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Rossby wave second harmonic generation
observed in the middle atmosphere

Maosheng He 1 & Jeffrey M. Forbes2

Second harmonic generation is the lowest-order wave-wave nonlinear inter-
action occurring in, e.g., optical, radio, and magnetohydrodynamic systems.
As a prototype behavior of waves, second harmonic generation is used
broadly, e.g., for doubling Laser frequency. Second harmonic generation of
Rossby waves has long been believed to be a mechanism of high-frequency
Rossby wave generation via cascade from low-frequency waves. Here, we
report the observation of a Rossby wave second harmonic generation event in
the atmosphere. We diagnose signatures of two transient waves at periods of
16 and 8 days in the terrestrial middle atmosphere, using meteor-radar wind
observations over the European and Asian sectors during winter 2018–2019.
Their temporal evolution, frequency and wavenumber relations, and phase
couplings revealed by bicoherence and biphase analyses demonstrate that the
16-day signature is an atmospheric manifestation of a Rossby wave normal
mode, and its second harmonic generation gives rise to the 8-day signature.
Our finding confirms the theoretically-anticipated Rossby wave nonlinearity.

Rossby waves (RWs, also known as planetary waves) develop in rotat-
ing fluids, owing their existence to the conservation of potential vor-
ticity. The meridional gradient of the Coriolis force resists meridional
displacements of flows and drives RWs propagating zonally. Figure 1
sketches RWs’ restoring force and phase velocity. In the universe, RWs
occur ubiquitously in various astrophysical bodies, e.g., in planets’
atmospheres, oceans and liquid cores, e.g., refs. [1–6] and stars’
plasma,e.g., refs. [7,8]. The recent observational findings of RWs at the
Sun and other astrophysical bodies have promoted a renaissance of
studies on RWs, e.g., refs. [9–11].

Transportingmassivemomentumand energy globally, RWs play a
significant role in the transient adjustment of oceanic and atmospheric
circulations, e.g., refs. [12,13]. Atmospheric RWs are of importance in
determiningweather systemson Earth and triggering extremeweather
events, e.g., refs. [14–16], whereasoceanic RWsdrive climate variability
overmultiple temporal scales through couplings with the atmosphere,
e.g., refs. [17,18]. In addition, the RWs developing on the Sun impact
the aerospace plasma environment and play a role in producing space
weather events, e.g., refs. [9,10]. Despite these importances, RWs are
one of the very rare geophysical phenomena that were predicted
theoretically before their observational finding19. A similar scenario

also happened relative to the Sun. RWs were unambiguously detected
on the Sun8 decades after their theoretical prediction20. The difficulties
in observing RWs are owing to the ultra-long temporal and spatial
scales. The wave periods, meaning the time a wave takes for two suc-
cessive crests to pass a specified point, are longer than the astro-
physical bodies’ rotation periods, while their wavelengths are
comparable to the astrophysical bodies’ radius. The relevant mon-
itoring or detection entails continuous observations from multiple
longitudinal sectors simultaneously in a broad time window. In addi-
tion, RWs are often transient, dissipative, and beyond detection. Most
detectable RWs are the normal modes associated with atmospheric
intrinsic properties. The normal modes are also dissipative and often
last only for a few wave periods. Consequently, in the low Earth
atmosphere, observational studies on the RW normal modes often
require statistical spectral analyses21,22. With increasing altitude,
amplitudes of atmospheric RW normal modes increase substantially
and often maximize in the middle atmosphere, e.g., ref. [23]. Accord-
ingly, the middle atmosphere serves as a natural laboratory for
studying RWs and their dissipation mechanisms. A nonlinear behavior
of RWs is the second harmonic generation (SHG), e.g., ref. [24], which
was predicted numerically in the middle atmosphere25 and
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theoretically analyzed in the ocean, e.g., refs. [26,27] but has not been
reported in actual observations to our best knowledge.

In this work, we use middle atmospheric winds observed over
European and Asian sectors at 54–55∘N latitude to detect the fre-
quency, zonal wavenumber, and phase couplings of wave signatures
appearing in early 2019. Results illustrate that an 8-day wave results
from the SHG of a 16-day RW, confirming the theoretically anticipated
RW nonlinearity.

Results
In themiddle atmosphere, normalmodes canbedetected in individual
cases. Most of these detections are based on single-station or -satellite
approaches, and therefore are subject to inherent spatiotemporal
ambiguities, e.g., ref. [28]. To conquer this problem, here we imple-
ment a dual-station ground-based approach (see “Methods”, subsec-
tion “Zonal wavenumber estimation”), employing a cross-wavelet
analysis of middle atmospheric horizontal wind observations at
54–55∘N latitude from two longitude sectors. Similar to a wavelet
spectrum, a cross-wavelet spectrum comprises a complex value as a
function of time and frequency and presents extents of perturbations.
Different from a wavelet spectrum which depicts the perturbations
recorded in a single sensor, a cross-wavelet spectrum indicates per-
turbations synchronized between two sensors: the complex norm of
the cross-wavelet spectrum denotes the products of the amplitudes
recorded in each of the sensors, while the complex argument denotes
the phase difference between the sensors.

In Fig. 2, the cross-spectrum, from November 2018 to March
2019, is populated by a number of peaks. The six most substantial
peaks occur around spectral periods of 16, 4, 2.5, 7, 8, and 6 days, in

descending order of their amplitudes, as indicated by the numbers
1–6 in Fig. 2. The arguments of the spectral peaks reveal that the
underlying waves are associated with dominant zonal wavenumbers
1, 2, 2, 2, and 1 (for the wavenumber estimation and the underlying
assumptions, see “Methods”, subsection “Zonal wavenumber esti-
mation”), respectively, as specified in Table 1. Among these spectral
peaks, five are attributable to manifestations of normal modes. As
specified in Table 1, the 16-, 4-, 7-, and 6-day peaks are manifestations
of the first and second symmetric RW normal modes of zonal
wavenumbers 1 and 229–31, and the 2.5-day peak is themanifestation of
a Rossby-Gravity mode with zonal wavenumber 232. The occurrences
of these normal modes are attributable to the seasonality of, e.g., the
Rossby-Gravity mode33, or the associations between stratospheric
sudden warming events and the normal modes (e.g., the 16- and
6-day modes)34,35 in response to the 2019 new year warming event36.
However, the 8-day spectral peak cannot be attributed to any normal
mode, but rather is explicable as the result of a second harmonic
generation (SHG) of the 16-day normal mode, as anticipated in the
numerical simulation of ref. [25]. Such an RW SHG event is rare. Our
investigation explores seven years (2013–2019) of observations and
only detects this single significant signature.

The total observed Rossbywave responses at 16 and 8 days can be
viewed in termsof the eigenmodesof Laplace’s tidal equation that they
project onto. Some hints regarding the modes that are present at 55∘N
can be inferred from the estimation of the vertical wavelength λz
(Supplementary Fig. 2). The range of λzmeasured at 55∘N for the 16-day
wave with zonal wavenumber 1 (41–46 km) is consistent with the
presence of the first symmetric and first antisymmetric Rossby modes
with λz of 32 km and 56 km. The 8-day wave with zonal wavenumber 2

Fig. 1 | Sketches of Rossby waves’ fundamental principles. a, b The restoring
force. c–e Thewaveform’s velocity. In (a), an air parcel follows along latitudeφ0 at an
eastward velocity vE with a meridional acceleration aN =0 when the pressure gra-
dient force balances the Coriolis force. In b, when the parcel encounters a small
displacement δφ in latitude, the Coriolis force’s gradient imposes a meridional
acceleration aN = δφdaC=dφ= � δφvE2ΩCosφ0 that always points against δφwhen
vE>0. Here, Ω denotes the Earth’s angular frequency and aC = � νE2ΩSinφ is the
northward Coriolis acceleration. While the parcel meanders along the blue arrowed
line l in (b), its waveform travels westward as sketched in c. The absolute vorticity
composes the planetary vorticity f = 2ΩSinφ and the relative vorticity ζ, reflecting

the Earth’s rotation and the parcel’s rotation with respect to the Earth, respectively.
The conservation of absolute vorticity D(ζ+ f)/Dt=0 determines a southward gra-
dient of ζ, as denoted by the red shadow in (c). The gradient’s projection along the
flow path l is typically not zero and would cause a tangential velocity vt. As an
example, the path l in c is zoomed in at two green crosses, displayed in (d, e). These
two crosses are associated with positive and negative gradients of ζ along l,
respectively, as denoted by the red and pink arrows in (d, e). The black arrows vt
denote the vector sums of the red and pink arrows bordering the crosses, both of
which project zonally westward. The parcels at these crosses drift toward the green
points in (c) and, visually, the path l drifts westward toward the dotted line.
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range of λz (64–252 km) is subject to much greater uncertainty, but
appears to exclude the first symmetric mode with λz of 32 km, leaving
the first antisymmetric Rossby mode with λz of 72 km and the second
symmetric Rossby near-normal mode with deep vertical scale as pos-
sible contributors to the total Rossby wave response at 55∘N.

Discussion
The existenceof onewave exhibiting spatial unevennessmight affect a
second existing wave nonlinearly, resulting in a spatially uneven tra-
veling speed of the second wave and giving rise to a third wave.
Mathematically, waves are considered as solutions of linear systems
and represented as, e.g.,

ANψN : =ANe
i2πðf N t�kN �r +ϕN Þ ð1Þ

Here, A and ψ denote the absolute amplitude and phase of the wave; f,
k, and ϕ denote the wave frequency, wavenumber and initial phase; t
and r denote time and position; and N is the index of solutions.

If a linear system has two solutions ψ1 and ψ2, their linear com-
bination A1ψ1+A2ψ2 is also a solution, according to the superposition
principle. In a weakly nonlinear system, the superposition solution
requires a correction with quadratic terms: A1ψ1+A2ψ2 +

P
i,j2f1,2g

Ai,jψiψj .

The correction enables the propagation of three potential waves
ψi,j≔ψiψj (specifically, ψ1,2≔ψ1ψ2, ψ1,1≔ψ1ψ1, and ψ2,2≔ψ2ψ2). Such a
generation of ψi,j are called, e.g., wave–wave nonlinear interaction or
weakly wave interaction. The definition of ψi,j implies a restrictive
phase-matching among the forcing parent waves and the generated

child wave: ψ*
i,jψiψj � 1, or,

arg ψ*
i,jψiψj

n o
� 0 ð2Þ

or,

f i,j = f i + f j
ki,j =ki +kj

arg ei2πðϕi,j�ϕi�ϕj Þ
� �

=0, or,ϕi,j � ϕi � ϕj 2 Z

8><
>:

ð3Þ

The phase-matching relations Eqs. (2) and (3) are often discussed
under the constraining of non-negative frequencies, fi, f j 2 R≥0, e.g.,
in refs. [37,38], which in principle hold for any real frequencies, fi,
f j 2 R. Under real frequency constraint, Eqs. (3) imply ∥fi,j∥ = ∥fi∥ + ∥fj∥
or ∥fi,j∥ = ∥∥fi∥ − ∥fj∥∥ (see “Methods”, subsection “Notation of
wave–wave interactions”). For notational convenience, here we
constrain frequencies to be non-negative f 2 R≥0 to consider only
the case ∥fi,j∥ = fi,j = fi + fj.

In Eq. (2),ψi,j corresponds to the interaction between the i- and j-th
forcing parent waves. Specially, when i = j, ψi,i corresponds to the
quadratic nonlinearity of self-interaction, known as the second har-
monic generation (SHG). In SHG, Eqs. (3) read fi,i = 2fi, ki,i = 2ki, and
ei2πðϕi,i�2ϕiÞ = 1. Satisfying the two relations are the signatures in Fig. 2,
where both spectral frequency and zonal wavenumber of the 8-day

Fig. 2 | Altitude-averaged (80–96 km) cross-wavelet spectrum of horizontal
windbetweenMohe (122∘E, 54∘N) and Juliusruh (13∘E, 55∘N).Averaged here is the
sum of the spectrum of zonal wind u and that of the meridional wind v. The
darkness and color hue in each panel denote the modulus and argument of the
spectrum, namely,k ~C k and argf~Cg, respectively. The phase is a function of
zonal wavenumberm as specified in the color code. The six numbers following

the symbol # index the most substantial peaks in descending order of their
amplitudes, as specified in Table 1. The solid black isolines denote amplitudes
at 6 ms−1 and the vertical dashed line indicates the central day of the 2019 new
year stratospheric sudden warming event. Readers with colour vision defi-
ciencies are referred to Supplementary Fig. 1 for color-filtered versions of the
current figure.

Table 1 | Spectral peaks in Fig. 2 and their interpretations

index date Ta mb interpretation reference

#1 Nov.–Jan. 14–18 1 AMc of the 2nd symmetric normal
mode of m = 1

67

#2 Dec.–Jan. 4–5 2 AM of the 1st symmetric normal
mode of m = 2

30

#3 Jan.–Feb. 2–3 2 AM of a Rossby-Gravity mode 32

#4 Feb. 7 2 AM of the 2nd symmetric normal
mode of m = 2

31

#5 Jan. 8–9 2 AM of the SHG of the wave in #1 25

#6 Jan. 5–6 1 AM of the 1st symmetric normal
mode of m = 1

30

aT denotes the spectral period in the unit of day.
bm denotes the zonal wavenumber in the unit of cycle per 360∘ longitude.
cAM abbreviates ‘atmospheric manifestation’.
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peak are twice those of the 16-day peak. Therefore, we conclude that
the 8-day peak is a signature of SHG. Further factors support this
conclusion. The 8-day peak starts to enhance when the 16-day peak
starts to weaken. This anti-correlated temporal evolution is attribu-
table to the energy transport from the 16-day wave to the secondary
wave (see “Methods”, subsection “Energy conversation in wave–wave
interactions”).

While the anti-correlation reflects the energy budget of the inter-
actions, a complex correlation defined between energy-supplying and
-receiving parties reflects the coherence among involved waves (see
“Methods”, subsection “Bispectrum and bicoherence”). In the case of
quadratic nonlinearity, which typically involves three waves, the com-
plex correlation is defined between the complex amplitude of the
highest frequency wave and the product of the complex amplitudes of
the other two waves. If X ðf Þ denotes the complex amplitude of oscilla-
tion at frequency f estimated spectrally from an time series, the covar-
iance and correlation coefficient between the variables X ðf 1 + f 2Þ and
X ðf 1ÞX ðf 2Þ are the bispectrum and bicoherence, respectively. Triple
oscillations at three frequencies f1, f2 and f1 + f2 (hk X ð f 1Þ ki>0,
hk X ðf 2Þ ki>0, and hk X ðf 1 + f 2Þ ki>0) excited spontaneously by inde-
pendent waves or processes with random phases are characterized by a
near-zero bicoherence. In contrast, the significant bispectral and bico-
herence peak (Fig. 3a, b) suggests coherence among the oscillations.

The bispectral peak is associated with a near-zero argument
(Fig. 3c). The near-zero argument implies that the 16-day wave
peak overlaps with the 8-day wave peak in space. This overlap
satisfies the phase-matching relation of the initial phase in the last
equation in Eq. (3). Compared to the phase-matching relations of
wave frequency and wavenumber, the initial phase condition has
rarely been discussed in the existing literature. One potential
reason is that the initial phase condition pertains to wave com-
ponents whose energy is completely exchanged through the
interaction. When any wave participates in the interaction par-
tially and the initial phase of the interacting part is different from
that of the remaining part, the frequency and wavenumber con-
ditions are still observable, but the initial phase condition
will not be.

The nonlinear interactions and SHG broaden spectral variability
by cascading and diluting energy across discrete spatial-temporal
scales, either upscale or downscale. As aprototypewavebehavior, SHG
occurs in various systems and is broadly used, for instance, in non-
linear optics and radio science, e.g., refs. [24,39,40]. Numerical simu-
lations of SHGs of atmospheric Rossby wave normal modes date back
to refs. [25,41]. Here, we present observation of an unambiguous event
of the Rossbywave SHG, under the constraints of bothwave frequency
and zonal wavenumber as well as the triplet coherence.

Rossby waves and their nonlinear interactions play important
roles in shaping the weather of atmospheres, oceans, and plasma at
Earth, Sun and other astrophysical bodies9,11,42, which are also used to
interpret various intriguing problems and astrophysical periodicities,
such as the solar 22-year Hale cycle and 11-year Schwabe cycle43,44,
quasi periodicities in solar surface magnetic structures in differential
rotation and toroidal field amplitudes45, and secular variations of the
geomagnetic field2,3,6,46. Therefore, our finding should shed light on the
applicability of RW SHG to these intriguing problems.

Methods
The current work uses middle atmospheric observations from two
longitudes at the same latitude to diagnose the zonal wavenumbers of
Rossby waves through a dual-station method. Bispectral analysis is
used for identifying wave–wave nonlinear interactions.

Meteor wind observations
We use twometeor radars from two longitude sectors, at Mohe (122∘E,
54∘N) and Juliusruh (13∘E, 55∘N) between June 2018 and June 2019. For
the radar setups, e.g., operating radio frequencies and antenna con-
figurations, readers are referred to47 and48. We estimate the hourly
zonal and meridional winds (u and v) at altitudes h = 80.5, 81.5,...,99.5
km at each station. The data availability is specified in Section Data
availability.

Zonal wavenumber estimation
Oscillations induced by one traveling wave are coherent everywhere
on the wave’s path. The phase difference between the two sites is time-
invariant and proportional to the spatial separation times the wave-
number in the detection defined by the two sites, which provides an
opportunity to diagnose the directional wavenumber experimentally.
According to this principle,49 developed a dual-station approach,
called the phase differing technique (PDT), for diagnosing zonal
wavenumber using observations from two zonally separated stations.

A zonally traveling wavewith zonal wavenumberm and frequency
f can be denoted as ~Ψðλ,t∣ f ,mÞ= ~Aeið2πf t +mλÞ : = ~aðλ∣mÞei2πf t , where t
and λ represent time and longitude; ~A represents the wave’s complex
amplitude and ~a : = ~Aeimλ. We define a cross-product: ~c :

= ~aðλ1∣mÞ~a*ðλ2∣mÞ= k ~Ak2eimðλ1�λ2Þ where, λ1 and λ2 denote two long-
itudes. Accordingly,

m=
arg ~c

� �
+2πZ

λ1 � λ2
ð4Þ

Here, Z 2 Z is an integer, argf~cg+2πZ denotes the phase difference of
the wave between λ1 and λ2, and 2πZ

λ1�λ2
corresponds to the Nyquist

Fig. 3 | Bispectral spectra averaged within 80–96 km, between Juliusruh and
Mohe, andbetween zonal andmeridionalwinds observedbetween 1November
2018 and 31 January 2019. a Bispectrum. b Bicoherence. c Bispectral argument

(namely, biphase). In (b) and (c), the dots indicate the significance level
above α =0.01.
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wavenumber mN : = π
λ1�λ2

. Assuming that at a given latitude and at a
given wave frequency, there exists one dominant wave traveling zon-
ally, we can estimate ~aðλ1∣mÞ, ~aðλ2∣mÞ, and ~c experimentally through
spectral analysis of the time series of observations collected at λ1
and λ2.

Following50 and using a similar radar configuration, at Mohe (M)
and Juliusruh (J), we first calculate the wavelet spectra of the zonal and
meridional wind components u and vover each station at each altitude
h, resulting in amplitude spectra ~WJ,u,h, ~WJ,v,h, ~WM,u,h, and ~WM,v,h. We
sum the cross-products of the two components at each altitude,
~Cu+ v : = ~W

*
J,u

~WM,u + ~W
*
J,v

~WM,v, and average the sum in the altitude
range between 80 and 96 km, resulting in h~Cu+ vi80<h<96km as displayed
in Fig. 2. ~W and h~Ci are the experimental estimations of ~a and ~c in
Eq. (4).

The estimation ofm according to Eq. (4) is subject to the aliasing
associated with the Nyquist wavenumber mN = π

λ1�λ2
, namely, the ∥m∥

of the underlying wave should be smaller than ∥mN∥ or in Eq. (4) (or,
Z = 0, or the underlyingwavelength (namely, the distance between two
consecutive wave crests or between two consecutive wave troughs) is
longer than twice the station separation). This long-wave assumption
Z = 0 could be relaxed slightly to Z∈ { − 1, 0, 1}, under the assumptions
that the underlying wavenumber is a near-zero integer
m∈ { − 1, 0, 1, 2, 3}. Following35, we determinem through the following
optimization,

m̂= argmin
Z2f�1,0,1g,m2f�1,0,1,2,3g

k arg h~Cu+ vi
n o

+2πZ �mðλM � λJÞ k ð5Þ

This approach has been evaluated through comparisons with
estimations from different radar pair configurations at the same lati-
tude and estimations through least-square fit using observations from
three or four longitudes33,51.

Notation of wave–wave interactions
In “Discussion”, we constrained frequencies to be non-negative in
discussing the quadratic interaction. For completeness, here we use
real-value frequencies to introduce the interaction.

According to Eq. (1), ANψN and its conjugate ANψ
*
N denote waves

with opposite polarizations in the complex plane. These two waves
share the same real part < ψN

� � � < ψ*
N

� �
and therefore both exhibit

experimentally as the same signal AN< ψN

� �
. Generally, the experi-

mental signal < ψN

� �
represents a linear combination of two waves

ΨN : = ðpN � ψN + ð1� pNÞ � ψ*
NÞ, since < ΨN

� � � < ψN

� �
. Here the pN 2

R is an arbitrary real number. The interaction between two experi-
mental signals < ψi

� �
and <fψjg involvesΨi andΨj and the denotation

ψi,j≔ψiψj used in “Discussion” should be generalized as
Ψi,j≔ΨiΨj=pipjψiψj + ð1� piÞpjψ

*
iψj +pið1� pjÞψiψ

*
j + ð1� piÞð1� pjÞψ*

iψ
*
j .

Using denotations of matrix multiplication, Ψi,j =P
tψ, where

Pt : = ½pipj ,ð1� piÞpj ,pið1� pjÞ,ð1� piÞð1� pjÞ�, ψt : = ½ψiψj ,ψ
*
iψj ,ψiψ

*
j ,

ψ*
iψ

*
j �t . Here, the underlined letters denote column vectors, and the

superscript t denotes transpose of a vector. The linear combination
Ψi,j =P

tψ represents that the interaction between Ψi and Ψj might
generate at maximum four quadratic terms. For convenience, we
denote these terms as ψ+i,+j≔ψiψj, ψ�i, + j : =ψ

*
iψj , ψ+ i,�j : =ψiψ

*
j , and

ψ�i,�j : =ψ
*
iψ

*
j . Their phase matching could be summarized as

f ± i, ± j = ± f i ± f j
k ± i, ± j = ±ki ±kj

ϕ± i, ± j∓ϕi∓ϕj 2 Z

8><
>:

, and

f ∓i, ± j = ∓f i ± f j
k∓i, ± j =∓ki ±kj

ϕ∓i, ± j ±ϕi∓ϕj 2 Z

8><
>:

ð6Þ

These four terms could yield only two independent experimental wave
signals: <fψ± i, ± jg and <fψ± i,∓jg due to <fψiψjg � <fψ*

iψ
*
j g and

<fψ*
iψjg � <fψiψ

*
j g. These signals occur at two absolute frequencies

that can be denoted as a set fk f ± i, ± j k ,k f ∓i, ± j kg= fk f i k + k f j k
, kk f i k � k f j kkg.

The indices i, j∈ {1, 2} are defined in “Discussion”, implicating
three possible combinations, namely, {i, j} = {1, 1}, {2, 2}, or {1, 2}. These
possibilities are associated with six independent experimental wave
signals, namely, < ψ± 1, ± 1

� �
, < ψ∓1, ± 1

� �
, < ψ± 2, ± 2

� �
, < ψ∓2, ± 2

� �
,

< ψ± 1, ± 2

� �
, and< ψ∓1, ± 2

� �
. Among them,< ψ∓1, ± 1

� �
and< ψ∓2, ± 2

� �
are

trivial solutions (zero-frequency and zero-wavenumber), while the
others occur at four absolute frequencies, ∥2f1∥, ∥2f2∥, ∥f1∥ + ∥f2∥,
and∥∥f1∥ − ∥f2∥∥, known as the four possible secondary waves of
quadratic interactions between wave signals < ψ1

� �
and < ψ2

� �
[e.g.,25.

These secondary waves might occur independently from each other,
e.g., ref. [52], and the interaction might occur between different types
of waves,e.g., ref. [53]. The secondary waves at frequencies ∥f1∥ + ∥f2∥
and ∥∥ f1∥ − ∥f2∥∥ are known as upper and lower sidebands (USB and
LSB). The generation of waves at ∥2f1∥ and ∥2f2∥ corresponds to the
SHG. SHG is a special USB generation in which the roles of both parent
waves are played by the same wave.

Since all negative-frequency wave solutions can be denoted
notationally as conjugations of positive-frequency solutions, fre-
quencies are often constrained to be non-negative f 2 R≥0, as used in
“Discussion”.

Bispectrum and bicoherence
Bispectrum measures a higher-order moment of a time series, devel-
oped first for investigating oceanic waves54. Existing literature pro-
posed and named at least three unitless normalizations of bispectrum
as bicoherence, e.g., refs. [55–57]. A comparison58 favors a normal-
ization, e.g., ref. [55] bounded between 0 and 1. The current work uses
this normalization and proposes a new interpretation for it. This nor-
malization could be interpreted as the correlation coefficient of two
particular complex variables, U : =F ðf 1ÞF ðf 2Þ and V : =F ðf 1 + f 2Þ. The
covariance of these two variables is an interpretation of the bispec-
trum. Here, F ðf Þ denotes the complex Fourier amplitude of a para-
meter x at spectral frequency f >0 and position rwithin a timewindow
centering at t. In the occurrence of a nonlinear interaction involving
three waves, U and V represent the energy-supplying and -receiving
parties, and their correlation,

CovðU,V Þ= hðU � hUiÞðV � hV iÞ*i ð7Þ

is facilitated by the energy conversation (see “Methods”, subsection
“Energy conversation in wave–wave interactions”). Suppose the time
and spatial variation of x can be denoted as a linear combination
of plane waves, namely, xðt,rÞ= P

n Anψnðλ,t∣ f ,kÞ where ψn =
ei2πðf nt�kn �r +ϕnÞ denotes the n-th wave. For any f1, the expectation
hF ðf 1Þit =0, because

hF ðf 1Þit =
R t0 +ΔT
t0

A1ψ1dt

ΔT
=
A1e

i2πð�k1 �r+ϕ1Þ

i2πf 1ΔT
ei2πf 1t ∣t0 +ΔT

t0

)k hF ðf 1Þit k ≤
k A1 k
πf 1ΔT

) lim
ΔT!+1

k hF ðf 1Þit k =0

ð8Þ

Similarly, hF ðf 1Þir =0, hF ðf 1Þit,r =0 and hF ðf 1ÞF ðf 2Þit,r =0 at any
spectral frequencies f1 and f2. Therefore, 〈U〉 = 0 and 〈V〉 =0. Substitute
these expectations into Eq. (7), yielding,

CovðU,V Þ= hUV *i= hF ðf 1ÞF ðf 2ÞF ðf 1 + f 2Þ*i : =Bðf 1,f 2Þ ð9Þ
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Similarly, the correlation coefficient between U and V reads,

ρU,V =
CovðU,V Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hk U � hUik2ihk V � hV ik2i
p

=
Bðf 1,f 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hk Uk2ihk Vk2i
p

=
Bðf 1,f 2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hk F ðf 1ÞF ðf 2Þk2ihk F ðf 1 + f 2Þk2i
q

: =bðf 1,f 2Þ

ð10Þ

B(f1, f2) and b(f1, f2) were defined as the bispectrum and bicoherence of
x(t, r), respectively55. A near-zero ∥b(f1, f2)∥ reveals a random phase
mixing of the three oscillations,F ðf 1Þ,F ðf 2Þ, andF ðf 1 + f 2Þ, suggesting
these oscillations might be spontaneously and independently excited.
On the contrary, significant B(f1, f2) and ∥b(f1, f2)∥ values suggest that
the three oscillations are coherent with each other. Quantifying the
goodness of the coherence, ∥b(f1, f2)∥ is bounded by 0 ≤ ∥b∥ ≤ 1. An
explanation for the triplet coherence is a nonlinear interaction among
these three oscillations, which is enabled by the phase-matching
relations in Eq. (2). Consequently, significant B(f1, f2) and ∥b(f1, f2)∥ are
broadly used as experimental indicators of wave–wave nonlinear
interaction, e.g., ref. [59]. The argument of Bispectra and bicoherence
arg Bf g= arg b

� �
=0 is known as biphase, reflecting the phase relations

among the involved waves and implicating the skewness and wave-
form of the supposed interacting waves, e.g., ref. [60].

Through a Lomb-Scargle analysis, we first estimate the complex
amplitude of eachwind component u and v over each station between
1 November 2018 and 1 February 2019, at each altitude level. Then, the
Bispectrum ∥B∥ and bicoherence ∥b∥ are calculated according to Eqs.
(9) and (10)where averages are across all altitude levels, between u and
v andbetweenMohe and Juliusruh. ∥B∥, ∥b∥ and their argument, arg Bf g
are displayed in Fig. 3a–c, respectively.

Energy conversation in wave–wave interactions
The energy budget of wave–wave interactions is regulated by the
Manley–Rowe relations61 that in each interaction, the energy expor-
ted from or accepted by each wave is proportional to the wave’s
absolute frequency. Under this regulation, the frequency matching
fi,j = fi + fj in Eq. (3) is equivalent to energy conversation. This implies
that the energy is exported either from the highest frequency wave at
fi,j to the other two waves at fi and fj or on the other way around from
waves at fi and fj to the wave at fi,j. In both cases, the highest fre-
quency wave is one party in the energy budgets, either receiving or
exporting energy, and the other two waves are the other party. These
two parties are represented by the variables V and U, respectively, as
defined in “Methods”, subsection “Bispectrum and bicoherence”. The
energy exchange between these parties implies their anti-correlation
and facilitates the complex correlation between V and U (namely, the
bicoherence as explained in “Methods”, subsection “Bispectrum and
bicoherence”).

In the USB generation, both parent waves export energy to the
USB, whereas in the LSB generation, energy is transported from
the highest frequency parent wave to both the other parent wave and
the LSB. The amplified parent wave was called anti-wave, e.g., ref. [62],
which stimulates the occurrence of the LSB interaction and amplifies
the Rossby wave, e.g., [52]. This anti-wave is characterized by a nega-
tive frequency in the notations defined in “Methods”, subsection
“Notation of wave-wave interactions”. There is a special case in which
two initial waves interact, producing a USB, and then the USB interacts
with the initial waves amplifying the initial waves. Energy exchanges
between the initial waves and the USB back and forth periodically.
Such a period is called the modulation period, e.g., ref. [63], which is
beyond the scope of the current work.

Data availability
The hourly wind data at Mohe is available in the word data center
(WDC) for Geophysics, Beijing, with the identifier https://doi.org/10.
12197/2020GA01664. The hourly wind data at Juliusruh is available in
the service RADAR, with the identifier https://doi.org/10.22000/34365.
The datasets generated during and/or analyzed during the current
study are available from the corresponding author upon request.

Code availability
The current work uses the MATLAB Signal Processing Toolbox and
Wavelet software provided by C. Torrence and G. Compo66. The
Wavelet software is available at the http://atoc.colorado.edu/research/
wavelets/.
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