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Gene activation guided by nascent
RNA-bound transcription factors

Ying Liang1,2,10, Haiyue Xu1,2,10, Tao Cheng 3, Yujuan Fu1, Hanwei Huang1,
Wenchang Qian4, JunyanWang1, Yuenan Zhou 5, Pengxu Qian 4, Yafei Yin 5,
Pengfei Xu3, Wei Zou 6,7 & Baohui Chen 1,2,8,9

Technologies for gene activation are valuable tools for the study of gene
functions and have a wide range of potential applications in bioengineering
and medicine. In contrast to existing methods based on recruiting transcrip-
tional modulators via DNA-binding proteins, we developed a strategy termed
Narta (nascent RNA-guided transcriptional activation) to achieve gene acti-
vation by recruiting artificial transcription factors (aTFs) to transcription sites
through nascent RNAs of the target gene. Using Narta, we demonstrate robust
activation of a broad rangeof exogenous and endogenous genes in various cell
types, including zebrafish embryos, mouse and human cells. Importantly, the
activation is reversible, tunable and specific. Moreover, Narta provides better
activation potency of some expressed genes than CRISPRa and, when used in
combination with CRISPRa, has an enhancing effect on gene activation.
Quantitative imaging illustrated that nascent RNA-directed aTFs could induce
the high-density assembly of coactivators at transcription sites, which may
explain the larger transcriptional burst size induced by Narta. Overall, our
work expands the gene activation toolbox for biomedical research.

Regulation of gene expression requires that the transcriptional
machinery be precisely and efficiently assembled at specific genomic
loci1–3. Transcription factors (TFs) ensure this specificity by recogniz-
ing and binding to specific DNA sequences to modulate gene expres-
sion through their effector domains4,5. TFs typically consist of two
subdomains, a DNA-binding domain (DBD) and an activation domain
(AD) which interacts with coactivator complexes to modulate tran-
scriptional level6–8. Based on this principle, the recently developed
DNA-targeting platform, CRISPR-Cas9, has enabled the recruitment of
artificial transcription factors (aTFs) to any specific genomic site to
induce endogenous gene activation, termed CRISPR activation
(CRISPRa)9–13. The ability of CRISPRa to activate target genes by using

single sgRNAs enables genome-wide transcriptional activation
screens14,15. However, the use ofmultiple sgRNAs tiled across the target
gene promoter can significantly improve CRISPRa efficiency, sug-
gesting that recruiting as many TFs as possible may be crucial for
activating gene expression with wider dynamic ranges9–11,16. Thus, a
new gene activation strategy based on this principle may effectively
activate genes that are inaccessible to current CRISPRa methods. This
could be highly desirable for some biological processes, such as the
direct conversion of cell types and industrial applications17,18.

Enhancers are cis-regulatory elements (small segments of DNA)
bound by TFs and other components of the transcription apparatus
that modulate the expression of cell identity genes19–22. Super-
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enhancers (SEs) are clusters of enhancers that are occupied by
exceptionally high densities of interacting factors, including TFs, co-
factors (e.g., p300, BRD4, and MED1), RNA polymerase II, and non-
coding RNAs23. MED1 (also known as TRAP220) is a key subunit of the
Mediator complex, which forms a bridge between the RNApolymerase
II and transcriptional activators24,25. The coactivator p300 and its
paralog CREB-binding protein (CBP) active transcription by facilitating
transcriptional machinery assembly and by acetylating histones and
other factors26–28. BRD4 is recruited by recognizing the acetylated
lysine mediated by p300 and promotes transcriptional elongation of
SE-associated pluripotency genes26,29–31.

Active enhancers and super-enhancers can produce transcripts
termed enhancer RNAs (eRNAs), which have been suggested to bring
transcriptional activators to the promoters of neighboring protein-
coding genes32,33. For example, eRNAs at enhancers can trap tran-
scription factors such as yin and yang 1 (YY1) andenhance their binding
to enhancers34. Furthermore, m6A-marked nascent RNAs (including
pre-mRNAs and eRNAs) can recruit reader proteins to regulate
transcription35,36. The density of TFs and co-factors assembled at SEs is
estimated to be approximately tenfold the density of the same com-
ponent at typical enhancers. SEs are therefore able to drive higher
levels of transcription than typical enhancers and thus regulate genes
with especially important roles in cell identity37,38. We reasoned that
artificially concentrating high-density of transcriptional factors at
transcription sitesmight be able to inducemaximal activation of target
genes. Motivated by this hypothesis, we developed a gene activation
tool by repurposing nascent RNAs to recruit abundant aTFs at their
transcription sites. Our method can activate a broad range of exo-
genous and endogenous promoters with high efficiency in various
cell types.

Results
Design of Narta
Inspired by the principle of gene activation mediated by SEs, we
hypothesized that the intron region in newly transcribed RNAs of a
target gene could be repurposed to recruit artificial transcription
factors (aTFs), which further recruit abundant coactivators at the
transcription sites, leading to high levels of transcriptional activation.
We therefore proposed a gene activation technology termed Narta
(Nascent RNA-guided transcriptional activation) (Fig. 1a). Toward this
goal, we utilized our previous TriTag labeling system39 and created a
BFPTriTag reporter driven by the mini-cytomegalovirus (miniCMV) pro-
moter. The unique feature of the BFPTriTag system is that BFP contains
an intron harboring 12 copies of MS2 RNA hairpins, which can be
selectively bound by synonymous tandem MS2 coat proteins
(stdMCP)40. Thus, the fusion protein of stdMCP-tdTomato allows
tracking of the nascent RNA production of TriTag-tagged genes in
real time.

To recruit TFs through nascent RNAs produced by miniCMV-
BFPTriTag, we fused stdMCP to the transactivation domains of NF-κB
p65 subunit (p65) and heat shock factor 1 (HSF1)15,41 to generate
stdMCP-p65-HSF1 (hereon referred to as stdMCP-PH). This fusion
protein was expressed under the control of doxycycline (Dox)-indu-
cible TRE3Gpromoter (Supplementary Fig. 1a). In addition, stdPCP-PH,
which specifically recognizes PP7 but not MS2 hairpins42, was also
constructed as a negative control. To image Narta activation, we
generated a reporter HeLa cell line (miniCMV-BFPTriTag), in which the
addition of Dox can induce stdMCP-PH expression. Additionally, nas-
cent RNA production can be monitored by stdMCP-tdTomato, while
protein expression levels can be quantified based on BFP imaging
(Supplementary Fig. 1b). It is worth noting that the simultaneous use of
stdMCP-tdTomato and stdMCP-PH to image and manipulate gene
expression in the same cells may reduce the sensitivity of imaging and
the efficiency of gene activation. An orthogonal activation or RNA
reporter system would be an ideal design. However, our BFPTriTag

harbors 12 copies of the MS2 sequence, which is still worth testing.
When only the level of single-cell protein expression needs to be
quantified for assessing Narta activation in the subsequent experi-
ments, we used cells without stdMCP-tdTomato expression.

Narta activates gene expression by modulating transcriptional
bursts
We first examined whether nascent RNA-guided activators can induce
transcriptional activation. In our system, MS2/stdMCP-tdTomato
allows quantitative analysis of transcriptional bursting kinetics in real
time. A number of studies have established the link of TF and tran-
scriptional bursts26,43,44. It was previously suggested that TF con-
centration can modulate the burst frequency43. Thus, we explored
whether Narta could activate transcription by altering transcriptional
bursts. To this end, we monitored the transcriptional bursting of
miniCMV promoter by imaging its production of nascent mRNAs
labeled by stdMCP-tdTomato inHeLa cells. Real-time imaging revealed
that nascent RNAswere produced in bursts (Supplementary Fig. 2a, b),
which is consistent with previous studies39,45,46. To monitor Narta
activation, Dox was added to induce stdMCP-PH expression for 12 h
and then real-time imaging was recorded for 2 h. Quantitative analysis
indicated that the addition of Dox induced more de novo RNA pro-
duction (~6-fold) which was defined by the total intensity of individual
stdMCP-tdTomato spots (Supplementary Fig. 2c). Moreover, the burst
duration was increased by ~ 5-fold (-Dox: ~17min; +Dox: ~85min),
whereas the pause duration remained nearly unchanged (-Dox:
~26min; +Dox: ~27min) (Supplementary Fig. 2d and Supplementary
videos 1 and 2). Therefore, nascent RNA-guided TFs can modulate
transcriptional bursts of target genes, resulting in increased gene
activity.

We then confirmed the transcriptional activation capacity ofNarta
by performing real-time quantitative PCR (RT-qPCR). Following Narta
activation for 48 h, the mRNA abundance of BFP was elevated by
approximately eightfold (Supplementary Fig. 2e). We also quantified
protein expression based on fluorescent imaging. The expression of
BFP was dramatically increased by about 26-fold (Supplementary
Fig. 2f). Together, these findings suggest that nascent RNA-guided TFs
can activate transcription of the target gene from which the nascent
RNAs are produced in human cells.

Narta activates exogenous genes robustly in mammalian cells
and zebrafish embryos
Having performed initial characterizations of Narta-mediated gene
activation, we sought to assess its ability to activate more exogenous
reporters in various cell types. miniCMV is widely reported as a weak
promoter. Therefore, we further evaluated BFPTriTag expression in HeLa
cells driven by four stronger promoters, including the spleen focus-
forming virus promoter (SFFV), the ubiquitous human cytomegalo-
virus promoter (CMV), the promoter of human elongation factor 1α
(EF1α) and a hybrid CMV/β-actin promoter (CAG)47. Imaging analysis
revealed that Narta activation resulted in significant increases in BFP
protein expression driven by any of the promoters we tested (Sup-
plementary Fig. 2g). Next, to test whether Narta works in other cell
types, we examined Narta activation in Chinese hamster ovary (CHO)
cells. BFPTriTag expression levels driven by CAG and EF1α were quanti-
fied, respectively. The results indicated thatNarta is as effective inCHO
cells as it is in HeLa cells (Supplementary Fig. 2h). CHO cells are the
predominant mammalian cell line used for producing high quantities
of biotherapeutic proteins48. Thus, Narta may serve as a valuable
strategy to boost the production of recombinant proteins inCHOcells.

We next tested whether nascent RNA-guided activators could
induce gene expression in whole organisms. To do this, we designed
and constructed a GFP tag for Narta activation in zebrafish, named
GFPFish_NarTag, which harbors nine copies of MS2 repeats in its artificial
intron (an intron from pcfg1 gene) (Supplementary Fig. 3a). We
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Fig. 1 | Narta activates endogenous genes. a Schematic depicting recruitment of
artificial transcription factors (aTFs) or fluorescent reporters to nascent mRNAs by
the MS2/MCP system. b Snapshots of representative HeLa cells showing the tran-
scriptional bursting dynamics of H2B loci revealed by stdMCP-tdTomato without
(top) or with (bottom) Narta activation. Scale bar, 5μm. c Representative traces
(red) of nascent transcripts produced at H2B loci from the cells in b. Gray traces
illustrate the background signal in the nuclei. d Quantitative analysis of the burst
amplitude (left), burst durations (middle) and pause durations (right) to show the
bursting characteristics of H2B transcription. Burst amplitude is defined by the
total intensity of individual stdMCP-tdTomato spots. P values were calculated by
two-tailed Student’s t test. e Quantifications of H2B-BFP transcription by qRT-PCR
(n = 3 biological repeats) and protein expression (n = 100 cells) by fluorescent

imaging. f Representative images to show the activation of endogenous reporters
by Narta. GFP indicates the successful transfection of stdMCP-PH. Scale bar, 10μm.
g Quantifications of protein expression level based on fluorescent imaging in f.
Each dot represents a cell. n = 100 cells. h Measurement of target protein abun-
dance by Western blotting. Endogenous genes were tagged with GFPTriTag and thus
their expression was detected by GFP antibody. stdMCP-PH vectors were trans-
fected to induce Narta activation, while stdPCP-PH transfection serves as the
negative control. Actin was detected as an internal reference. The experiment was
repeated two times with similar results. i qRT-PCR analysis of themRNA expression
level of various endogenous genes without or withNarta activation, n = 3 biological
replicates. Data in Fig. 1 are all shown as mean ± s.e.m. Source data are provided as
a Source Data file.
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microinjected the mixture of CMV-mCherry & CMV-GFP, CMV-
mCherry & CMV-GFPFish_NarTag & CMV-stdMCP-PH or CMV-mCherry&
CMV-GFPFish_NarTag & CMV-stdPCP-PH into zebrafish embryos of 1-cell
stage. We then assessed GFP and mCherry expression by fluorescent
imagingwhen the embryoswere developed into the stage of 80 to 90%
epiboly (Supplementary Fig. 3b). The constitutivemCherry expression
vector was used as the internal control to assess the amount of DNA
injected across different conditions. Our data illustrated that Narta
activation could specifically induce higher levels of GFPFish_NarTag

expression compared to GFP or GFP Fish_NarTag without activation (Sup-
plementary Fig. 3c, d). In conclusion, our results based on various
transgene reporters reveal that Narta is an effective tool for triggering
gene activation in various cell types.

Activation of endogenous promoters by Narta
Next, to monitor the activation of an endogenous promoter, we inser-
ted TriTag into the C-terminus of human H2B via CRISPR/Cas9-medi-
ated homologous recombination in HeLa cells which stably expressed
stdMCP-tdTomato. Consistent with our previous finding39, the tran-
scription of H2B loci occurred in discontinuous bursts (Fig. 1b and
Supplementary Video 3). Quantitative analysis showed that Narta (12 h
after stdMCP-PH transfection) induced larger transcriptional burst sizes
of H2B, including longer burst durations (control: ~13min; Narta:
~62min) and larger burst amplitudes (relative RNA intensity: 12.5 vs.
65.0). However, the mean pause duration was not significantly affected
byNarta activation (Fig. 1c, d andSupplementaryVideo4). These results
suggest that Narta activation induced the production of more H2B
transcripts, which was further confirmed by qRT-PCR. Consistent with
transcriptional activation, the expression of H2B-BFP was dramatically
increased by approximately sixfold upon Narta treatment (Fig. 1e).

To assess the general applicability of Narta for gene activation, we
created fourteen additional endogenous reporters through integrating
BFPTriTag to the N- or C-terminal of endogenous genes by CRISPR-edit-
ing, including SEC61B, CYB5B, CLTA, LMNA, HPDL, BAG3, HSPA1A,
HSPA1B, HSPB1, HSPB8, β-actin, VAPB, TOMM70A and CBX1 (Fig. 1f
and Supplementary Fig. 4a). We transfected these cell lines with
stdMCP-PH (+Narta) or stdPCP-PH (- Narta) and quantified protein
expression by fluorescent imaging at 48 h after transfection. Quanti-
tative analysis revealed that Narta displayed high levels of activation of
most tested genes (e.g., HSPA1A: 24-fold; HSPB1: 16-fold; HSPB8: 10-
fold; BAG3: 6-fold; LMNA: 9-fold; HPDL: 7-fold) (Fig. 1g and Supple-
mentary Fig. 4b). Notably, Western blot assays detected Narta-
mediated production of more endogenous fusion proteins with cor-
rect molecular sizes (Fig. 1h). Moreover, mRNA abundance of target
genes was dramatically increased measured by qRT-PCR and single-
molecule fluorescence in situ hybridization (smFISH), demonstrating
that Narta can robustly modulate the transcriptional level at endo-
genous loci (Fig. 1i and Supplementary Fig. 5).

Next, to further explore the general trend we observed within
human HeLa cells, we examined Narta activation in HEK293T cells.
Four endogenous genes, including HSPA1A, HSPB1, LMNA and HPDL,
were tagged with BFPTriTag. Consistent with the results in HeLa cells, all
these four genes could be activated with high efficiency (Supplemen-
tary Fig. 6). To test whether Narta allows multiplexed activation of
endogenous genes, we created a HeLa cell line stably co-expressing
H2B-BFPTriTag, GFPTriTag -SEC61B and mCherryTriTag-LMNA by sequential
CRISPR knockin experiments. Transfecting this cell line with stdMCP-
PH successfully activated all three genes simultaneously (H2B, 6.2-fold;
SEC61B, 5.5-fold; LMNA, 22.6-fold) (Supplementary Fig. 7). Collectively,
our results reveal that Narta can be robustly applied for endogenous
gene activation.

Determinants of Narta efficacy
Next, we sought to investigate the factors that are critical for the gene
activation mediated by nascent RNA-guided activators. Because TFs

would be recruited to nascent RNAs throughMS2-MCP interactions in
the Narta system, we tested the effect of MS2 copy number on Narta
activation. Toward this end, we constructed four versions of BFP,
which contain 0, 6, 12, or 24 copies of MS2 in their introns, for endo-
genous LMNA and H2B tagging (Supplementary Fig. 8a). By monitor-
ing protein expression, we found that gene activation was strictly
limited to the appearance of MS2 sequence in the intron. 12-copy MS2
is likely the best design for Narta activation because it was more effi-
cient than 6-copy and was comparable to 24-copy (Supplementary
Fig. 8b, c). Additionally, the DNA size of 12-copy design is smaller than
that of 24-copy, possiblymaking itmore suitable formolecular cloning
of the donor plasmid. Additionally, the smaller size of NarTag may
facilitate higher successful rates of CRISPR-mediated knockin (Sup-
plementary Fig. 8d).

We then askedwhether theMS2 sequence could be placed in UTR
regions (5′ or 3′) instead of introns (Fig. 2a). By direct comparing the
effect of MS2 positions on the activation of four endogenous genes
(HSPB1, HSPA1A, LMNA and SEC61B), we observed that intron MS2 is
essential for the genes to be highly activated. For example, 3′UTR-MS2
activatedHSPB1protein expression by 2.5-fold, while intronMS2 could
upregulate HSBP1 by 10.1-fold (Fig. 2b, c). By quantifying RNA abun-
dance, qRT-PCR assays also confirmed the different levels of gene
activation via intronic or UTR MS2 (Supplementary Fig. 9). These
findings suggest that stdMCP-PH activator binding to intron regions is
critical for effective Narta activation.

Since the principle of Narta is to concentrate high local densities of
TFs by the introns of nascent RNAs, we examined whether PP7/PCP, as
another RNA tagging system49, could function to achieve Narta. We
generated a newBFP tagwhich harbors an intron containing 12 copies of
PP7 (termed BFPPP7-NarTag). To test whether the artificial intron affects the
protein expression of target genes, we inserted BFP, BFPTriTag (MS2-NarTag)

and BFPPP7-NarTag into theN- or C- terminal of target genes (HPDL, HSPA1B,
HSPB1, ACTB, SEC61B, and LMNA) by CRISPR knockin (Fig. 2d). We
found that PP7-intron in BFPPP7-NarTag did not significantly affect the pro-
tein expression of all target genes, while MS2-intron in BFPMS2-NarTag

affected two of them, including HSPA1B (reduced by 44.6%) and HPDL
(reduced by 35.3%) (Supplementary Fig. 10). Importantly, we found that
Narta activation through PP7/PCP system is as efficient as MS2/
MCP (Fig. 2e).

Catalytically-dead Cas13 (dCas13) that retains RNA binding affinity
has been engineered for labeling endogenous RNAs in living cells50,51. The
Cas13b ortholog from Prevotella sp. P5-125 (PspCas13b) was identified as
an efficient RNA targeting protein52.We fuseddCas13bwith VPR activator
to generate dCas13-VPR. To test whether dCas13-VPR could trigger gene
activation, we designed and generated one guide RNA (gRNA) com-
plementary to a repetitive sequence (12 copies of Target Sequence 1,
termed 12xTS1) in the intron of BFPTriTag, thus enabling the binding of
multiple dCas13-VPRmolecules (Fig. 2f). A non-targeting gRNA was used
as a negative control. Our results indicated that dCas13-VPR led to lower
levels of gene activation than stdMCP-PH (Fig. 2g). It was reported that
dCas13/gRNA exhibited a lower RNA binding affinity than MCP (Kd:
MCP< 1nM; Cas13≈ 10nM)53,54. Therefore, the binding affinity between
TFs and nascent RNAs may be crucial for Narta. These results demon-
strated that Narta activation guided by native introns needs to be further
optimized.

Gene activation mediated by Narta is reversible, tunable, and
specific
Next, we sought to test the reversibility and tunability of Narta-mediated
gene activation. Using Dox-inducible temporal stdMCP-PH expression
system, wemonitored the expression of stdMCP-PH and the target gene
simultaneously. We found that adding Dox for 2 days could induce high
expression of stdMCP-PH, which was then completely degraded after
removing Dox for ~5 days (Fig. 3a). By monitoring the expression of
miniCMV-driven BFPTriTag transgene and two endogenous reporters
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(H2B-BFPTriTag & BFPTriTag-LMNA), we found that Narta’s target gene could
achieve the maximum expression 2–3 days after the peak expression of
stdMCP-PH. Furthermore, the activated expression could be reversed to
basal level after removing Dox for about 6 days when stdMCP-PH was
nearly depleted in the cells. These findings indicate that Narta-mediated
gene activation is fully reversible.

In addition, we testedwhether gene activation induced byNarta is
tunable by titrating stdMCP-PH plasmid amounts for cell transfection.
By examining three endogenous reporters, we found that activation
potency is dependent on stdMCP-PH dosage (Fig. 3b–d). However, the
optimal dosage is gene-dependent. For example, BFPTriTag-LMNA
achieved the most efficient up-regulation in low dosage, while high
dosage reduced activation levels (Fig. 3b). H2B-BFPTriTag was less sen-
sitive to the dosage of stdMCP-PH (Fig. 3c). In contrast, BAG3

activation highly depended on stdMCP-PH dosage (Fig. 3d). These
results suggest that Narta-mediated gene activation is tunable.

An important concern for the use of Narta is its targeting speci-
ficity. To evaluate Narta specificity, we performed RNA-seq analysis in
HeLa cells. For these experiments, we chose LMNA and HSPB8 as our
target genes. We found that the correlation in gene expression
between Narta and control samples (transfected with stdPCP-PH) was
very similar (R > 0.99 in each case), indicating that gene expression is
not broadly affected by Narta. LMNA and HSPB8 were the most highly
up-regulated genes (4.7-fold and 5.7-fold) in each group, respectively
(Fig. 3e). Genes were kept in the analysis if they were sufficiently
expressed (CPM> 1) in the control group. We did not observe sig-
nificant activation of any off-target gene compared to control samples
for HSPB8 at the transcriptome-wide level. For the LMNA gene, we
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found only one neighboring gene, MEX3A, was differently expressed
(2.9-fold, FDR q value < 0.05). Notably, LMNA and MEX3A are tran-
scribed in opposite directions, and their transcription start sites are
only 107 bp apart. Therefore, they may share the promoter and tran-
scriptional regulatory complexes. These results suggest that
Narta-mediated gene activation is specific with minimal off-target
activity.

Combinatorial use of Narta and CRISPRa can amplify gene
activation
CRISPRa activates gene expression by directing aTFs to the promoters
or enhancers through limitedDNAbinding sites55,56. Narta, on the other
hand, induces high levels of transcription by concentrating abundant
aTFs in the transcription sites. Thus, we envisioned that Narta might
workmore efficiently thanCRISPRa if the target gene is not completely
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silenced. Because CRISPRa efficiency is heavily dependent on the
selection of sgRNAs, we used sgRNA designing tool57 to select eight or
nine sgRNAs for each target gene (BAG3, HPDL, LMNA, TOMM70A,
H2B and HSPB1). We picked the three most efficient sgRNAs by com-
paring the activation efficiency of individual sgRNAs via measuring
protein expression (Supplementary Figs. 11 and 12a). As expected, the
combinatorial use of the three sgRNAs significantly enhanced the
efficiency, revealing the synergistic effects between multiple sgRNAs
(Supplementary Fig. 11).

CRISPRa efficiency can be optimized by recruiting multiple acti-
vators. Based on this principle, Cas9-SunTag-10XPH (SPH) and dCas9-
VPRweredeveloped and represent potent dCas9 activator systems41,58.
Therefore, we compared the activation efficiencies of SPH, VPR and
Narta (Fig. 4a). For each target, CRISPRa (SPH or VPR) was performed
with three sgRNAs delivered in concert, but their activation efficiency
was much lower than Narta except BAG3 and TOMM70A. We also
compared CRISPRa and Narta by examining the activation ofminiCMV
which presents a weak promoter. Narta activated miniCMV more
strongly than CRISPRa (3.8-fold vs. 12.7-fold). Important to note, we
found that combinatorial use of Narta (stdMCP-PH) and CRISPRa
(dCas9-VPR) significantly enhanced the activation of miniCMV, BAG3,
LMNA and TOMM70A (Fig. 4b; Supplementary Fig. 12b). Some results
have been confirmed by FACS analysis (Fig. 4c). Taken together, our
results demonstrate that combinatorial use of Narta and CRISPRa
might be able to achieve the maximum activation of a target gene.

Narta improves fluorescence-based cell isolation and
super-resolution imaging of endogenous reporters
Of note, we used fluorescence-activated cell sorting (FACS) to isolate
positive cells with TriTag knockin. Based on FACS analysis, TriTag
knockin efficiency in HeLa cells is typically between 0% and 0.5%.
Factors affecting the fluorescence detection rate include endogenous
protein abundance and gene editing efficiency59. Therefore, we
hypothesized that temporary expression stdMCP-PH could increase
the protein expression level and thus enhance the detection rate of
FACS. As expected, we found that Narta activation could greatly
enhance FACS sorting efficiencies (e.g., 0.2% vs 4.7% for HSPA1A; 0% vs
2.3% for HSPA1B; 0.3% vs 7.8% for BAG3; 0.2% vs 4.3% for HPDL)
(Fig. 5a). Therefore, Narta can be applied to isolate endogenous
reporter cells with higher efficiency.

It is challenging to detect a target protein at a low expression
level using fluorescent imaging, especially live or super-resolution
imaging, which typically needs to acquire multiple frames and is
dependent on higher light dose60,61. Therefore, photobleaching
and phototoxicity have been the major issues. We therefore
sought to test whether Narta could improve super-resolution
imaging of fluorescent protein-fused endogenous proteins. The
endoplasmic reticulum (ER) translocon complex protein SEC61B is
traditionally used as an ER marker62,63. By applying live-cell Hes-
sian structured illumination microscopy (Hessian-SIM)64, the
location of endogenous BFPTriTag-SEC61B to a membrane network
of tubules and sheets was clearly visible by SIM imaging only upon
Narta activation. However, the endogenous signal without acti-
vation was too weak to show structural features (Fig. 5b). Addi-
tionally, we imaged endogenous BFPTriTag-CLTA (clathrin light
chain A). CLTA is the main structural component of coated pits
and vesicles (about 150–200 nm in size) which function in the
receptor-mediated endocytosis65. Only with Narta activation,
Hessian-SIM could efficiently detect BFPTriTag-CLTA signal and
resolve the nanomorphology of clathrin-coated structures (CCSs)
(Fig. 5c, d). The size of CCSs measured by Hessian-SIM imaging
was similar with a previous report66 (Fig. 5e). Our results suggest
that Narta would be an effective remedy when the fluorescent
signal of endogenous fluorescent reporters is too weak for
microscopy detection.

Narta concentrates transcriptional coactivators at target sites
Having established Narta as a gene activation tool, we sought to
address how Narta activates the transcription of target genes. The
transactivation domains (TADs) of eukaryotic TFs are thought to
interact with a set of coactivator complexes, which include Mediator
and p30067–69. The lysine acetyltransferace activity of p300/CBP
mediates BRD4 recruitment to their acetylated sites to promote
transcription26. Therefore, to examine whether Narta induced local
high-concentration interaction hubs at the target genomic loci using
the Dox-inducible Narta system, which stably expressed miniCMV-
BFPTriTag, stdMCP-tdTomato and Dox-inducible stdMCP-PH in HeLa
cells. We evaluated the subcelluar localization of MED1 by fixed cell
immunofluorescence (IF).MED1 imaging indicated that the percentage
of visible transcription sites (labeled by stdMCP-tdTomato) enriched
for MED1 signals was increased from 6.33% to 93.67% upon Narta
activation. In the meanwhile, the intensity of the MED1 signal was
increased by 3.31 fold (Fig. 6a, b).

To investigate whether p300 and BRD4 are involved in Narta
activation, we tagged endogenous p300 andBRD4withHaloTag in the
Narta-inducible cell line by CRISPR knockin. As expected, stdMCP-
tdTomato spots, representing newly transcribed RNAs, appeared in
response to the addition of Dox, accompanied by the enrichment of
HaloTag-p300 and HaloTag-BRD4 signals in the visible transcription
sites (Fig. 6c–f). Moreover, we found a tight positive correlation
between nascent RNA production and p300/BRD4 signal (Pearson
correlation coefficient, r =0.58 for p300 and r = 0.24 for BRD4), sug-
gesting that the recruitment of coactivators to the transcription site is
related to the abundance of nascent RNAs (Fig. 6g, h). Next, to address
whether p300 and BRD4 play critical roles in Narta activation, we
monitored nascent RNA production following A-485 or JQ1 incubation.
A-485 inhibits p300-mediated histone acetylation, while JQ-1 is a BRD4
inhibitor70,71. Following A-485 or JQ1 treatment, BRD4 enrichment in
transcription sites was dramatically reduced (Fig. 6i). At the same time,
we observed that transcriptional activation by Narta was significantly
repressed with the addition of A-485 or JQ1, suggesting that Narta
activation of miniCMV is dependent on the role of BRD4 and p300’s
histone acetylation activity.

We then analyzed whether stdMCP fused to other aTFs could still
regulate transcription. Todo so, we fused stdMCPwith a series of aTFs,
which harbors single (VP64, p65, Rta, HSF1), bipartite (p65-HSF1) or
tripartite (VP64-p65-Rta) ADs that had been ever tested for
CRISPRa9,10,15,58. Their potency to activate transcriptionwas assessed by
quantitative analysis of BFP expression based on imaging. stdMCP-
VP64, stdMCP-p65 and stdMCP-Rta showed meaningful reporter
induction. Consistent with CRISPRa, tandem and bipartite fusions,
including stdMCP-p65-HSF1 and stdMCP-VP64-p65-Rta (hereon refer-
red to as stdMCP-PH and stdMCP-VPR) had further improved Narta
activation efficiency (Fig. 6j). Of note, there were no changes to BFP
expression in cells treated with stdMCP-p300, demonstrating the cri-
tical role of TFs in p300’s contribution to gene activation.

Discussion
In summary, our results provide proof of principle that artificial TFs
can be highly concentrated in the transcription sites via their binding
to introns in the newly transcribedRNAs of the target gene, which then
subsequently induce high levels of transcription. That is, nascent RNA
can function as a regulator of its own expression. Themajor advantage
of this system is its superior transcriptional activation capacity. Of
most genes we tested, Narta showed amuchhigher activation capacity
than CRISPRa. This might be due to the restricted TF binding sites in
the promoter region using CRISPRa, while the number of TF binding
sites on nascent RNAs of a transcribing gene could be increased by an
order of magnitude. Notably, our results demonstrate that Narta and
CRISPRa can be combined to further enhance activation efficacy,
possibly because they recruit aTFs in different ways. Therefore, the

Article https://doi.org/10.1038/s41467-022-35041-7

Nature Communications |         (2022) 13:7329 7



combinatorial use of Narta and CRISPRa has great potential benefits
for bioengineering and synthetic biology.

Recent studies have presented evidence to support the idea that
nascent RNA has an active role in regulating transcription72,73. The
transcription factor YY1 interacts with nascent eRNA and nascent pre-
mRNA discovered by CLIP. It was suggested that the function of these
nascent RNAs is to “trap” YY1 surrounding DNA, leading to increased

local concentration of YY1 and facilitating its loading onto neighboring
DNA34. Similarly, the action of Narta likely creates a positive-feedback
loop in which aTFs induce the transcription of nascent RNAs, which
then further retain more aTFs locally. Our results reveal that tethering
activators to the intron of nascent RNAs ismuchmore efficient than its
UTR region, suggesting that the activator-bound intronic RNAs
(probably spliced introns) may play a critical role in Narta. We
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speculate that spliced intronic RNA-TFs may be retained in the tran-
scription center and function to mediate transcriptional activation.
The underlying mechanisms of Narta activation need to be further
investigated. The advantage of nascent RNAhaving a regulatory role in
its own transcription is that it provides precise regulation per se and
positive feedback to regulate transcription. Altogether, accumulating
evidence suggests thatprotein-codingmRNAcan fulfill additional non-
coding functions74–76. Our work suggests that the awareness of RNA

bifunctionality is not only of conceptual importance, but will be
increasingly useful when nascent RNA acts as a general binding plat-
form to recruit transcription regulators.

Previous studies have suggested that TF concentration reg-
ulates transcriptional bursting kinetics26,43,77. Moreover, strong
enhancers drive bursts at a higher frequency than weak enhancers,
while SEs exhibit similar bursting patterns to strong enhancers,
showing relatively longer burst duration and higher burst
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Fig. 6 | Narta can induce high-density assembly of coactivators at target sites.
a, c, d Left, representative images to show the co-localization between coactivators
(MED1, p300, or BRD4) and nascent RNAs (labeled by stdMCP-tdTomato) pro-
duced by miniCMV. Right, line scan of the relative fluorescence intensity indicated
by the dotted lines in the left panel. In a stdMCP-PHwas transfected to induceNarta
activation, while stdPCP-PH tranfection was used as the negative control. In d, f the
expression of stdMCP-PH was induced by the addition of Dox. MED1 was detected
by antibody, while p300 and BRD4were endogenously tagged with HaloTag. Scale
bar, 10μm. b, e, f, Left, total intensity of activator reporters (MED1-Alex647,
HaloTag-p300 and HaloTag-BRD4, respectively) enriched at visible miniCMV
transcribing loci. Right, quantifications showing the percentage of visible stdMCP-
stdTomato spots (representing active mimiCMV loci) which were co-localized with
enriched signal of coactivators (MED1, p300 or BRD4). n = 3 biological replicates.

g, h Scatter plots of nascent RNA level (x-axis) and the enriched signal of co-
activator (p300 or BRD4, y-axis). Gray line denotes the linear fit. R represents the
correlation coefficient. Each dot represents a single cell. n = 50 cells.
i Quantifications of BRD4-HaloTag signal (right), nascent RNA production (total
intensity of individual stdMCP-tdTomato foci, left), and the co-localization between
nascent RNA and BRD4 (n = 3 independent experiments by examining 30 cells in
each repeat) at active miniCMV loci under different conditions. Dox was added to
induceNarta activation for 12 h. Together with Dox, DMSO, A-485 or JQ1was added
into the medium. P-value was analyzed by One-way ANOVA with Tukey’s post hoc.
j Quantifications of miniCMV-BFPTriTag expression levels in cells transfected with
stdPCP-PH (negative control), stdMCP-p300 or different stdMCP-TFs (n = 100
cells). All histograms in Fig. 6 are displayed as mean± s.e.m. Source data are pro-
vided as a Source Data file.
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amplitude23,78. Following Narta activation, the transcriptional
bursting dynamics of both miniCMV and H2B promoters were
altered, displaying similar burst characteristics to those of the
strong enhancers. Although Narta is an artificial manipulation, its
regulatory effect on genes suggests that this system modulates
transcriptional bursting kinetics in a similar manner to the behavior
of endogenous transcription factors.

Labeling endogenousproteinswithfluorescent tags is valuable for
studying protein function in a native cellular background79,80. CRISPR-
Cas9 editing is a powerful tool to introduce a fluorescent tag into a
target gene by homologous recombination59. Fluorescent protein-
tagged cells can be isolated by flow cytometry (FACS), but it is highly
dependent on protein abundance. Furthermore, the knockin efficiency
could be very low. Our results reveal that the fusion of NarTag (Tag for
Narta activation, which is a fluorescent protein tag harboring an arti-
ficial intron incorporated withMS2 or PP7 sequence) did not affect the
protein expression of most target genes. Therefore, using NarTag
instead of commonly used fluorescent tags to generate endogenous
reporters is a promising alternative strategy. Transient activation by
Narta will greatly increase the FACS efficiency. Many studies have
indicated that protein abundance is a major limiting factor for
microscopy detection59,81. Although most of our targets are highly-
expressed genes in the human genome (FPKM values range from 6 to
950 with a median value of 41.5 based on our RNA-Seq data), endo-
genousfluorescent tagging of these genes still suffers frompoor signal
and photobleaching. Our results indicate that the use of Narta can
manipulate protein abundance as required for super-resolution ima-
ging and 3D time-lapse fluorescence microscopy (4D imaging). Nota-
bly, overexpressed proteins may lead to artifacts, including
mislocalizations and protein aggregation82. Because Narta is a tunable
activation tool, different levels of gene activation can be considered
when implementing Narta.

On the other hand, the major limitation of current Narta is the
requirement of genetic modification of target genes. Therefore, it is
not applicable for the genome-wide genetic screen as CRISPRa. An
RNA-binding protein that can direct activators to endogenous introns
would be an ideal system to achieve Narta. dCas13-VPR can activate
gene expression by using a highly efficient crRNAwhich has 12 binding
sites on the artificial intron of target genes. However, the activation
potency is much lower than stdMCP-PH, which might be due to its
weaker RNA-binding affinity than MCP83. Therefore, further optimiza-
tion of dCas13-activator system may solve the issue of genome engi-
neering. Moreover, Narta targets may be limited to transcriptionally-
active genes. However, this obstacle can be addressed by implement-
ing CRISPRa and Narta simultaneously. Finally, we found that Narta
could mediate gene activation with high specificity. However, co-
regulated genes that colocalize in the same transcriptional factory84

might be co-activated by Narta simultaneously. This should be taken
into consideration in implementing Narta. In conclusion, Narta repre-
sents a complementary strategy to induce overexpression of target
genes in addition to cDNA overexpression and CRISPRa (Supplemen-
tary Fig. 13). Notably, tagging endogenous genes with NarTag enables
dynamic imaging of gene expression at the levels of RNA and protein
and manipulating gene expression with tunable capability in a
single cell.

Methods
Cell culture
HeLa cells and HEK293T cells were maintained in Dulbecco’s Modified
Eagle’s Medium (DMEM) with high glucose (Gibco) in the presence of
10% FBS (Hyclone) and 1% penicillin/streptomycin (Gibco). CHO-K1
cells were cultured in Hams F-12K Nutrient Mixture (Kaighn’s) sup-
plemented with 10% FBS and 1% penicillin/streptomycin. Cells were
maintained in a humidified incubator set at 37 °C and 5% CO2. All cell
lines were regularly tested for mycoplasma.

Plasmid construction
The assembly of TriTag has been described in our previous study39.
Other plasmids were constructed specifically for this study as
following:

Construction of Narta activators. To build stdMCP-PH (p65-HSF1)-
T2A-GFP and stdPCP-PH-T2A-GFP, theDNAsequences encode stdMCP,
stdPCP or PH-T2A-GFP were amplified from Addgene plasmids
#16404439, #10409985 and #10731141, respectively. Fragments of
stdMCP (or stdPCP) and PH-T2A-GFP were assembled into a lentiviral
vector harboring CMV promoter using NEBuilder HiFi DNA Assembly
Cloning Kit (New England Biolabs). In addition to GFP, BFP, mCherry
and HaloTag were also constructed to represent the expression of
activators. Moreover, stdMCP-VP64-T2A-mCherry, stdMCP-p65-T2A-
mCherry, stdMCP-Rta-T2A-mCherry, stdMCP-VPR-T2A-mCherry,
stdMCP-HSF1-T2A-mCherry, and stdMCP-p300-T2A-mCherry were
constructed using the same strategy. The cDNA of p300was amplified
from the genomic DNA of HEK293T cells. The fragments of VP64, p65
and Rta were amplified using VPR (#63798)58 as the PCR template. To
generate Dox-inducible Narta, the fragment of stdMCP-PH-T2A-GFP
was cloned into a lentiviral vector harboring an inducible TRE3G pro-
moter (Tet-on 3G inducible expression system, Clontech).

Construction of dCas-activators. To build dCas9-VPR, dCas9-SPH
(consist of dCas9-10XGCN4 and scFV-PH) and dCas13b-VPR, the DNA
sequences that encode VPR, dCas13b, scFV-PH, 10XGCN4 were
amplified from Addgene plasmids #6379858, #10386652, #10731141 and
#10730741, respectively. Corresponding fragments were assembled
into a lentiviral vector harboring CMV promoter by NEBuilder HiFi
DNA Assembly Cloning Kit (New England Biolabs).

Construction of exogenous reporters to test Narta activation. To
test Narta activation efficiency, the exogenous reporter BFPTriTag was
driven by different promoters. To do this, BFPTriTag was cloned into a
vector harboring miniCMV, SFFV, CMV, CAG, or EF1α promoter using
T4 DNA ligase (New England Biolabs).

Construction of donor plasmids for CRISPR knockin. To label an
endogenous gene via a TriTag or a conventional fluorescent protein,
CRISPR-mediated homology directly repair (HDR) was implemented.
All the donor plasmids were constructed using a same strategy. Using
the H2B gene as an example, fragments of the left and right homology
arm (HA) of H2B and the TriTag (BFP) were assembled into a vector to
generate 5′HA-TriTag-3′HA using NEBuilder HiFi DNA Assembly Clon-
ing Kit. Notably, to increase knock-in efficiency, a Cas9 cleavage site
(GGAGCTTACTGAGACTCTTCGGG, Targeting sequence 2 including
PAM termedTS2)was included in the forwardprimer of leftHA and the
reverse primer of right HA to generate a double-cut donor plasmid39,86.

Construction of sgRNA and crRNA plasmids. To generate sgRNA
expression plasmids, we used our previous sgRNA vector
(Addgene #164043) which harbors mouse U6 promoter, spacer
sequence, and the optimized sgRNA scaffold (E + F)87. The spacer
sequence can be easily replaced to recognize other targets by the
PCR-based QuikChange cloning method. sgRNAs used for Cas9
editing and CRISPRa were designed using the sgRNA designing
tool (http://chopchop.cbu.uib.no/). The crRNA for Cas13 target-
ing were built using a cloning strategy similar to that of sgRNA.
The sgRNA and crRNA used in this study are listed in Supple-
mentary Tables S1 and S2.

Lentivirus production and generation of Dox-inducible Narta
cell lines
To construct the Dox-inducible Narta cell line, the lentivirus produc-
tion assay was performed for TRE3G- stMCP-PH-T2A-GFP and CMV-
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Tet-On 3G, respectively. To do this, HEK293T cells were plated on 12-
well plates. The next day, 705 ng pCMV-dR8.91 and 87 ng PMD2.G
together with 750 ng target plasmidwere delivered into HEK293T cells
using FuGENE (Promega) following the manufacturer’s recommended
protocol. Virus was collected 60h after transfection and then cen-
trifuged at 800 g for 10min. The supernatant was added directly to
target cells or stored at −80 °C. To generate Dox-inducible Narta cells,
HeLa cellswith orwithout stable expressionof stdMCP-tdTomatowere
infected with the mixture of TRE3G- stMCP-PH-T2A-GFP and CMV-Tet-
On 3G lentiviruses. To improve the infection efficiency, polybrene
(5μg/ml) was added into the medium of target cells during infection.
stdMCP-PH-T2A-GFP positive cells were then isolated by FACS selec-
tion in the presence of Dox.

CRISPR-mediated knock-in
To label a specific endogenous gene with a fluorescent tag (e.g.,
HaloTag, BFP, BFPTriTag, or GFPTriTag), HeLa or 293T cells were seeded
into 24-well plates and then transiently transfected with plasmids
including 100ng Cas9, 400 ng donor, 250 ng sgRNA of a target gene
and 250 ng sgTS2 expression vectors. 2–3 days later, CRISPR knockin
positive cells were selected by FACS analysis. Other CRISPR knockin
experiments were performed using the same protocol. To quantify
knock-in efficiency in Supplementary Fig. 8, a GFP vector was co-
transfected to indicate the successfully transfected cells.

Gene activation by Narta
To perform Narta activation of exogenous reporters, corresponding
cells (HeLa or CHO-K1) were seeded into eight-well chambered cover-
glass. miniCMV-BFP TriTag (200ng), SFFV-BFP TriTag (200ng), EF1α-BFP TriTag

(200ng), CMV-BFP TriTag (100ng), and CAG-BFP TriTag (50ng) were co-
transfected with 100ng stdMCP-p65-T2A-GFP or stdPCP-p65-T2A-GFP
into corresponding cell lines. BFP expression was quantified by fluor-
escent imaging 48h after transfection. To achieveNarta activation in the
Dox-inducible Narta cell line (miniCMV-BFPTriTag), doxycycline (1μg/ml,
Sigma-Aldrich) was added 12 h ahead of RNA imaging and 48h ahead of
Protein imaging. For Narta activation of endogenous promoters, TriTag
(BFP or GFP) tagging cell lines seeded into eight-well chambered cov-
erglass, 24-well or 6-well plates. 100ng (8-well), 300ng (24-well), or
1200ng (6-well) stdMCP-p65-T2A-GFP and stdPCP-p65-T2A-GFP were
transfected into the corresponding cells the next day. To perform
dCas13b-mediated Narta activation, 300ng dCas13b-VPR-T2A-GFP and
600ng crTS1 were co-transfected to corresponding endogenous
reporter cells in eight-well chambered coverglass. Cells in eight-well
chambered coverglass were used for confocal microscopy imaging and
protein fluorescence analysis 48h after transfection. To image nascent
RNA production, cells in eight-well chambered coverglass were imaged
under confocal microscopy 12 h after transfection. Cells in 24-well and
6-well plates were used to perform FACS and RNA extraction, respec-
tively, 48 h after transfection.

Gene activation by CRISPRa
To perform CRISPRa, cells harboring TriTag (BFP) tagging of a specific
endogenous gene were seeded into 8-well chambered coverglass, 24-
well, or 48-well plates. Taking 8-well as an example, cells were tran-
siently transfected with 300 ng dCas9-VPR-T2A-GFP (VPR system) or
300ng dCas9-10XGCN4v4-T2A-GFP and 300ng scFV-PH (SPH sys-
tem). In addition, three sgRNAs targeting the same gene were co-
transfected at a total amount of 600ng. To perform co-activation of
Narta andCRISPRa in 8-well plates, 100 ng stdMCP-P65-T2A-EGFPwere
co-transfected with 300 ng dCas9-VPR-T2A-GFP or 300ng dCas9-
10XGCN4v4-T2A-EGFP and 300ng scFV-PH to corresponding reporter
cells. After 48 h transfection, cells were used for confocal microscopy
imaging. To perform FACS analysis, cells were seeded in 24-well or
6-well plates 12 h ahead of plasmid transfection and were collected
48 h after transfection.

Flow cytometry
To isolate CRISPR knock-in positive cells, cells were analyzed and
selected by MoFlo Astrios EQ (Beckman). Cells were first gated for
the intact cell population based on forward scatter versus side
scatter plots and then gated for single cells using forward scatter A
versus forward scatter H. Positive cells were sorted out for further
validation of CRISPR knock-in. To improve TriTag knock-in effi-
ciency, CRISPR knock-in was performed with additional supplement
of 300 ng stdPCP-PH-T2A-EGFP (as negative control) or stdMCP-PH-
T2A-EGFP plasmids. Positive cells were gated out using the same
protocol to calculate the positive rate of CRISPR knock-in. To
compare the activation efficiencies of Narta and CRISPRa, the
expression level of target proteins was analyzed by flow cytometry
using BD Fortessa instrument (BD Biosciences). Cells that were
positive for Narta and CRISPRa expression were gated based on the
GFP or HaloTag reporter. Gating strategies were provided in Sup-
plementary Fig. 14.

Quantitative RT-PCR
To confirmNarta activation at the RNA level, corresponding cells were
collected for RNA extraction using FastPure Cell/Tissue Total RNA
Isolation Kit (Vazyme) following the manufacturer’s instructions. RNA
was first converted to cDNA using oligo-dT primers (HiScript II Q RT
SuperMix for qPCR, Vazyme). PCR reactions were carried out using
ChamQ Universal SYBR qPCR Master mix (Vazyme) and were per-
formed on the QuantStudio 5 Real-Time PCR system (Thermo Fisher).
All experiments were repeated three times using samples of three
independent batches. The RNA abundance was normalized to an
endogenous gene UBC and calculated as delta-delta threshold cycle
(▵▵Ct). Primers used for qRT-PCR are listed in Supplementary
Table S3.

Western blot
HeLa cell lines expressing specific GFPTriTag tagged endogenous
reporters were plated on 24-well plates, and then transfected with
300ng of plasmids encoding stdMCP-PH-T2A-GFP or stdMCP-PH-T2A-
GFP the next day. Cells were collected 48h after transfection. Samples
were lysed and then loaded into a 10% Bis-Tris protein gel (Thermo
Scientific). GFPTriTag tagged endogenous proteins were detected with
mouse anti-GFP antibody (1:2000, EarthOx, E022280). Actin was
detected with β-Actin Rabbit mAb (1:5000, Sangon Biotech, D191047).
Blots were imaged by ChemiScope 3300mini.

Immunostaining
To detect endogenous MED1, cells were fixed with 4% paraformalde-
hyde, permeabilized with 0.5% NP-40 in phosphate buffered saline
(PBS) for 10min, washed with PBS buffer for 5min and repeated twice,
blocked in 0.2% cold water fish gelatin and 0.5% bovine serum albumin
(BSA) for 20min, incubated with the primary antibody in blocking
buffer at room temperature for 4 h, washed three times and then
incubated with Alexa647-conjugated secondary antibody at room
temperature for 1 h, and finally washed three times again. The primary
and secondary antibodies for detecting MED1 are Rabbit anti-MED1
Antibody (1:1000, A300-793A, Bethyl) and Donkey Anti-Rabbit IgG
H&L conjugated with Alexa Fluor® 647 (1:1000, ab150075),
respectively.

smFISH to detect Narta activation
smFISH probes complementary to BFP sequence were designed to
cover the region of BFP (Cat # CUS288-D1, GD Pinpoease Biotech Co.,
Ltd.). smFISH was performed using PinpoRNATM RNA in-situ hybridi-
zation kit according to the manufacturer’s instructions (Cat #:
PIT1000, GD Pinpoease Biotech Co. Ltd.). Briefly, cells were first fixed
by 10% NBF and then endogenous peroxidase was inhibited by Pre-A
solution at room temperature. Target RNAmolecules were exposed by
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protease treatment and hybridized with probes for 2 h at 4 °C. The
signal was then amplified sequentially by reactions 1, 2, and 3. The HRP
molecule was added into reaction 3. Lastly, a tyramide fluorescent
substrate (OpalTM520, Akoya Biosciences) was added to the cells and
the target RNA was then fluorescently labeled by Tyramide Signal
Amplification (TSA) assay. Notably, HaloTag expression was used to
indicate the successful transfection of stdMCP-PH (+Narta) or stdPCP-
PH (−Narta) plasmids. However, no HaloTag signal was detected after
smFISH staining was completed. Thus, we selected the cells with the
most significantmRNA staining for further quantification and used the
same principle for all samples.

Zebrafish embryo injection
To test Narta activation in Zebrafish embryos, corresponding plasmids
(three mixtures: CMV-mCherry + CMV-GFP + blank vector; CMV-
mCherry +CMV-GFPFish_NarTag + stdPCP-PH; CMV-mCherry + CMV-
GFPFish_NarTag + stdMCP-PH) were prepared for microinjection. The con-
centration of each plasmid is 100ng/μl. Zebrafish embryos were col-
lected 15min after fertilization. 2 nl of plasmidsmixed with phenol red
(10:1) was injected into the yolk of each embryo at 1-cell stage. Quan-
titative imaging ofGFP andmCherry expressionwas performed at 80%
epiboly to 90% epiboly.

RNA-seq analysis
To address the specificity of Narta system, BFPTriTag-LMNA andHSPB8-
BFPTriTag HeLa cell lines were seeded into 6-well plates, respectively.
The next day, 4 μg stdMCP-PH-T2A-GFP or stdPCP-PH-T2A-GFP was
transfected into cells. RNA extraction was performed 48 h after
transfection. Total RNA samples were therefore collected for RNA-seq
analysis. Single-end sequencing (50-bp reads) was performed. The
sequencing reads were aligned to the human GRCh38 genome using
STAR (https://github.com/alexdobin/STAR). Gene expression counts
for each sample were calculated by featureCounts88. Genes with low
counts, of which CPM (counts per million) ≤1 in both control samples,
were filtered out. Normalized gene expression of each gene was
obtained by function count from DESeq2 package (https://github.
com/mikelove/DESeq2). The edgeR package (https://bioconductor.
org/packages/release/bioc/html/edgeR.html) was then used to per-
form differential expression analyses between control and Narta with
default parameters. The differential expression genes (upregulated)
were defined by a Benjamini–Hochberg adjusted p value (t-test
q value < 0.05 with FDR correction) and fold change of >2.0.

Drug treatment
To confirm the involvement of p300 and BRD4 in Narta activation,
we took advantage of A-485 (Selleck Cat# S8740) and JQ1 (SIGMA
Cat# SML0974) to inhibit the function of p300 and BRD4,
respectively. Cells with doxycycline-inducible Narta system
were seeded into eight-well chambered coverglass (Thermo Fisher
Scientific) prior to drug treatments. The next day, doxycycline
(1 μg/ml, Sigma-Aldrich) and A-485 (10 μM/L) or JQ1 (1 μM/L) were
added to corresponding wells. After 12 h, cells were subjected to
imaging.

Confocal microscopy
All confocal images were acquired on an Olympus spinning-disk con-
focal system SpinSR, equipped with Yokogawa CSU-W1 scanner, an
sCMOS camera (Prime 95B), a ×60 NA 1.49 oil Apochromat objective,
405/488/561/640nm lasers (OBIS), and a PIEZO stage (ASI) with stage
incubator (Tokai Hit). To perform live-cell imaging, cells were main-
tained in a humidified chamber set at 37 °C and 5% CO2. Cells were
seeded into 8-well chambered coverglass for confocal imaging. All the
images and corresponding data quantifications collected in this study
were generated using this protocol.

HIS-SIM imaging
All super-resolution imaging experiments were performed using
commercialized Hessian-SIM, termed HIS-SIM (High Intelligent and
Sensitive Microscope) equipped with a 100×/1.5NA oil immersion
objective (Olympus). HIS-SIM was provided by Guang zhou Compu-
tational Super-resolution BiotechCo., Ltd. Cells were cultured in eight-
well chambered coverglass for SIM imaging. The protocol for SIM
imaging was performed as described previously64. In addition, sparse
deconvolution was carried out to improve the resolution and contrast
of images89.

Statistics and reproducibility
ImageJ software was used to analyze fluorescence imaging data for
calculating themean intensity of fluorescent reporter proteins and the
total intensity of fluorescent spots (representing nascent RNA, MED1,
p300, or BRD4 signals). Line scanwas obtained using the “Analyze/Plot
Profile” function (a plugin for ImageJ). The extracted parameters were
then analyzed in Excel and plotted using GraphPad Prism. GraphPad
Prism (Version 8, GraphPad Software, La Jolla, CA, USA, https://www.
graphpad.com) was used to calculate the mean values, the standard
error of the mean (SEM) and correlation coefficient (r) for the statis-
tical analysis. The statistical significance between two groups was
calculated via student t test, and significance among three or more
groups was calculated using one-way ANOVA. FACS data were ana-
lyzed using FlowJo v10 software (FlowJo LLC). All results were reliably
reproduced at least once.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. Raw-data of RNA-Seq has been
deposited in the Gene Expression Omnibus (GEO) database under the
accession number GSE204666. Key plasmids will be deposited to
Addgene. Source data are provided with this paper.
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