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Data-driven discovery of dimensionless
numbers and governing laws from scarce
measurements

Xiaoyu Xie1, Arash Samaei 1, Jiachen Guo2, Wing Kam Liu 1 &
Zhengtao Gan1,3

Dimensionless numbers and scaling laws provide elegant insights into the
characteristic properties of physical systems. Classical dimensional analysis and
similitude theory fail to identify a set of unique dimensionless numbers for a
highly multi-variable system with incomplete governing equations. This paper
introduces a mechanistic data-driven approach that embeds the principle of
dimensional invariance into a two-level machine learning scheme to auto-
matically discover dominant dimensionless numbers and governing laws
(including scaling laws and differential equations) from scarce measurement
data. The proposed methodology, called dimensionless learning, is a physics-
based dimension reduction technique. It can reduce high-dimensional para-
meter spaces to descriptions involving only a few physically interpretable
dimensionless parameters, greatly simplifying complex process design and
system optimization. We demonstrate the algorithm by solving several chal-
lenging engineering problems with noisy experimental measurements (not
synthetic data) collected from the literature. Examples include turbulent
Rayleigh-Bénard convection, vapor depression dynamics in laser melting of
metals, andporosity formation in 3Dprinting. Lastly,we showthat theproposed
approach can identify dimensionally homogeneous differential equations with
dimensionless number(s) by leveraging sparsity-promoting techniques.

All physical laws can be expressed as dimensionless relationships with
fewer dimensionless numbers and in a more compact form1. Dimen-
sionless numbers are power-law monomials of some physical
quantities2. A dimensionless number has no physical dimension (such
as mass, length, or energy), which provides the property of scale
invariance, i.e., dimensionless numbers are invariant when the length
scale, time scale, or energy scale of the system varies. More than 1200
dimensionless numbers have been discovered in an extremely wide
range of fields, including physics and physical chemistry; fluid and
solid mechanics; thermodynamics; electromagnetism; geophysics and
ecology; and engineering3.

There are several significant advantages to describing a physical
process or system using dimensionless numbers, including reducing
the number of variables, enabling cross-scales experiments, and
increasing physical interpretability. First, using dimensionless num-
bers can considerably simplify a problem by reducing the number of
variables that describe the physical process, thereby reducing the
number of experiments (or simulations) required to understand and
design the physical system. The Reynolds number (Re), for example, is
a well-known dimensionless number in fluid mechanics named after
Osborne Reynolds, who studied fluid flow through pipes in 18834. The
Reynolds number is defined as a power-law based on four physical
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quantities: fluid density, average fluid velocity, the diameter of the
pipe, and dynamic fluid viscosity. The flow characteristics (laminar or
turbulent) in a pipe are best determined by the Re rather than the four
individual dimensional quantities. Second, the scale-invariance prop-
erty of dimensionless numbers plays a critical role in similitude
theory5. Many small-scale experiments have been designed to under-
stand andpredict thebehaviorsof full-scale applications in aerospace6,
nuclear7, and marine engineering8, where full-scale applications are
typically extremely expensive and even dangerous. All dimensionless
numbers should be identical between the small-scale and full-scale
experiments, resulting in perfect geometry, dynamic, and kinematic
similarities between the two scales. Third, dimensionless numbers are
ratios of two forces, energies, ormechanisms. Thus, they are physically
interpretable and can provide fundamental insights into the behavior
of complex systems. For example, the Péclet number (Pe) represents
the ratio of the convection rate of a physical quantity by flow to the
gradient-driven diffusion rate, which enables order-of-magnitudes
analysis for the transport phenomena of a process.

Despite the scientific significance and widespread use of
dimensionless numbers, discovering new dimensionless numbers
and their relationships (i.e., scaling laws) from experiments remains
challenging, especially for a complex physical system lacking
complete governing equations. A traditional solution is dimensional
analysis2 based on Buckingham’s Pi theorem9, which provides a
systematic approach to examining the units of a physical system
and forming a set of dimensionless numbers that satisfy the prin-
ciple of dimensional invariance10. However, dimensional analysis
has several well-known limitations. First, the dimensionless num-
bers derived are not unique. Buckingham’s Pi theorem9, from the
standpoint of mathematics, provides a linear subspace of expo-
nents that produces dimensionless numbers. Any basis for the
subspace is equally valid. Thus, it fails to identify the dimensionless
numbers that are dominant for the physical system given a specific
choice of basis. Second, dimensional analysis alone cannot reveal
the mathematical relationship between dimensionless numbers
(i.e., the scaling law). A common approach to establishing the
scaling law is to leverage the results of the dimensional analysis with
experimental measurements of the physical system. The experi-
mental measurements are transformed into dimensionless numbers
obtained through dimensional analysis and fitted onto a high-
dimensional response surface to represent the scale-invariant rela-
tionship. However, because the dimensional analysis does not
provide unique dimensionless numbers, this procedure is very time-
consuming and heavily relies on the experience of domain experts
to select a set of appropriate dimensionless numbers through a long
process of trial and error.

These limitations could be overcome by integrating dimensional
analysis with advanced data science and artificial intelligence (AI).
Mendez and Ordonez introduced the SLAW (Scaling LAWs) algorithm
to identify the form of a power law from experimental data (or simu-
lation data)11. The proposed SLAWcombines dimensional analysis with
multivariate linear regressions. This approach has been applied to
some engineering areas, such as ceramic-to-metal joining11 and plasma
confinement in Tokamaks12. However, for the sake of simplification,
this algorithm assumes that the relationship between dimensionless
numbers obeys a power law, which is invalid in many applications.
Constantine, Rosario, and Iaccarino proposed a rigorousmathematical
framework to estimate unique and relevant dimensionless groups13,14.
Active subspace methods are connected to dimensional analysis,
which reveals that all physical laws are ridge functions14. However, their
method is only applicable to idealized physical systems. In these sys-
tems, experiments can be conducted for arbitrary values of the inde-
pendent input variables (or dependent input variables with a known
probability density function), and noises or errors in the input and
output are negligible.

In this study, we propose a mechanistic data-driven approach,
called dimensionless learning. This method consists of two main
workflows to discover scientific knowledge from data. The first work-
flow embeds the principle of dimensional invariance (i.e., physical laws
are independent of an arbitrary choice of basic units of
measurements1) into a two-level machine learning scheme to auto-
matically discover dominant dimensionless numbers and scaling laws
from noisy experimental measurements of complex physical systems.
This invariance incentivizes the learning of scale-invariant and physi-
cally interpretable low-dimensional patterns of complex high-
dimensional systems. We demonstrate the first workflow by solving
three challenging problems in science and engineering with noisy
experimental measurements collected from the literature. The pro-
blems include turbulent Rayleigh–Benard convection, vapor depres-
sion dynamics, and porosity formation during 3D printing. In the
second workflow, dimensionless learning is integrated with sparsity-
promoting techniques (such as SINDy15 and proposed symmetric
invariant SINDy) to identify dimensionally homogeneous differential
equations and dimensionless numbers from data. The analyses are
performed on five differential equations with and without noisy data
effect, including Navier–Stokes, Euler, vorticity equations, the gov-
erning equations for spring–mass–damper systems and dynamic
loading beam systems.

Results
Turbulent Rayleigh–Bénard convection
In this section, we demonstrate the first workflow of the proposed
dimensionless learning using a classical fluid mechanics problem:
turbulent Rayleigh–Bénard convection. The goal is to directly redis-
cover the Rayleigh number (Ra) from experimental measurements.
The Ra is named after Lord Rayleigh, who investigated a non-
isothermal buoyancy-driven flow in 191616, which is now known as
Rayleigh–Bénard convection. Turbulent Rayleigh–Bénard convection
is a paradigmatic system to study turbulent thermal flow in a planar
horizontal layer of fluid in a container heated from below. The internal
fluid could develop complex turbulent dynamics due to the effects of
buoyancy, fluid viscosity, and gravity (Fig. 1a).

The heat flux through the container, q, can be measured
experimentally, which depends on the height of the container h,
the temperature difference between the top and bottom surfaces
ΔT, gravitational acceleration g, and fluid properties such as
thermal conductivity λ, thermal expansion coefficient α, viscosity
ν, and thermal diffusivity κ. To obtain a causal relationship,
we need to specify the dependent (i.e., output) and independent
(i.e., input) variables from the physical quantities describing the
system. To simplify the demonstration, we assume the form of
the output variable as the Nusselt number Nu= qh

λΔT (a more gen-
eral case using q as the output will be presented later) and a list of
physical quantities p as input variables. The causal relationship to
be determined can be represented as

Nu=
qh
λΔT

= f ðh,ΔT , λ, g,α, ν, κÞ= f ðpÞ: ð1Þ

This is a high-dimensional parameter space. To explore it, we
collect an experimental dataset of turbulent Rayleigh–Bénard con-
vection from two different articles17,18, including 182 experiments with
various input variables and corresponding output measurements
(Fig. 1b). Many machine learningmodels can fit the data. However, the
majority of them are black-box models, such as neural networks, with
poor interpretability and physical insights. Alternatively, we aim to
identify a low-dimensional scale-invariant scaling law that best repre-
sents the dataset. In the scaling law, the products of powers of the
input variables p form a dimensionless number Π. Thus, the causal
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relationship can be rewritten as follows:

Nu= f 1ðΠÞ, ð2Þ

Π=hw1ΔTw2λw3gw4αw5νw6κw7 , ð3Þ

where w= ½w1, . . . ,w7�T denotes the powers that generate the dimen-
sionless number and are to be determined. In this problem, we assume
that the process is governed by a single input dimensionless number.
Section 1.3 of the Supplementary Information (SI) provides an algo-
rithm for determining the number of dimensionless numbers required
from the data.

To embed the physical constraint of dimensional invariance, we
perform dimensional analysis, i.e., the powersw= ½w1, . . . ,w7�T need to
satisfy a linear system of equations

Dw=0, ð4Þ

where D is the dimension matrix of the input variables (Fig. 1c). Each
column of the dimension matrix is the dimension vector of the cor-
responding variable. The dimension vector represents the exponents

of the physical quantity with respect to the fundamental dimensions. It
is worth noting that there are only seven fundamental dimensions in
nature: mass [M], length [L], time [T], temperature [Θ], electric current
[I], luminous intensity [J], and amount of substance [N]19. All of the
other dimensions are power-law monomials of the fundamental
dimensions1. In this problem, we use four fundamental dimensions:
[M], [L], [T], and [Θ] (Fig. 1c). The dimension matrix includes the
physical dimensions of the input variables. The linear system of
equations Dw =0 ensures that the power-law monomial of the input
variables (Eq. (3)) is dimensionless20. Since the linear system is
underdetermined (i.e., the number of unknown variables exceeds the
number of equations), there are infinitely many solutions, indicating
that the dimensional analysis can yield infinitely many forms of
dimensionless numbers. Furthermore, we can represent the solutions
of the linear system (Eq. (4)) as linear combinations of three basis
vectors wb1, wb2, and wb3

w= γ1wb1 + γ2wb2 + γ3wb3, ð5Þ

where γ = ½γ1, γ2, γ2�T are the coefficients with respect to the three basis
vectors in this case. The number of basis vectors is equal to the number
of input variables (seven in this case) minus the rank of the dimension

Fig. 1 | The proposed dimensionless learning demonstrated on turbulent
Rayleigh–Benard convection. a A schematic of Rayleigh–Benard convection49

with associated physical quantities. b Collected experimental measurements.
cConstructeddimensionmatrixDof the input variables.dThefirst level of the two-
level optimization scheme for training the coefficients γ with respect to the com-
puted basis vectors. e The second level of the two-level optimization scheme for

optimizing the unknown coefficients β in representation learning. f Explored
dimensionless space with a measure of R2. The location with the maximum R2 is
marked with a yellow star and corresponds to the classical Rayleigh number.
g Identified one-dimensional scaling law between Nu and Ra. h Discovered linear
scaling law between two identified dimensionless numbers.
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matrix (four in this case). This formula aligns with the Buckingham’s PI
theorem9. Since the basis vectors can be computed using Eq. (4) (an
algorithm for computing basis vectors is provided in Section 1.2 of the
SI), the basis vectors’ coefficients (or simply “basis coefficients") are
the unknowns to be determined. For this case, a set of computed basis
vectors is as follows:

wb1 = ½0,0, 0, 0, 0, 1, � 1�T, ð6Þ

wb2 = ½0, 1, 0, 0, 1, 0, 0�T, ð7Þ

wb3 = ½3, 0, 0, 1, 0, � 2, 0�T: ð8Þ

Once thebasis coefficients γ1, γ2, and γ3 are obtained, the formof the
dimensionless number Π can be determined by Eqs. (3) and (5)
(Fig. 1d).

To determine the values of the basis coefficients using the
collected dataset, a model representing the scaling relation
between the input and output dimensionless numbers is required,
which introduces another set of unknown parameters β (i.e., the
representation learning shown in Fig. 1e). In this case, we use a
fifth-order polynomial model (more advanced models, such as
tree-based models and deep neural networks, are optional
depending on the complexity of the problem to be solved; see the
section “Porosity formation in 3D printing of metals” of the paper
and Section 4 of the SI for more demonstrations). The polynomial
model can be expressed as

Nu=β0 +β1Π +β2Π
2 + . . . +β5Π

5, ð9Þ

where β= ½β0,β1, . . . ,β5�T denotes polynomial coefficients that repre-
sent the scaling relation.

We design an iterative two-level optimization scheme to deter-
mine the two sets of unknown parameters in the regression problem,
namely the basis coefficients γ and polynomial coefficients β. The
optimization scheme includes multiple iterative steps. At each step,
we adjust the first-level basis coefficients γwhile holding the second-
level polynomial coefficients β constant, and then optimize the
second-level polynomial coefficients β while keeping the first-level
basis coefficients γ constant. This process is repeated until the result
is converged, that is, the values of γ and β remain unchanged. There
are several advantages to the proposed two-level approach over a
single-level approach that combines the two sets of unknowns
together during optimization. We can use different optimization
methods and parameters (such as the learning rate) for these two-
level models to significantly improve the efficiency of the optimiza-
tion. More importantly, we can utilize physical insights to inform the
learning process. The first-level basis coefficients γ have a clear
physical meaning, which is related to the powers that produce the
dimensionless number. Thus, those values have to be rational num-
bers to maintain dimensional invariance. Moreover, their typical
range is limited. It is worth noting that the absolute values of the
coefficients in most of the dimensionless numbers and scaling laws
are less than four1. To leverage those physical insights or constraints,
we design several methods for optimizing the first-level basis coef-
ficients, including a simple grid search (used in this section) and a
much more efficient pattern search (Section 4.2 of the SI). For the
second-level coefficients, we conduct multiple standard representa-
tion learning methods, including the polynomial regression used in
this section, tree-based extreme gradient boosting (XGBoost21) used
in the section “Porosity formation in 3D printing of metals”, and
general gradient descent method (Section 4.1 of the SI). Details on
the two-level optimization framework are provided in Section 4
of the SI.

We illustrate the first-level grid search for γ2 and γ3 with
values ranging from −2 to 2 and 100 grids for each basis coeffi-
cient (Fig. 1f). We set γ1 to 1 to avoid the identification of
equivalent dimensionless numbers with different powers and
reduce the computational cost. For each γ in the dimensionless
space, the polynomial coefficients β are trained based on the
collected data. The dataset is divided into an 80% training set and
a 20% test set. The coefficient of determination (R2) of the test set
is shown in Fig. 1f as a measure of learning performance. We can
identify a unique point with the maximum R2 (0.999) from Fig. 1f
(marked as a yellow star), where γ1 = γ2 = γ3 = 1. Using these opti-
mized basis coefficients, the expression of the dominant dimen-
sionless number can be identified as

Π =
gαΔTh3

νκ
: ð10Þ

This form is identical to the classical Rayleigh number, indicating
that the proposed dimensionless learning can directly rediscover the
well-known dimensionless number from data. Moreover, we demon-
strate that for the given parameter list, the Rayleigh number is the
unique dimensionless number to best fit the dataset because there is
only one global maximum of R2 within the dimensionless space
(Fig. 1f). The log–log scaling relation between Ra and Nu is a simple
one-dimensional pattern in which all the data points collapse onto a
single curve (Fig. 1g).

The proposed dimensionless learning can deal with dimensional
output variables as well. A combination of input variables with the
same dimension as the output variable can be searched to non-
dimensionalize the output variable (the detailed algorithm for output
non-dimensionalization is provided in Section 1.3 of the SI). Using the
heatflux q as the output variable (rather thanNu,whichwasused in the
previous case study), the dimensionless space is expanded, allowing
for the discovery of more dominant dimensionless numbers and
scaling laws. We discover a new set of dimensionless numbers to best
represent (R2 = 0.999) the collected experimental measurements.
More interestingly, the identified log-log scaling relation between
dimensionless numbers is almost linear (Fig. 1h). This finding could
lead to new physical insights into the complex turbulent
Rayleigh–Bénard dynamics.

Vapor depression dynamics in laser–metal interaction
Another challenging problem in the application of dimensionless
learning is laser–metal interaction dynamics. People have been curious
about the physical responses of ametallic material to high-power laser
irradiation since 1964 when Patel invented an electric discharge CO2

laser22 that was dramatically scaled up in power shortly after. During
the laser–metal interaction, a vapor-filled depression (called a keyhole)
frequently forms on a puddle of liquid metal melted by the laser. The
keyhole is caused by vaporization-induced recoil pressure, and its
dynamics are inherently difficult to understand due to its complex
dependence on many physical mechanisms. However, quantifying
keyholes is critical because it is closely related to energy absorption
and defect formation in a wide range of industrial and military appli-
cations, including laser-based materials processing and
manufacturing23, high-energy laser weapons24, and aerospace laser-
propulsion engines25.

High-speed X-ray imaging made high-quality in-situ experimental
data on keyhole dynamics available26. Using X-ray pulses, images of the
keyhole region inside the metals can be recorded with micrometer
spatial resolution27. The keyhole depth e can be measured from the
X-ray images (Fig. 2a), and it varies with the materials used and a
number of process parameters, such as the effective laser power ηP,
the laser scan speed Vs, and the laser beam radius r0. We collect a
dataset of keyhole X-ray images from the literature, including 90
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experiments with various process parameters and three different
materials: titanium alloy (Ti6Al4V), aluminum alloy (Al6061), and
stainless steel (SS316)23,28. We represent a material using a set of
material properties: the thermal diffusivity α, the material density ρ,
the heat capacity Cp, and the difference between melting and ambient
temperatures Tl−T0. Therefore, the causal relationship can be expres-
sed as

e= f ðηP,V s, r0,α,ρ,Cp,T l � T0Þ: ð11Þ

We can use the dimensionless learning described in the previous
section to extract a low-dimensional scale-free relation from the
parameter list. The dimension matrix D and computed basis vectors
wb1, wb2, and wb3 of this problem are provided in Section 3 of the SI.
We first demonstrate the grid search ranging from −2 to 2 with 100
grids for the first-level optimization and fifth-ordered polynomial
regression for the second-level optimization. We set γ1 to 0.5 and
normalize the output variable as the keyhole aspect ratio e* = e

r0
, which

is a widely used dimensionless parameter to represent the keyhole
characteristic29. By searching the dimensionless parameter space, we
canfindone local optimum in termsof theR2 criteria,marked by a blue
star (R2 = 0.64) in Fig. 2d. The expression of the dimensionless number

Π=
ρCpðT l�T0ÞV 1:5

s r2:50ffiffiffi
α

p
ηP

is computed based on the basis coefficients

γ2 = γ3 = −1. However, the data points are scattered, as shown in Fig. 2c,
indicating that the dimensionless number located at the local max-
imum of the dimensionless space is not a good scaling parameter for
this problem. The global optimum of dimensionless space, where
γ2 = γ3 = 1, provides much better scaling behavior, with a 0.98 R2 score
(Fig. 2b). The dominant dimensionless number that emerged from the

keyhole dynamics is

Π=
ηP

ðT l � T0ÞπρCp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αV sr

3
0

q : ð12Þ

This dimensionless number times 1/π is identified directly from
data and has the same form as the newly discovered keyhole number
Ke28 (also known as normalized enthalpy30), which can be derived from
heat transfer theory. In this paper, we call Eq. (12) as keyhole number
Ke. Even if we use the dimensional variable e as the output, the
dimensionless learning algorithm still confirms the formation of the
keyhole number (i.e., Eq. (12)) is unique and dominant for controlling
the value of the keyhole aspect ratio. Details of the procedure and its
results are provided in Section 5.1 of the SI. Using the identified
dimensionless number, a simple scaling law emerges to control the
keyhole aspect ratio, which simplifies the original high-dimensional
problem into a univariate scaling law as

e* = 0:12Ke� 0:30: ð13Þ

Providing a sufficient parameter list is critical for dimensionless
learning. If one or more important quantities are omitted, it is
impossible to achieve a high R2 for learning and identifying the correct
form of the dimensionless number(s). In Section 6.1 of the SI, we
demonstrate that if we assume a parameter list that excludes the
thermal diffusivity α, the maximum R2 over the dimensionless space is
<0.80, which is much less than the value for the sufficient parameter
list (i.e., Eq. (11)). Another scenario that frequently occurs in applica-
tions is that we consider more quantities than are necessary, including
some irrelevant or unimportant quantities. In Section 6.2 of the SI, we
demonstrate this scenario by considering one more quantity in the
parameter list, such as the latent heat of melting Lm or the difference

Fig. 2 | Discover dimensionless numbers governing keyhole dynamics in
laser–metal interactions. a An illustrative X-ray image of keyhole morphology28.
The dataset includes X-ray imaging experiments on three different materials.
b Global optimum of the dimensionless space, which represents the scaling law
between the keyhole aspect ratio and the identified keyhole number using

dimensionless learning. c Local optimum of the dimensionless space.
d Dimensionless space using γ2 and γ3 as coordinates. The values of R

2 indicate the
learning performance for the corresponding dimensionless number in the dimen-
sionless space. Values of R2 less than −1 are shown as −1.
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between boiling temperature and ambient temperature Tl−T0. The
form of the keyhole number can still be identified in the scenario.
Moreover, there are a fewmore dimensionless numbers, which consist
of the added quantity, providing a high R2 as the keyhole number. This
implies that additional experiments are required to select the dis-
tinguished one among the identified dimensionless numbers.

In Section 4 of the SI, we provide two efficient algorithms, namely,
gradient-based and pattern search-based two-level optimization
schemes, to improve the efficiency of the optimization used in this
section. These algorithms are especially useful for exploring a high-
dimensional parameter space that contains many parameters to
describe the physical system as well as several dimensionless numbers
to construct the low-dimensional pattern.

Porosity formation in 3D printing of metals
Three-dimensional (3D) printing, also known as additive manufactur-
ing, is a disruptive technology that produces three-dimensional solid
objects from a digital file, introducing a new manufacturing
paradigm31. In metal 3D printing, metallic parts are built layer by layer
by localmeltingwith a laser or electronbeamand resolidifyingmetallic
powders. 3D printing allows for remarkable freedomwhen it comes to
designing local geometrical and compositional features. However, this
process has a large number of parameters to consider when making a
part, and it has a tendency to produce defects, such as internal por-
osity, during the printing process if inappropriate process parameters
are used (Fig. 3a).

To extract elegant insights into the complex behavior of porosity
formation in 3D printing, we collect an experimental dataset from six
independent studies32–37, including 93 3D printed parts with measured
porosity volume fraction and various process parameters. Three dif-
ferentmaterials were used: titanium alloy (Ti6Al4V), nickel-based alloy
(Inconel 718), and stainless steel (SS316L). The porosity volume frac-
tionΦ depends onmany process parameters andmaterials used in the
experiments, which can be expressed as

Φ= f ðηmP,V s,d,ρ,Cp,α,T l � T0,H, LÞ, ð14Þ

where ηmP is the effective laser power input, Vs is the laser scan speed,
d is the laser beamdiameter, ρ is thematerial density, Cp is thematerial
heat capacity, α is the thermal diffusivity, Tl−T0 is the difference
between melting and ambient temperatures, H is the hatch spacing
between two adjacent laser scans, and L is the layer thickness of the
metallic powders. It is a high-dimensional relation and is difficult to
understand and visualize. Traditionally, some combined parameters,
such as energy density ηmP

V sd
2, are used to simplify this relation. However,

the R2 score of a polynomial model with energy density as input is very
low (0.13), as shown in Fig. 3b. This indicates that a universal physical
relation, which is valid for different materials and processing
conditions, cannot be built by using the energy density alone because
it is not a scale-free parameter. The form of the relation must be
modified when the energy scale is changed in experiments with
varying process parameters or materials.

Fig. 3 | Discover dimensionless numbers governing porosity formation during
3D printing. a A schematic of a 3D printed metal part with internal porosity
defects50. The dataset includes X-ray micro-computed tomography (micro-CT)
measurements on three different materials. b Porosity measurements with varying
energy density values, a traditionally combined parameter for correlating porosity

with process parameters. c Identified 2D scaling relation combining both lacks of
fusion and keyhole porosity with two discovered dimensionless numbers.
d Another identified 2D scaling relation with a higher R2 score. The reduced para-
meter space is simple to visualize and interpret, while the original high-dimensional
problem is difficult since the porosity is governed by nine parameters.
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We apply dimensionless learning to this challenging engineering
problem and discover some dominant dimensionless numbers that
provide a universal physical relation that remains accurate across all
experimental conditions. Section 3 of the SI provides the dimension
matrix and computed basis vectors for this case study. The two-level
optimization applied in this problem includes a pattern search for the
first level and an XGBoost method to capture the second-level rela-
tionships (Section 4.2 of the SI). We find that two dimensionless
numbers are necessary to represent the dataset since no high value of
the R2 score (e.g., >0.5) can be achieved if we set only one dimen-
sionless number in the training. A systematic algorithm for determin-
ing the number of dimensionless numbers required to govern a
physical system is provided in Section 1.3 of the SI.

We identify several low-dimensional patterns using the scale-free
property of data. They can achieve a high R2 for both the training and
test sets (a table summarizing the identified dimensionless numbers is
provided in Section 5.2 of the SI). Interestingly, we identify another
dimensionless number (besides the keyhole number), which has been
discovered by the theory-driven approach28,32: the normalized energy
density (NED) (Fig. 3c). It can be expressed as

NED=
ηmP

V sρCpðT l � T0ÞHL
: ð15Þ

The NED represents the ratio of laser energy input within the
powder layer to sensible heat of melting. This dimensionless number
governs the lack of fusion porosity inmetal 3Dprinting, which is awell-
known porosity mechanism caused by insufficient laser energy input
to fullymelt the powdermaterial38. The other dimensionless number in
Fig. 3c is related to another porosity mechanism, namely keyhole
porosity, caused by trapped bubbles of gas beneath the surface during
the fluctuation of an unstable keyhole27. This dimensionless number is
a modified normalized enthalpy product, i.e., NEP H

d, where the nor-
malized enthalpy product NEP is proven to be related to keyhole
instability, and an unstable keyhole with a high NEP could lead to
keyhole pores30. The NEP can be expressed as

NEP=
ηmP

V sρCpðT l � T0Þd2 : ð16Þ

Since the NEP is derived from the single-track laser scan
condition30, the modified term H

d emerges to account for the effect of
multiple-track scanning. Another identified low-dimensional pattern
Φ= f ðNEP L

d ,NED
d3

L3
Þ achieves an even higher R2 (0.95), as shown in

Fig. 3d. Two geometrical ratios (Ld and
d3

L3
) are involved to maximize the

fitting performance. These two ratios have clear physical meanings:
the term L

d means the linear ratio of powder bed layer thickness and
laser beam diameter, while the term d3

L3
means the volumetric ratio of

laser beamdiameter and powder bed layer thickness. These two ratios
account for the effect ofmultiple-track andmultiple-layer scanning. By
reducinghigh-dimensional parameter space, fewer experimentswould
be required to determine optimal processing conditions and para-
meters for newmaterials, easing the Edisonianburden endemic among
current metal 3D printing practitioners.

Vorticity form of dimensionless Navier–Stokes equation
In this section, we describe the second workflow of dimensionless
learning: identifying dimensionally homogeneous differential equa-
tions and dimensionless numbers from time-varying data. This
approach combines dimensionless learning with sparsity-promoting
methods. Like the method discussed in the sections “Turbulent
Rayleigh–Bénard convection”, “Vapor depression dynamics in
laser–metal interaction” and “Porosity formation in 3D printing of
metals” for incorporating dimensional invariance into machine learn-
ing, we enhance the sparsity-promoting method SINDy with another

fundamental physical invariance, symmetric invariance. We refer to
this physically enhanced SINDy as symmetric invariant SINDy.

Figure 4 shows a schematic of this workflow for identifying the
underlying governing equation and dimensionless number(s) from
simulation snapshots of the Kármán vortex street problem. This fluid
mechanics problem involves three cylinders with diameters of l (see
Fig. 4a). Different fluid flow patterns can be obtained through simu-
lations by changingfluiddensityρ, dynamic viscosityμ, inlet velocityV,
and the pressure difference between upstream and downstream p0.

In the first step (Fig. 4a), three CFD simulations are carried out to
generate datasets for the discovery of the governing equation. The
dataset for each simulation contains not only the above-mentioned
geometry and fluid properties but also time-dependent variables (i.e.,
velocities u and v and vorticityω) in the spatiotemporal domain. Then,
4000 velocity and vorticity measurements from different locations
and time steps are randomly sparsely sampled. A detailed description
of data generation and preprocessing can be found in Section 7.1.1
of the SI.

Next, we apply symmetric invariant SINDy on the dataset for each
simulation case to discover temporal governing equations (Fig. 4b). To
incorporate symmetric invariance, we flip the original data along y = x
for each simulation case to obtain the transformed data. This is
because we assume the governing equation should be invariant to the
symmetric transformation along y = x. This assumption helps double
the dataset for temporal governing equation discovery while incurring
no additional computational cost to run more simulations. More
information about this operation canbe found in Section7.1.2 of the SI.

Based on these measurements, a regression library is built to
identify the governing equation using linear and quadratic terms for
u, v,ω, ∂ω∂x ,

∂2ω
∂x2 ,

∂2ω
∂y2 . The regression library contains 29 terms in total.

Detailed information on candidate terms is shown in Section 7.5
of the SI.

After preparing the regression library, the proposed symmetric
invariant SINDy trains all the measurements from the original and
transformed data together. This operation implicitly ensures that the
symmetry termshave the same coefficients. That is, the coefficients for
symmetry terms are physically constrained. For example, u ∂ω

∂x and v ∂ω
∂y

can be regarded as symmetry terms and have the same coefficient as
the symmetric invariant SINDy. See Section 7.1.2 of the SI for more
detailed descriptions of this operation.

By optimizing the symmetric invariant SINDy for all cases, we
obtain three temporary governing equations with only four non-zero
regression coefficients (Fig. 4c). ξ12 and ξ19 are identical and close to a
constant, while ξ6 and ξ7 are also identical but vary with parameters
such as ρ, μ, and so on. The following steps are to build a consistent
parameterized governing equation that is valid in all simulations, as
explained below.

Since the varying coefficients (ξ6 and ξ7) are due to changes in
geometry and fluid properties, we apply dimensionless learning to find
the expression for these two coefficients (Fig. 4d). The parametric
space,which includes variables affecting thebehavior of the dynamical
system, to be explored for ξ6 = ξ7 can be expressed as follows:

ξ6 = ξ7 = f ðμ,ρ,V , l,p0Þ: ð17Þ

In contrast to the standard dimensionless learning, we simplify
the representation function f( ⋅ ) as a power law with a constant coef-
ficient rather than a high-order polynomial, as applied in the sections
“Turbulent Rayleigh–Bénard convection” and “Vapor depression
dynamics in laser–metal interaction”, or an XGBoost, as used in the
section “Porosity formation in 3D printing of metals”. This is because
parametric differential equations usually consist of derivatives and/or
derivatives multiplied by variable coefficients, which are power-law
functions.
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In this case, we choose the pattern search-based optimization to
solve Eq. (17). A detailed description of this proposed optimization
algorithm can be found in Section 4.3 of the SI. The identified
expression for ξ6 and ξ7 is 1:083 μ

ρVl ≈
μ

ρVl (Fig. 4e), which is the reci-
procal of the well-known Reynolds number Re = ρVl

μ . By substituting
the constant regression coefficients for ξ12 and ξ19 and the discovered
expression for ξ6 and ξ7 into the temporary governing equations, we
obtain a consistent dimensionless governing equation in all cases as
follows:

∂ω
∂t

= �u
∂ω
∂x

� v
∂ω
∂y

+
1
Re

∂2ω

∂x2 +
∂2ω
∂y2

 !
, ð18Þ

which is identical to the well-known vorticity form of the
Navier–Stokes equation. This demonstrates the effectiveness of the
proposedmethod in discovering governing equations and dimension-
less number(s).

We further apply the proposed method to data with 1% Gaussian
noise. Following the same procedure, the proposed method success-
fully identifies the correct governing equation as Eq. (18). The detailed
results for noisy data are shown in Section 7.1.3 of the SI. More appli-
cations of the proposed method in fluid and solid mechanics and
dynamics systems with and without noise are demonstrated in Sec-
tion 7 of the SI.

Discussion
The proposed dimensionless learning is a powerful technique to
identify scientific knowledge from data at multiple levels: dimension-
less number at the feature level, scaling law at the algebraic equation
level, and governing equation at the differential equation level. Unlike
purely data-driven approaches that easily suffer from overfitting on
small or noisy datasets, this method incorporates fundamental physi-
cal knowledge of dimensional invariance and symmetric invariance as
physical constraints or regularizations into data-driven models to
perform well on limited and/or noisy data. The embedded physical
invariance reduces the learning space and eliminates the strong
dependence between variables. This method is a physics-based
dimension reduction approach that represents features as dimen-
sionless numbers and transforms data points into a low-dimensional
pattern that is unaffected by units and scales. Thus, in addition to
being applicable to limited and/or noisy data, the presented approach
significantly improves the interpretability of representation learning
because dimensionless numbers are physically interpretable. Lower
dimension and better interpretability also allow for qualitative and
quantitative analysis of the systems of interest. This has been
demonstrated in three complex engineering problems in earlier
sections.

Another advantage of the embedded dimensional invariance in
dimensionless learning is improved generalization capability. To show
this, in the vapor depression dynamics case, we compared the

Fig. 4 | Integration of dimensionless learning with symmetric invariant SINDy
for identifying the Navier–Stokes equation with Reynold number. a Original
data are generated from parametric simulations. To achieve symmetric invariance,
another set of transformed data is obtained by flipping the original data along y = x.
b The original and transformed data are concatenated for symmetric invariant
SINDy, which implicitly incorporates symmetric invariance into SINDy to ensure
that symmetric invariant terms have the same coefficients. c The identified tem-
porary governing equations for each simulation case were obtained by optimizing
the symmetric invariant SINDy. Someof the coefficients are close to constant, while

others vary depending on the simulation case. All the other candidate terms have
zero coefficients. d Dimensionless learning is applied to identify an explicit
expression for the varying coefficients. The parametric space to be explored
includes five parameters. By incorporating dimensional invariance, we need to
optimize basis coefficients γ and fitting coefficient β. e Substituting the discovered
regression coefficients (1=Re) into the temporary governing equation. In this step, a
consistent dimensionally homogeneous governing equation, which is identical to
the Navier–Stokes equation in the vorticity form, is obtained.

Article https://doi.org/10.1038/s41467-022-35084-w

Nature Communications |         (2022) 13:7562 8



performance of dimensionless learning and popular machine learning
algorithms on unseen material data points. The proposed method
achieves the best generalization in the test set, while all other algo-
rithms only achieve a poor generalization. This improvement is due to
ensuring geometric, kinematic, and dynamic similarities based on
similitude theory within different systems. A detailed description of
the generalization comparison can be found in Section 6.3 of the SI.
Aside fromdimensional invariance, we also used symmetric invariance
in this study. The benefits of symmetric invariance are that it intrinsi-
cally ensures symmetry terms have the same coefficients and effec-
tively reduces the number of learnable regression coefficients
in SINDy.

Dimensionless learning is also very flexible in terms of choosing
the representation learning function because of the proposed two-
level optimization scheme. Since the first-level scheme guarantees
dimensional invariance (or dimensional homogeneity), many repre-
sentation learning methods can be used to capture scale-free rela-
tionships in the second-level scheme. We demonstrated polynomial
and tree-based method XGBoost21 in the previous sections. However,
the capability of dimensionless learning can be improved by
leveragingmoremethods, including deep neural networks39, symbolic
regression40, and Bayesian machine learning41.

The optimization of dimensionless learning is different from
general regression optimization approaches because only dimen-
sionless numbers with small rational powers are preferred, such as −1,
0.5, 1, or 2, etc. Therefore, instead of searching for the best basis
coefficients with a lot of decimals like other neural network-based
methods, such as DimensionNet42, zero-order optimization methods
are used in this work. It includes grid search or pattern search-based
two-level optimization and can be more efficient in finding the best
basis coefficients. No gradient information and learning rate are
required and the choice of grid interval is more flexible. Even though
these zero-order optimization approaches can get stuck in local
minima, increasing the number of initial points caneasily eliminate this
issue. More detailed pros and cons of different optimization methods
are described in Section 4.5 of the SI.

The proposed method divides the identification process of dif-
ferential equations into two steps to identify consistent parameterized
governing equations efficiently. The first step is to identify a temporary
governing equation in which the regression coefficients can be a con-
stant or variable depending on how the simulation or experiment
parameters are set. In the next step, dimensionless learning aims to
recover the expression of the varying coefficients by leveraging the
dimension of these coefficients. By combining these two steps, the
proposed method can efficiently obtain a consistent dimensionally
homogeneous governing equation with a small amount of data. In
contrast, the standard SINDy falls short of achieving a consistent
parameterized differential equation for the same system with different
parameters15,43. For example, the governing equation for the
spring–mass–damper system is dx

dt = � k
c x � m

c
d2x
dt2

. If we use different
parameters (damping coefficient c, spring constant k, ormassm) in this
system, SINDy can only provide scalar coefficients for x and d2x

dt2
rather

than the expressions � k
c and �m

c , respectively. Other advanced SINDy
approaches deal with this issue bymultiplying the candidate terms by a
set of predetermined parameters15,44. Although these approaches can
address this inconsistent governing equation problem, it couples the
optimization of identifying candidate terms and parameterized coeffi-
cients, making the optimization more difficult. If there are many
combinations of parametric derivative or non-derivative terms, this
problem can become more difficult and unmanageable.

In order to determine the sensitivity and sensibility of the pro-
posed method, we studied three major factors affecting the discovery
results. The first factor is the noisy data effect. we demonstrated the
proposed algorithm by solving three challenging problems with noisy
experimental measurements, which are described in detail in the

sections “Turbulent Rayleigh–Bénard convection”, “ Vapor depression
dynamics in laser-metal interaction” and “Porosity formation in 3D
printing of metals”. It is found that in these three problems, even with
the noisy data effect, the method achieves high fitting performance in
both training and test sets (allR2 scores are >0.95). The second factor is
the scarce data effect. Most machine learning algorithms rely on a
large amount of data to achieve good generalization and minimum
out-of-bag error. However, because of the complexity and cost of
experiments, it is not always feasible to obtain a big dataset for engi-
neering problems. To deal with scarce data and obtain a universal
model, the proposed method embeds dimensional invariance with
input variables and successfully reduces the solution space to a man-
ageable size. The dimensional invariance can be regarded as a physical
regularization and changes the model structure, which enables the
proposed method to train a universal model with limited data points.
For example, even though we only used 182, 90, and 92 experimental
measurements, respectively, in three complex engineering examples
from the sections “Turbulent Rayleigh–Bénard convection”, “Vapor
depression dynamics in laser–metal interaction” and “Porosity for-
mation in 3D printing ofmetals”, the identified scaling lawsfit verywell
in all these cases.We also compare the proposedmethodwith popular
machine learning algorithms, which have poor generalization in the
test set, as described in Section 6.3 of the SI. The third factor is the
involved variables. We demonstrate that missing necessary variables
or involving redundant variables has no effect on the discovered
scaling laws in Sections 6.1 and 6.2 of the SI. Sensitive analysis can also
be found in Section 6.2 of the SI.

For the discovery of governing equations, as the second part of
themethod, the accuracy of thediscovered equation canbe influenced
by data noise and the setting of the sparse regression library. The noisy
data analyses are performed on five differential equations, including
theNavier–Stokes equation (0.5%Gaussian noise), Euler equation (1%),
vorticity equation (1%), and the governing equations for
spring–mass–damper systems (4%) and dynamic loading beam sys-
tems (2%). Even with the noisy data effect, the method successfully
discovers the correct governing equations, as demonstrated in the
section “Vorticity form of dimensionless Navier–Stokes equation” of
the main manuscript and Section 7 of the SI. A summary of the
demonstrated case studies including data type, noise level, and
approach can be found in Section 2 of the SI. The tolerable noise level
can be further increased by combining the proposed method with
some newly developed approaches which apply physics-informed
neural networks and/or deep learning approaches to reduce noise and
obtain robust derivatives43,45,46. To study the sparse regression library
effect, we build a general sparse regression library to achieve more
generalizable results. Specifically, we use 29 terms in the vorticity
equation case, as described in Section 7 of the SI. In general, adding
candidate terms to the library relies heavily on the researchers’
experience and understanding of the problem. Yet, we provide a
guideline for choosing the regression library given in Section 7.5
of the SI.

In summary, the proposed dimensionless learning enables sys-
tematic and automatic learning of scale-free low-dimensional laws
from a high-dimension parameter space, includingmany experimental
conditions with different parameter settings. It can be applied to a
wide range of physical, chemical, and biological systems to discover
new dimensionless numbers or modify existing ones. Furthermore, it
can be combined with other data-driven methods, such as SINDy, to
discover dimensionless differential equations from high-resolution
measurements. In material science, the identified compact mathema-
tical expressions provide simple transition rules that translate optimal
process parameters from one material (or existing materials) to
another (or new materials). Dimensionless learning can reduce com-
plex, highly multivariate problem spaces into descriptions involving
only a few dimensionless parameters with clear physical meanings.

Article https://doi.org/10.1038/s41467-022-35084-w

Nature Communications |         (2022) 13:7562 9



This approach is particularlyuseful for engineeringproblems involving
many adjustable parameters with various dimensions or units, such as
advancedmaterials processing andmanufacturing47, microfluidic flow
control for precise drug delivery, and solar energy systems design48.

Methods
This work has two main workflows for discovering scaling laws and
differential equations, as well as the corresponding dimensionless
numbers. These two workflows are built on integrating dimensional
invariance into the proposed two-level optimization schemes and
sparsity-promoting techniques such as SINDy, respectively. Section 1 of
the SI shows the general theory of the first workflow, including the
problems statement, the algorithm flowchart, how to construct
and determine the number of dimensionless numbers, and more.
Section 4 of the SI contains a detailed description of the proposed two-
level optimization scheme, including the training procedure, pseudo-
code, optimization results, a summary of hyperparameter settings, and
more. For the second workflow, a detailed description of the proposed
symmetric invariant SINDy and the integration of dimensionless
learning with SINDy can be found in Section 7.1 of the SI.

Data availability
All datasets used in this study are available onGitHub at https://github.
com/xiaoyuxie-vico/PyDimension.

Code availability
All source codes used in this manuscript are available on GitHub at
https://github.com/xiaoyuxie-vico/PyDimension(https://doi.org/10.
5281/zenodo.7317017).
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