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A distinct ripple-formation regime on Mars
revealed by the morphometrics of
barchan dunes

Lior Rubanenko 1 , Mathieu G. A. Lapôtre 1, Ryan C. Ewing2, Lori K. Fenton3 &
Andrew Gunn1,4

Sandmobilized by wind forms decimeter-scale impact ripples and decameter-
scale or larger dunes on Earth and Mars. In addition to those two bedform
scales, orbital and in situ images revealed a third distinct class of larger meter-
scale ripples on Mars. Since their discovery, two main hypotheses have been
proposed to explain the formation of largemartian ripples—that they originate
from the growth in wavelength and height of decimeter-scale ripples or that
they arise from the same hydrodynamic instability as windblown dunes or
subaqueous bedforms instead. Here we provide evidence that large martian
ripples form from the same hydrodynamic instability as windblown dunes and
subaqueous ripples. Using an artificial neural network, we characterize the
morphometrics of over a million isolated barchan dunes on Mars and analyze
how their size and shape vary across Mars’ surface. We find that the size of
Mars’ smallest dunes decreases with increasing atmospheric density with a
power-law exponent predicted by hydrodynamic theory, similarly to meter-
size ripples, tightly bounding a forbidden range in bedform sizes. Our results
provide key evidence for a unifying model for the formation of subaqueous
and windblown bedforms on planetary surfaces, offering a new quantitative
tool to decipher Mars’ atmospheric evolution.

From decimeter-scale ripples to decameter-scale or larger dunes,
aeolian (windblown) bedforms are ubiquitous across Mars’ desert
landscapes. In addition to small-scale ripples, a distinctly larger class of
meter-scale ripples was discovered on Mars from observations made
by NASA’s Curiosity rover1,2 (Fig. 1). On Earth, meter-scale ripples only
form in the presence of wide or bimodal grain-size distributions, with
two grain-size populations moving through two distinct transport
modes—saltation and creep3. However,many large ripples onMars lack
a concentration of coarser grains that would be transported in creep
near their crests4–8 and thus cannot be explained by bimodal
transport3.

Two models have been proposed to date to explain the co-
existence of the two distinct ripple scales on Mars. Under the first

model, large ripples would result from the continuous growth of small
ripples from saltation-driven impact splash, enabled by low dynamic
wind pressures onMars (i.e., they would be impact ripples9). However,
ripples with intermediate sizes (~20–80 cm) were not observed to be
active in relatively well sorted sand1,2,5,6,10, contradicting the model’s
prediction that a continuum of ripple sizes should exist between those
of small and large ripples. Furthermore, the crest-to-crest spacing (or
wavelength, λ, Fig. 1) of large martian ripples was shown to decrease
with increasing atmospheric density (ρf), following a trend that is
quantitatively consistent with predictions from a scaling relationship
developed for subaqueous drag ripples1,5,11. Consistent with those
observations, another model12 suggests that large wind ripples form
from the same hydrodynamic instability13 as windblown dunes and
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subaqueousbedforms. Specifically, the scale separationbetweenMars’
windblown large ripples and dunes (and between subaqueous ripples
and dunes) would arise from a hydrodynamic anomaly14,15 that pre-
vents the growth of bedforms with intermediate wavelengths12.

Under hydrodynamically smooth flow conditions, a hydro-
dynamic anomaly (hereafter referred to as the Hanratty anomaly) was
shown to arise as bedform size increases14,15. This anomaly is linked to
the way pressure gradients are balanced within the inner boundary
layer in response to bedform topography; it arises when the flow
within the inner boundary layer (disturbed by bedform topography)
remains laminarupstreamof thebedformcrest but becomes turbulent
downstream as turbulent fluctuations amplify12. The anomaly thus
dependson the turbulent response impartedby thebedformand takes
place as thedisturbedflow in the inner boundary layer transitions from
fully laminar to fully turbulent across the bedform length, as has also
been proposed for drag bedforms11. This transitional regime is defined
by a range in bedform-scale Reynolds number, Reλ =

λu*
ν

(with λ the
bedform wavelength, u* the wind shear velocity, and ν the flow’s
kinematic viscosity), which may vary with sediment transport
conditions11,12. This hydrodynamic anomaly was reported from a single
set ofwell controlled experimentswhere the bed, unlike natural dunes,
was non-erodible14,15; however, its existence has not yet been demon-
strated in nature where bed topography arises from flow-driven sedi-
ment transport and deposition.

Existing theory for the hydrodynamic instability that generates
dunes is formulated for ideal transverse (i.e., migrating roughly per-
pendicularly to average crestline orientation) periodic dunes with
unlimited sediment supply. Barchans dunes are transverse bedforms
that form under relatively unimodal winds, but they occur under lim-
ited sediment supply16. However, the size of nascent barchan dunes,
approximated here as the smallest dunes in their immediate environ-
ment (2nd percentile in bins of size 60 km2), is expected to be similar
to the wavelength of incipient periodic transverse dunes that would
arise under the same flow conditions but greater sediment supply17.
Thus, because they are prevalent across Mars18–22 and are ideal objects
for machine-learning assisted detection due to their unique isolated
crescentic shape (Methods), they offer a unique opportunity to
investigate the environmental controls on dune sizes and shapes
(Fig. 1b) across Mars’ surface as a test to bedform-formation theory12.
Specifically, if Mars’ large ripples and dunes form from the same
hydrodynamic instability, both the wavelength of large ripples (as was
evidenced from orbital imagery1) and the size of the smallest barchan
dunes should decrease with increasing atmospheric density following
a similar trend. In turn, the observed decrease in bedform wavelength
should be characterized by a power-law exponent strictly greater than
−1 (λ / ρ�1

f for barchans whose length, like on Earth, scales with

transport saturation length 23–25, the spatial scale over which sand flux
equilibrates to its saturated value) and smaller or equal to −1/2 (i.e.,
bedform size is influenced by the viscous length scale, ν

u*
; λ / ρ�1=2

f for
sand transport at threshold conditions; Methods)11.

In this work, we test this hypothesis by generating a global dataset
of barchan morphometrics (Figs. S1–S2) on Mars to reveal geospatial
trends as they relate to the global near-surface atmospheric circulation
and local environmental conditions. Our extensive dataset, which
includes over a million barchan dunes previously outlined by an
instance segmentation neural network and validated using a compre-
hensive manually processed dataset26 (Fig. 2a and Figs. S3–S5), reveals
the size of barchan dunes on Mars decreases with increasing atmo-
spheric density, similar to the wavelength of large ripples. Our results
support the hypothesis1,12 that large ripples on Mars form from the
same hydrodynamic instability as dunes, indicating that ancient aeo-
lian bedforms can be used to reconstruct the density of Mars’ atmo-
sphere at the time of sediment deposition.

Results
Global morphometrics of barchan dunes on Mars
We find that the relationships between dune width (W), length (L),
height (H) and volume (V; Fig. 2b–g) on Mars closely follow terrestrial
scaling laws. Dune length and width display a near-linear relationship
(L / W 1:011 ±0:001, R2 =0:52, p<0:01). Our estimates of dune height,
which are derived from imagery and are sensitive to illumination, show
greater scatter but remain close to linear functions of planform dune
dimensions. A stronger correlation between dune length and height
hints that dune length is a more robust predictor of height thanwidth,
which shows greater scatter (H / L0:858±0:001,R2 =0:52,p<0:01; H /
W0:702±0:004,R2 =0:29,p<0:01). Correlations between the planform
dimensions of barchans and their estimated volumes show relatively
low scatter. When fitted with a power law, dune volume follows a near-
cubic relationship with both width and length (V / W 2:577 ±0:001,
R2 =0:72,p<0:01 and V / L2:669±0:002,R2 =0:81,p<0:01). We find
that barchan dunes on Mars and Earth follow similar linear relation-
ships between length and width (L / 0:9W ), height and length
ðH / 0:11LÞ, and height and width (H / 0:08W )27,28, and follow cubic
scaling laws of V ∼ 1

37L
3 and V ∼ 1

42W
3, which are similar to barchan

dunes on Earth28. These similarities between barchan scaling laws
previously derived on Earth to those we derived using our compre-
hensive dataset on Mars demonstrates that dunes on Mars and Earth
share important morphodynamics29 and could be used to constrain
general physical laws of aeolian transport on both planets.

Furthermore, we find that the size of the smallest barchan dunes
on Mars decreases with increasing atmospheric density over the den-
sity range investigated here (~0.01–0.03 kg/m3; Fig. 3; Figs. S4–S5).

Fig. 1 | Dunes and ripples on Mars. a Impact ripples superimposed on large wind
ripples atop Namib dune, Gale Crater, Mars. (Curiosity rover Mastcam mosaic;
credit: NASA/JPL-Caltech/MSSS/Thomas Appéré). b Large ripples superimpose

barchan dunes, Hellespontus Montes, Mars (−41.4°N, 44.6°E; High Resolution
Imaging Science Experiment (HiRISE) image PSP_007676_1385). c Detailed view of
large ripples with wavelength ~2m (orange rectangle in panel (b)).
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This trend can be described with power laws in terms of dune length,
L∼ρf

�0:68±0:03, and dune width, W ∼ρf
�0:63±0:03 (R2 =0:34 and

R2 =0:31, respectively; errors indicate a 95% confidence interval). The
observed data scatter around these correlations are both a con-
sequence of local environmental conditions and the automatic nature
of themeasurements. For example, dune width—ameasurement more
sensitive to illumination—displays greater scatter than dune length
near the pole. A comparison of atmospheric densities obtained using
the hypsometric equation (EquationM3; “Methods”) and from a global
circulation model during seasons of active sand transport revealed
that seasonal variations in atmospheric density do not have a sig-
nificant impact on these results (Supplementary Information; Fig. S7).

Discussion
First surveys of barchan dunes on Mars, prior to the Mars Reconnais-
sance Orbiter18,30, were limited by image resolution and reported
average dune sizes of ~500m18,30. Here, we find that small barchan
dunes dominate the dataset, and consequently report much smaller
values of average dune sizes: 220m atmid (70�S� 70�N) and 160m at
high (>70�N, Table 1) latitudes. The large number of small dunes at
high northern latitude decreases the average dune size near the pole
relative to lower-latitude dunes (70°S–70°N). The pixel size of the
Context Camera (CTX) mosaic we employ (5–6m/pixel) is much
smaller than the typical size of dunes, precluding the possibility that
dunes were not detected due to insufficient spatial resolution.

The size and shape of barchan dunes are controlled by a complex
interplay between both the global properties of the atmosphere and
local perturbations, e.g., from topography, dune-dune interactions,

local variations in excess wind shear velocities, or near-surface
volatiles24,29,31,32 (Supplementary Information). Such perturbations
lead to the observed scatter in dune dimension for any given atmo-
spheric density, whereas the first-order control of atmospheric prop-
erties is reflected by the global relationship between dune dimensions
and atmospheric density when local effects are averaged (Fig. 3).While
the higher relative abundance of smaller dunes at high northern lati-
tudes is likely due to the lower elevation, and thus, higher atmospheric
pressure throughout Mars’ northern lowlands, the greater scatter in
dune size in that region could potentially arise from cryogenic pro-
cesses, whichwere found to affect the saltation saturation length scale
and, as a result, dune growth (Fig. S9)33,34.

Importantly, both the wavelength of large dark-toned ripples35,36

and length of the smallest barchan dunes decrease with increasing
atmospheric density, robustly and tightly bounding the wavelength
gap that would arise from hydrodynamic theory (Fig. 3; Figs. S6–S8).
The best-fit power law between dune size and atmospheric density
has an exponent close to −2/3—the same value as that empirically
derived for subaqueous ripples1,5,11. In addition, the departure from a
true inverse relationship, as would be expected if dune size was solely
controlled by transport saturation length1,5,11, confirms that the vis-
cous length scale ν

u*

� �
impacts the initial size ofmartian dunes aswell,

lending quantitative support to the hydrodynamic model of ref. 11.
Thus, these observations are readily consistent with a hydrodynamic
origin of large martian ripples1,5,6,12,37. Under this hypothesis, the
smallest bedforms arising from that hydrodynamic anomaly on Mars
—meter-scale ripples—are about an order of magnitude smaller than
terrestrial protodunes.

Fig. 2 | Morphometrics of barchan dunes on Mars. a Example of automatically
detected barchans on Mars (−42.20°N, −31.89°E). Outlines (white) were identified
by the neural network in Mars Reconnaissance Orbiter (MRO) Context Camera
(CTX)42 images. The red dashed outline shows a detection that was discarded by
our algorithm on the basis of the absence of a convexity deffect. Red and green

crosses indicate the automatically detected tails and horns, respectively.
b–g Correlations between morphometric parameters on Mars (red) and Earth
(blue). Line histograms indicate the marginal distribution of each parameter.
Regression lines are shown as red (Mars) and blue (Earth) lines; R2 values were
computed as the square of Pearson’s correlation coefficient.
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Like larger aeolian dunes, these meter-scale ripples may grow
through time, but their growth would be limited by the hydro-
dynamic anomaly arising from Mars’ low-density atmosphere
(which increases the atmosphere’s kinematic viscosity, explaining
their analogy to subaqueous ripples), triggering erosion at the
crest of bedforms with wavelengths of a few meters to several
decameters. Whereas their size is not the most favored on Mars
(i.e., their growth rate is not highest), ~80 m-scale incipient dunes
may also form (and subsequently grow) because the formation of
smaller dunes that could prevent their inception is precluded by
the hydrodynamic anomaly12. Specifically, the observed decrease
in large-ripple and dune sizes with increasing atmospheric density
is quantitatively consistent with the existence of a hydrodynamic
anomaly defined by a constant range in bedform-scale Reynolds
number, Reλ =

λu*
ν

∼ 5 × 103 � 6× 104 (where u* is the wind shear
velocity; “Methods”) under martian surface conditions. This
remarkable agreement between model predictions and observa-
tions on Mars’ surface strongly supports the hypothesis that large
martian ripples are more analogous to drag ripples and aeolian
dunes than to aeolian impact ripples1,5,12. Thus, ancient aeolian
sandstones may disclose the density of Mars’ atmosphere at the
time of sediment deposition through reconstructions of

windblown bedform sizes1,38, offering prime exploration targets
to unravel the evolution of Mars’ early atmosphere and surface
environments.

Methods
Detection of barchan dunes on Mars with machine learning
Our global database of barchan dune morphometrics on Mars was
compiled using a convolutional neural network (CNN), providing the
fullest description of martian barchan dunes to date. Data were pro-
cessed with minimal human intervention. Whereas manually pro-
cessed data typically present higher accuracy per sample, the errors in
the average morphometrics reported here and that were potentially
introduced by our automatic analysis are mitigated in a central-limit
theoremsense. In addition, the global coverageofourdataprovides an
outlook into otherwise elusive spatial trends in dune morphology.

Dune fields on Mars were globally cataloged and classified
manually in prior studies20,22, and the morphology of individual
barchan dunes was studied locally18,29. These studies did not generate
datasets sufficient in size in which the smallest dunes could be iden-
tified in a statistically robust way. Such a survey of the smallest dunes
on Mars requires an exhaustive sample of dunes. However, compiling
such an extensive dataset has been challenging to date due to the large
number of dunes on Mars and the time-consuming nature of manual
measurements. Barchan dunes are ideal objects for machine-learning
assisted detection because they appear as isolated units and their
unique crescentic shape makes them more readily detectable by both
humans and machines compared to other types of dunes26.

Traditional computer vision techniques rely on sharp image
gradients for object detection and are inaccurate when the
objects and their environment have similar colors or textures39.
Recently, deep machine learning algorithms have revolutionized
object detection in images, achieving human-like abstraction40.
These CNNs excel at supervised learning tasks such as finding a
set of parameters that, given a set of inputs, best reproduces a set
of expected outputs. To extract dune contours on Mars, we used
Mask R-CNN, a state-of-the-art supervised instance segmentation
CNN41. We first manually labeled isolated barchan dunes in a set
of images extracted from the global MRO CTX (5–6m/pixel42)
mosaic43. We elected to exclude connected barchanoidal ridges
that are more difficult to analyze automatically. Using this data-
set, we optimized the parameters of Mask R-CNN through train-
ing, until its accuracy (the mean average precision evaluated
using a separate test dataset26) reached 77%. Our dataset included
1074 images of barchan dunes, uniformly selected across the
martian surface to obtain a well balanced dataset. The training
and validation datasets were composed of 80 and 20% of the total
manually labeled data, respectively. Mean average precision
(mAP) was determined from an additional test dataset composed
of 50 images. To avoid overfitting, we employed image augmen-
tations (rotations, image saturation, contrast), as well as L2 reg-
ularization. The full set of hyperparameters of the trained model
can be found in ref. 26. While training the model further would
have likely resulted in higher accuracy and better outlier

Fig. 3 | Dune length (blue-to-yellow circles) and large-ripple wavelength (light
purple1 and dark green circles36) decreases with increasing atmospheric den-
sity.Ripple data follows a previously derived scaling relationships for drag ripples5;
best-fit power law to an updated global compilation of dark-toned large-ripple
wavelength has an exponent of −0.63 (green dashed line)35. The width of the
hydrodynamic anomaly (gray shade) was calculated for a 125μm grain size7 and
assuming that wind shear velocity is at the transport threshold49 (Methods), using
the model of ref. 12. The statistical significance of the regression slope was com-
puted using a Wald Test, and errorbars (narrower than line width) indicate a 95%
confidence interval. Each dot in the figure represents the 2nd percentile dune
length in equal-area bins (60 km2).

Table 1 | Summary of barchan morphometrics on Mars and comparison with Earth (rounded to nearest integer; P2 and P98
denote the 2nd and 98th percentiles, respectively)

Width, W (m) Length, L (m) Height, H (m)

Mean P2nd P98th Mean P2nd P98th Mean P2nd P98th

Mars* (>70°N) N = 627,006 160 79 365 150 81 343 21 9 48

Mars (70°S-70°N), N = 19,128 212 84 471 214 83 485 26 9 61

Earth (Supplemental Information) N = 2931 95 16 316 67 14 226 12 2 51
*Barchans in the northern polar sand sea constitute ~97% of our dataset. See Tables S1–S2 for validation and S3 for compilation of terrestrial data.
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detection, we found this mAP value sufficient for our goal of
characterizing the first-order morphometrics of barchan dunes on
Mars. The trained model was then used to detect isolated
barchans in the global CTX mosaic43. A full discussion of training
process and model evaluation is provided in ref. 26, and a dis-
cussion of the errors associated with our statistical analysis is
provided in the Supplementary Information.

Extraction of dune morphometrics from dune outlines
Of the 137,111 CTX images extracted automatically from the global
CTX mosaic and examined by the CNN, 55,674 were found to
contain at least one instance of an object identified as an isolated
barchan dune. To measure the morphometrics of each identified
dune, we automatically identified six reference points along the
dune contour—the slipface center, the horns’ apexes, the tail, and
the dune sides28 (Fig. S1). The slipface center (middle of the base
of the slipface) was identified as the deepest convexity defect
along the dune contour. Horn apexes were mapped as the two
intersection points between the dune contour and its convex hull
closest to the slipface center. The tail of the dune was set as the
point furthest away from the slipface along the dune’s stoss
(Supplemental Material). Finally, the sides of the dunes were
detected as the two extreme points along the dune contour in the
direction perpendicular to a vector drawn between the tail and
the slipface center (Fig. 1 and Fig. S1). The dune length was
measured as the distance between the tail and the slipface center,
the dune width as the distance between its sides, and the horn
lengths (not discussed in this work) as the distances between the
horn apexes and a line passing through the slipface center, nor-
mal to the tail-slipface vector. We estimated dune height by
multiplying the horizontal length of the slipface (measured from
the brink to the base of the slipface, in map view) by the tangent
of 30° as a representative angle of repose for martian aeolian
sand6, and dune volume, as the product of H/2 (as a proxy for the
average height of all points along the dune’s surface) and basal
area within the dune outline (Fig. S1).

Data filtering
To increase the robustness of our compilation, we filtered our dataset
as follows:

(1) Between 70°S–70°N, we only used images of areas previously
mapped as dune fields20,22. This was done to save computation time –

since our goal is not to detect new barchan dunes on Mars but to
characterize the morphology of dunes on Mars on a global scale.

(2) Because barchans tend to occur in fields rather than as solitary
landforms, we discarded images containing less than three objects to
remove potentially spurious detections.

(3)Uponmanually inspectingour results,we found that themodel
misclassified some dark sublimation-driven features at southern polar
latitudes, such as Dalmatian spots and spiders44, as barchans. Conse-
quently, we elected to discard dunes in latitudes poleward of 70°S.

(4) By removing dunes with detection-confidence levels out-
putted by the detection algorithm lower than 70%, and dunes with
convexity defects smaller than 2.5% of total dune length (L +mean
horn length). The latter step removed many isolated objects erro-
neously identified as dunes, but also isolated dome dunes, which are
excluded from this study. Our choice of 70% confidence is based on
trial and error and visual inspection of the detected objects.

Upon filtering, our final dataset contained 646,134 dunes
(covering an area of about 15 × 103 km2), roughly 97% of which
are located poleward of 70°N. We use orthogonal distance
regression45 to describe various correlations between dune mor-
phometrics as best-fit power laws (Fig. 2b–g). To filter for intra-
crater dunes south of 70°N, we used craters locations and dia-
meters as mapped manually46. We find that south of 70°N, 3,819

dunes in our database are located in the inter-crater terrain, and
15,309 dunes are found within craters.

Validation of automatically computed morphometrics
The quality of our final dataset was validated manually by comparing
automatically measured morphometrics to manually measured mor-
phometrics in CTX images using JMARS47. Additionally, the extracted
morphometrics data was validated with a smaller test dataset of
manuallymeasured barchanmorphometrics onMars48 (Figs. S3–S4) as
well as with individual HiRISE digital terrain models (Supplementary
Information; Fig. S5).

Width of the hydrodynamic anomaly on Mars
Under martian surface conditions, the gap in bedform sizes arising
from the Hanratty anomaly was predicted to correspond to
Reλ ∼ 5 × 103 � 6× 10412. We expressed the width of the hydrodynamic
anomaly in terms of bedform wavelength, λ, as

λ=
ν

u*
Reλ, ð1Þ

where Reλ ∼ 5 × 103 � 6× 104 and wind shear velocity, u*, was esti-
mated to a first order as the transport fluid threshold, u*f ,

u*f =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρs � ρf

ρf
gdθ

s
, ð2Þ

where ρs ≈ 2900 kg/m3 is the density of basaltic sediment grains,
g ≈ 3:71 m/s2 is the surface acceleration of gravity, d ≈ 125 μm is sedi-
ment grain diameter7 and θ=0:01 is the critical Shields number as
constrained from Mars-like low-pressure wind tunnel experiments49.
We tested the sensitivity of the derived bedform-gap width to the
chosen threshold model by comparing this formulation with addi-
tional fluid thresholdmodels16,50, and found this choice does not affect
our conclusions (Figs. S6–S8). Because dune-forming winds ought to
be larger than the impact threshold for sand transport (u*i), we also
calculated the width of the Hanratty gap by equating u* to values
derived from impact-threshold models25,51,52 (not shown) and found a
similar overlap between predicted bedform gaps and the observed
range of missing bedform wavelengths on Mars. We note that these
results could be used to constrain formative wind shear velocities
within a given dune field from the observed range of missing bedform
wavelengths.

Estimation of atmospheric density from topography
We computed the surface atmospheric density, ρf , on Mars assuming
an isothermal ideal-gas CO2 atmosphere (mco2

= 44:01g=mol) with
surface pressure of P0 =610Pa, temperature T0 = 230K and a scale
height of H = 12 km53,

ρf =ρ0 expð�
z
H
Þ ð3Þ

where ρ0 = P0mco2

� �
= RT0

� �
, R =8:3145Jmol�1 K is the ideal gas con-

stant, and the height, z, was measured using Mars Orbiter Laser Alti-
meter data. To produce Fig. 3, we binned atmospheric density and
dune sizes between latitudes -70�N and 90�N in equal-area spatial bins
of 60 km2 (1° near the equator) andplotted the 2ndpercentile of dunes
length in the bin as a function of its atmospheric density calculated
using the mean bin elevation. We confirmed that the statistical
properties of the distributions do not vary significantly for bin sizes
of 15–60 km2. Furthermore, we find that data from dunes located
inside impact craters display a slightly higher scatter than dunes
outside of craters, a likely results of crater topography on local wind
conditions54, sediment accumulation, and other environmental factors
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(Supplementary Information; Figs. S9–S11). However, this increased
scatter has a minimal impact on detected trends.

Data availability
The dunes’ morphometrics data analyzed in this study have been
deposited in the following repository: https://doi.org/10.6084/m9.
figshare.17200205.v1.

Code availability
Code used to process the data is available here: https://doi.org/10.
5281/zenodo.7305150.
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