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Qubit vitrification and entanglement
criticality on a quantum simulator

Jeremy Côté1 & Stefanos Kourtis 1

Many elusive quantum phenomena emerge from a quantum system interact-
ing with its classical environment. Quantum simulators enable us to program
this interaction by using measurement operations. Measurements generally
removepart of the entanglement built between thequbits in a simulator.While
in simple cases entanglement may disappear at a constant rate as we measure
qubits one by one, the evolution of entanglement under measurements for a
given class of quantum states is generally unknown.We show that consecutive
measurements of qubits in a simulator can lead to criticality, separating two
phases of entanglement. Using up to 48 qubits, we prepare an entangled
superposition of ground states to a classical spin model. Progressively mea-
suring the qubits drives the simulator through an observable vitrification point
and into a spin glass phase of entanglement. Ourfindings suggest coupling to a
classical environmentmay drive critical phenomena inmore general quantum
states.

The Born rule, which states that the outcome of a measurement
performed on a quantum state is a random variable whose prob-
ability distribution is determined by quantum theory, governs
information transfer from a quantum system to its classical envir-
onment. While the Born rule is at play constantly all around us since
all matter is fundamentally quantum, its effects are only evidenced
in bulk due to the astronomical number of measurement events
that occur at macroscopic lengths and time scales. In contrast, a
quantum simulator, a programmable array of qubits, is an other-
wise isolated quantum system that we can couple to its environ-
ment at will with tailor-made measurements of all or some of the
qubits. As such, it allows us to study in detail how the quantum
characteristics of a system change as we progressively measure its
components.

If we were to pick the state of an ideal quantum simulator uni-
formly at random from the set of all states accessible to it, we would
get a volume-law state: a state whose entropy of entanglement of an
extensive subsystem, measured in bits, is proportional to the number
of qubits.Measuring a single qubit in such a state removes roughly one
bit of entanglement. One therefore expects that the entanglement of a
volume-law state should decrease as a simple linear function of the
number of measured qubits, yielding a classical unentangled state
once we measure all the qubits.

However, this is not always the case: the behaviour of entangle-
ment in a quantum simulator can change dramatically and abruptly as
we progressively measure its qubits, exhibiting the phenomenon of
criticality1. Critical behaviour indicates a transition between two dis-
tinct phases of entanglement. Previous work revealed entanglement
phase transitions in different settings, namely, in randomensembles of
quantum circuits in which qubits undergo measurement at a finite
rate2–8 and in models with topological order9–11.

Detecting and characterizing such critical behaviour in experi-
ments is challenging though. First, current quantum processors are
faulty, limiting the quantum gates we can reliably implement and the
number of error-freemeasurementswecan obtain. Second,measuring
the entanglement entropy of an arbitrary quantum state is hard. The
straightforward approach requires tomographic reconstruction of the
quantum state, which is intractable for quantum systems with many
components. Finally, although theoretical models for entanglement
phase transitions have been introduced in the context of random cir-
cuit ensembles2,3,5,8, these are only approximate in the experimentally
relevant limit.

Here, we program two entanglement phases and the criticality
between them on a quantum simulator of up to 48 superconducting
qubits. We do this by implementing an ensemble of quantum circuits1

that allow us to reliably generate volume-law states whose
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entanglement we can deliberately decrease with qubit measurements,
experimentally determine the entanglement entropy, and capture the
exact dependence of entanglement onmeasurements using a physical
theory1 (see “Measuring entanglement”). The pertinent physical theory
is that of spin vitrification, i.e., the transition to a spin glass phase12,13.
We detect the vitrification point, which agrees with spin glass theory.
Our work shows measurements alone can trigger entanglement criti-
cality, suggesting a classical environment could induce critical beha-
viour in more general quantum states.

Results
Theory and model
Our experimental system is an array of superconducting qubits on a
quantum simulator. To drive these qubits through an entanglement
phase transition, we first execute quantum circuits that prepare highly
entangled states. The circuits and theory that follow come from pre-
vious theoretical work1 on entanglement phase transitions.

Each of our circuits implements a system of R linear equations on
L Boolean variables using R + L =N qubits. (In practice, we use fewer
qubits to implement our system on hardware. See “Circuit optimiza-
tion” in the “Methods”.)We canwrite the systemas thematrix equation

Bx= ymod 2 , ð1Þ

whereB is anR × LBooleanmatrixwhose rows represent equations and
columns represent variables, as shown in Fig. 1a. IfBij = 1, then equation
i involves variable j. Otherwise, the entry is zero. By setting the ele-
ments of B according to some distribution, we get an ensemble of
matrices. Each element of the parity vector y 2 0, 1f gR fixes the parity
of an equation and each x 2 0, 1f gL is a solution to the system for a
given y.

To implement the system of Eq. (1) using a quantum circuit, we
organize the qubits in the simulator in two registers, as sketched in
Fig. 1b,c: a “variable” register consisting of L variable qubits and a
“parity” register consisting of R parity qubits. We input variable qubits
in the ∣+i state and parity qubits in the ∣0i state into a circuit
from the ensemble defined above. The initial state is therefore

∣ψiin = ∣+ i�L∣0i�R. The state ∣ψiout at the output of the circuit is an
entangled equal superposition of solutions x for each possible y (see
“Quantum state and entanglement entropy” in the “Methods” for the
exact state). For each y, the set of solutions xf g is unique. Each parity
qubit at the output holds the parity of the variables that appear in the
corresponding row of B (see Fig. 1b). Because these variable qubits are
in a superposition of classical states, so is the parity qubit: it is 0 or 1
depending on the state of the variable qubits. The variable qubits are
thus entangled with the parity qubit and contribute one bit of
entanglement.

What is the total entanglement between variable and parity
qubits? We quantify this with the entanglement entropy S, which
counts the number of bits of entanglement between two parts of a
quantum system.To answer our question above, weneed to knowhow
many possible vectors y there are in the superposition. For each of the
rank(B) linearly independent rows of B, the corresponding component
in y can be set to zero or one freely. There are then Ny = 2rank(B)

possible vectors y which give solutions to Eq. (1). This means the
entanglement entropy between the variable and parity qubits
is Sð∣ψioutÞ∼ log2Ny = rankðBÞ.

Entanglement phase transition
Each timewemeasure a qubit in a generic volume-law state, the system
loses one bit of entanglement. This happens with everymeasurement,
reducing the number of superposed configurations until just a single
classical state remains.

The states ∣ψiout behave in a manifestly different manner. To
prove this, we start by compiling enough linear equations into our
circuits such that an output state is a superposition of Ny = 2rank(B) = 2L

vectors y. Then, we calculate the entanglement entropy after mea-
suring a subset M of the parity qubits in our system in the computa-
tional basis. We label the measurement outcome yout,M and the
partially measured state ∣ψ

�
out,M . The state ∣ψ

�
out,M still contains an

equal superposition of solutions to Eq. (1), but the elements of the
parity vector y that correspond to the subset M are fixed to the mea-
surement outcome yout,M. For the same reasoning as in the previous
section, there are Nyout,M

= 2rankðBM Þ equally probable measurement

Fig. 1 | An exampleof system(Eq. (1))withL =6andR = 4.aThematrixBofEq. (1),
where each column represents a variable and each row represents an equation.
b The first linear equation in B compiled as a circuit. The gate labelled “1” is a CNOT
followed by a SWAP, as shown in the inset of (c). We use this circuit design to
construct the full quantum circuit for Bx = y. c The quantum circuit built from B.

Bij= 1 corresponds to the two-qubit gate shown in the inset, whereas Bij=0 corre-
sponds to a SWAP gate. The output state ∣ψiout holds all y that yield solutions to Eq.
(1) and the corresponding x for the matrix B. Throughout all panels, the variable
labels are in light blue and the parity/equation labels are in dark blue.
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outcomes yout,M, where BM are the rows of B that correspond to theM
parity qubits. (In Fig. 1c, measuring the first three parity qubits would
mean BM is the first three rows of B.) Since measuring the output state
determines yout,M, there are Ny=Nyout,M

=2L�rankðBM Þ vectors y remaining
in the state ∣ψiout,M . The entanglement entropy is then
Sð∣ψiout,M Þ∼ log2ðNy=Nyout,M

Þ= L� rankðBM Þ. Therefore, the evolution
of the entanglement entropy is given by rank(BM) as a function ofM. To
obtain a size-independent control parameter, we define α ≡ ∣M∣/L, the
ratio of measured parity qubits to variable qubits.

A unique feature of states ∣ψ
�
out is that we can obtain an exact

result for the evolution of the entanglement entropy under measure-
ments through amapping to a classical spinmodel1. In this description,
∣ψ
�
out is an entangled superposition of ground states x to a spin

Hamiltonianwith couplings defined by y (see “Methods”).We can then
use the characteristics of the spinmodel both to predict the behaviour
of the entanglement and, more importantly, to measure it on a quan-
tum simulator, as we discuss in the next section.

To get concrete predictions for our experiments, we now specify
the distribution we sample to populate the matrix B and define the
ensemble of states ∣ψ

�
out. We pick three distinct variables uniformly at

random for each equation in Eq. (1), and we ensure there are no
repeated equations. With this choice, we get an exact correspondence
between our output state and the ground states to an instance of the
unfrustrated 3-spin model, both of which are given by the solutions to
Eq. (1)14,15. This model exhibits a phase transition at αc ≈0.918. For
α < αc, our system corresponds to a paramagnet in the 3-spin model.
We thus get a paramagnetic phase of entanglement. Here,
rank(BM) = ∣M∣ = Lα. This happens because there are few rows in BM,
whichmakes it highly probable that they are linearly independent. The
entanglement entropy of the quantum system after measuring ∣M∣
parity qubits scales linearly in both L and α: Sð∣ψ�out,MÞ∼ L 1� αð Þ, i.e.,
the output state obeys a volume law. For α > αc, the system enters a
spin glass phase. The qubits vitrify, turning into an entangled super-
position of spin glass ground states. We thus get a glassy phase of
entanglement. Now, rank(BM) < ∣M∣ because there aremany rows in BM
and linear independence is lost. The entanglement entropy still scales
linearly in L but decreases slower than linearly with increasing α.

We sketch how the measurement of parity qubits collapses
the output state in Fig. 2. The two entanglement phases give rise
to different behaviours. In the paramagnetic phase, measuring a
parity qubit collapses its state to one of two equally probable
values (Fig. 2b). This occurs when a parity qubit is independent of
the other measured parity qubits, which is the case when BM has
full rank. Measuring the parity qubit halves the number of pos-
sible vectors y remaining in the superposition, so the system
loses one bit of entanglement entropy. In the spin glass phase,

there is a finite probability that a parity qubit has a definite value
before measurement (Fig. 2c). This occurs when previous mea-
surement outcomes determine the measurement outcome for the
next parity qubit, which begins when rank(BM) < ∣M∣. In this case,
measuring the parity qubit does not change the number of pos-
sible vectors y, so the entanglement entropy remains the same.

Measuring entanglement
The exact correspondence between spin glass physics and entangle-
ment established above and in ref. [1] gives us an efficientway todetect
the entanglement phases and criticality on a quantumsimulator. In our
setup, the entanglement entropy is characterized by the spin glass
order parameter 16–18

qðBM Þ=
1
L

XL
i= 1

hð�1Þxi i2, ð2Þ

where 〈…〉 is an average over all the solutions x for Eq. (1) with matrix
BM and a given parity vector yout,M, and xi is the i-th variable in x. We
derive the identity that links this order parameter to the entanglement
entropy in the “Methods”. Therefore, while in most quantum systems
quantifying entanglement is intractable, here we have direct access to
the entanglement entropy through the spin glass order parameter,
which is efficiently measurable (see “Methods”).

The order parameter describes the tendency of the solutions x to
take the same value on each variable. It is zero in the paramagnetic
phase, whichmeans a given variable does not have correlations across
solutions. The outcome of the measurement of a parity qubit is inde-
pendent of previous parity measurements in this phase. At α = αc, the
variables abruptly become correlated across solutions, and the order
parameter jumps to a finite value, eventually saturating to one. This
implies solutions of the system are almost identical, differing on only a
few variables. The outcome of the measurement of a parity qubit now
depends on previous parity measurements.

In the language of physics, each variable can be thought of as one
of L spins in amany-body systemwith ∣M∣ interactions. Then, each basis
state in ∣ψ

�
out,M of the variable qubits represents a spin configuration. In

the paramagnetic phase where there are few interactions, these con-
figurations have no correlation, leading to no order (q =0). However, in
the spin glass phase where ∣M∣ > Lαc, the interactions induce correla-
tions across the configurations, leading to spin glass order (q >0).

Using arrays of up to 48 qubits, our experimental results (Fig. 3)
clearly reveal the two entanglement phases and the transition between
them, and are in agreement with theory. The transition at a critical
value αc becomes more abrupt with increasing system size, exactly as
spin glass physics dictates. Finite-size scaling (see “Methods”) of

Fig. 2 | Measurement and collapse in the two entanglement phases. a Prior to
measurement, each parity qubit is either in a superposition as in (b), or already
collapsed from previous measurements as in (c). In the paramagnetic phase,
measurement collapses the parity qubit, decreasing the entanglement entropy by

one bit. In the spin glass phase, a finite fraction of the parity qubits are already
collapsed from previous measurements, so measuring them does not affect the
entanglement. An abrupt change between the two behaviours occurs at ∣M∣ = Lαc.
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the data using the scaling form qðαÞ= f ððα � αc, expÞL1=νexp Þ yields
the experimental values for the critical measurement ratio
αc, exp =0:95±0:06, which agrees with the theoretical value
αc ≈0.91815, and the critical exponent νexp = 2:5 ±0:5.

We note that while there are some similarities between the
spin glass order we find and those in other work on entanglement
criticality19–21, there are a few differences. First, previous work
focuses on states and circuits that respect certain symmetries,
which play a role in creating a spin glass phase. In contrast, we do
not need to impose symmetries. Second, there is an exact relation
between the spin glass order parameter in our work and the
entanglement entropy, which is not there in other works. Third,
previous work focuses on spin glass order as a steady state
property of the system, whereas our system goes into a spin glass
state immediately after applying our circuit and measuring.
Finally, as our results demonstrate, we can observe this spin glass
order on existing quantum hardware.

Discussion
Since entanglement is a key resource for quantum computation,
precise predictions and experimental verification of its possible
behaviours in quantum devices under measurement are sought-
after. Our findings demonstrate that partial measurements of
quantum states can alone give rise to intricate phenomena rela-
ted to entanglement. Measurements can force qubits to vitrify,
and hence realize the celebrated13 spin glass phase of matter
inside a quantum processor.

The spin glass quantum states implemented here are a subset
of stabilizer states, an important class of states for quantum
computation. Moreover, we already know that spin glass entan-
glement criticality is also present in more general classes of states
than the ones studied here1. It is interesting to ask whether similar
physics applies to entanglement in monitored quantum systems
at large, giving rise to different types of nonanalyticity for the
entanglement entropy.

Methods
Spin Hamiltonian
The output of our circuits provides x and y from Eq. (1), which we can
relate to the ground states and couplings of a p-spin model22 (with

p = 3). The model consists of L spins, with R interactions encoded by
the matrix B (see the example in Fig. 1a). The indices of the nonzero
elements in each row a∈B correspond to the spins which are part of
an interaction. The Hamiltonian is:

HðB,σ, JÞ= 1
2

X
a2B

1� Jaσa1
σa2

σa3

� �
, ð3Þ

where a1, a2, a3 refer to three distinct spins (the indices of the nonzero
elements in a), Ja are the couplings of the interaction vector J 2 ± 1f gR,
and the spins σi form the spin vector σ 2 ± 1f gL. The ground-state
energy for this Hamiltonian is zero, which corresponds to
Jaσa1

σa2
σa3

= 1 for all a.
Using the mapping Ja = ð�1Þya and σi = ð�1Þxi , we see that Eq. (3) is

zero whenever ya = xa1
+ xa2

+ xa3
mod 2 for all a, which is Eq. (1). This

lets us express the number of ground statesN GS to Eq. (3) in termsof y
and B. Because each of the Ny = 2rank(B) vectors y hasN GS ground states
(out of a possible 2L), we find N GS = 2

L�rankðBÞ. The ground-state
entropy is SGSðBÞ � logN GS = L� rank ðBÞ� �

log2 (we take the natural
logarithm).

Quantum state and entanglement entropy
After applying the circuit given byB (Fig. 1c) to our input state ∣ψ

�
in, we

get the following state (see ref. 1 for more details):

∣ψiout =
1ffiffiffiffiffiffi
Ny

p X
y

∣yi∣fx : Bx =ygi : ð4Þ

This is a superposition of solutions xf g for each of the Ny possible
y. We then measure the state of the first ∣M∣ parity qubits to be yout,M.
The resulting state is

∣ψiout,M =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ny=Nyout,M

q X
fy :y∣M∣ = yout,M g

∣yi∣fx : Bx =ygi , ð5Þ

where the first ∣M∣ components of y are y∣M∣ = yout,M. The state is still
an equal superposition of solutions for each y, but now there are

only Ny=Nyout,M
terms in the sum, with Nyout,M

=2rankðBM Þ. The coeffi-

cient λy =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nyout,M

=Ny

q
determines the entanglement entropy for

Fig. 3 | Experimental results for the order parameter q as a function of mea-
surement ratio α, using the ibm_washington, ibmq_brooklyn and ibm_hanoi
quantum processors24. Each data point represents an average of the order para-
meter over 900matrices BM, except for L = 24, where we average over 50matrices.
Error bars indicate the standard error of the mean. We study system sizes L = 8
(light blue circles), L = 16 (medium blue triangles), and L = 24 (dark blue squares).

Dashed curves provide a reference and connect points from a classical simulation
of q, where we average over 10, 000 matrices per α. The inset shows the collapsed
data around αc ±0.5 with the critical exponent νexp and critical point αc, exp (light
grey vertical line),where the curves in themainplot sharpenwith increasing system
size. For details on data collection, averaging, andfinite-size effects, see “Methods”.
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such a state:

Sð∣ψiout,M Þ � �
X

fy : y∣M∣ =yout,M g
λ2y logðλ2yÞ= rankðBÞ � rank ðBMÞ

� �
log2:

ð6Þ

The entanglement entropy coincides with SGS(BM)—the ground-
state entropy of the classical spinmodel—whenwe choose our initial B
to satisfy rank(B) = L. In the limit of large system sizes, the expression
for the averaged entropy density23 is:

lim
L!1

Sð∣ψiout,M Þ
� �

L
= ð1� qðαÞÞð1� logð1� qðαÞÞÞ � αð1� q3ðαÞÞ� �

log2,

ð7Þ

where q(α) is the spin glass order parameter after performing the
ensemble average using Eq. (2). Equation (7) establishes the exact
correspondence between the entanglement entropy and the spin glass
order parameter.

Quantum hardware
We used the ibm_washington, ibmq_brooklyn and ibm_hanoi quantum
processors24 for our experiments. We set the repetition delay to
0.00025s.We chose connected lines of qubits to take advantage of the
one-dimensional structure of our circuits, while also having low mea-
surement readout error and CNOT error rates at the time of job
submission.

Circuit optimization
Because errors dominate the output in current quantum processors,
we optimize our circuits to use as few gates as possible. As the CNOT is
the native two-qubit gate on the IBM Q processors, we use the CNOT
count NCNOT as our metric (we ignore the L single-qubit Hadamard
gates we always need). We build our circuits using the matrix BM since
it generates the solutions we use in Eq. (2) and requires fewer gates to
implement than B. We then decompose SWAP gates in our circuits as

SWAPði, jÞ=CNOTði, jÞ×CNOTðj, iÞ×CNOT ði, jÞ, ð8Þ

where i and j are the qubits participating in the gate and CNOT(i, j)
means qubit i controls the target qubit j. For the “1” gate in Fig. 1, using
Eq. (8) reveals two consecutive CNOT gates with the same control and
target, whichwe removebecause they have nooverall effect. As such, a
one in the matrix requires two CNOTs while a zero requires three.

How many qubits and CNOT gates do we need to build circuits
such as in Fig. 1c using BM? There are ∣M∣ = Lα linear equations, so we
require N = L + ∣M∣ = L(1 + α) qubits. To calculate NCNOT, note that each
row of BM contains p ones and L − p zeros. There are then 2p + 3(L − p)
CNOTs per row of BM, where p = 3 for our model. Summing the CNOT
count over all rows, wefindNCNOTðBM Þ= ∣M∣ 2p+3ðL� pÞ½ �=3L L� 1ð Þα.

By transforming BM usingmatrix row operations, we can reduceN
and NCNOT. We begin by putting BM into row echelon form. Then for
each row of thematrix (starting from the second), we find the index of
the leading one, and add this row to the rows above it which have a
zero at that index. These row additions generate more ones in the
matrix, which we prefer because they require less gates than zeros to
implement. We call the resulting matrix BM 0 . Note that solutions to Eq.
(1) for a given parity vector remain unchanged under row operations.

For example, consider the following matrix:

BM =

1 0 1 0 0 1

0 1 0 1 0 1

0 1 1 1 0 0

0 1 1 0 1 0

1 1 0 0 0 1

0
BBBBBB@

1
CCCCCCA
: ð9Þ

Applying the operations described gives

BM 0 =

1 1 1 1 1 0

1 1 1 1 0

1 1 1 1

1 1 0

1 0

0
BBBBBB@

1
CCCCCCA
, ð10Þ

where the omitted entries are zeros.
The form of BM 0 helps us save qubits and gates. First, the matrix

has size ∣M 0∣× L, with ∣M 0∣= rankðBM Þ. The resulting circuit requires
N = L + rank(BM) ≤ L + ∣M∣ qubits, fewer than the circuits built from BM
when rank(BM) < ∣M∣. Second, notice that in Fig. 1c, there are gates for
eachentry of thematrix. By interspersing the parity and variable qubits
instead of separating them, we can avoid including gates for the zeros
to the left of the leading ones in BM 0 .

Each gate in the primitive circuit (Fig. 1b) exchanges the positions
of the qubits it acts upon. The result is that a parity qubit exchanges
positions with every variable qubit. However, only “1” gates contribute
to the parity we want to measure. Therefore, once a parity qubit
encounters all the “1” gates for its linear equation, wemeasure it in that
position.We take advantage of this by altering the primitive circuit: we
start the parity qubit at the top, reverse the gate sequence, and invert
the control and target of the CNOTs in each “1” gate. Then, the loca-
tions of the leading ones in BM0 provide the end positions for mea-
suring the parity qubits. For example, the parity qubit for the first row
in Eq. (10) exchanges positions with all variable qubits before we
measure it. The parity qubit for the second row exchanges positions
with variable qubits 6, 5, 4, 3, and 2 before measuring, and so on.

We provide an upper bound for NCNOTðBM0Þ. We count the entries
in BM0 to the right of (and including) themain diagonal. We assume the
leading ones are all part of the main diagonal. With this assumption,
thenumber of entries to the right of (and including) the leading ones in
a P ×Q row echelon matrix is:

UðP,QÞ=
XP
i = 1

Q� ½i� 1�ð Þ= P Q� 1
2

P � 1ð Þ
	 


: ð11Þ

In our case, P = rank(BM) and Q = L. There is at least a one per row
(else the row would not be a part of BM0). Since zeros contribute more
to NCNOT, we take the worst-case scenario where all other entries are
zero. This implies there are P ones in the matrix, so there are Z =
U(P,Q) − P zeros. Using these results, we get the upper bound:

NCNOTðBM 0 Þ≤ 3Z +2P =
3
2
rankðBM Þ 2L� rankðBMÞ+

1
3

� �
≤
1
2
L 3L+ 1ð Þ,

ð12Þ

where we get the final inequality by maximizing the previous expres-
sion with respect to rank(BM).

Finally, rather than putting a variable qubit in its initial super-
position ∣+ i=H∣0i as an input to the circuit, we apply the Hadamard
gate H only when the corresponding variable first participates in a
linear equation. (For example, in Eq. (10) variable 6 is first part of an
equation in row 3.) Doing so reduces errors from trying to maintain
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superpositions for too long in current quantum processors. It also
simplifies any SWAPgate involving a variable qubit in the state ∣0i. If we
have qubits i and j with the latter in the state ∣0i, Eq. (8) reduces to

SWAPði, jÞ∣j in ∣0i =CNOTði, jÞ×CNOT ðj, iÞ: ð13Þ

Our circuit optimization provides a significant savings compared
to the circuits built fromBM, which requireNCNOT(BM) = 3L(L − 1)α gates
and N = L 1 +αð Þ qubits. In practice, our largest experiments (L = 24 and
α ≳ 1) required an average ofNCNOTðBM 0 Þ≈600 gates, which ismuch less
than the NCNOT(BM) ≳ 1600 gates we would need if we used the BM
matrices instead.

Error mitigation and shot count
In our experiments, we only keep measurement results (shots) x and
yout,M 0 which satisfy BM 0x= yout,M 0 . This provides significant error miti-
gation (see Supplementary Fig. 1) as we increase the number of qubits.
For L= 8, 16, 24f g, we took 10000, 25000, 750000f g shots per sample
(see next section) to obtain our data.

Data collection
1. For the desired number of matrix samples:
(a) Generate a random matrix B as described in the “Entanglement

phase transition” section with L columns and Lαmax rows. Each B
is a sample and provides data for α 2 0,αmax


 �
.

(b) For each α 2 0,αmax


 �
:

i. Take the submatrixBM, consisting of the first ∣M∣ = Lα rowsofB.
ii. Put BM into row echelon form and perform row operations as

described in the “Circuit optimization” section. The result
is BM 0 .

iii. Build the circuit corresponding to the matrix BM 0 using the
techniques described in the “Circuit optimization” section.

iv. Execute the circuit on the quantum processor a sufficient
number of times. Here, sufficient means measuring several
pairs ðx, yout,M 0 Þ that pass the test in the following step. We
always had at least 18 pairs.

v. Test measurements ðx,yout,M 0 Þ by verifying if BM 0x= yout,M 0 .
vi. Save the variable and parity vectors x and yout,M 0 that pass

the test.

Calculating the order parameter
1. For each α 2 0,αmax


 �
:

(a) For each matrix B from the previous section:
i. Compute BM 0 as in the previous section using BM with ∣M∣ = Lα.
ii. For each saved parity vector yout,M 0 associated to BM 0 :

A. Fix a reference solution z that maps solutions from the
parity vector yout,M 0 to the parity vector 0. We chose our
reference to be the solution to BM 0z= yout,M0 whose binary
form represents the smallest integer. Note that finding a
reference is efficient.

B. Map the saved solutions x associated with yout,M0 to
x0 =x+ z. Now, BM 0x0 =0. Remove any duplicates. Call this
set X = x0f g.

iii. Compute qðBM 0 Þ in Eq. (2) by uniformly sampling min 24,jX jð Þ
solutions from X, wherewe determined the number 24 yields a
reasonable compromise between accuracy and quantum
runtime.

(b) Compute q(α) by averaging over qðBM 0 Þ for all BM 0 .

Following the procedure for each L produces the curves in Fig. 3.
To calculate the order parameter in step iii), wewant asmany solutions
x0 as possible, but a finite number works, making the order parameter
efficient to measure. For the classical simulation of q (the dashed lines
in Fig. 3), we uniformly samplemin 24,N GS


 �
solutions to the equation

BMx =0, where N GS = 2
L�rankðBM Þ is the total number of solutions. We

did this by sampling random linear combinations of the basis vectors
forming the null space of BM. This is also efficient.

We note that the small size of the sample X leads to appreciable
artefacts in Fig. 3, such as a deviation of the order parameter from the
expected value of zero at small α. Concomitantly, we notice the onset
of finite-size effects at values of L and α for which min 24,N GS


 �
≈N GS.

The dipof q at smallα for L = 8 is such aneffect.Wenevertheless notice
that, for all L and α, theory and experiment match well in Fig. 3, since
these effects are present in both.

Finite-size scaling
The objective of finite-size scaling is to take the data in Fig. 3 and try to
collapse it onto a common curve by finding suitable critical para-
meters. We follow the technique of ref. [25] and our previous work1. In
particular, we use the scaling form:

q= f α � αc, exp

� �
L1=νexp

� �
, ð14Þ

and weminimize a cost function with the data and its associated error
as input to find the critical parameters αc, exp and νexp.

We storeour experimental data as a triple α,qðαÞ,eðαÞð Þ, where e(α)
is the standard error of themean for the data point. The standard error
of the mean for n samples is:

eðαÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i = 1

qiðαÞ � �qðαÞ� �2
nðn� 1Þ

vuut , ð15Þ

where qi(α) is the order parameter for a givenmatrix B and α, and �qðαÞ
is the mean of qi(α) over i.

We then transform the triple according to the scaling form:

ti, gi, ei

 �

= α � αc, exp

h i
L1=νexp ,qðαÞ, eðαÞ

� �
: ð16Þ

We sort these triples by their t-values and then compute the cost
function:

Cðαc, exp, νexpÞ=
1

T � 2

XT�1

i = 2

w ti, gi, ei∣ti�1, gi�1, ei�1, ti + 1, gi + 1, ei+ 1

 �

,

ð17Þ
with Tbeing the number of data points. The quantity in the summation
is:

w ti, gi, ei∣ti�1, gi�1, ei�1, ti + 1, gi + 1, ei + 1

 �

=
gi � g

Δ gi � g

 �

 !2

, ð18Þ

g =
ti+ 1 � ti

 �

gi�1 � ti�1 � ti

 �

gi + 1

ti+ 1 � ti�1


 � , ð19Þ

Δ gi � g

 �� �2 = e2i + ti+ 1 � ti

ti+ 1 � ti�1

	 
2

e2i�1 +
ti�1 � ti
ti + 1 � ti�1

	 
2

e2i + 1: ð20Þ

The cost function Cðαc, exp, νexpÞ measures, for each index i, the
squared deviation of the point ti, gi


 �
from the linear interpolation ḡ

between the points ti�1, gi�1


 �
and ti + 1, gi+ 1


 �
on either side of the

sorted sequence. We exclude the first and last points in the sequence
since they have no neighbouring points to the left or right, respec-
tively. The uncertainty (Eq. (20)) is aweighted sumof the squared error
of the current point ti, gi


 �
and the squared error from the linear

interpolation (Eq. (19)). We skip over any three identical t-values in a
row in Eq. (17) because of the division by zero in Equations (19) and
(20) (though this only happens for isolated values of αc, exp). When this
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happens, we reduce the denominator of the fraction in front of Eq. (17)
by the number of skips.

We plot the cost function over a grid of values near the critical
parameters from the literature (Supplementary Fig. 2). This allows us
to visualize both the minimum and the uncertainty around it. The
collapse for finite-size scaling works best when there are finite-size
effects, so we restricted our data for the cost function to the region
αc ±0.5 (the black connector linking the main plot with the inset
in Fig. 3).

We chose our grid for the critical parameters to be
αc, exp 2 0:85, 1:10½ �, with a step size of0.001, and νexp 2 1:5,4:0½ �, with a
step size of 0.01. We chose a finer step size for αc, exp because we know
the critical threshold. We used a larger step size for νexp because there
is less precision in the literature for ν.

To estimate our uncertainty, we plot a contour at the level
1 + rð ÞCmin, where r is the size of the maximum deviation we allow in
the minimum value. We chose r =0.25, which means we remain
uncertain about the minimum for values that are up to 25% larger.
Changing rwill grow or shrink the contour. We note in Supplementary
Fig. 2 that the cost function’sminimum resides roughly in the centre of
the contour. To quantify our uncertainty, we compute the width and
height of the rectangle circumscribing the contour. Then, we take the
uncertainty in αc, exp to be half the width and the uncertainty in νexp to
be half the height.

This gives us the following experimental values for the critical
point and critical exponent:

αc, exp =0:95±0:06, νexp = 2:5 ±0:5: ð21Þ

Data availability
The error-mitigated output from the quantumprocessors is available26

at the following Zenodo repository: https://doi.org/10.5281/zenodo.
7120441. Source data are provided with this paper.

Code availability
We used Qiskit27 to execute the quantum circuits on the IBM Q quan-
tumprocessors. All code used in classical and quantum simulation and
analysis of experimental data is available26 at the following Zenodo
repository: https://doi.org/10.5281/zenodo.7120441.
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