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Physics-informeddeep learningapproach for
modeling crustal deformation

Tomohisa Okazaki 1 , Takeo Ito 2, Kazuro Hirahara1 & Naonori Ueda1

Themovement and deformation of the Earth’s crust and uppermantle provide
critical insights into the evolution of earthquake processes and future earth-
quake potentials. Crustal deformation can be modeled by dislocation models
that represent earthquake faults in the crust as defects in a continuum med-
ium. In this study, we propose a physics-informed deep learning approach to
model crustal deformation due to earthquakes. Neural networks can represent
continuous displacement fields in arbitrary geometrical structures and
mechanical properties of rocks by incorporating governing equations and
boundary conditions into a loss function. The polar coordinate system is
introduced to accurately model the displacement discontinuity on a fault as a
boundary condition. We illustrate the validity and usefulness of this approach
through example problems with strike-slip faults. This approach has a poten-
tial advantage over conventional approaches in that it could be straightfor-
wardly extended to high dimensional, anelastic, nonlinear, and inverse
problems.

Geodetic observations made using different sensors and instruments,
including global navigation satellite systems, have produced a sig-
nificant amount of data on crustal deformation. Modeling such
observeddeformation is fundamental to understanding themechanics
of earthquake processes1,2. A dislocationmodel of a slip on earthquake
faults is commonly used for the forward and inverse modeling of
coseismic and postseismic deformation and earthquake cycles3–5. Over
the past decades, analytical and semianalytical approaches have been
developed for linear rheologies6–8, and fully numerical methods have
been constructed for complex structures, including nonlinear
mechanical properties9–11.

Recent advances in machine learning, especially deep learning
techniques, have occurred due to the large amount of available
data12–14. Applications in geophysics have been implemented by uti-
lizing accumulating seismic records15–17. In contrast, deep learning has
also promoted the application of machine-learning approaches to
physical systems, specifically the solution of partial differential equa-
tions (PDEs). Automatic differentiation18 developed for the optimiza-
tion of neural networks (NNs) plays a central role in the efficient
computation of derivatives19,20. Among them, physics-informed neural
networks (PINNs) have been proposed for solving both the forward

and inverse problems of PDEs in a unified way21. PINNs represent
continuous solutions without discretization and can be trained to
conform to a physical law by incorporating the target PDEs and
boundary/initial conditions into loss functions. Because of their simple
implementation and applicability to different problem types, PINNs
have received significant attention in physics and engineering22. In
geophysics, a seismic inversion method was developed based on the
similarity between automatic differentiation and the adjoint-state
method23. PINNs have been applied to synthetic models of seismic
tomography24 and full waveform inversions25.

This study applies PINNs to dislocation models of crustal defor-
mation. An essential characteristic of these models is that the dis-
placement field is discontinuous across the fault surface and cannot be
directly approximated byNNs that represent continuous functions. To
resolve this difficulty, we set an appropriate coordinate system to
separate the values on the two sides of the displacement discontinuity.
This formulation enables precise modeling of crustal deformation,
including near-fault locations. PINNs can be applied to complex
structures and easily extended to high-dimensional, anelastic, and
nonlinear problems, which serves as a potential advantage over con-
ventional approaches as follows.
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Analytical approaches useGreen’s functions (GFs) to study crustal
deformation from arbitrary slip distributions. They provide con-
tinuous solutions and explicit dependencies on model parameters.
Exact expressions of elastostatic GFs have been obtained for several
crustal structures, such as homogeneous half-space6, layered half-
space26, and layered spherical Earth27. Viscoelastic rheology is
addressed using the correspondence principle. Deformation due to a
finite fault is expressed as a convolution of GFs and slip distribution on
the fault. The surface topography is addressed by a series expansion
assuming a small slope28–30. However, the known analytical solutions
have been limited to simple structures.

Semianalytical approaches have been developed to model com-
posite rheologies and quasi-static earthquake cycles7,8,31. A curved fault
is typically expressed as a sum of planar sub-faults because its GFs
require a deliberate derivation32. The general topography is addressed
by sophisticated formulations with full-space GFs33. However, the
assumption of linear responses is a major limitation of these methods.
Although a general representation of anelastic deformation using GFs
was formulated for nonlinear quasi-static problems34, GFs have only
been derived in a homogeneous half-space35.

Realistic problems are solved through fully numericalmethods. In
particular, the finite element method (FEM) is suitable for modeling
complex tectonic settings such as subduction zones2,10,36, mountain
regions37, and nonlinear rheologies11. PINNs share common advantages
with FEM: topography and heterogeneity can be modeled, and non-
linear PDEs are implemented in a similar manner to linear PDEs21.
Therefore, PINNs are frequently compared with FEM38. The FEM gen-
erates a discretizedmesh, which restricts themodel resolution. A large
amount of memory required to store information at every grid point
can make modeling complex structures difficult. In contrast, PINNs
directly model a continuous field, which potentially achieves high
accuracy by trained on arbitrarily large number of points. NNs can be
trained with minibatch iteratively without storing all training points,
which could be a computational advantage in modeling realistic large-
scale problems. PINNs have another advantage in directly solving
infinite domain problems without imposing boundary conditions on
model boundaries; however, FEM can solve only finite domain pro-
blems andoften requiresmodeling domains that are far larger than the
target domains with careful treatment of boundary conditions to
reduce boundary effects.

In a pioneering application of NNs to the forward modeling of
crustal deformation39, NNs were trained on simulation results of
semianalytical methods6,26 to interpolate solutions at arbitrary loca-
tions and model parameters such as source depth and viscosity. This
approach considerably accelerates the estimation of deformation in
simple problems to which semianalytical approaches can be applied,
whereas PINNs can address complex problems without any existing
solver despite a longer computational time.

Results
Physics-informed neural network modeling
We consider slips on strike-slip faults, a model that could be used to
describe repeated destructive earthquakes. For simplicity, we assume
infinitely long strike-slip faults in linear elastic media. By taking the x-
and z-axes in the horizontal direction and the y-axis in the vertical
direction, we suppose a displacement u(x, y) to be parallel to and
invariant in the z-direction. We denote a medium as V, a fault (dis-
location surface, DS) as Σ, and the Earth’s surface (free surface, FS) as S
(Fig. 1a). Because u(x, y) is discontinuous across Σ, we use the polar
coordinates (r, θ) whose branch cut is defined along Σ. In this way,
u(r, θ) is continuous in the entire domain and the slip on Σ can be
represented as a constraint between Σ+ and Σ− (Fig. 1b).

PINNmodeling consists of three building blocks (Fig. 1c). First, an
NN surrogates a continuous displacement field u(r, θ). Second, deri-
vatives of the output u with respect to the input variables (r, θ) are

evaluated using automatic differentiation18. Finally, a loss function L is
defined by the sum of the squared residual of the governing equation
and boundary conditions: the equilibrium of linear elasticity LPDE, the
displacement discontinuity on the fault LDS-u, the traction continuity
on the fault LDS-T, and the free-surface condition on the Earth’s surface
LFS. The NN parameters are updated to decrease the loss function L
using a stochastic gradient method. In this study, training is iterated
until L < 10−6 is satisfied for fixed grid points. See ‘Methods’ for the
details of the NN architecture, mathematical expressions of L, and
optimization procedure.

Modeling applications
Wefirst consider vertical faults in a homogeneous half-space, forwhich
analytical solutions are known. In homogeneousmedia, deformation is
independent of a shear modulus μ. The following three models are
considered. Models 1A and 1C represent a surface fault (Fig. 2a, left).
Model 1B represents a buried fault extending from the locking to an
infinite depth (Fig. 2a, right), which has been used for strain accumu-
lation along a plate boundary with a relative motion during inter-
seismic periods40. By taking θ = 0upward, the surface and buried faults
are expressed by branch cuts at θ =0 and θ =π, respectively. Fault slips
areuniform inModels 1A and 1B,whereas adistributed slipof a tapered
stress is assumed in Model 1C (Fig. 2b). In the following modeling, all
quantities are normalizedby characteristic scales: spatial coordinates x
and y by a fault depth d, displacement u by amaximum slip amount s0,
and shear modulus μ by a reference value μ0. For example, strain is
expressed in the unit of s0 / d. The surface displacement and strain εxz
are shown in Fig. 2c, d with analytical solutions3 (2-D displacement and
strain are shown in Supplementary Fig. 1). The root-mean-square errors
(RMSEs) are shown in Table 1. PINN solutions are generally accurate
and the RMSE is sufficiently smaller than typical u and ε values. The
RMSE is larger in u than in ε by approximately five times. This is
because the governing PDE constrains not u itself but its spatial deri-
vatives. Deformation is localized in the distributed slip (Model 1C)
compared to that in the uniform slip (Model 1A), which results in a
higher strain near the fault.

PINNs have advantages in the modeling of complex crustal
structures. In particular, continuous geometry and changes in
mechanical properties can be expressed without any approximation
such as series expansion and discretization. Figure 3a shows the ver-
tical section of an example dislocation model; a fault and the Earth’s
surface are curved, and themechanical property varies continuously in
space. Two slip distributions, a uniform slip in Model 2A and a dis-
tributed slip identical toModel 1C (Fig. 2b) inModel 2B, are considered
on the fault.

The obtained strain fields εyz are shown in Fig. 3b (2-D displace-
ment and strain are shown in Supplementary Fig. 2). The strain field in
Model 2A is continuous and independent of the fault surface (dis-
location surface) and was concentrated at the lower tip of the fault
(dislocation line). Thus, crustal deformation for a uniform slip is
completely determined by a dislocation line, which can be observed
for different fault geometries (Supplementary Fig. 3). This property is
well known for a plane fault in a homogeneous half-space3, whereas the
present result applies to a curved fault in a heterogeneous medium. In
contrast, the strain field for Model 2B is discontinuous on the fault
surface. The surface displacement and strain are shown in Fig. 3c, d
with FEM solutions (see Supplementary Text 1 for the FEMmodeling).
The discrepancy in these models is larger than that in Models 1A–1C
but notmore than twice that inModel 1C (Table 1). InModel 2B, a high
strain is distributed on the fault surface (Fig. 3b), which results in
localized displacement u (Fig. 3c) and high strain near the fault on the
Earth’s surface (Fig. 3d).

The Earth’s crust is composed of various rock types with different
mechanical properties. Strain accumulates at material boundaries
where earthquakes tend to occur. Some earthquake faults are located
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within damage zones extending to a considerable depth. Therefore,
themodeling of discontinuousmedia is of practical importance. In this
study, a displacement field is modeled with two NNs in the individual
material regions (V1 and V2). Two terms LMB-u and LMB-T are added to
the loss function L to impose appropriate conditions on the material
boundary B. See ‘Methods’ for more details.

Here, we consider that the mechanical property changes dis-
continuously on either side of a buried vertical fault. Model 3A has
a discontinuity across the fault and Model 3B has a compliant fault
zone (Fig. 4a). The contrast in shear modulus is two in both mod-
els. The obtained strain fields εxz are shown in Fig. 4b (2-D dis-
placement and strain are shown in Supplementary Fig. 4). Strain is
discontinuous across the material boundary B. The surface dis-
placement and strain are shown in Fig. 4c, d with analytical
solutions3, and RMSEs are shown in Table 1. PINN solutions are
accurate in Model 3A but exhibit a systematic overestimation at a
long distance from the fault in Model 3B. This would be because
the material boundary B isolates V2 from the fault Σ on which a
displacement discontinuity (i.e. Dirichlet boundary condition) is
imposed, which leads to error accumulation at a long distance.
This suggests that multiple material discontinuities can compli-
cate PINN’s convergence property.

Computational costs
Table 1 summarizes model structures and computational costs on a
single CPU (Intel Core i7, 3.60GHz, 4 cores, 8 processors, and 16 GB
memory) of example problems in this study. We note that NNs consist
of 8 hidden layerswith 40 nodes and the batch size of training is 256 in

V and 64 on Σ, S, and B in all problems (see ‘Methods’ for details). The
number of iterations required to achieve the desired precision
(L < 10−6) has significant dependence on model structures. The geo-
metry and mechanical properties had minor effects (Model 2A),
whereas thedistributed fault slip led tomany iterations (Models 1C and
2B). This might be related to the property that strain only depends on
the location of dislocation lines for uniform slips, as discussed pre-
viously. The material discontinuities (Models 3A and 3B) did not
significantly increase the number of iterations but increased compu-
tational time per iteration by approximately 1.6 folds because the use
of two NNs doubles the number of NN parameters. The column
‘Transfer’ indicates that the trained NN parameters on similar but
simple problems are used as initial weights of the target problems (see
‘Methods’ for details). In experiments, training without transfer
increased computational time by 1.15, 1.38, 4.68, and 2.13 folds in
Models 1C, 2B, 3A, and 3B, respectively. This indicates that the transfer
of NN parameters is particularly effective for discontinuous material
problems.

The computational time in the FEM modeling is 256 and 715 s for
Models 2A and 2B, respectively, which is significantly shorter than that
in the PINNmodeling (Table 1). Here, the number of cells and nodes in
the FEM models is 790,392 and 138,110, respectively (Supplementary
Text 1). Computational cost is currently a common challenge of PINN
forward modeling41,42. Fast and stable algorithms for PINN optimiza-
tion should be investigated. In FEM, sophisticated mesh generation
schemes including fault interfaces have been developed43. Knowledge
and experience on conventional solvers would play an essential role in
the progress.

Fig. 1 | Physics-informed neural network (PINN) modeling of antiplane dis-
locations. a Cross-sectional view of an infinitely long strike-slip fault model. Sha-
ded region, orange line, and blue line represent elasticmedium V of shearmodulus
μ(x, y), fault Σ, and Earth’s surface S, respectively. Σ+ and Σ− represent the two sides

of Σ. The fault moves perpendicular to the page. b Polar coordinate representation
of the model region. c PINN structure. A neural network surrogates a displacement
u(r, θ) in the polar coordinates. Derivatives of u are calculated using automatic
differentiation and constitute a loss function L.
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Discussion
This study focused on a dislocation model of strike-slip faults; how-
ever, PINNs canmodel dip–slip faults and quasi-static processes with a
slight increase in the input and output variables of NNs. Inverse pro-
blems can be formulated by adding a data misfit term to the loss
function; the simple implementation of inversion analyses is a major
advantage of PINNs over conventional linear solvers. In fact, PINNs
have currently succeeded more in inverse modeling than in forward
modeling22. Because geophysical data are typically noisy, a Bayesian

approach44 may be required for stable inversion. PINNs can also be
applied to general rheologies, such as viscoelasticity, poroelasticity,
and power law creep, by changing the loss term based on the gov-
erning equation. The difference in regional rheologies (e.g., elasticity
in the crust and viscoelasticity in the upper mantle) can be treated by
defining loss functions in each subregion, which is similar to
discontinuous media.

This study presented successful applications of PINNs for mod-
eling crustal deformation in antiplane problems with simple NN

Fig. 2 | Model and estimated results in a homogeneous half-space. a Model
structures. The orange and blue lines represent fault Σ and Earth’s surface S,
respectively. Surface (left) and buried (right) faults are distinguished by the branch
cut. b Assumed displacement discontinuities on the fault. c Estimated surface

displacements. d Estimated surface strains. In (b)–(d), blue, orange and gray lines
indicate Models 1A, 1B, and 1C, respectively. Solid and dashed lines indicate PINN
and analytical solutions, respectively.

Table 1 | Model structures, root-mean-square errors (RMSEs), and computational costs

Model Transfer Fault RMSE (u) RMSE (ε) Iterations Time (s) T/I (ms)

1A – Surface 6.733e−3 1.213e−3 22,875 825 36.07

1B – Buried 3.372e−3 6.257e−4 19,487 705 36.18

1C 1A Surface 1.409e−2 2.732e−3 140,229 4892 34.89

2A – Surface 2.557e−2 3.727e−3 24,612 894 36.32

2B 2A Surface 1.947e−2 3.957e−3 436,583 15,899 36.42

3A 1B Buried 5.706e−3 1.013e−3 7803 466 59.72

3B 1B Buried 1.523e−2 2.636e−3 37,583 2185 58.14

u displacement, ε strain, T/I time per iteration.
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architecture and optimization procedure. However, realistic problems
require large and higher dimensional model space, and various
material properties and rheologies require an increasing number of
corresponding NNs. It has been recognized that PINNs can sometimes
converge to erroneous solutions in time-dependent modeling45,46.
These factors would incur more computational costs for optimization
of the loss function to achieve sufficient accuracy. Understanding the
method for stable and fast optimization is key for the application of
PINNs to large-scale geophysical problems. PINNs21 are newcomers to
machine learning, and studies aimed at realizing faster and more effi-
cient optimization have been accelerating45–48. Therefore, our pro-
posed approach based on PINNsmay be a powerful tool for realizing a
wide variety of modeling applications in crustal deformation.

Methods
Dislocation model
In this study, we consider antiplane dislocations, whichmodel infinitely
long strike-slip faults. By taking the x- and z-axes in the horizontal
direction and the y-axis in the vertical direction, we suppose that a
displacement u(x, y) is parallel to and invariant in the z-direction. We

denote a medium as V, a fault (dislocation surface, DS) as Σ, and the
Earth’s surface (free surface, FS) as S (Fig. 1a). The normal vectors to Σ
and S are denoted by nDS = ðnDS

x ,nDS
y ,0Þ and nFS = ðnFS

x ,nFS
y ,0Þ, respec-

tively. In an isotropic linear elastic medium, the system of governing
equations is given by3

μ∇2u+∇μ � ∇u=0 inV , ð1Þ

u+ � u� = s onΣ, ð2Þ

σ + � nDS =σ� � nDSonΣ, ð3Þ

σ � nFS =0on S, ð4Þ

where μ is the shear modulus, s is the slip on Σ, σ is the stress tensor,
and the superscripts + and − represent the opposite sides of Σ. The
first equation represents the equilibrium equation of linear elasti-
city, the second represents the displacement discontinuity on the

Fig. 3 | Model and estimated results of a curved, heterogeneous structure.
a Model structure. Colors represent the shear modulus. The orange curve repre-
sents the fault surface. b Estimated strains for Models 2A (top) and 2B (bottom).

c Estimated surface displacements. d Estimated surface strains. In (c) and (d), blue
and orange lines indicate Models 2A and 2B, respectively. Solid and dashed lines
indicate PINN and FEM solutions, respectively.
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fault, the third represents the traction continuity on the fault, and
the fourth represents the free-surface condition on the Earth’s
surface.

Next, we consider that two regions V1 and V2 with shearmoduli μ1
and μ2, respectively, are in contact with a material boundary (MB) B
(Fig. 4a). By denoting the displacements in V1 and V2 as u1 and u2,
respectively, the boundary conditions are expressed as

u1 =u2onB, ð5Þ

σ1 � nMB =σ2 � nMBonB, ð6Þ

where nMB = ðnMB
x ,nMB

y ,0Þ is the normal vector to B. They represent the
displacement and traction continuity at the material boundary,
respectively.

Neural network modeling
The displacement field u is modeled by NNs. u(x, y) is discontinuous
across a fault surface Σ (dislocation surface) and the stress can diverge
at the fault tip (dislocation line), which prevents NNs from generating
an accurate approximation. We therefore use the polar coordinate
system (r, θ) whose pole is located at the dislocation line, and define a
branch cut along the dislocation surface. A curved fault is expressedby
a branch cut as a function of r. Modeling of u(r, θ) by NNs separates the
coordinate values of the two sides of Σ (Fig. 1b), which results in the
accurate modeling of displacements near fault surfaces.

A material boundary induces discontinuity not in displacements
but in strains (derivatives of u). Therefore, it is difficult to approximate
displacement using a single NN.We train theNNs in individualmaterial
regions and impose boundary conditions to ensure consistency
between them. This is similar to the domain decomposition intro-
duced to accelerate the convergence49.

Fig. 4 | Model and estimated results of discontinuous structures. a Model
structures of Models 3A (top) and 3B (bottom). Shaded regions represent elastic
mediaV1 andV2 of shearmodulus μ. The orange, blue, and gray lines represent fault
Σ, Earth’s surface S, and material boundary B, respectively. b Estimated strains for

Models 3A (top) and 3B (bottom). c Estimated surface displacements. d Estimated
surface strains. In (c) and (d), blue and orange lines indicate Models 3A and 3B,
respectively. Solid and dashed lines indicate PINN and analytical solutions,
respectively.
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Loss function
A loss function is defined as the residuals of the governing equations
and the boundary conditions. Using the stress–strain relation σxz = μux
/ 2 and σyz = μuy / 2 for antiplane strains, the individual loss terms in the
polar coordinates are written as

LPDE = ½r2urr + rur + uθθ +μ
�1ðr2μrur +μθuθÞ�

2
, ð7Þ

LDS�u = ðu+ � u� � sÞ2, ð8Þ

LDS�T = r
2½μ+ ðnDS

x u+
x +nDS

y u+
y Þ � μ�ðnDS

x u�
x +nDS

y u�
y Þ�

2
, ð9Þ

LFS = r
2 nFS

x ux +n
FS
y uy

� �2
, ð10Þ

LMB�u = ðu1 � u2Þ2, ð11Þ

LMB�T = r
2 μ1 nMB

x u1x +n
MB
y u1y

� �
� μ2 nMB

x u2x +n
MB
y u2y

� �h i2
, ð12Þ

where ux = sinθur + r
�1cosθuθ and uy = cosθur � r�1sinθuθ. The sub-

scripts of u represent partial derivatives (e.g. ux = ∂u=∂x and
urr =∂

2u=∂r2). Automatic differentiation18 enables exact and efficient
calculations of partial derivatives. The powers of r are multiplied to
remove singular values at the origin. The total loss function for con-
tinuous media is given by

L= LPDE + LDS�u + LDS�T + LFS, ð13Þ

and that for discontinuous media is given by

L= LPDE + LDS�u + LDS�T + LFS + LMB�u + LMB�T: ð14Þ

Optimization
Weuse the sameNN structure for all examples bymainly following the
original work21. Fully connected feedforward NNs consisting of 8 hid-
den layers with 40 nodes are used. The activation functions are the
hyperbolic tangent function in the hidden layers and the identity
function in the output layer. Xavier’s initial value50 is used as initial NN
parameters. Moreover, when two or more similar problems are con-
sidered, the trained NN parameters on a simple problem are trans-
ferred to the initial NN parameters of complex problems. This can be
interpreted as a variant of the curriculum learning45, which aims at
accelerating and stabilizing PINN optimization. The correspondences
are listed in Table 1. The NN parameters are updated using the
gradient-based algorithmAdam51 with standard learning rates (η = 10−3,
β1= 0.9, and β2= 0.999). PINNs do not require training data, and loss
functions are calculated at arbitrary points in themodel domain,which
are called collocation points. The range of collocation points is set as
−5 ≤ x ≤ 5, −5 ≤ y, and the upper bound defined by the Earth’s surface.
The batch size is set to 256 in V and to 64 on Σ, S, and B. Collocation
points are independently sampled in each training step.

The distribution of collocation points during training can have a
significant influence on the model performance38. The influence is
inspected by observing the spatial distribution of a residual
R= r2urr + rur +uθθ +μ

�1ðr2μrur +μθuθÞ, the mean square of which is a
loss term, LPDE (Supplementary Fig. 5a–d). When an NN is trained on
collocation points sampled from a uniform distribution, the residuals
exhibit higher values near the fault. If collocation points are sampled
from a probability distribution that concentrates on the fault, the
residual is uniformly distributed. Therefore, concentrated sampling is

used in this study. Examples of collocation points in the analyzed
models (Figs. 3 and 4) are shown in Supplementary Fig. 5e, f.

Because the values of a loss function can vary considerably with
the sampled collocation points, fixed fine grids are prepared for
model evaluation. The grid intervals are set to 0.1 in V and to 0.01 on
Σ, S, and B. Minibatch training is iterated until the following con-
ditions are satisfied: if the training loss Ltra on collocation points is
less than 10−6, the validation loss on the fixed grids Lval is calculated;
if Lval is also less than 10−6, training is finished (Supplemen-
tary Fig. 6).

Data availability
No data were used in this study.

Code availability
Source programs of PINN modeling are available in Supplementary
Software 1. FEM solutions were generated using the open-source
Python package, PyLith43.
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