+E =(1+rE,

. 72
E,= E = tE, 72
where
iy TIiy Iy 0

r= = , t=1+r 73
<r_+ r__> ( 0 r__> 73

by G5, symmetry and the continuity of E at the interface.

The H field satisfies the boundary condition

H =H'+H +2xj;, (74)

where 2 xj;=(e2/2mh)(05 — 6?)E is the surface current due to the
axion magneto-electric coupling. In terms of B fields, the boundary
condition has the form of Eq. (13):

B’ =B'+B’ +uy2xj,, (75)

e, R | s . .
where j;=j;+(Ty, — Ty, JEXZ is the total two-dimensional surface
current density. By solving the boundary condition, we obtain

Ny — Ny — ipgCo3,

re,= -
Mg+ Ny + il CO3,,
ro- Mg — Nog + il CO%,, (76)

ny +Noe
r,_=r_,=0,

— ipocos,

where n,, =n,, =n,_is the refractive index for left circularly polar-
ization, and n,, =n,_=n,. is the refractive index for the right circu-
larly polarization, and

03, =G — G =T~ T+ a7

1+ 661)()0( - nKz”OC xXyz Ex =0 (68) 4 e xx X
—NK,[1oCOY,, T+ege — 12 ) \ £y ‘ is the two-dimensional surface conductivity, and 0§y (€2 /2mh)
(69 — 6). From the expressions of r,, and r__ and Eq. (69), we

The refractive index satisfying the wave equation is given by obtain the Kerr angle
Ly —i -
n' = \/1+ €W + (iH0COY, /2 Fik 1CO,, /2, (69) @y =tan r—y =tan™! {%} . (78)
++ —
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In non-magnetic systems where G; =a
ishes systems because

% - -
=0 the Kerr angle van

ryy —r__« illoC(U)’gzz - 0;@;1) g — Ny — (Mg —ny)=0, (79)
where we use that Tﬁx = — 0%,/2 when o= 0. One may think of this
cancellation as a compensation between bulk and surface responses.
The refractive indices are responsible for circular birefringence in the
bulk, while 60}, is responsible for the surface current that leads to the
jump of B field at the surface. Their effects cancel such that there is no
net polar Kerr rotation (i.e.,, no Kerr rotation at normal incidence),
compatible with the reciprocal relation imposed by time reversal
symmetry>>~=4,

In contrast, a nonzero polar Kerr rotation PT-symmetric anti-
ferromagnets occurs because no compensation occurs due to the
absence of circular birefringence in the bulk. By imposing PT symmetry
and breaking T symmetry, we get a nonzero Kerr angle from

ny, — )y +n,) — (o Cos,)?
Fex= 1(,-++ +r77):( 1— M)y - 2) — (Ho ny)
2 (HoCO3y,)” *(ny + 1) (80)
1 2n,(11oCo%,)
rxy:Z(r++_r,,):— 1F0™ xy

2 7
(Ho€o3,)" +(ny+ny)

Note that our derivation using the H field make it manifest that the
magneto-optic reflection has two different origins: bulk-propagation
and surface effects, respectively contained in Ty, and 6%,

Reflection and transmission from two interfaces. Now we consider
three media with (n,, m,), where u=1,2,3, as shown in Fig. 3b. We
consider the limit where the wavelength of light A is much larger than
the sample thickness d and neglect the variation of the electric field
between the top and bottom within the sample.

The Jones reflection matrix of the sample for light incident from
medium 1is then

. . , i i . . . . 2
r=rp+trelrge®e. + trery(elrie?ry)e?t + tre?ry(e?rie®ry) et + ..
. i -1
=rp+e¥0trg(1— 0riry) "ty

=rp+ e+ rprg(l - ez""’r’TrB)*l(l +ry),

(81)
where we used t7p=1+rrgand t7=1+r}, and
b= #’ (82)

is the complex-valued phase obtained by the propagation across the
sample. Here, the subscript for r and ¢ indicates the top and bottom of
the sample, and the prime indicates the process where the light
propagation is reversed (we follow the notation in ref. 13).

For transmission, the Jones matrix is

t=tp€Ptr +ty(ePrie?ry)eP e, + ty(€?r elry)ePrie?ry)tr + ...
= ty(1— &0r;ry) e?t,
= (1+rp)(1— €®rirp) Tet1+ry).
(83)
The expressions above show that both r and ¢ can be obtained

obtained from the reflective Jones matrices at the top and bottom
interfaces. We suppose that each media has PT, Cs-, and M,T

symmetries, which is the setup in main text. Then we have

(1 — 1)y + 1) — (HoCOT,)’

(e (HoColy)* +(ny +1y)?
) anUIOCG;y)
)= —— 9
T (aoea3, P+ (1 + )
()= —(ny — ny)(ny +ny) — (Ivl()w;y)2
i (HoCOL)? + (1, + ny)? &4)
, 2n,(Hoc0y,)
Iy~ =5 =
(IIOCO-xy) + (nl + nl)
_ (my = ny)(my ) — (ocot)’
(rB)xx_ B \2 2
(ﬂocaxy) + (nz + ”3)
2n,(pgco8)
(g = 2(Ho €Oy,

2 2’
(Hoco))" +(ny +n3)

where the superscript T or B for the surface Hall conductivity oy,
indicates the top and bottom surfaces.

Kerr angle and Stokes parameters
The reflective circular dichroism and Kerr rotation angle can be
defined with Stokes parameters s; - o123 for reflected light by

RCD = 3,
So
1 .5, (85)
Y = itan‘ g,
where Stokes parameters for reflected light are
so=1"+I",
=1 -1,
L (86)
$H= Ix+y - Ix—y'
s3=1, -1,

where * =x+iy. While this definition of the complex Kerr angle is
different from the more popular ¢y =ry/ro=@x+ing we use in the
main text, it has the advantage that it can be obtained simply by
measuring the intensity of the linearly polarized light. In our case
where C;, symmetry is present, the reflective coefficients in circularly
polarized basis are

1 R .
f++=3 {r"x+ryy+’("xy _ryx)] =l Flly,

1 . .
r-=3 {rxx +ry —i(ry — ryx)] =Ty — iryy,

1 87)
re-=5 {rxx —ry— i(rxy+ryx)] =0,

1

r.=; {rxx — 1y *i(ry +ryx)] =0.

It follows that RCD =2Im[ry 7]/ (1Fl® + 17y ?) = 2Imry, /1] =20,
and 8= Jtan~'2Re(r ) /(Iral® = Iy )] = Relry /ro] =@ for
small |rg/ral.

Tight-binding model of MnBi,Te,
We begin with the lattice version of the three-dimensional low-energy
model of MnBi,Te, at ' = (0, 0, O) presented in ref. 36. We consider the
four basis states.

IPL;, 1), P27, 1), P17, 1), P27, 1), (88)
where P1 and P2 states originates from the p orbitals in Bi and Te,
respectively, the sign + indicates the inversion parities, and the arrows
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indicate the spin-z direction. The symmetry operators in the non-
magnetic state are time reversal T, inversion P, threefold rotation Cs,,
and twofold rotation C,,.

T=is)K, P=1, Cs,=exp[—i%s,], Cy=—Is,. (89)

Because of PT=is,T.K symmetry, only the following five Gamma
matrices are allowed in the Hamiltonian in addition to the overall
energy shift proportional to the identity matrix I'q.

rl = SxTx( + ,—).
l-2 = SyTx(_'_)r
r3 = Ssz(_'_)r
[4=5SoT)(+,-),
[5=58oT,(+,+).

(90)

Here, the pair signs show the commutation (+) and anticommutation
(-) relations with G, and P in order, i.e., (€, ,€p) Where MI';=epl:M
fori=1,...,5.

The low-energy effective Hamiltonian up to second order in k has
the form

heff = e(k)SOTO + AlkZSITX +A2(kxsx + kysy)rx + M(k)rz

91
= e(K) o + A1k, T3+ Ay (K, Ty +kyTH) +MIOT s, on

where

e(k)= Co+ G2+ Cy (k2 +K3),

(92)
M(K)= Mo +M,Kk; + My(K; +K3).

Let us find a tight-binding Hamiltonian on the two-dimensional
triangular lattice that leads to the above low-energy Hamiltonian. We
suppose that each lattice site has four degrees of freedom given by Eq.
(88).

(= v ¢f Co — el e
Hqg i%;ﬂcza(ho)aﬁctﬁ (U%wcmtaﬁcjﬁ' (93)

Here, the onsite Hamiltonian satisfying all the symmetries of the
nonmagnetic state is

along the in-plane directions, where a; = (a, 0, 0), a, = G5,a;, a3 = C3,a;,
a is the in-plane lattice parameter, and the form of T; is constrained by
the following symmetry conditions

T '=71,
Cox T1C£} =T, (98)
PT\P'=T],

and T;s are related by C;, because of C;, symmetry imposing, for
example,

~ ~ PN ~ -1
C;Jr aza(TZ)o(/icjﬂ = C3ijT+ ala(TI)o{/}CjBC&
P A s
= <C3zcj+alac3z ) (Tl)aﬁ (CSZCj/}C3z>
at . *
= Cj+azy(c3z)ya(TI)a[}CjG(C3z)6ﬁ

~F _ ~
= Cjraa(CsTh Cs, )apCiB-

99)

In momentum space, the tight-binding Hamiltonian becomes

hg=hy — (T 19+ Tye kel 4+ T o704 T, e7s% 4 p ¢ )
= [eg — 2tg(cos kja+ cos k,a+ coskza) — 2t cosk,a,|Ty
— t,(2sink;a — sink,a — sin k;a); — /3t,(sin kya
—sink;a)l, — 2t sink,a,l;
—2t,(sinka+ sink,a+ sink;a)l',
+[es — 2ts(cos kja+ cos kya+ cos kya) — 2t; cosk,a,|Ts,

(100)
where
k=K,
ky= 2 (ke V3K, w0
k= 3 (ke —V3K,),
ke =k,

By expanding the tight-binding Hamiltonian up to second order in k,
we obtain

o= [eo 610~ 203+ 30002 4D 62K,

ho=eoly +esls. 94)
- 3t,ak, Ty — 3tak,T, — 265ak,T, 102)
Along the z direction, the nearest-neighbor hopping matrices are 3 S, 5 N
+ {es — 6t — 265+ Etsaz(kx +ky)+ tgaﬁkz} [5+0(K>).
T, =0+ =3[ +iti[5+ (T, (95)
Comparing this with heg, we find
where a,=(0, 0, a,), a, is the inter-layer lattice parameter. the form of
T, is constrained by the following symmetry conditions €y=Co+2C,/a2+4C, /%,
TT.T =T es= Mo +2M,/a% +4M,/a?,
S 2C
—1_ = 72,
C3, TyC5, =Ty, (96) 3a?
Gy T4C5= Tl &= %
a
PT,P =T}, z
f= -2 (103)
For the in-plane directions, the hopping matrices are 3:
— 1
» o 5= ~2a
Ti=0" =g Ty +it T +it, T, +tsTs =™, M
L _ - ts= -2,
T,=0"%/=Cy, T\C3) =T + it ¥ +2«/§l'2 +i[4r4+[5|'5:(t!:/+32)+' 97) > 3a
M
Z 1
Ty=0"%/=Cy, TyCs) =tolo +ity sk 72«/§|'2 +it Ty +£5T =07 )! 5= a’
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We use the parameters derived in ref. 36 with a modification, C; = 0, we
take in order to obtain an insulating filling:

Co= —0.0048 eV,

C,=2.7232 eVA®,

C,=0eVA’,
My= — 0.1165 eV,

M, = 11.9048 eVA®,

.2 (104)
M, =9.4048 eVA",
Ay =2.7023 eVA,
A,=3.1964 eVA,
a=4334 A,
a,=te=14001A-13.64 A
T 373 o
The spin part is described by
hgpin= — 1B - $T¢, (105)
where the Bohr magneton is
e 22
Hp=3.8099 eVA". (106)

We consider the antiferromagnetic state of a few-layer MnBi,Te,
with layer-alternating out-of-plane moments. The antiferromagnetic
moment is described by

hppm =ml,s, 7o, (107)
where [, is a Pauli matrix in the sublattice (i.e., layer) space. We use

m=0.03 eV for our calculations. The full 8 x 8 tight-binding Hamilto-
nian in momentum space is then

hrg = Rpaa + Biapm
= [eg — 2ty(cos kja+ cosk,a+ cosksa)|loly — 2t cosk,a,l, Ty
— t;(2sink;a — sink,a — sinkya)lyT; — /3t (sink,a
—sinksa)loT, +265 sink,a, LT3 — 2t,(sinkya + sink,a + sink;a)lol,
+[es — 2ts(cos kja+ cos kya+ cosksa)|Ts — 2t% coskya,l,[s+ml, Ty,
(108)

where ', =I1I5/2i=s,10.

Data availability

The data that support the findings of this study are available in the
main text and Supplementary Information. Further information is
available from the corresponding author upon reasonable request.

Code availability
The codes that support the findings of this study are available from the
corresponding author upon reasonable request.
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