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Ultrastrong MXene films via the synergy of
intercalating small flakes and interfacial
bridging

Sijie Wan 1,11, Xiang Li1,11, Ying Chen 2,3,11, Nana Liu4,11, ShijunWang5, Yi Du4,6,7,
Zhiping Xu8, Xuliang Deng 3, Shixue Dou 6,7, Lei Jiang1,7,9 &
Qunfeng Cheng 1,7,10

Titanium carbide MXene combines high mechanical and electrical properties
and low infrared emissivity, making it of interest for flexible electromagnetic
interference (EMI) shielding and thermal camouflage film materials. Conven-
tional wisdom holds that large MXene is the preferable building block to
assemble high-performance films. However, the voids in the films comprising
large MXene degrade their properties. Although traditional crosslinking stra-
tegies can diminish the voids, the electron transport between MXene flakes is
usually disrupted by the insulating polymer bonding agents, reducing the
electrical conductivity. Here we demonstrate a sequential densification strat-
egy to synergistically remove the voids between MXene flakes while
strengthening the interlayer electron transport. Small MXene flakes were first
intercalated to fill the voids between multilayer large flakes, followed by
interfacial bridging of calcium ions and borate ions to eliminate the remaining
voids, including those between monolayer flakes. The obtained MXene films
are compact and exhibit high tensile strength (739MPa), Young’s modulus
(72.4 GPa), electrical conductivity (10,336 S cm−1), and EMI shielding capacity
(71,801 dB cm2 g−1), as well as excellent oxidation resistance and thermal
camouflage performance. The presented strategy provides an avenue for the
high-performance assembly of other two-dimensional flakes.

Titanium carbide (Ti3C2Tx) MXene1 is an emerging two-dimensional
transition metal carbide with excellent mechanical properties2,3, high
electrical conductivity4, and low infrared (IR) emissivity5,6. Interest in
assembling MXene flakes into high-performance macroscopic films has
recently grown due to promising applications in flexible electrodes7–16,
electromagnetic interference (EMI) shielding17–23, and thermal
camouflage5,6, amongmany others. Because of their higher aspect ratio,
largeMXene flakes have proven to be better than small ones formaking
high-performance MXene films24. A blade-coating method has been
developed to effectively align large MXene flakes24, greatly increasing
their tensile strength and electrical conductivity. However, the weak
interlayer interactions prevent the further improvement of the

mechanical properties25,26. Moreover, the voids in thick films decrease
their properties27, thereby limiting many practical applications.

The abundant surface functional groups (Tx), such as –F, =O, and
–OH, allow for chemical crosslinking, including hydrogen28–30,
ionic31–33, and covalent bonding34–36, to improve the interfacial strength
of adjacent MXene flakes. For example, cellulose nanofiber was
embedded into MXene interlayer to reinforce films through hydrogen
bonding29. MXene-metal ion films were strengthened by ionic
bonding31. Polydopamine covalently cross-linked with adjacentMXene
flakes was used to improve the tensile strength of films36. In addition,
the combination of hydrogen and covalent bonding agents was
recently demonstrated to densify MXene films27, resulting in a tensile
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strength of 583MPa. While the crosslinking-induced densification
strategy can enhance the interlayer interactions and diminish the
voids, the use of bonding agents, especially for insulated polymer,
usually disrupts the electron transport between MXene flakes and
reduces electrical conductivity27,37. Thus, it is still challenging to inte-
grate high mechanical and electrical properties into MXene films.

Here, we demonstrate the fabrication of high-performance
MXene films using a sequential densification strategy. Small MXene
flakes were first intercalated to fill the voids between multilayer large
MXene flakes, followed by interfacial bridging of calcium ions (Ca2+)
and borate ions to synergistically eliminate the remaining voids,
including those between monolayer flakes. The resultant sequentially
densified MXene (SDM) films integrate high mechanical and electrical
properties, as well as excellent oxidation resistance and thermal
camouflage.

Results
Fabrication of SDM films
Large Ti3C2Tx MXene flakes with an average lateral size of 13.5μm
(Supplementary Fig. 1) were synthesized by selectively etching the Al

layer from Ti3AlC2 MAX phase38,39, which was verified by X-ray dif-
fraction (XRD, Supplementary Fig. 2). Small MXene flakes with an
average lateral size of 0.35μm (Supplementary Fig. 3) were obtained
by sonicating the as-synthesized MXene dispersion. X-ray photoelec-
tron spectroscopy (XPS, Supplementary Fig. 4) spectra indicate that
small MXene flakes have a slightly higher oxygen content than large
ones, due to oxidization during sonication40. The thickness of both
large and small MXene flakes is roughly 1.5 nm (Supplementary Fig. 5),
which is larger than the nominal thickness (0.98 nm) of monolayer
MXene due to the presence of water on the MXene surface3.

The fabrication process of SDM films is shown in Supplementary
Fig. 6. Large flake sol was first mixed with small flake sol. The resultant
mixture was then doctor blade cast into an intercalation-induced
densifiedMXene (IDM) film. Subsequently, the IDM filmwas immersed
successively into calcium chloride and sodium tetraborate solutions,
followed by rinsing with deionizedwater. Finally, a large-area SDM film
(Fig. 1a) was obtained by thermal annealing under a vacuum.

Four kinds of IDM films (IDM-I to IDM-IV) with increasing small
flake content were fabricated. The strongest version of the IDM films,
corresponding to IDM-II with a small flake content of 10wt%, was used

Fig. 1 | Structural characterization andmechanical performance of SDM films.
a Photograph showing a lateral size of 13 × 10 cm2. b SEM image of a cross-section
cut by a FIB. Scale bar, 2μm. c Structural model illustrating the intercalation of
small flakes and interfacial bridging by Ca2+ and borate ions. d 3D-reconstructed
void microstructure by FIB/SEMT. Scale bar, 2μm. eWAXS pattern for an incident
Cu-Kα X-ray beam parallel to the film plane and corresponding azimuthal scan

profile for the 002 peak. f Tensile strength and Young’s modulus of SDM films (red
heart) are shown to exceed those reported for pure MXene films (green triangles)
and MXene composite films (purple squares). The sample names, detailed data,
and references corresponding to the sample numbers in this plot are in Supple-
mentary Table 6.
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to fabricate SDM films and compare structure and properties with
other types of MXene films. To understand the synergistic effect of
inserting small flakes and bridging in this sequential densification
strategy, the bridging-induced densifiedMXene (BDM) films were also
fabricated for comparison by treating MXene films comprising large
flakes (called LM films) using the same immersing, rinsing, and
annealing process. The actual content of Ca2+ and boron in SDM and
BDM films, derived from XPS, is tabulated in Supplementary Table 1.

Structural characterization of SDM films
The scanning electron microscopy (SEM) image of the cross-section
cut by the focused ion beam (FIB) of the SDM film shows a dense
structure (Fig. 1b) with a porosity of 4.11 ± 0.32% (Supplementary
Table 2). The structuralmodel of SDM films is shown in Fig. 1c. FIB and
SEM tomography (FIB/SEMT, Fig. 1d, Supplementary Fig. 7d, and
Supplementary Movies 1 and 2) were used to reconstruct the three-
dimensional (3D) voidmicrostructure of SDM films. The volumeof 3D-
reconstructed voids ranges from 2.5 × 10−5 to 6.5 × 10−2 μm3 (Supple-
mentary Fig. 8d). Since some very small voids having a voxel size lower
than dozens of nanometers, such as the voids between monolayer
flakes, cannot be detected by FIB/SEMT, the porosities obtained by 3D
reconstruction (Supplementary Fig. 7) are lower than those obtained
by density measurements (Supplementary Table 2).

Wide-angle X-ray scattering (WAXS) results show that the SDM
films have an alignment of 0.839 ± 0.004 (Fig. 1e and Supplementary
Fig. 9). XRD curves demonstrate the intercalation of small MXene
flakes, Ca2+, and borate ions into large MXene interlayers (Supple-
mentary Fig. 10 and Supplementary Table 3). Fourier transform infra-
red (FTIR, Supplementary Fig. 11) spectra and XPS (Supplementary
Fig. 12) confirm the formation of H–O→Ca2+ coordination, while XPS,
nuclear magnetic resonance (NMR) (Supplementary Fig. 13), and FTIR
spectra verify the covalent crosslinking between borate ions and
hydroxyl groups on the MXene surface.

Intercalation-induced densification
Because small flakes with more oxygenated functional groups can
absorb more water (Supplementary Fig. 14) and are stacked more
disorderly41,42, the interplanar spacingofMXenefilms comprising small
flakes (called SM films) is larger than for LM films (Supplementary
Table 3). Nevertheless, the porosity of SM films (3.84 ±0.38%) is lower
than for LM films (16.1 ± 0.6%) because LM films have numerous large
voids between multilayer flakes43. Compared with LM films (Fig. 2a–c
and Supplementary Movies 3 and 4), SM films show less oriented yet
more dense structure (Fig. 2d–f, Supplementary Fig. 15, and Supple-
mentary Movies 5 and 6). The average volume of 3D-reconstructed
voids for SM films is smaller than for LM films (Supplementary Fig. 8).

Fig. 2 | Comparison of structure and properties of LM, SM, and IDM films.
a–i Structural models, 3D-reconstructed void microstructure by FIB/SEMT, and
WAXS patterns for an incident Cu-Kα X-ray beam parallel to the film plane and
corresponding azimuthal scan profiles for the 002peak for LM (a–c), SM (d–f), and
IDM (g–i) films. The flake alignment of LM, SM, and IDM films is 0.874 ±0.004,

0.709±0.012, and 0.813 ± 0.007, respectively. Scale bars, 2μm (b, e, h). j Tensile
strength, electrical conductivity, and average EMI SE between 0.3 and 18GHz of
LM, SM, and IDM films. EMI SE means electromagnetic interference shielding
effectiveness. All error bars show mean ± standard deviation.
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Intercalating small MXene flakes into large MXene interlayers
disrupts the oriented stacking of large flakes (Supplementary
Fig. 16) and enlarges the interplanar spacing (Supplementary
Table 3), but effectively fills the voids between multilayer flakes and
densified the film (Fig. 2g–i and Supplementary Table 2). The flake
alignment and film porosity monotonically decrease with the
addition of small flakes (Supplementary Fig. 17). An optimized bal-
ance between flake alignment and compactness was achieved with a
small flake content of 10 wt%. With lower small flake content, the
numerous voids between multilayer large flakes impede the load
transfer and electron transport, degrading the tensile strength and
electrical conductivity. With higher small flake content, the poor
flake alignment, agglomeration of small flakes, and increase in
defective boundaries also cause degradation in tensile strength and
electrical conductivity.

Compared with LM and SM films, the optimized IDM films
present a moderately aligned and dense structure (Fig. 2g–i and
Supplementary Movies 7 and 8). The tensile strength and electrical
conductivity of IDM films are 409 ± 26MPa and 10,865 ± 203 S cm−1

(Fig. 2j and Supplementary Tables 4 and 5), respectively, which are
2.2 and 1.1 times higher than those of LM films (185 ± 6MPa and
9,822 ± 133 S cm−1). In addition, the 2.8-μm-thick IDM films
(60.8 ± 0.6 dB, Supplementary Fig. 18) have higher EMI shielding
effectiveness (SE) between 0.3 and 18 GHz than the 2.7-μm-thick LM
films (58.1 ± 0.8 dB). The small flake intercalation strategy to
enhance the properties of MXene films by optimizing the balance
between the flake alignment and compactness is different from the
conventional approach that uses only large flakes to improve film
properties24. The intercalation-induced densification strategy can
be used to enhance further the properties of previously reported
MXene composite films assembled from large flakes.

Theoretical calculation of the flake diffusion shows that a uniform
intercalated and compact structure was formed with small flake con-
tent lower than 10.2wt%, while agglomeration occurred with small
flake content higher than 10.2wt% (Supplementary Fig. 19). This result
further explains why the optimized properties were achieved with a
smallflake content of 10wt%. In addition, theMonte Carlomethodwas
used to simulate the structural evolution of IDM films, and their
mechanical properties and interplanar spacing were calculated by the
rule of mixtures. The theoretical results (Supplementary Fig. 20)
indicate that as small flake content increased, the tensile strength first
increased to peak and then decreased, whereas the Young’s modulus
and interplanar spacing monotonically increased, which is consistent
with experimental results.

Lap-shear test and fractographic study
Lap-shear testing44 (Fig. 3a) was used tomeasure the interlayer binding
strength of LM, SM, and IDM films. Their lap-shear stress-strain curves
are shown inSupplementaryFig. 21. The shear strengthof theseMXene
films decreased as follows: SM> IDM> LM films (Fig. 3b). This is con-
sistent with their porosity, increasing in the following order: SM<
IDM< LM films, because voids and defects weaken the interlayer
binding44.

The front and back sides of the delaminated LM films show large
wrinkles (Fig. 3c),whichare topologically complementary to eachother,
suggesting weak interlayer load transfer caused by the voids between
multilayer flakes. By contrast, the delaminated surfaces of SM films
exhibit ground-glass-like structure with numerous small flakes nearing
pull-out, indicating strong interlayer load transfer resulting from dense
flake stacking. IDM films present an intermediate morphology with a
ground-glass-like structure on the wrinkles, which should be attributed
to the intercalation of small flakes that fill the voids betweenmultilayer
large flakes to improve interlayer load transfer.
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Fig. 3 | Lap-shear tests of LM, SM, and IDM films. a Schematic illustration of the
lap-shear test process. A rectangularMXene filmwith a lateral size of 3 × 4mm2 was
glued between two parallel glass substrates using an epoxy adhesive. A shear stress
was then applied by pulling the substrates in the opposite direction at a speed of
0.2mmmin−1 up to film delamination. After delamination, two fractured surfaces

denoted as front and back sides were obtained.b, c Lap-shear strength (b) and SEM
images of fractured surfaces (c) for LM, SM, and IDM films. Scale bars, 20μm (c).
For all tested samples shown here, delamination occurred from within the MXene
films, rather than at the adhesive-MXene or adhesive-glass interfaces. All error bars
show mean ± standard deviation.

Article https://doi.org/10.1038/s41467-022-35226-0

Nature Communications |         (2022) 13:7340 4



The tensile fracture surface of LM films shows curled edges
resulting from the large pull-out of large flakes facilitated by the voids
(Supplementary Fig. 22), whereas that of SM films exhibits flat
sawtooth-like edges resulting from the restricted slip of small flakes by
dense stacking. In addition, the fracture edges of IDM films show
intermediate morphology because small flakes fill the voids, prevent-
ing the pull-out of large flakes.

Bridging-induced densification
The interplanar spacing of BDM (1.18 nm, Supplementary Table 3) and
SDM (1.21 nm) films is smaller than for LM (1.25 nm) and IDM (1.29 nm)
films, respectively, due to a combination of factors, including elec-
trostatic attraction of Ca2+, borate crosslinking, and elimination of
absorbed water by annealing27,45–47. This result indicates that the brid-
ging process diminishes the small voids between monolayer flakes.
While the porosity derived from FIB/SEMT for BDM films (4.3%, Sup-
plementary Fig. 7) is lower than for LM films, the BDM films still show
some relatively large voids (Supplementary Fig. 23 and Supplementary
Movies 9 and 10), indicating that small Ca2+ and borate ions cannot
effectivelybridge the large gapbetweenmultilayerflakes. Additionally,
BDMand SDM films (Supplementary Fig. 9) have better alignment than
do LM and IDM films (Supplementary Fig. 16), demonstrating that the
bridging process improves the flake alignment. Compared with LM
and IDM films, BDM and SDM films have higher tensile strength and
comparable electrical conductivity (Supplementary Tables 4 and 5),
because of improved alignment, compactness, and interlayer interac-
tions. In short, this sequential densification strategy presents a synergy
that seamlessly integrates the advantages of inserting small flakes and
interfacial bridging to effectively eliminate the voids between MXene
flakes and strengthen interlayer interactions while maintaining high
flake alignment.

Performance of SDM films
Figure 4a and Supplementary Fig. 24 show tensile stress-strain curves
of LM and densified MXene films. Because of the synergistic densifi-
cation induced by small flake intercalation and interfacial bridging, the
SDM films display the highest tensile strength (739 ± 32MPa, Supple-
mentary Table 4), Young’s modulus (72.4 ± 8.1 GPa), and toughness
(8.76 ±0.52MJm−3), which are 1.6, 2.4, and 1.5 times higher than those
for BDM films; 1.8, 5.3, and 2.1 times higher than those for IDM films;
and 4.0, 7.6, and 3.7 times higher than those for LM films, respectively.
The tensile strength and Young’s modulus of SDM films surpass those
of previously reportedMXene films (Fig. 1f). In addition, the SDM films
(10,336 ± 103 S cm−1, Supplementary Table 5) have higher electrical
conductivity than LM films (9822 ± 133 S cm−1). The electrical con-
ductivity of SDM films is well above that reported for previous MXene
composite films, even exceeding that of some pure MXene films
(Supplementary Table 6).

Structural densification can prevent the penetration of oxygen
and water into MXene films, slowing their oxidation and thus
improving property stability. For example, SDM films have higher
conductance retention than LM films during storage in humid air with
100% relative humidity (Fig. 4b). Reflecting excellent electrical con-
ductivity, the 2.5-μm-thick SDM films (59.9 ± 0.6 dB, Fig. 4c) also have
higher EMI SE between 0.3 and 18GHz than 2.7-μm-thick LM films
(58.1 ± 0.8 dB). The surface-specific SE of SDM films, defined as the SE
divided by thickness and density48,49, reaches up to 71,801 dB cm2 g-1,
which exceeds that of most solid shielding materials (Supplementary
Table 7). In addition, after storage in humid air for 10 days, the
shielding capacity of SDM films was reduced only by 4.34%, which is
lower than for LM films (16.2%). The emissivity in themid-IR band of as-
prepared SDM films is slightly higher than for as-prepared LM films,
which is probably because the SDM films have poorer flake alignment

Fig. 4 | Properties of LMandSDMfilms. aTypical tensile stress-strain curves of as-
prepared LMand SDM films.bConductance retention percentages as a function of
time for LM and SDM films during 10 days’ storage in humid air with 100% relative
humidity. c–e EMI SE as a function of frequency (c), mid-IR emissivity spectra (d),

and IR photographs ona hot platewith a constant temperatureof 100 °C (e) for LM
and SDM films before and after storage for 10 days in humid air with 100% relative
humidity. Scale bar, 1 cm (e).
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than the LM films. Moreover, themid-IR emissivity of SDM films stored
in humid air is much lower than for LM films stored in humid air
(Fig. 4d), indicating that SDM films have a more stable thermal
camouflage performance. As a demonstration, compared with LM
films, the surface radiation temperature of SDM films covered on the
same substrate increased less after storage in humid air (Fig. 4e).

Discussion
In summary, here we report a densification strategy to synergistically
eliminate the voids between MXene flakes and strengthen interlayer
interactions, without disrupting the interlayer electron transport, by
sequentially intercalating small flakes and interfacial bridging. The
obtained MXene films are highly compact and scalable. They combine
high tensile strength, Young’s modulus, toughness, electrical con-
ductivity, EMI shielding capacity, oxidation resistance, and thermal
camouflage performance, showing applicability to conditions invol-
ving a humid environment and more demanding mechanical loading,
such as flexible wearable devices and military stealth cloaks.

Methods
Materials
Hydrochloric acid (HCl, 36–38%) was provided by Sinopharm Chemi-
cal Reagents Co., Ltd. Lithium fluoride (LiF, ≥99.99%) was purchased
from Aladdin. Sodium tetraborate (Na2B4O7, ≥99%) and calcium
chloride anhydrous (CaCl2, 99%) were received from Adamas-beta.
These reagents were not additionally purified before use. Deionized
water (DIW, resistivity >18MΩ cm) was obtained from a Milli-Q Biocel
system.

Preparation of Ti3AlC2

The pre-alloyed TiAl gas-atomized powder with a size of 74μm was
firstlymixedwith TiC powder with a size of 2μm in amolar ratio of 1:2,
and then ball-milled for 24h in ethanol. Next, the mixture was dried
and pressed into a graphite die, followed by sintering for 2 h under an
Ar atmosphere at 1500 °Cand 30MPa. Finally, the Ti3AlC2 powderwith
a size less than 38μm was obtained by grinding and sieving the
resultant Ti3AlC2 block.

Preparation of large and small Ti3C2Tx flakes
Large Ti3C2Tx MXene flakes were prepared from Ti3AlC2 under Ar flow
using a modified minimally intensive layer delamination method38,39.
LiF (1.6 g) was firstly added into HCl (20mL, 9M) in a Teflon reagent
bottle and stirred at room temperature for 5min. Subsequently, one
gram of Ti3AlC2 powder was slowly added and continually stirred at
40 °C for 30 h. After cooling to room temperature, the resulting mix-
ture was centrifuged for 5min at 1360 × g and the supernatant was
discarded. The obtained sediment was further washed with DIW by
repeating the above centrifugation process 4~5 times until the pH of
the supernatant was larger than 5. Next, the swelled sediment was
dispersed in DIW and mildly vibrated. The resulting dispersion was
then centrifuged at 250× g for 25min to remove non-exfoliated par-
ticles. Finally, the largeMXene flakes were collected in the sediment by
centrifuging the supernatant at 2260 × g for 20min. Small MXene
flakes were prepared by sonicating the as-synthesized large MXene
dispersion for 30min under Ar flow in an ice bath, followed by cen-
trifugation at 2260 × g for 30min to collect the supernatant. The as-
prepared MXene dispersion was centrifuged at 16,100 × g to obtain a
sol having a concentration of ~25mgmL−1 for subsequent experiments.

Preparation of SDM films
The freshly synthesized large and small MXene flake sols were uni-
formlymixed by stirring for 15min and vibrating for 3min, followedby
degassing. The resultant mixture paste was doctor blade cast at a
speed of ~3 cms−1 on a flat substrate of Automatic Film Applicator
BEVS1811/3 with a blade’s length of ~20 cm and a gap size of ~0.36mm.

Subsequently, the spreadpaste wasdried at 40 °C and peeled from the
substrate, obtaining a large-area IDM film. Next, the IDM film was
soaked in a pre-prepared CaCl2 solution (4mgmL−1) for 12 h and then
rinsed five times using DIW to obtain an ionically bridged IDM film
(called IB-IDM film). Finally, the IB-IDM film was soaked in a pre-
prepared Na2B4O7 solution (4mgmL−1) for 12 h, followed by rinsing
five times using DIW and vacuum annealing at 90 °C for 4 h to obtain
an SDM film. Based on the addition of small flakes, the following four
types of IDM films were prepared: IDM-I (5 wt%), IDM-II (10wt%), IDM-
III (20wt%), and IDM-IV (40wt%). Both IB-IDM and SDM films have a
small flake content of 10wt%. The LM and SM films were fabricated by
doctor blade casting large flake and small flake sols, respectively. The
covalently bridged IDM and LM films (called CB-IDM and CB-LM films)
were prepared by treating IDM-II and LM films, respectively, using the
same Na2B4O7 soaking, rinsing, and annealing process. Additionally,
the ionically bridged LM films (called IB-LM films) were prepared by
treating LM films using the same CaCl2 soaking and rinsing process,
while the BDM filmswereprepared by treating LM filmsusing the same
CaCl2 and Na2B4O7 soaking, rinsing, and annealing process.

Data availability
All the data generated or analyzed during this study have been inclu-
ded in themanuscript and Supplementary Information. All the data are
also available from the corresponding author upon request.
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