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Epigenome-wide meta-analysis identifies
DNA methylation biomarkers associated
with diabetic kidney disease
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Type 1 diabetes affects over nine million individuals globally, with approxi-
mately 40% developing diabetic kidney disease. Emerging evidence suggests
that epigenetic alterations, such as DNA methylation, are involved in diabetic
kidneydisease. Herewe assess differences in blood-derived genome-wideDNA
methylation associated with diabetic kidney disease in 1304 carefully char-
acterised individuals with type 1 diabetes and known renal status from two
cohorts in the United Kingdom-Republic of Ireland and Finland. In the meta-
analysis, we identify 32 differentially methylated CpGs in diabetic kidney dis-
ease in type 1 diabetes, 18 of which are located within genes differentially
expressed in kidneys or correlated with pathological traits in diabetic kidney
disease. We show that methylation at 21 of the 32 CpGs predict the develop-
ment of kidney failure, extending the knowledge and potentially identifying
individuals at greater risk for diabetic kidney disease in type 1 diabetes.

Type 1 diabetes (T1D) is a chronic disease characterised by hypergly-
caemia due to insulin deficiency resulting from autoimmune beta-cell
destruction1. Approximately 40% of individuals with diabetes develop
diabetic kidney disease (DKD), a microvascular diabetic complication,
which remains one of the most common causes of chronic kidney
disease (CKD) worldwide2,3. Individuals with diabetes have an
increased risk of developing kidney failure, necessitating renal repla-
cement therapy in the form of dialysis or transplantation and raising
overallmorbidity andmortality4. Accumulating evidence indicates that
epigenetic factors play a role in T1D5 and the development and pro-
gression of DKD among individuals with T1D6.

Epigenetic modifications provide a link between an individual’s
genetics and the environment to which they are exposed. These

alterations can regulate gene expressionwithout altering theDNAbase
sequence and have been associated with several complex diseases,
including T1D and type 2 diabetes (T2D) and kidney diseases7,8. Over
time, powerful epigenome-wide association studies (EWAS), utilising
blood-derived DNA, have revealed associations between methylation
levels and DKD. Using the previously developed Illumina methylation
array, Infinium HumanMethylation450 Beadchip, including 485,000
methylation sites, Qui et al.9 identified 77 differentially methylated
CpG sites associated with a decline in estimated glomerular filtration
rate (eGFR) in 181 Pima Indians with diabetes and chronic kidney dis-
ease. The more recently developed array—the MethylationEPIC Bead-
Chip—provides more comprehensive coverage, including the
methylation status of additional 413,745 sites. Using this array, Sheng
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et al.10 identified seven differentially methylated CpGs associated with
albuminuria or eGFR in 500 individuals with kidney disease and dia-
betes of unspecified type from the Chronic Renal Insufficiency Cohort
(CRIC). In 2021, we11 identified 36 differentially methylated CpGs
associated with kidney failure in 360 individuals with T1D using the
same array.

Here, we conducted an EWAS on DKD, including 1,304 carefully
phenotyped individuals with T1D from the United Kingdom and
Republic of Ireland (UK-ROI) and the Finnish Diabetic Nephropathy
Study (FinnDiane) using the higher-density Illumina Infinium Methy-
lationEPIC array.We aimed to assess differences inDNAmethylation in
whole bloodbetween individualswithDKDattributed toT1Dand those
with long duration T1D and no evidence of kidney disease on repeated
testing.

Results
Study cohorts
This study included 1304 participants with T1D (651 cases and 653
controls with and without DKD) from the United Kingdom—Republic
of Ireland (UK-ROI, n = 504) and the Finnish Diabetic Nephropathy
(FinnDiane, n = 800) study. Cases had DKD defined as persistent
macroalbuminuria, i.e., albumin excretion rate (AER) > 300mg/ml in
urine, and controls had an AER within the normal range despite a long
duration of T1D (≥15 years). Participant characteristics by cohort and
DKD are included in Table 1, with summary data, including data
missingness, available in Supplementary Table 1. Due to case-control
matching, no differences were observed between cases and controls
for age, sex, diabetes duration and smoking (Table 1).

Quality control of generated data and pre-processing
We used the Illumina Infinium MethylationEPIC BeadChip array to
examine 866,895 CpG sites for all samples. Houseman estimates12

were calculated for the proportional white cell counts (WCCs) for
each sample (Table 1). Concordance of methylation β-values for
seven duplicate samples was evaluated, with a mean r2 of 0.99
(Supplementary Fig. 1). Following the quality control (QC) and pre-
processing steps, including sex checks and the assessment of cross-
reactive probes conducted by RnBeads, one to seven individuals and
90,391 to 102,252 probes were removed prior to the analysis
depending on the model and cohort (Supplementary Fig. 2, Supple-
mentary Table 2).

Meta-analysis of differentially methylated CpGs from RnBeads
analysis
We evaluated differential methylation levels between cases and con-
trols of DKD using Rnbeads, in EWASs conducted separately in both
cohorts. The false discovery rate (FDR) adjusted p-values from both
cohorts were combined in a sample-size weighted meta-analysis using
METAL13. Altogethermethylation at 32CpGs exceeded the thresholdof
p ≤ 9.9 × 10−8 (Table 2), required for epigenome-wide significance, in at
least one of the three analysis models. The minimal model (n = 1302
after QC), which adjusted for age, sex and WCCs, identified methyla-
tion at 31 CpGs associated with DKD (p ≤ 9.9 × 10−8, Supplementary
Data 1, Fig. 1a). The majority of these differentially methylated CpGs
were located within genes (Fig. 2a) or in the open sea region in relation
to the nearest CpG Island (Fig. 2b). Most of the identified CpGs were
hypomethylated, i.e., had a lower methylation level in DKD cases than
controls (n = 26). Of the DKD-hypomethylated CpGs, the largest dif-
ferencewasobserved at cg03546163, located in the 5’UTRof the FKBP5
gene (Methylation β-value difference=0.062, p = 3.6 × 10−13). Only six
CpGs were hypermethylated, i.e., had a higher methylation level in
DKD (Fig. 3a), with the largest difference observed for cg17944885
located between ZNF788P and ZNF625-ZNF20 (Methylation β-value
difference=0.069, p = 2.0 × 10−44). In the association model with addi-
tional adjustment for current smoking status (n = 1175), methylation

levels at 18 CpGs differed between cases and controls of DKD (p ≤ 9.9 ×
10−8, Figs. 1b, 2b andSupplementaryData 1). Thesewerealso significant
in the minimally adjusted model, except cg19693031—a previously
knowndifferentiallymethylatedCpG forHbA1c in type 1 diabetes in the
3′UTR of the TXNIP gene14. The number of epigenome-wide associated
differentially methylated CpGs was reduced to seven in the maximally
adjusted model (n = 957), which included glycated haemoglobin
(HbA1c), HDL cholesterol, triglycerides, body mass index (BMI) and
duration of diabetes (p ≤ 9.9 × 10−8, Figs. 1c, 2c and Supplementary
Data 1). All seven epigenome-wide significant differentiallymethylated
CpGs in themaximalmodelwere associatedwithDKD (p ≤ 9.9× 10−8) in
the other models. The QQ plots showed no presence of inflation
(Fig. 1), but instead we observed some deflation of the p-values, par-
ticularly in themaximalmodel (Fig. 1c), whichwas likely due to the FDR
adjustment of the p-values and the multiple covariate adjustments in
that model.

DKD-associated differentially methylated CpGs and the devel-
opment of kidney failure
To evaluate whether the methylation levels at the 32 DKD-associated
CpGs predicted the risk of kidney failure in T1D, we conducted pro-
spective analyses including 397 individuals with DKD at the time of
DNA collection and follow-up data available from the FinnDiane study.
In the survival models adjusted for age, sex, andWCCs,methylation at
21 of the 32 DKD-associated CpGs predicted the development of kid-
ney failure (nominal p <0.05; 10 with a Bonferroni-adjusted p < 1.56 ×
10−3; Table 2, Supplementary Data 2). Methylation at cg17944885,
located between genes ZNF788P and ZNF625-ZNF20, represented the
strongest signal associated with the risk of kidney failure in individuals
with macroalbuminuria (HR [95% CI] = 2.31[1.95, 2.76], p = 1.40 × 10−21).
The estimated effects of all significant differentially methylated CpGs
were in the same directions in the prospective analysis as in the cross-
sectional EWAS analysis. When we added the baseline eGFR to the
survival model, methylation of the two CpGs on chromosome 19
remained significantly associated with the risk of kidney failure (Bon-
ferroni-adjusted p <0.03; Supplementary Data 2). Moreover, when
adding CpG methylation to a survival model with eight clinical risk
factors for kidney failure (age, sex, age atdiabetes onset, systolicblood
pressure, HbA1c, triglycerides, smoking, retinal photocoagulation) the
model prediction improved significantly for 13/32 CpGs (p <0.05 for
model concordance improvement).

DKD-associated differentially methylated CpG associations in
external EWAS on DKD
All 32 epigenome-wide significant differentially methylated CpGs
were searched in available, non-overlapping summary EWAS data on
DKD, which included an EWAS on albuminuria, eGFR, eGFR slope,
and HbA1c performed in 473 individuals with any diabetes from the
CRIC study cohort10 (Table 2, Supplementary Table 3). Significant
differential methylations were observed for eleven CpGs (p < 0.05),
of which five were significant after Bonferroni correction (32 CpGs ×
four phenotypes). These included four differentially methylated
CpGs associated with eGFR; a highly significant cg21961721 within
SLC27A3 (p < 2.2 × 10−308), two intergenic CpGs between ZNF788P
and ZNF625-ZNF20 (cg17944885; p = 3.7 × 10−13 and cg25544931;
p = 2.1 × 10−5), and cg05165263 within the IRF2 gene (p = 6.6 × 10−5).
Methylation at none of the CpGs was associated with eGFR slope or
albuminuria after Bonferroni correction. For HbA1c, only cg19693031
within TXNIP remained significant after Bonferroni correction
(pBonferroni = 8.0 × 10−12).

Potential overlaps of differentially methylated CpGs with tran-
scription factors
To assess the potential functional consequences of the identified dif-
ferentiallymethylated CpGs, we searched the eFORGE-TF database for
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transcription factor motifs overlapping with the epigenome-wide sig-
nificant CpGs using the seven kidney datasets15. Seven CpGs over-
lapped with predicted transcription factor binding sites (Table 2).
These included two CpGs with higher methylation in DKD that over-
lapped with predicted binding sites for the transcription factor Pax-3
(cg05165263 in IRF2) and the Vitamin D3 receptor (cg10072464
between GRHL1-KLF11; Supplementary Table 4). In addition, five of the
hypomethylated CpGs in DKD cases overlapped with predicted tran-
scription factor binding sites for the following factors (Supplementary
Table 4): the homeodomain leucine zipper-containing factor
(cg22815707 in ANKRD12), the peroxisome proliferator-activated
receptor gamma (cg17058475 in CPT1A), the sterol regulatory
element-binding protein 1 (cg19996939), the transcription factor AP-2
alpha (cg05710777 within LINC10800) and the p53 and transcriptional
activator Myb (both overlapped with cg01895164).

Correlations between DKD-associated differentially methylated
CpGs and gene expression
Next, we examined the association between the 32 DKD-associated
differentially methylated CpGs and mRNA expression of nearby genes
from available summary data of cis-expression quantitative trait
methylation sites (cis-eQTMs) in monocytes (n = 1202)16, whole-blood
of 2102 participants from Dutch biobank17 and 4,170 participants from
the FraminghamHeart Study18 (only cis-eQTMs with p < 1.0 × 10−8) and
in human kidney samples (n = 414)19. Methylation at three of DKD-
associated CpGs were associated with the gene expression in cis in
monocytes, five in whole blood, and ten in kidneys (Supplementary
Data 3). Of these, methylations at six CpGs were associated with the
expression of the gene they were located in (Supplementary Data 3,
Table 3). The differentially methylated CpG with the lowest p-value in
the EWASonDKD, cg17944885,was associatedwith a lower expression
of several nearby zinc finger genes in both monocytes and whole
blood; the lowest p-value was observed for the ZNF844 gene (p = 3.6 ×
10−26). Two CpGs were associated with the expression of the same
nearest gene in both whole blood and kidneys: cg17058475 within the
CPT1A and cg19693031 within the TXNIP gene. Higher methylation at
these two sites, both hypomethylated in DKD vs controls, was

associated with lower expression of genes CPT1A and TXNIP, respec-
tively, in both whole blood and kidneys.

Assessment of gene expression profiles in kidney tissue in
additional datasets
As DNA methylation is known to regulate gene expression, we next
investigated if the 21 genes containing DKD-associated differentially
methylated CpGswere differentially expressed in kidneys in additional
external datasets from the Nephroseq v4 database, the North Dublin
Renal Biobank and Pima Indians (Table 3).

First, we searched these genes in the Nephroseq database for
differential gene expression. Ten genes were differentially expressed
in kidney biopsies from individuals with DKD (Table 3, Supplementary
Table 5). Of the genes with hypermethylated CpGs in DKD vs controls,
only one gene was differentially expressed in DKD; the SLC27A3 gene
had a 1.6-fold higher expression in kidney glomeruli of individuals with
DKD compared to healthy living donors (p = 6.61 × 10−5)20. Of the genes
with DKD-associated CpGswith lowermethylation inDKD, FKPB5 gene
expression was reduced in all six kidney datasets, including gene
expressiondata fromkidney glomeruli and tubuli.ANKRD12,NME7 and
REV1 showed a 1.6 to 2.5-fold decreased expression in kidney glomeruli
from individuals with DKD compared to healthy living donors
(p < 0.01) in the Woroniecka Diabetes Dataset21. In the same dataset,
GRK5 expressionwas 4.3-fold decreased in kidney glomeruli (p = 9.49 ×
10−7) and 1.5-fold increased in kidney tubules (p = 0.026). Furthermore,
INPP4B,MBNL1 and PTBP3 showed a higher gene expression in kidney
tubuli with a fold change ranging from 1.5 (for INPP4B, p =0.012) to 2.6
(for injection PTBP3, p = 1.2 × 10−5). Four alterations in gene expression
were recorded for TXNIP; the most significant was in the Woroniecka
Diabetes Glomeruli Dataset (p = 1.84 × 10−4, Fold change: −1.5)21.

Next, gene expression levels of genes containing DKD-associated
differentially methylated CpGs were investigated in the North Dublin
Renal Biobank. These data are derived by RNASeq analysis of renal
biopsy material from CKD patients. In total, 11 genes showed a differ-
ence in gene expression after adjustment for participant age and sex
(p < 0.05, Table 3, Supplementary Table 6). Among these, higher TXNIP
expression was associated with progression to kidney failure

Table 1 | Clinical characteristics for the UK-ROI and FinnDiane participants by DKD cases and controls

UK-ROI FinnDiane
Cases (n = 252) Controls (n = 252) p Cases (n = 399) Controls (n = 401) p

Sex, Male 132 (52.4) 132 (52.4) 1.00 151 (37.7) 149 (37.3) 0.99

Age, years 42.1 (9.4) 41.2 (9.6) 0.30 43.2 (10.8) 43.6 (11.0) 0.62

Diabetes onset age, years 15.3 (7.3) 15.1 (7.3) 0.92 13.0 (8.1) 14.4 (8.6) 0.02

Diabetes duration, years 27.5 (7.3) 26.2 (7.4) 0.17 30.2 (9.3) 29.2 (9.0) 0.13

Smoking status, current 39 (25.8) 50 (22.1) 0.17 102 (25.4) 101 (25.3) 1.00

HbA1c, % 9.3 (2.3) 8.2 (1.4) 5.5 × 10−11 8.9 (1.6) 8.1 (1.2) 5.8 × 10−13

HbA1c, mmol/mol 78 (25) 66 (15) 5.5 × 10−11 74 (18) 65 (13) 5.8 × 10−13

BMI, kg/m2 25.7 (5.1) 28.9 (8.0) 0.004 26.7 (4.5) 25.4 (3.3) 5.0 × 10−6

Estimated GFR, mL/min/1.73m2 19.9 (19.8) 90.0 (20.3) <1.0 × 10−20 54.0 (29.9) 91.8 (16.9) <1.0 × 10−20

HDL cholesterol, mmol/mol 1.6 (0.6) 1.6 (0.4) 0.25 1.27 (0.4) 1.39 (0.4) 5.2 × 10−5

Triglycerides, mmol/mol 2.2 (1.9) 1.3 (1.2) 0.006 1.79 (1.2) 1.05 (0.5) <1.0 × 10−20

CD8 T cells, proportion 0.040 (0.042) 0.041 (0.044) 0.71 0.056 (0.047) 0.048 (0.041) 0.007

CD4 T cells, proportion 0.130 (0.071) 0.139 (0.057) 0.13 0.111 (0.048) 0.101 (0.050) 0.003

Natural killer cells, proportion 0.028 (0.039) 0.044 (0.048) 1.5 × 10−11 0.045 (0.046) 0.029 (0.043) 7.2 × 10−7

B cells, proportion 0.026 (0.025) 0.037 (0.025) 2.3 × 10−6 0.040 (0.027) 0.030 (0.026) 4.8 × 10−7

Monocytes, proportion 0.085 (0.040) 0.079 (0.033) 0.04 0.075 (0.028) 0.079 (0.030) 0.03

Granulocytes, proportion 0.666 (0.124) 0.625 (0.100) 2.0 × 10−4 0.631 (0.091) 0.674 (0.087) 2.8 × 10−7

Continuous variables are reported as mean (standard deviation), and categorical variables are reported as number (%). The p-values for continuous variables are from a two-sided t-tests and for
categorical variables from chi-squared tests (one-sided). Proportions refer to the proportion in white blood cells.
AERAlbumin excretion rate, BMIbodymass index,HbA1c haemoglobin A1c,HDL high-density lipoprotein,n number,ROI Republic of Ireland, SD standard deviation,UKUnited Kingdom,WCCswhite
cell counts.

Article https://doi.org/10.1038/s41467-022-34963-6

Nature Communications |         (2022) 13:7891 3



(p = 0.004) and with fibrosis (p = 0.002, n = 83). Furthermore, NAV2
expression was associated C-reactive protein (p = 0.001, n = 39).

Additional lookups were conducted for the same gene list within
kidney gene expression data from an American Indian population of
Pima Indians with T2D using correlation coefficients for both glo-
merular and tubular kidney tissue (Supplementary Table 7, Table 3).
The expression of five genes in kidney glomerular tissue, including
INPP4B,MBNL1,PTBP3,REV1 and SLC27A3, were correlatedwith various
kidney morphology parameters (p <0.01), and the higher expression
of three genes in kidney tubular tissue (GRK5, IRF2 and STAB2) corre-
lated with lower eGFR and eGFR slope (p <0.01).

Functional analyses of gene ontology, pathways, and protein
networks
Enrichment analyses for pathways and genomic locations were con-
ductedusing all differentiallymethylatedCpGs that reachedp < 1 × 10−5

in the meta-analysis and were directionally consistent in both cohorts.
These included a total of 119 CpGs. In the genomic region enrichment
analyses (Fig. 2c), DKD-associated CpGs were enriched in open sea
regions (p = 5.5 × 10−3) and underrepresented in CpG Islands (p = 2.8 ×
10−7) and within 200 bp from the transcription start site (p = 1.4 × 10−3).
For the gene ontology (GO) and Kyoto Encyclopedia of genes and
genome (KEGG) pathway analyses, the 119 CpGs were annotated to 77
genes. The three top enriched GOpathways (Fig. 4a) for the annotated
genes were alkali metal ion binding (p = 5.6 × 10−5, GO:0031420),
transferase activity, transferring phosphorus − containing groups
(p = 3.8 × 10−4, GO:0016772) and kinase activity (p = 4.4 × 10−4,
GO:0016301). The three top enriched KEGG pathways (Fig. 4b) inclu-
ded primary bile acid biosynthesis (p = 9.8 × 10−4, path:hsa00120),
insulin resistance (p = 9.8 × 10−3, path:hsa04931) and intestinal immune
network for IgA production (p = 0.01, path:hsa04672). However, none
of the pathways was significant after controlling for a 5% FDR.

Table 2 | Differentially methylated CpGs from the three meta-analysis models and associations from prospective analyses,
CRIC study and eFORGE-TF database

CpG Site Gene Minimal
model (p)

Minimal + Smoking
model (p)

Maximal
model (p)

Progression to kidney
failure (p)

DKD CRIC
cohort (p)

eFORGE-TF (p)

cg19693031 TXNIP 6.75 × 10−7 8.80 × 10−8 6.17 × 10−7 6.22 × 10−14 (HbA1c)

cg05284887 GJA5 3.35 × 10−9 2.60 × 10−7 1.42 × 10−5 3.93 × 10−5

cg21961721 SLC27A3 2.34 × 10−14 5.57 × 10−11 2.75 × 10−10 1.72 × 10−4 <2.2 × 10−308 (eGFR)

cg08150816 NME7 8.23 × 10−15 3.71 × 10−13 4.62 × 10−10 7.16 × 10−5

cg01895164 PAFAH2, EXTL1 9.06 × 10−12 1.79 × 10−8 7.79 × 10−6 1.08 × 10−6

cg23527387 REV1 4.12 × 10−11 2.80 × 10−8 2.26 × 10−3 5.19 × 10−3

cg02841972 GRHL1, KLF11 1.35 × 10−8 4.65 × 10−8 1.53 × 10−6

cg05710777 LINC01800 2.95 × 10−18 4.05 × 10−15 1.98 × 10−11 9.78 × 10−4 3.58 × 10−6

cg12864625 MBNL1 1.16 × 10−10 1.62 × 10−7 9.98 × 10−6

cg18376497 INPP4B 1.78 × 10−10 3.15 × 10−9 1.56 × 10−6 3.81 × 10−4 0.005 (eGFR)

cg05165263 IRF2 9.87 × 10−8 3.64 × 10−6 8.18 × 10−5 1.04 × 10−3 6.62 × 10−5 (eGFR) 5.42 × 10−6

cg12378834 C5orf66 4.04 × 10−10 3.06 × 10−7 2.43 × 10−4

cg11414254 ZNF346, UIMC1 4.02 × 10−8 2.34 × 10−6 3.63 × 10−4

cg19996939 HBS1L, MYB 3.40 × 10−8 2.16 × 10−8 2.84 × 10−6 2.91 × 10−6

cg02917536 TAB2 9.28 × 10−8 9.77 × 10−7 2.73 × 10−4 0.018 (eGFR)

cg03546163 FKBP5 3.63 × 10−13 8.90 × 10−10 1.77 × 10−4 0.003 (HbA1c)

cg00008629 PTBP3 5.41 × 10−15 1.17 × 10−12 2.90 × 10−9

cg15167811 PTBP3 3.03 × 10−11 2.93 × 10−9 6.84 × 10−7

cg13125822 GRK5 4.93 × 10−10 1.64 × 10−8 1.89 × 10−6

cg03026982 NAV2 1.43 × 10−9 3.20 × 10−7 5.30 × 10−5

cg10473623 NAV2 1.63 × 10−8 1.85 × 10−6 2.31 × 10−4

cg05325763 CPT1A 2.08 × 10−11 4.83 × 10−9 1.93 × 10−7

cg17058475 CPT1A 5.90 × 10−8 1.07 × 10−6 2.68 × 10−5 0.009 (ALB) 9.52 × 10−6

cg08230697 STAB2 1.82 × 10−8 1.23 × 10−6 5.19 × 10−5

cg10072464 ADPRHL1 9.09 × 10−10 3.02 × 10−7 4.96 × 10−7 1.04 × 10−3 0.002 (eGFR) 2.44 × 10−7

cg24382141 PSKH1 3.44 × 10−8 1.01 × 10−5 1.46 × 10−3 0.002 (eGFR)

cg22815707 ANKRD12 1.16 × 10−9 1.70 × 10−8 4.82 × 10−6 6.31 × 10−6

cg25544931 ZNF763,
ZNF433-AS1

2.58 × 10−27 1.85 × 10−21 7.90 × 10−19 4.01 × 10−6 2.09 × 10−5 (eGFR)

cg17944885 ZNF788P,
ZNF625-ZNF20

1.97 × 10−44 1.38 × 10−36 8.91 × 10−27 1.40 × 10−21 3.72 × 10−13 (eGFR)

cg06587767 PIP5K1C 2.08 × 10−9 9.47 × 10−7 2.98 × 10−4

cg02711608 SLC1A5 8.89 × 10−12 2.62 × 10−9 4.77 × 10−8

cg12230203 PTGIS, B4GALT5 7.79 × 10−8 1.25 × 10−6 5.20 × 10−6 6.63 × 10−6

TheCpGmethylations includedmet the EWAS significance threshold (corrected p ≤9.9 × 10−8) in one of the threemeta-analysis adjustmentmodels. P-values in themeta-analysis were derived from
hierarchal linearmodels including the covariates age, sex and sixWCCs (minimalmodel), or age, sex, sixWCCs and current smoking status (Minimal + smokingmodel) or age, sex, sixWCCs, current
smoking status, HbA1c, HDL cholesterol, triglycerides, duration of diabetes and bodymass index (Maximal model). For intergenic CpGs, the two closest downstream and upstream genes are given.
Empty cells did not have supporting evidence (p < 1 × 10−5) for transcription factors using eFORGE-TF. Empty cells also indicate that no evidence achieved at least p ≤0.05 from the CRIC database
lookup. The phenotype with lowest p-value shown for the CRIC cohort, which include individuals with any type of diabetes.
Abbreviations
CRIC Chronic Renal Insufficiency Cohort Study, eGFR estimated glomerular filtration rate, ALB Albuminuria, HbA1c Haemoglobin A1c, T2D type 2 diabetes, TF transcription factor.
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Overlap with CpGs detected in previous EWAS studies
To compare overlap with previous epigenome-wide association stu-
dies on DKD, we looked up CpG methylations previously associated
with DKD-related phenotypes (Kidney failure, eGFR, albuminuria) in
epigenome-wide association studies performed in the blood9–11 or
kidney tubuli22 in our meta-analysis. We observed some overlap with
results from the CRIC study10; 13 (14%) of the eGFR-associated CpGs in
that study were also associated with DKD in our study (Supplementary
Data 4). Also, 43 differentially methylated CpGs that we previously
identified for kidney failure in type 1 diabetes11 were associated with

DKD in this study. Methylation levels of three CpGs in kidney tubuli
(out of 65) associated with interstitial fibrosis22, were also differentially
methylated in our meta-analysis on DKD. No overlap was observed
with the findings from Qiu et al.9 for EWAS on kidney failure in Pima
Indians. To further evaluate the overlap with other traits, we per-
formed trait enrichment analysis forDKD-associatedCpGs (p < 1 × 10−5)
against the reported associations in the EWAS atlas. The top 20 most
significantly associated traits are shown in Fig. 4c. Trait enrichment
analyses revealed significant overlap with several established risk fac-
tors for DKD, such as ageing, blood pressure, eGFR and smoking.

cg17944885

cg17944885

cg17944885

SLC27A3

SLC27A3

SLC27A3

NME7

NME7

NME7

LINC01800

LINC01800

LINC01800

PTBP3

PTBP3

PTBP3

cg25544931

cg25544931

cg25544931

SLC1A5

SLC1A5

SLC1A5

a

b

c

Fig. 1 | Manhattan and qq-plots of the associations from the epigenome-wide
association meta-analysis on DKD in type 1 diabetes using three different
analysis models (a, b and c). The models were adjusted for (a) age, sex and six
WCCs (Minimal model), (b) Minimal model and current smoking status, and (c)
minimal model and current smoking status, HbA1c, high-density lipoprotein cho-
lesterol, triglycerides, duration of diabetes and body mass index. The x-axis shows

the chromosomal locations, and the y-axis shows −log10(p-values). P-values in the
EWAS (FinnDiane andUK-ROI)werederived fromhierarchal linearmodels andFDR-
adjusted, after which they weremeta-analysed using METAL. The red line indicates
the epigenome-wide significance threshold (p ≤9.9 × 10−8). Gene symbols (or CpG
identifier if intergenic) are displayed for differentially methylated CpGs that
reached epigenome-wide significance across all models.
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Mendelian Randomisation
To evaluate the causal effect of the methylation at CpGs associated
with DKD, we performed two-sample Mendelian randomisation
using known methylation quantitative trait loci (mQTL) in whole-
blood23. In total, seven blood mQTLs were available for the 32 DKD-
associated CpGs, including cg23527387 (REV1), cg19693031 (TXNIP),
cg18376497 (INPP4B), cg17944885 (between ZNF788P and ZNF625-
ZNF20), cg00008629 (PTBP3), cg03546163 (FKBP5) and cg10072464
(ADPRHL1). Of these, genetically determined higher methylation
levels at cg23527387 decreased the risk of DKD (REV1; causal OR =
0.74 (0.58-0.94)), p = 0.015, Fig. 5, Supplementary Table 8). For
CpGs with several instruments available (mQTLs for CpGs in or near
ADPRHL1, INPP4B and ZNF625-ZNF20), we found no evidence of
pleiotropy using the heterogeneity or Egger intercept test (Supple-
mentary Table 8).

Meta-analysis of CpG islands, genes, promoters, and genomic
regions
Differential methylation levels were aggregated and compared on a
regional level for CpG islands, genes, promoters, and genomic tiling
regions (window size = 5 kb), identifying one gene and five tiling
regions associatedwithDKD (p ≤ 9.9 × 10−8). In the gene-based analysis,
theRP4-800F24.1, a longnoncodingRNAgene locatedwithin theNME7
gene on chromosome 1 (Supplementary Table 9), was significant in
both theminimally adjustedmodel (p = 1.09 × 10−9) and on adjustment
by smoking status (p = 1.34 × 10−8). The five tiling regions associated
with DKD were located within NME7, C5orf66, PTBP3, and STAB2 genes
and close to ZNF20, of which the tiling region within PTBP3 was sig-
nificant across each of the three models (Supplementary Data 5).
Supplementary Table 9 and Supplementary Data 5 additionally include
results that exceeded a p ≤ 10−5 threshold.

Discussion
This researchwas conducted to assess alterations in blood-derivedDNA
methylation patterns associated with DKD in individuals with a long
duration of T1D in the largestmeta-analysis of DKD in T1D performed to
date. DKD in T1Dwas associatedwith altered bloodDNAmethylation at
32 CpGs sites across the genome. Most of these CpGs were hypo-
methylated in DKD compared to controls with a long duration of T1D
and no evidence of kidney disease. Of these, 25 CpGswere within genes
and seven were epigenome-wide significant in all adjusted models;
cg00008629 (PTBP3), cg02711608 (SLC1A5), cg05710777 (LINC01800),
cg08150816 (NME7), cg21961721 (SLC27A3) and the intergenic
cg17944885 and cg25544931 (Supplementary Fig. 3). Furthermore, we
show that methylation levels at 21 of these sites predicted the devel-
opmentof kidney failure inT1D (p<0.05) and foundevidence for causal
effects for the methylation of cg23527387 within the REV1 gene.

The most significantly associated differentially methylated CpG—
with the largest effect on methylation in DKD—was observed at
cg17944885 situated in a cluster of zinc finger genes on chromosome
19, between ZNF788P and ZNF20-ZNF625. A second non-gene centric
differentially methylated CpG, cg25544931, also located in the same
gene cluster nearby ZNF763 and ZNF433-AS1, similarly reached
epigenome-wide significance in all adjusted models. Both sites were
hypermethylated in the blood of individuals with DKD and appeared
co-methylated (Spearman r = 0.56 [95%CI: 0.51–0.60] in FinnDiane,
p = 2.3 × 10−66). Additionally, in our prospective sub-analyses, an
increase in methylation at cg17944885 strongly predicted the pro-
gression of DKD, from macroalbuminuria to kidney failure (HR = 2.3).
Hypermethylation at cg17944885 has previously been associated with
reduced eGFR in males with the human immunodeficiency virus24, as
well as reduced eGFR and increased risk of CKD and albuminuria in an
EWAS meta-analysis in the general population25–27. Hypermethylation
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Fig. 2 | The location of the 31 DKD-associated CpGs in the minimal model
(p ≤9.9 × 10−8) in relation to the CpG island (a) or the gene (b) and enriched/
depleted genomic locations for CpGs with p < 1.0 ×10−5 in the meta-analysis
minimal model. Locations in panel a and bwere retrieved from Illuminas Infinium
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c, including DKD-associated CpGs with a p < 10−5, was performed within the web-

based EWAS atlas platform. Significant results (p <0.05) are denoted by darker
shades. Enriched regions (orange colour) were Open Sea (p = 5.5 × 10−3), and
depleted regions (purple colours) were TSS200 (p = 1.4 × 10−3) and Island (p = 2.8 ×
10−7). The EWAS toolkit uses the Weighted Fisher’s Exact test (two-sided) to com-
pute p-values. DKD Diabetic kidney disease, TSS transcription starting site, UTR
Untranslated region.
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of cg17944885 has alsobeen reported previously inDKD; in individuals
with established DKD (n = 38) compared to individuals with early
stages of DKD (n = 83, CKD stages 1-3a)28 and reduced eGFR in 500
individuals with DKD10. Although the closest gene to cg17944885 is
ZNF20-ZNF265, it was recently reported that methylation levels at this
site correlate with gene expression of a more distant zinc finger
protein-coding gene: ZNF43926. In addition, higher methylation of
cg17944885 is associated with the repressed transcription of several
other nearby zinc finger genes inwhole blood (Supplementary Data 3).

The largest effect on methylation observed among the sites
hypomethylated in DKD in this study was observed for cg03546163
within the FKBP5 gene. Methylation at this CpG reached epigenome-
wide significance in all EWAS models except the maximally adjusted
EWAS (p = 1.77 × 10−4). Nevertheless, FKBP5 gene expression was sig-
nificantly reduced in DKD in all but one of the seven kidney datasets in
the Nephroseq database, further supporting the role of this gene in
DKD. The FKBP5 gene encodes the protein FKBP51, an important
negative regulator of Akt phosphorylation29 and NF-κB activation30. It
is also involved in glucocorticoid receptor signalling31. Furthermore,
genome-wide analyses of human blood have found associations
between higher FKBP5 mRNA and a pro-inflammatory profile32. Hypo-
methylation at cpg03546163 has previously been associated with DKD
(p = 2.4 × 10−9)33 and kidney failure11 in T1D. Furthermore, differential
methylation of FKBP5 is associated with multiple other diseases,
including T2D and cardiometabolic risk34.

Five other CpGs reached epigenome-wide significance in all three
models. One of these was the cg05710777 located in a long noncoding
gene, LINC01800, with no previous links to DKD. However, the CpG

site overlapped with a binding site for the transcription factor AP-2
alpha, which has been implicated in the pathogenesis of DKD35. Two
other differentially methylated CpGs associated with DKD in all three
models were cg08150816 in the NME7 gene and cg00008629 in the
PTBP3 gene. Methylation at cg08150816 in the NME7 gene, which
encodes for a nucleoside-diphosphate kinase required for efficient
nucleation of the microtubules in the cell36, has not previously been
linked to any trait. Hypomethylation at cg00008629 in PTBP3hasbeen
associated with several traits, such as hypertension in 17,010 partici-
pants from the CHARGE consortium37, aging in a study of 42 Hainan
centenarians38, smoking39 and recently also to kidney disease in the
general population26. PTBP3 encodes an RNA binding protein that
likely functions as part of the hematopoietic system40.

The final two CpGs associated with DKD across all models were
both located within solute carrier genes; cg21961721 in SLC27A3 and
cg02711608 in SLC1A5. SLC27A3, which encodes a protein involved in
lipid metabolism, was highly significant also with eGFR in the CRIC
cohort (p < 1.0 × 10−303) and higher gene expression in the kidney
correlated with both DKD and a lower eGFR. SLC1A5 encodes an amino
acid transporter, and methylation at cg02711608 within this gene has
been associated with T2D41, glucose metabolism42, triglycerides43,
alcohol consumption44, and recently also with serum urate levels45.
Blood pressure is also thought to influence the methylation status of
cg0271160846. Moreover, genetic variants within the SLC1A5 gene,
including rs10412340 and rs402072, have been associated with a
genetic predisposition to T1D47.

Furthermore, the Mendelian randomisation analyses suggested
that highermethylation levels at cg23527387were also causally related
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Fig. 3 | Volcanoplot ofmethylationdifferences forCpGs (DKDcases vs controls
without DKD) in the meta-analyses of the minimal model (a), minimal
model + smoking (b), and maximal model (c). The red colour denotes differen-
tially methylated CpGs with p < 9.9 × 10−8 and hypermethylated in DKD cases vs
controls and the blue colour denotes differentially methylated CpGs with p < 9.9 ×
10−8 and hypomethylated in DKD cases vs controls. The dotted line indicates the
epigenome-wide significance threshold (p ≤ 9.9 × 10−8). The x-axis shows the mean
methylation difference (=mean methylation β-values in DKD cases—mean

methylation β-values in DKD controls) and the y-axis shows −log10(p-values).
P-values were from themeta-analysis, which combined FDR-adjusted p-values from
the individual EWASs with p-values derived from hierarchical linear models. Mini-
mal model included covariates age, sex and six white cell counts. Minimal +
smokingmodel included covariates age, sex, sixWCCs and current smoking status.
Maximal model included covariates age, sex, six WCCs, current smoking status,
HbA1c, HDL cholesterol, triglycerides, duration of diabetes and body mass index.
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to a lower risk of DKD, in line with the direction seen in the EWAS.
Hypomethylation of cg23527387 has also been observed in a previous
methylation analysis on DKD in 226 individuals with T1D using data
generated from the Infinium 450K methylation array (β = 0.86,
pFDRadj = 6.0 × 10−7)33. Cg23527387 is situated on chromosome 2 within
the REV1 gene (Supplementary Fig. 4), which encodes the DNA repair
protein REV1, reported to recruit DNA polymerases to damaged DNA
(Supplementary Data 6). Although this gene has not previously been
linked toDKD in T1D, a genetic variant (rs7583877) in the neighbouring
gene, AFF3, has been associated with kidney failure in T1D (OR = 1.29,
p = 1.2 × 10−8, Supplementary Fig. 4)48.

Strengths and limitations
Overall, this investigation had many strengths. This EWAS was con-
ducted to identify variation in methylation status between individuals

with T1D-DKD and individuals with T1D and no evidence of kidney
disease across three countries, recruited with the same inclusion and
exclusion criteria. With 1,304 participants, this is the largest EWAS
conducted to date on T1D-DKD. Furthermore, we had follow-up data
available for 397 caseswithDKD,which allowed us to evaluatewhich of
the identified differentially methylated CpGs were associated with
progression to kidney failure. Two independent cohorts, UK-ROI and
FinnDiane, were included with closely matched phenotypic char-
acteristics using the highest-density methylation array available (Infi-
nium MethylationEPIC). Methylation status was assessed using blood-
derived DNA from both cohorts that were adjusted for proportional
WCCs and cell heterogeneity. Three models considered different
potential confounding variables, including a minimal model adjusted
for age, sex and six WCCs; the minimal model plus current smoking
status, and the fully adjusted model that further considered HbA1c,
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HDL cholesterol, triglycerides, duration of diabetes and BMI—recog-
nised risk factors for T1D-DKD.Furthermore, havingmeta-analysed the
results from the two cohorts, only the differentially methylated CpGs,
which met the threshold of p ≤ 9.9×10−8 and were directionally con-
sistent in both cohorts were considered significant. This threshold was
previously reported to reduce the rate of false-positives in studies
which use the Infinium MethylationEPIC array49. Epigenome-wide sig-
nificant differentially methylated CpGs and genes have additionally
been further examined using platforms including Nephroseq and in
complementary cohorts such as the North Dublin Renal Biobank.

UsingDNAmethylation levelsmeasured from theblood insteadof
kidneys tomake inferences about changes in the kidneys is a potential
limitation. The lifespan of the cells in kidneys vs blood is broadly dif-
ferent, which might impact the observed methylation changes. For
example, podocytes—the highly specialised cells of the kidney glo-
merulus that line the outer surface of the glomerular capillaries—are
terminally differentiated, whereas the peripheral blood cells are
dividing cells with an average lifespan of 120 days. We cannot com-
pletely elude whether the changes occurring in peripheral blood
reflect the changes that are acquired throughout the lifespan of the
podocyte. However, kidney biopsies are invasive procedures that are
performed in individuals with T1D only if there is a clinical suspicion
that a non-diabetic kidney disease is likely; therefore, such samples are
rarely available. In addition, methylation levels across tissues in an
individual are highly correlated (r =0.86)50 and we have previously
shown that DNA methylation changes observed in blood were reflec-
ted in kidney biopsies33. However, owing to the very specialised and
varied phenotype of the cells in the kidneys, there is a possibility that
some changes in themethylation levels accompanying diabetic kidney
disease are not evident in our study. Future studies will have to char-
acterise these changes and their relevance in diabetic kidney disease.
Nevertheless, studying the DNA methylation in accessible tissue such
as blood enables the identification of biomarkers that could be used in
a routine clinical setting or population-based cohort, where biopsies
are not feasible.

There is an imperative need for larger cohorts with diabetes and
epigenome-wide methylation data. Although some larger EWAS stu-
dies on kidney disease in the general population have been performed
recently26, finding comparably sized cohorts with EWAS data and

diabetes, particularly type 1 diabetes, remains challenging. In the lack
of such studies, we were limited to finding additional support for our
DKD-associated methylation differences in an external cohort with
unspecified diabetes and a different phenotype for DKD (eGFR and
albuminuria as quantitative measures), complemented by gene
expression data. A larger scale, multi-omics analysis, which includes
genetic variation, epigenetic alterations and gene expression analyses
on the same samples, would further refine markers of interest and
improve understanding of the biological mechanisms of DKD. Addi-
tional future studies should consider ethnic diversity beyond the
predominantly white population considered here, in addition to kid-
ney biopsy matched to blood-derived comparisons, where possible.
Furthermore, the methylation levels at each CpG site may reflect the
cause or the consequence of kidney disease. To assess potential
causality, we performed Mendelian randomisation, but mQTL data
were available for only seven of 32 DKD-associated CpG sites, leaving
out 78% of the DKD-associated CpG methylations. Whether methyla-
tion at these CpG sites causally relates to DKD has yet to be explored.

In summary, this EWAS meta-analysis performed on two well-
characterised cohorts identified several epigenetic signatures asso-
ciated with DKD in T1D and highlighted several genes not previously
associated with kidney disease in T1D. These findings provide future
studies with potential links between the genes and the milieu in DKD.
The prospective analyses additionally showed that these epigenetic
signatures have the potential to identify individuals at increased risk of
DKD and progressing to kidney failure. As they are potentially rever-
sible, they offer thepossibility of therapeutic intervention if they prove
to be causal for DKD, as methylation of CpG within the REV1 gene did.
More comprehensive meQTL data is needed to allow more systematic
MR analyses for causality as well as functional studies assessing the
biological underpinnings of these loci.

Methods
UK-ROI collection
Participants were recruited as part of the All Ireland-Warren 3-
Genetics of Kidneys in Diabetes (GoKinD) United Kingdom (UK)
Collection48,51,52 or the Belfast Renal Transplant Collection. All parti-
cipants were from the UK or Republic of Ireland (ROI) and provided
written informed consent for research. There was no financial

cg18376497

cg10072464

cg19693031

cg00008629

cg17944885

cg03546163

cg23527387

CpG

INPP4B

ADPRHL1

TXNIP

PTBP3

ZNF788P, 
ZNF625-ZNF20

FKBP5

REV1

Gene (CpG)

3

4

1

1

4

2

1

0.5 1.0 2.0
OR for DKD per SD change in DNA methylation 

No. SNPs

Fig. 5 | Forest plots detailing the Two-sample MR estimates (ORs) from the
association between DNA methylation at seven CpGs and DKD. The ORs were
calculated using the inverse-variance weighted method if several mQTL were

available for the CpG site or the Wald ratio if only one mQTL was available. The
x-axis shows the OR and its 95% confidence interval for DKD per SD change in DNA
methylation for each CpG. OR Odds ratio, DKD Diabetic kidney disease.

Article https://doi.org/10.1038/s41467-022-34963-6

Nature Communications |         (2022) 13:7891 10



compensation. DNA was frozen at −80 °C in multiple aliquots fol-
lowing extraction from whole blood using the salting out method53

and normalised using PicoGreen quantitation54 using a CytoFluor®
Series 4000 (Applied Biosystems, Thermo Fisher Scientific, CA, USA).
Individuals with both T1D and DKD were defined as cases (n = 252).
These individuals had ≥10 years duration of T1D alongside a diag-
nosis of DKD defined as persistent macroalbuminuria (≥500mg/
24 hr), eGFR <60mL/min/1.73m2 calculated using the Chronic Kidney
Disease Epidemiology Collaboration (CKD-EPI) creatinine equation,
retinopathy, and hypertension (systolic/diastolic blood pressure
≥135/85mmHg). Individuals in the control group had ≥15 years
duration of T1D and no evidence of kidney disease on repeat testing
i.e., they all had normal urinary albumin excretion and eGFR >60mL/
min/1.73m2 (n = 252). Control individuals had normal blood pressure
and were not taking any anti-hypertensive medication. All partici-
pants (n = 504) were of Europeanwhite ancestry. Each case individual
was matched to a control individual for sex, ethnicity, diabetes
duration to within 5 years, and age to within 10 years. The ethical
approval reference number for the UK-ROI GoKinD samples is MREC
175/23 (RO321) and for the Belfast Renal Transplant samples is
ORECNI 08/NIR03/79, 12/NI/0003, 12/NI/0178.

FinnDiane collection
All Finnishparticipantswere recruited aspart of the FinnDiane Study, a
multicentre study from 93 study centres across Finland. At the study
visit, each participant provided written informed consent and under-
went a thorough clinical examination. There was no financial com-
pensation. Blood samples were drawn for DNA extraction and
measurements of blood lipids, creatinine, and HbA1c as described
previously55. Participants completed standardised questionnaires with
the attending physician to document medical history, including
information on comorbidities and smoking. Medical files and labora-
tory databases were reviewed and all available data on AER collected.
All case individuals (n = 401) had macroalbuminuria defined as AER >
300mg/24 h (24h urine) or > 200μg/min (overnight urine) in at least
two of three consecutive urine collections. In addition, participants
were required to have an macroalbuminuric (overnight) or high
microalbuminuric (AER ≥ 150mg/24h) sample at the study date when
DNA was collected. Case individuals were matched with controls
(n = 399) by sex, age, diabetes duration, and smoking status. Addi-
tionally, controls were required to have a diabetes duration of ≥15
years and an AERwithin the normal range. All 800 participants were of
European ancestry and Finnish residents. The FinnDiane study proto-
col was approved by the ethics committee of the Helsinki and Uusimaa
Hospital District (HUS) (491/E5/2006, 238/13/03/00/2015, and HUS-
3313-2018, July 3rd, 2019), and the study was performed in accordance
with the Declaration of Helsinki.

Prospective data collection
Additionally, we gathered follow-up data on the development of kid-
ney failure (dialysis or kidney transplant) for the 401 FinnDiane case
participants until December 31, 2017, or death. Altogether 99% (397/
401) had data on kidney failure available from the prospective Finn-
Diane visits or in the Finnish Care Register for Health Care. During the
median follow-up time of 7.2 years (interquartile range: 2.9–14.0
years), 196 cases with macroalbuminuria progressed to kidney failure.
These data were used to further analyse the top findings from the
cross-sectional study of the UK-ROI and FinnDiane.

Laboratory methodology
All FinnDiane DNA samples were transferred to Belfast for simulta-
neous laboratory analyses of both cohorts to minimise batch effects.
The EZ Zymo Methylation Kit (Zymo Research, USA) was used to
bisulphite treat DNA from all participants following overnight incu-
bation (https://files.zymoresearch.com/protocols/_d5001_d5002_ez_

dna_methylationga_o_kit.pdf). All samples were prepared and ana-
lysed using the InfiniumMethylationEPIC Kit and BeadChips (Illumina,
USA) with no protocol deviations. All samples were processed in a
consistent laboratory workstream by the same members of trained
staff. Methylation arrays were scanned using a dedicated iScan
machine with regular monitoring of laser intensity levels. Case and
control samples were randomly distributed across the BeadChip
arrays. In total, 865,918 sites were examined by the Infinium
MethylationEPIC array.

Data and quality control
Each resulting.idat file generated from the iScan was assessed using
Illumina’s BACR Software (v1.1.0) for initial QC. This software assessed
the data in line with pre-set standards and evaluated hybridisation,
extension, dye specificity and bisulphite conversion. An additional QC
measure to determine the concordance of average β values generated
for seven duplicate samples was completed using the methylation
module of Illuminas GenomeStudio (v1.8). GenomeStudio (v1.8) was
also used to perform a sex check on the data for all individuals.

Proportional WCCs were estimated using the Houseman
method12, the minfi Bioconductor (v3.10) package and the raw.idat
files. Estimation of six WCCs was performed using the estimate-
CellCounts function. QC, pre-processing and differential methylation
analyses were undertaken in the R statistical environment utilising
RnBeads (v2.6.0)56. Cross-reactive probes and those located within
three base pairs of common SNPs were excluded due to their abilities
tomap tomultiple areas of the genomeand affectprobe hybridisation,
respectively. Unreliable probes and samples were removed using the
Greedycut algorithm (p <0.05). Those located on sex chromosomes
were also removed. Methylation β values were generated for all CpG
sites and normalised using the beta-mixture quantile (bmiq) normal-
isation method. M-values were calculated from the normalised beta-
values (M-values =log2(Methylation β value/(1– Methylation β value)).

All software was used following the developer’s instructions and
QC was completed separately for the UK-ROI and FinnDiane data.

Epigenome-wide methylation analysis
Analysis of genome-wide methylation was performed separately in
both cohorts. P-values for differences in CpG methylation levels
between DKD cases and controls were computed using the RnBeads
(v2.6.0), adapts the Linear Models for Microarray Data (Limma)
method57 for use with methylation data. Aggregation and comparison
of DNA methylation levels across four additional genomic regions of
interest (CpG islands, genes, gene promoters and genomic tiling) were
also completed by RnBeads56. In RnBeads, the region-based analyses
are calculated as the average difference in means across all CpGs in a
region of the two groups being compared (here DKDvs controls) and a
combined p-value is calculated from all CpGs p-values in the region58.

Three different adjustment models were considered; the Minimal
Model, which adjusted for age, sex and the six WCCs; the Minimal
Model plus current smoking status, which further adjusted for smok-
ing status at the time of blood sample collection; and the Maximally
adjusted Model, which further included HbA1c, HDL cholesterol, tri-
glycerides, diabetes duration and BMI. These were completed for the
UK-ROI, and FinnDiane data independently and only included indivi-
duals with data available for all variables (n = 1302 for minimal model;
n = 1175 for minimal model plus current smoking status; n = 957 for
maximal model). Summary data are available in Table 1.

Identification of differentially methylated CpG in DKD
Output data following the QC and RnBeads analyses pertaining to
the individual CpG sites, CpG islands, genes, promoters and tiling
were shared between both cohorts, and a sample-size weighted
meta-analysis was performed using METAL13. Specifically, we used
the FDR-adjusted p-values, the difference in the methylation
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means between the case and control groups (to determine the
direction of effect on methylation), and the number of individuals
(weights) in the sample-size weighted meta-analysis. We con-
sidered the commonly used p-value threshold of p ≤ 9.9 × 10−8 for
epigenome-wide significance to identify epigenome-wide sig-
nificant associations25,59. In addition, we required differentially
methylated CpG sites, islands, genes, and promoters to affect
methylation levels in the same direction in both cohorts and
reach epigenome-wide significance in at least one of the three
adjusted models. Differentially methylated CpGs identified with
p ≤ 9.9 × 10−8 were reported with CpG locations mapped to
Human Genome build 37 and annotated using the Illumina Infi-
nium MethylationEPIC v1.0 B4 Manifest File. Manhattan and
Quantile-quantile (QQ) plots were drawn following meta-analysis
for each adjusted model, using the R package ‘qqman’ (v0.1.8).
Volcano plots were drawn using the R package ‘ggplot2’ (v3.3.2).

Differentially methylated CpGs and survival analysis for DKD
progression
We extracted individual methylationM-values for the top differentially
methylated CpGs (corrected p ≤ 9.9 × 10−8) from the FinnDiane cohort
case participants (n = 401). The progression frommacroalbuminuria to
kidney failure (n = 196 events) was studied using Cox proportional-
hazards model in the R package ‘survival’ (v3.2-13) with kidney failure
as an outcome, methylation M-values as the predictor and with
adjustment for age, sex and the six estimated WCCs. Bonferroni cor-
rection was applied for the association p-values (0.05/32 CpGs). Alto-
gether 388 individuals had complete data on eight clinical variables
(age, sex, age at diabetes onset, systolic blood pressure, HbA1c, tri-
glycerides, smoking, retinal photocoagulation). We calculated the
concordance statistics (C-index) for Cox proportional-hazards
regression model with clinical variables and the six estimated WCCs
and for a model with CpG methylation, clinical variables, and the six
estimated WCCs using the concordance function available in R pack-
age ‘survcomp’ (v1.44.1). Survival analyses were conducted using
R v4.1.3.

Differentially methylated CpGs and look up in previous EWAS
We conducted a lookup for our top differentially methylated CpGs
(p ≤ 9.9 × 10−8) in a human whole-blood epigenome-wide association
study on DKD performed in 473 individuals with diabetes from the
CRIC cohort10, available at https://susztaklab.com/mqtl/mwas.php.

Analyses of differentially methylated CpGs to assess potential
overlaps with TFs
Differentially methylated CpGs (p ≤ 9.9 × 10−8) were additionally indi-
vidually examinedusing the eFORGE-TFdatabase15 available onhttps://
eforge-tf.altiusinstitute.org/, which allowed each CpG site to be
assessed for transcription factor motif enrichment using previously
acquired data. The ‘fkidney’ dataset, formed from seven experiments,
was used for this assessment. All transcription factors overlapping the
probe binding site gaining FIMO p < 1×10−5 were reported.

Enrichment analyses on gene ontology, pathways, and traits
Genetic ontology (GO) and KEGG enrichment analyses were per-
formed using the gometh function in the R (v4.0) using R package
‘missmethyl’ (v1.28.0)60. Specifically, the hypergeometric is used for
testing genomic locations (relation to gene and relation to CpG island)
for enrichment or depletion in missmethyl. Enrichment analyses for
genomic locations and traits were performed within the web-based
EWAS toolkit (https://ngdc.cncb.ac.cn/ewas/toolkit)61. In the EWAS
toolkit, weighted Fisher’s exact test is used for calculating the prob-
ability of co-occurrence between differentiallymethylatedCpGs in this
study and differentially methylated CpGs for other traits in the
EWAS Atlas.

Assessment of gene expression profiles utilising additional
datasets
We individually searchedgenes that contained significant differentially
methylated CpGs (p ≤ 9.9 × 10−8) in Nephroseq v4 (www.nephroseq.
org), a database containing gene expression profiles from previous
kidney disease studies.We searched studies assessing gene expression
in DKD kidneys (vs controls) by selecting the ‘Group’ filter (under
‘primary filters’) as ‘Diabetic Nephropathy’, which resulted in seven
datasets. For each gene, we reported all significant gene expression
changes (p ≤0.05, fold change of at least ±1.5) from the ‘Disease vs
Control’ analysis, which were displayed by ordering by ‘Over-Expres-
sion: P-Value’ and ‘Under-Expression: P-Value’. The resulting seven
datasets included two datasets from Woroniecka et al.21, including 22
glomerular (nine DKD cases) and 22 tubular (ten DKD cases) kidney
samples collected from healthy, living transplant donors and diag-
nostic kidney biopsies. Two datasets from Schmid et al. comprising
tubulointerstitial samples of 24 kidney biopsies (13 with histological
evidence of DKD and 11 histologically normal kidney biopsies from
patients with minimal change disease or healthy controls). Two data-
sets from Ju et al.20, including kidney biopsy data microdissected into
glomerular and tubule-interstitial compartments from 12 individuals
with DKD, which were compared to healthy living donors or other
diseases. One dataset from the European Renal cDNA Bank-Kroener-
Fresenius biopsy bank (ERCB) that included tubulointerstitial kidney
samples from ten individuals with DKD samples and nine healthy living
donor samples.

The same gene list was also interrogated for altered gene
expression in kidney biopsy samples for which RNA-Seq data were
available from the North Dublin Renal Biobank. The North Dublin
Renal Biobank (NDRBB) study protocol was approved by Beaumont
Hospital Ethics Committee. The kidney biopsy study was approved by
the Institutional Review Board of the National Institute of Diabetes and
Digestive and Kidney Diseases, and each participant signed an
informed consent document. There was no financial compensation.
RNA-seq data were generated from whole-kidney biopsy tissue from
individuals (n = 44, mean age 49 years, 26 males/18 females) with
multiple CKD aetiologies. A linear regression model was used to
examine the correlation between normalised transcript counts and
clinico-pathological variables of eGFR and %TIF, with age and sex used
as co-variables. Correlation analyses were performed using the cor.test
function in base R (v4.0.3). Differentially expressed transcripts in
progressive versus stable CKD patients were identified using the R
package ‘Limma’ (v3.46.0), following adjustment for age and sex. FDR
adjustmentwas applied using the Rpackage ‘Multtest’ (v2.46.0) and an
FDR cut-off of p <0.05 was deemed statistically significant.

The same set of genes were additionally examined for altered
gene expression in a previous study conducted on samples from
individuals with T2D and known renal status. Participants included in
this investigation were Pima Indians with T2D62 using kidney biopsy
samples (n = 97, mean age 47.3 years, 24 males/73 females). The study
was approved by the Institutional Review Board of the National Insti-
tute of Diabetes and Digestive and Kidney Diseases. All participants
provided informed consent and there was no financial compensation.
Expression profiling of the kidney biopsies was carried out using
Affymetrix GeneChips (HumanGenome U133 Array and U133Plus2
Array and Affymetrix Human Gene ST GeneChip 2.1)63,64, and RNA-seq
(Illumina)65. For morphometry measures, kidney biopsy tissue was
prepared for light and electron microscopy studies according to
standard procedures66–68. The following glomerular structural para-
meters were measured by unbiased morphometry on electron micro-
scopy images as described elsewhere66,67,69: glomerular basement
membrane width70,71, percentage of intact foot processes on both the
peripheral and mesangial glomerular basement membrane72, numer-
ical density of podocyte cell per glomerulus73, percentage of endo-
thelial fenestration falling on the peripheral glomerular basement

Article https://doi.org/10.1038/s41467-022-34963-6

Nature Communications |         (2022) 13:7891 12

https://susztaklab.com/mqtl/mwas.php
https://eforge-tf.altiusinstitute.org/
https://eforge-tf.altiusinstitute.org/
https://ngdc.cncb.ac.cn/ewas/toolkit
http://www.nephroseq.org
http://www.nephroseq.org


membrane74, foot process width in peripheral glomerular basement
membrane72 (surface volume of peripheral glomerular basement
membrane per glomerulus70,71, mesangial fractional volume70,71; and
the fractional podocyte volume per glomerulus75. Correlation coeffi-
cients were calculated using the spearman correlation method
implemented in GraphPad Prism v8.0 (GraphPad Software).

Mendelian randomisation
Two-sample Mendelian randomisation was used to assess potential
causality between methylation levels at identified CpGs and DKD. For
the genetic variant-exposure associations, we used whole-blood
mQTLs, which are single nucleotide variants with a known impact on
the methylation level at a specific CpG site. We searched mQTL var-
iants for each CpG from results from the Genetics of DNAMethylation
Consortium (GoDMC)23, and selected both cis and trans meQTLs
available on the GoDMC site, but only those that were independently
associated (p < 10−5, r2 > 8.0) with methylation at each CpG site
(mqtldb.godmc.org.uk). We retrieved the genetic variant-outcome
associations from the latest genome-wide association study on DKD in
T1D65. Causal ORs were calculated for each CpG using the Wald ratio
test (one mQTL) or the inverse variance weighted method (mQTL> 1).
If several mQTLs (n > 2) were identified for the methylation levels at a
CpG, we performed additional tests (heterogeneity and the Egger
intercept test) to address potential pleiotropy, which could violate the
instrumental variable assumptions. All Mendelian randomisation ana-
lyses were conducted in R (v 4.1) using R package ‘TwoSampleMR’
(v 0.5.6).

A figure summarising all methods is included in Supplemen-
tary Fig. 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The summarydata generated in this study (all threemodels) have been
deposited at GENIE Updates | RenGenPECT (qub.ac.uk). Individual-
level data for the study participants (participant-level genome-wide
CpG methylation and clinical data for participants in UK-ROI and
FinnDiane and gene expression data in American Indians with T2D) are
not publicly available due to ethical and legal reasons and due to the
consent provided by the participant at the time of data collection.
Access, which is subject to local regulations, can be obtained upon
reasonable request by contacting the following persons (FinnDiane
study: niina.sandholm@helsinki.fi, UK-ROI: a.j.mcknight@qub.ac.uk,
American Indian population of Pima Indians with T2D; vijin@med.u-
mich.edu). Upon approval, analyses need to be performed on a local
server (with protected, user-specific access) and requires signing non-
disclosure and privacy agreements. The summary data used for the
two-sample Mendelian randomization analyses are available on the
GoDMCsite (SNP-CpGassociations; http://mqtldb.godmc.org.uk/) and
on the type 2 diabetes knowledge portal (SNP-DKD associations;
https://t2d.hugeamp.org/dinspector.html?dataset=GWAS_DNCRI).
The data from the eforge TF database can be accessed on https://
eforge-tf.altiusinstitute.org/. The nephroseq v4, containing the seven
DKD kidney gene expression datasets (four cohorts), is a free platform
to the academic and non-profit community and data deposited there
can be analysed and accessed after registration and login (www.
nephroseq.org). Thenephroseqdatasets ‘WoronieckaDiabetes TubInt’
(n = 2) are also available under accession code http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE30122. The Northern Dublin Renal
Biobank RNAseq data are available under accession code https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE137570. For the SNP-DKD
associations the dataset ‘late diabetic kidney disease (diabetic
nephropathy)’ was used. The eQTM data searched in this study is

available on http://www.susztaklab.com/Kidney_meQTL/eQTM.php
(kidney eQTM), https://static-content.springer.com/esm/art%3A10.
1186%2Fs13148-021-01041-5/MediaObjects/13148_2021_1041_MOESM2_
ESM.xlsx (whole blood eQTM, Framigham study), http://bbmri.
researchlumc.nl/atlas/#query (whole blood eQTM, BIOS consortium)
and https://static-content.springer.com/esm/art%3A10.1186%
2Fs12864-018-4842-3/MediaObjects/12864_2018_4842_MOESM2_ESM.
txt (monocytes, eQTM).

Code availability
Any custom code has been uploaded to https://github.com/EmmDah/
EWAS-Meta-analysis-on-DKD-in-T1D.
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