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Interpretable and tractable models of tran-
scriptional noise for the rational design of
single-molecule quantification experiments

Gennady Gorin 1,5, John J. Vastola 2,5, Meichen Fang 3 & Lior Pachter 3,4

The question of how cell-to-cell differences in transcription rate affect RNA
count distributions is fundamental for understanding biological processes
underlying transcription. Answering this question requires quantitative mod-
els that are both interpretable (describing concrete biophysical phenomena)
and tractable (amenable to mathematical analysis). This enables the identifi-
cation of experiments which best discriminate between competing hypoth-
eses. As a proof of principle, we introduce a simple but flexible class ofmodels
involving a continuous stochastic transcription rate driving a discrete RNA
transcription and splicing process, and compare and contrast two biologically
plausible hypotheses about transcription rate variation. One assumes variation
is due toDNAexperiencingmechanical strain, while the other assumes it is due
to regulator number fluctuations. We introduce a framework for numerically
and analytically studying such models, and apply Bayesian model selection to
identify candidate genes that show signatures of each model in single-cell
transcriptomic data from mouse glutamatergic neurons.

Single-cell RNA counts fluctuate due to a combination of dynamic
processes in living cells, such as DNA supercoiling, gene regulation,
and RNA processing; however, it is unclear how much we can learn
about these processes’ kinetics and relative importance from counts
alone. By generating enormous amounts of single-cell data, modern
transcriptomics has the potential to shed light on such fundamental
aspects of transcription on a genome-wide scale. However, the field’s
standard data-driven and phenomenological analyses are descriptive:
even though they can summarize data, they do not make specific
claims about the mechanisms that generated it. To make mechanistic
sense of measurements of gene expression and submolecular features
in thousands of single cells at a time1–4, we seek a framework for sys-
tematically distinguishing different plausible hypotheses about
transcription.

In principle, models of transcription that are both interpretable
and tractable would allow us to be more hypothesis-driven. Inter-
pretability means fitting model parameters conveys clear biological

information about the kinetics of microscopic phenomena. Tract-
ability means a thorough mathematical analysis of model behavior is
possible. These properties enable a ‘rational’ design of transcriptomic
experiments (Fig. 1a), analogous to ideas about rational drug design5–9

and the optimal design of single-cell experiments10–13, since one can
mathematically determine the kind of experiment that best distin-
guishes two such models. One can then perform this experiment, use
the results to refine or reject those models, and iterate.

The common post-hoc approach of fitting negative binomial-like
distributions to RNA count data14–18 is mathematically tractable, but
not biologically interpretable. On the other hand, detailed mathema-
tical models of transcription19–27 are certainly interpretable, but tend
not to be tractable: complexitymakes a thorough analysis challenging,
and identifiability issues mean that it can be difficult or impossible to
use the data one has to distinguish competing hypotheses.

In this paper, we propose a class of interpretable and tractable
transcription models that is fairly simple, yet flexible enough to
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account for a range of biological phenomena. It assumes that a sto-
chastic and time-varying transcription rate drives a discrete stochastic
RNA transcription and splicing process. This model class incorporates
both intrinsic noise (randomness associated with the timing of events
like transcription and degradation) and extrinsic noise (due to cell-to-
cell differences)28–32 in a principled way, with the latter due to tran-
scription rate variation. We focus on two specific examples of models
from this class, which assume variation is due to (i) random changes in
the mechanical state of DNA, or (ii) random changes in the number of
an abundant regulator.

We find that thesemodels, althoughmathematically similar, yield
different predictions; this indicates that thefinedetails of transcription
can, at least some of the time, be inferred from transcription rate
variation. This is because the details of how the transcription rate
fluctuates (i.e., its dynamics), rather than just the steady-state dis-
tribution of those fluctuations, can qualitatively affect model predic-
tions. We also find that a naïve moment-based approach to
distinguishing between them fails, and that comparing whole joint
distributions far outperforms other approaches. Finally, as a proof of
principle, we fit these models to single-cell transcriptomic data from
mouse glutamatergic neurons, and find in many cases that (i) the two
models can be distinguished, and that (ii) they greatly outperform
standard negative binomial-like fits, even when one penalizes model
complexity using a principled Bayesian model selection procedure.
While we will not actually implement the entire closed loop paradigm
depicted in Fig. 1a, ourwork constructs one possiblemathematical and
computational foundation for it.

Results
Transcription rate variation accounts for empirically observed
variance
If we would like to understand and fit available transcriptomic data—
especially multimodal data sets that report the numbers of both nas-
cent andmature transcripts inside single cells33,34—what kindofmodels
of transcription should we consider? Given that single cell RNA counts

are often low, we would like our models to be able to account for the
production, processing, and degradation of individual RNAmolecules.
From experiments in living cells, these processes are known to be
random35. Crucially, the molecule counts are low enough that the
variation in molecule numbers should be explicitly described by a
stochastic model36.

The theoretical framework associated with the chemical master
equation (CME)37–43 can be used to define discrete and stochastic
models of cellular processes. The constitutive model of transcription,
which assumes RNA is produced at a constant rate, is one particularly
simple and well-studied example. It can be defined via the chemical
reactions

+!K N !β M!γ +, ð1Þ

where N denotes nascent RNA, M denotes mature RNA, K is the
transcription rate, β is the splicing rate, and γ is the degradation rate. It
predicts44,45 that the long-time probability Pcon

ss ðxN ,xMÞ of observing
xN 2 N0 nascent RNA and xM 2 N0 mature RNA in a single cell is
Poisson, so that

Pcon
ss ðxN , xMÞ=

K
β

� �xN
e�K=β

xN !

K
γ

� �xM
e�K=γ

xM !
: ð2Þ

While mathematically tractable, a model like this is too simple to
fit existingdata.Mostobserved eukaryoticRNAcount distributions are
‘overdispersed’: they have a higher variance than Poisson distributions
with the same mean46.

One way to account for overdispersion is to assume that different
cells in a population have different transcription rates, but that each
individual cell otherwise follows the constitutive model. For various
choices of transcription rate distribution, one can obtain results that
lookmuch closer to eukaryotic transcriptomic data. For example, one
reasonable choice (which has been explored by other authors47) is to

Fig. 1 | Framework for the rational design of transcriptomics experiments.
aModel-based closed loop paradigm. A researcher begins by representing two or
more competing hypotheses as interpretable and tractable mathematical models
(middle right of circle). Next, they perform a detailed mathematical analysis of
each model, computing quantities (e.g., RNA count distributions and moments)
that can help distinguish one hypothesis from another. Using the results of that
analysis as input, they identify the experiment that best distinguishes the two
models. Finally, they perform this experiment on some population of cells, use the
resulting data to refine and/or reject models, and repeat the process with an
updated ensemble of models. b Interpretable and tractable modeling framework
for transcription rate variation. We consider stochastic models of transcription
involving (i) nascent/unspliced RNA, (ii) mature/spliced RNA, and (iii) a stochastic

and time-varying transcription rate K(t). The transcription rate is assumed to
evolve in time according to a simple, one-dimensional SDE that includes a mean-
reversion term (which tends to push K(t) towards its mean value) and a noise term
(which causes K(t) to randomly fluctuate). Here, we have specifically chosen
dynamics for which the long-time probability distribution of K(t) is a gamma dis-
tribution (gray curve), because this assumption yields empirically plausible nega-
tive binomial-like RNAdistributions. However, the frameworkdoes not require this
in general. c Two plausible models studied in this paper. The gamma
Ornstein–Uhlenbeck (Γ-OU) model describes DNA mechanics, whereas the
Cox–Ingersoll–Ross (CIR) model describes regulation by a high copy number
regulator.

Article https://doi.org/10.1038/s41467-022-34857-7

Nature Communications |         (2022) 13:7620 2



assume that the transcription rate K is gamma-distributed with shape
parameter α and scale parameter θ, i.e., K ~ Γ(α, θ). The long-time/
steady-state probability of observing xN nascent and xM mature RNA
would then be described by the Poisson-gamma mixture model

Pmix
ss ðxN , xM Þ=

Z 1

0
dK

Kα�1 e�K=θ

θα ΓðαÞ Pcon
ss ðxN , xMÞ: ð3Þ

The marginal distributions of this joint distribution will be nega-
tive binomial rather than Poisson, allowing us to actually fit observed
single-cell data. But this approach—which is equivalent to the post-hoc
fitting of negative binomial distributions—is not biophysically inter-
pretable. What is the biological meaning of the parameters α and θ?
Andwhy do different cells have different transcription rates? Is it really
reasonable to assume, as we have here, that these rates are ‘frozen’,
and remain as they are for all time in a given cell?

Interpretable and tractable modeling framework for transcrip-
tion rate variation
We propose a class of transcriptional models that balance interpret-
ability and tractability, and generalize the mixture model. Although
various biological details underlying transcription may be compli-
cated, we assume they can be captured by an effective transcription
rate K(t) which is stochastic and varies with time. This transcription
rate randomly fluctuates about its mean value, with the precise nature
of its fluctuations dependent upon the fine biophysical details of
transcription. Mathematically, we assume that K(t) is a continuous-
valued stochastic process described by an (Itô-interpreted) stochastic
differential equation (SDE)

_KðtÞ= ½mean reversion�+ ½noise�
= A� BKðtÞ+ ½noise� ð4Þ

for some coefficients A and B, where [mean reversion] denotes a
deterministic term that drives the transcription rate towards its mean
value, and [noise] denotes a model-dependent term that introduces
stochastic variation. The transcription rate K(t) is coupled to RNA
dynamics as in the constitutive model:

+!KðtÞN !β M!γ +: ð5Þ

This reaction list defines a master equation model that couples
discrete stochastic RNA dynamics to the continuous stochastic pro-
cess K(t) (Fig. 1b). Although this model class is not completely realistic
(for example, there is no feedback), it is fairly flexible, and can reca-
pitulate empirically plausible negative binomial-like RNA count dis-
tributions. To guarantee this, we will specifically consider candidate
models for which the steady-state distribution of K(t) is a gamma
distribution.

Other kinds of transcriptional models can also be viewed as
special cases of this model class. The constitutive model (Eq. (1)) is a
degenerate case that arises from the limit of no noise and fast mean-
reversion, and the mixture model arises from the limit of slow
transcription rate variation. We will see later that the popular
bursting model of RNA production, which describes intermittent
production of multiple nascent transcripts at a time1,48–51 is also
a degenerate case. For the rest of this paper, we examine two
specific cases of this model class more closely: the gamma
Ornstein–Uhlenbeck (Γ-OU) model and Cox–Ingersoll–Ross (CIR)
model, which are depicted in Fig. 1c. In particular, we will motivate
the underlying biophysics, solve the models, outline major simila-
rities and differences, and discuss how and when they can be dis-
tinguished given transcriptomic data.

Coupling upstream variability to transcriptional CMEs has been
studied before (e.g., by Dattani and Barahona52), but usually in a way

that assumes either thatK(t) takes on afinite set of values (for example,
gene switching53), or that the distribution of K(t) is a priori known,
rather than defined by a stochastic dynamical system like Eq. (4). We
attempt to build on these studies by treating K(t) as a continuous
stochastic dynamical variable on the same footing as nascent and
mature RNA counts.

A. Gamma Ornstein–Uhlenbeck production rate model
Transcription rate variationmay emerge due tomechanical changes in
DNA thatmake producing RNAmore or less kinetically favorable. Each
nascent RNA produced by an RNA polymerase induces a small amount
of mechanical stress/supercoiling in DNA, which builds over time and
can mechanically frustrate transcription unless it is relieved. Because
topoisomerases arrive to relieve stress (Fig. 1c), there is a dynamic
balance between transcription-mediated stress and topoisomerase-
mediated recovery, models of which can recapitulate gene over-
dispersion and bursting23,25.

We can simplify the detailedmechanisticmodel of Sevier, Kessler,
and Levine while retaining crucial qualitative aspects. For example, we
can model transcriptional catalysis at a promoter G by a reservoir of
RNA polymerase P:

P +G!kini P +G +N , ð6Þ

where kini is the rate of transcription initiation. Next, we assume that
kini is proportional to the DNA relaxation state: if the DNA is in a
stressed, twisted state, polymerase binding events are less likely to
succeed. We propose that relaxation continuously decreases due to
transcription-associated events, and that topoisomerases randomly
arrive to increase relaxation according to an exponential law. The
direct proportionality between the amount of DNA relaxation and kini
is a coarse, first-order approximation valid when kini is small. This
approximation may be biophysically justified by appealing to the
prevalence of DNA compaction in eukaryotic cells. If the concentration
p of RNA polymerase is high and its variation is low, we find (see
Section 3.2.1 in the Supplementary Note) that the overall transcription
rate K(t) can be modeled by the SDE

_KðtÞ= � κKðtÞ+ ϵðt;a,θÞ, ð7Þ

where ϵ(t; a, θ) is an infinitesimal Lévy process (a compound
Poisson process with arrival frequency a and exponentially dis-
tributed jumps with expected size θ) capturing random topoi-
somerase arrival. This is the gamma Ornstein–Uhlenbeck (Γ-OU)
model of transcription54. It naturally emerges from a biomecha-
nical model with two opposing effects: the continuous mechanical
frustration of DNA undergoing transcription, which is a first-order
process with relaxation rate κ, and the stochastic relaxation by
topoisomerases that arrive at rate a. The scaling between the
relaxation state and the transcription rate is set by a gain
parameter θ ∝ 〈p〉, where 〈p〉 is average polymerase concentration;
its coefficient of proportionality includes the coefficient of the
aforementioned first-order expansion of kini as a function of the
amount of DNA relaxation.

The Γ-OU model is perhaps better known in finance applications,
where it has been used to model the stochastic volatility of the prices
of stocks andoptions55–58. Its utility as afinancialmodel is largelydue to
its ability to capture asset behavior that deviates from that of com-
monly used Gaussian Ornstein–Uhlenbeck models, such as skewness
and frequent price jumps.

B. Cox–Ingersoll–Ross production rate model
Alternatively, transcription rate variationmay be due to non-negligible
fluctuations in the concentration of a regulator R. We can encode
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these fluctuations by defining amulti-state promoter G activated byR:

+!a R!κ +

Gof f +R$
kon

kof f

Gon

Gon !
kini Gon +N ,

ð8Þ

where a is theR production rate and κ is theR degradation rate. If the
number of regulator molecules r(t) is very large, we can accurately
approximate regulator birth and death dynamics as a real-valued
stochastic process using the framework associated with the chemical
Langevin equation (CLE)39,59. Under the assumptions of rapid, weak
binding, the effective transcription rate K(t)≔ θr(t) satisfies the SDE

_KðtÞ=aθ� κKðtÞ+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κθKðtÞ

p
ξðtÞ ð9Þ

where ξ(t) is a Gaussian white noise term and θ = kinikon/koff (see Sec-
tion 3.3.1 in the Supplementary Note). This is the Cox–Ingersoll–Ross
(CIR) model of transcription54.

Although the CIR model is most familiar as a description of
interest rates in quantitativefinance60–62, it has been previously used to
describe biochemical input variation based on the CLE, albeit with less
discussion of the theoretical basis and limits of applicability63–66.

The models are interpretable and unify known results
Qualitatively, the distribution shapes predicted by the Γ-OU and CIR
models interpolate between Poisson and negative binomial-like
extremes, with behavior controlled mostly by two of the transcrip-
tion noise parameters: the mean-reversion rate κ and the gain para-
meter θ (Fig. 2a). Remarkably, where one is in this landscape of
qualitative behavior is independent of the mean transcription rate
〈K〉 = aθ/κ, since a can vary to accommodate any changes in κ or θ. It is
also independent of the steady-state distribution of transcription
rates, which is the same (i.e., Γ(a/κ, θ)) in all cases. We find that the
details of how the transcription rate fluctuates in time strongly impact
the shape of RNA count distributions, a factwhichmay have previously
gone underappreciated.

When κ is very fast, the transcription rate veryquickly reverts to its
mean value whenever it is perturbed, so it is effectively constant, and
we recover the constitutive model. When κ is very slow, the tran-
scription rates of individual cells appear ‘frozen’ on the time scales of
RNA dynamics, and we recover the mixture model discussed earlier.
When θ is very small, fluctuations inunderlying biological factors (DNA
relaxation state or regulator concentration) are significantly damped,
so K(t) is also effectively constant in this case.

Interestingly, while the two models agree in the aforementioned
limits, their predictions markedly differ in the large θ limit, where
fluctuations are amplified and predicted count distributions become
increasinglyoverdispersed. The Γ-OUmodel predicts that nascent RNA
is produced in geometrically distributed bursts in this limit, recapitu-
lating the conventional model of bursty gene expression35,51. However,
the CIR model predicts a previously uncharacterized family of
count distributionswith heavier tails than theirΓ-OU counterparts. The
difference is shown in Supplementary Fig. 4. This deviation is a con-
sequence of state-dependent noise: while the number of topoisome-
rases which arrive to relieve stress does not depend on the current
relaxation state of the DNA, birth-death fluctuations in the number of
regulators tend to be greater when there aremore regulatormolecules
present. We illustrate the four limiting regimes of interest in Fig. 2b,
present their precise quantitative forms in Section 2.5, andderive them
in Section 5 in the Supplementary Note.

Another lens through which to view qualitative behavior is the
squared coefficient of variation (η2≔ σ2/μ2), which quantifies the
amount of ‘noise’ in a system. We derived the exact result that (see
Section 2.4.2 in the Supplementary Note), consistently with previous
studies29,30,32, the total noise can be written as a sum of ‘intrinsic’ (due
to the stochasticity inherent in chemical reactions) and ‘extrinsic’ (due
to transcription rate variation) contributions. For both models,

η2
N =

1
μN

+
θ
hKi

1=κ
1=κ + 1=β

η2
M =

1
μM

+
θ
hKi

1=κ
1=κ + 1=β

1=κ
1=κ + 1=γ

1=κ + 1=ðβ+ γÞ
1=κ

,
ð10Þ

high 
gain

low gain
fast 
reversion

slow 
reversion

Overdispersed

Poisson-like

0 1

1

κ

κ + β + γ

θ

θ + a

a. Constitutive

Mixture

Geometric bursts

Quasi-bursty

Limiting modelb. K(t)

slow reversion

fast reversion
low gain

high gain (Γ-OU) 

high gain (CIR) 

P (K,t1) P (K,t2) ,xPss(xN M)

Fig. 2 | Summary of the qualitative behavior of the Γ-OU and CIR models.
a Qualitative behavior can be visualized in a two-dimensional parameter space,
with κ/(κ + β + γ) onone axis and the gain ratioθ/(θ + a) on theother.The four limits
discussed in the text correspond to the four corners of this space. When a≫ θ, we
obtain Poisson-like behavior (green). When a≪ θ, we obtain overdispersed dis-
tributions (orange).bDynamics of limitingmodels. The Γ-OU andCIRmodelswere
simulated using four parameter sets close to the limiting regimes; transcription
rates are visualized using trajectories and cell cartoons, where transcription rate is
a logarithmic function of cell color. Ten thousand samples from the joint RNA

count distribution are depicted in the rightmost column. Both models reduce to
the constitutive model in the fast reversion and low gain limits, where the tran-
scription rate K(t) is effectively constant in time and identical for all cells in the
population. Both reduce to the mixture model in the slow reversion limit, so that
K(t) is inhomogeneous across the population but constant in time for individual
cells. In the high gain limit, the Γ-OU and CIR models yield different heavy-tailed
distributions, with the CIR limitingmodel appearing to be uncharacterized. In both
cases, K(t) exhibits sporadic large fluctuations within single cells.
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where η2
N and η2

M quantify the amount of noise in nascent and mature
RNA counts, and μN and μM denote the average number of nascent and
mature RNA. In the ‘overdispersed’ regimes, where θ is large or κ is
small, the extrinsic noise contributions become significant, but not in a
way thatmaps cleanly onto the space depicted in Fig. 2a. For example,
the fraction of extrinsic noise for nascent RNA is

ðextrinsic fractionÞN :=
η2
N � 1

μN

η2
N

=
θ

θ+ κ +β
ð11Þ

whose relative size in different overdispersed regimes changes
depending on the splicing rate β. The behavior of the extrinsic noise
fraction as a function of the parameters is summarized in Supple-
mentary Fig. 5.

The models are analytically tractable
Using a suite of diverse theoretical approaches—including path inte-
gral methods, generating function computations, a correspondence
between the Poisson representation of the CME and SDEs, and tools
from themathematics of stochastic processes—wewere able to exactly
solve the Γ-OU and CIR models. This includes computing all steady-
state probability distributions Pss(xN, xM),first-ordermoments, second-
order moments, and autocorrelation functions.

A central idea in all of our calculations is to consider transformsof
the probability distribution—variants of the generating function—
instead of the distribution itself. Once a generating function is avail-
able, the distribution can be obtained by computationally inexpensive
Fourier inversion. The joint generating function ψ(gN, gM, h, t) is
defined as

ψ :=
X1
xN =0

X1
xM =0

Z 1

0
dK gxN

N gxM
M eihK PðxN , xM ,K, tÞ, ð12Þ

with gN ,gM 2 C both on the complex unit circle, h 2 R, and P(xN,
xM,K, t) encoding theprobability density over counts and transcription
rates. As these rates are not usually observable, and the previous body
of work treats stationary distributions, we are most interested in
ψss(gN, gM), the probability-generating function (PGF) of Pss(xN, xM). We
find it most convenient to report our results in terms of
ϕssðuN ,uM Þ := logψssðgN , gM Þ, the log of the PGF with an argument
shift uN≔ gN − 1 and uM≔ gM − 1.

The solution of the Γ-OU model is

ϕssðuN ,uM Þ= hKi
Z 1

0

U0ðs;uN ,uM Þ
1� θ

κU0ðs;uN ,uM Þ
ds, ð13Þ

where U0(s; uN, uM) is obtained by solving the characteristic ODEs
obtained from the generating function67:

dU2

ds
= � γU2, U2ð0Þ=uM ,

dU1

ds
= β ðU2 � U1Þ, U1ð0Þ = uN ,

dU0

ds
= κ ðU1 � U0Þ, U0ð0Þ=0:

ð14Þ

This system of linear first-order ODEs can be solved analytically50,
and the generating function can be obtained by quadrature. The
solution to the CIR model is

ϕssðuN ,uM Þ= hKi
Z 1

0
U0ðs;uN ,uM Þds, ð15Þ

where U0(s; uN, uM) is obtained from analogous ODEs:

dU2

ds
= � γU2, U2ð0Þ=uM ,

dU1

ds
= β ðU2 � U1Þ, U1ð0Þ= uN ,

dU0

ds
= κðU1 � U0Þ+ θU2

0, U0ð0Þ=0:

ð16Þ

While the above ODEs have an exact solution, it is cumbersome,
and preferable to evaluate numerically. We derive these solutions in
Section 3, and validate themagainst stochastic simulations in Section 6
in the Supplementary Note.

Summary statistics cannot distinguish between the models
The tractability of these two models allows us to analytically compute
common (steady-state) summary statistics. Despite the models’ distinct
biological origins, their means (μN and μM), variances (σ2

N and σ2
M), cov-

ariances, and autocorrelation functions (RN(τ) and RM(τ)) match exactly
(Table 1; see Section 4 in the SupplementaryNote). Thismeans that such
summary statistics cannot be used as the basis formodel discrimination.
More fundamentally, it implies that experimental technologies that only
report averages—such as RNA sequencing without single-cell resolution
—cannot possibly distinguish between noise models.

Models can be distinguished using multimodal count data
Even if our two models did not have identical first and second order
moments, the shortcomings of moment-based model discrimination
are becoming increasingly clear68. Does the situation improve if we
comparewhole countdistributions?Toestablish that the Γ-OUandCIR
models are in principle discriminable, we performed an in silico
experiment: first, (i) we generated noise-free synthetic data from the
CIR model for many different parameter sets; then (ii) we compared
the goodness-of-fit of each model to this synthetic data.

We chose to quantify the relative goodness-of-fit of each model
via the Bayes factor, which is the ratio of the likelihood of each model
given the data. Concretely, we computed the log Bayes factor

log10BF := log10
Pðdata∣CIRÞ

Pðdata∣Γ�OUÞ

� �
ð17Þ

for each of the synthetic data sets we considered. A log Bayes factor of
close to zero means that neither model is preferred, while a log Bayes
factor of magnitude at least 2—i.e., one model is at least a hundred
times more likely than the other—is commonly considered decisive

Table 1 | Molecular distribution moments

Moment Value

〈K〉 aθ
κ

μN 〈K〉/β

μM 〈K〉/γ

σ2
N � μN

μN θ
κ +β

σ2
M � μM

μM θ
κ + γ � β

κ +β � κ +β+ γβ+ γ

Cov(XN,K)
hKi θ
κ +β

Cov(XM,K)
hKi θ
κ + γ � β

κ +β

Cov(XN, XM)
hKi θ

ðκ +βÞðκ + γÞ � κ +β+ γβ+ γ

RN(τ) e�βτ + CovðXN ,KÞ
σ2
N

e�κτ�e�βτ½ �
β�κ

RM(τ) e�γτ +β CovðXN ,XMÞ
σ2
M

e�βτ�e�γτ½ �
γ�β +β CovðXM ,KÞ

σ2
M

× e�βτ

ðβ�γÞðβ�κÞ +
e�γτ

ðγ�βÞðγ�κÞ +
e�κτ

ðκ�βÞðκ�γÞ

h i
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evidence that one model is superior, and will be used as our criterion
for distinguishability.

Because we expect that model distinguishability primarily
depends on distribution ‘shape’ (e.g., Poisson-like or negative bino-
mial-like), and because shape appears to be controlled by where a
parameter set resides in the two-dimensional space depicted in Fig. 2,
we chose 100 parameter sets that uniformly cover this space. Para-
meters which do not strongly control distribution shape (the average
transcription rate, splicing rate, and degradation rate) were held fixed.

For each parameter set, we generated 100 synthetic data sets, and
averaged the corresponding log Bayes factors over them to account
for sampling noise (Fig. 3a). We varied the number of cells per syn-
thetic data set, and computed Bayes factors using (i) full joint dis-
tributions, (ii) nascent distributions only, and (iii) mature distributions
only. As expected, distinguishability is higher when data sets have
more cells, when multimodal data is used, and when the data are
overdispersed rather than Poisson-like. Data from ≈ 1000 cells is
required for the models to be distinguishable in most of parameter
space. Usingmultimodal data insteadofnascent ormature counts only
can improve distinguishability by about an order of magnitude
(Fig. 3b) on average. Changing the ground truth model (here, CIR) or
values of the parameters held fixed (〈K〉, β, γ) does not qualitatively
change the results (Supplementary Fig. 6).

We would also like each model to be individually discriminable
from ‘trivial’models; one advantage of using Bayes factors to quantify
discriminability here is that they automatically penalize model com-
plexity. Using the same data sets, we compared each model with the
constitutive and mixture models, and found generally strong distin-
guishability (Fig. 3c), with particularly high Bayes factors when com-
paring against the constitutive model.

How different are the predictions of the Γ-OU and CIR models
when they are maximally distinguishable? For the parameter set with
the maximum log Bayes factor, we found that the predicted distribu-
tions are still visually alike (Fig. 3d). This illustrates that, while prob-
abilistic inference using whole distributions may succeed at
performing model discrimination, many naïve approaches, such as
those based on moments or single marginals, may fail.

Accurate parameter recovery is possible
Even if one candistinguishbetween the two noisemodels, it is possible
that the biophysically interesting parameters controlling transcription
rate variation (e.g., κ and θ) cannot be precisely inferred from steady-
state RNA count data. In fact, ambiguity is fairly expected, since qua-
litative behavior only strongly depends on certain parameter ratios
near limiting regimes (see Fig. 2 and Section 2.5 in the Supplementary
Note). For example, when the gain ratio θ/(θ + a) is small, each model
predicts Poisson-like RNA count distributions, which are not very
sensitive to the value of κ.

To illustrate the conditions under which parameter recovery
appears to be possible, we performed an in silico parameter recovery
experiment with two parameter sets: one which is overdispersed, as
transcriptomic data tends to be, and another which is very Poisson-
like. For each parameter set, a noise-free synthetic data set of 1000
cells was generated from the Γ-OU model, and then a Bayesian para-
meter recovery analysis was performed to construct a posterior dis-
tribution of parameters that could have generated the data. One
advantage of a Bayesian approach is that, in addition to obtaining a
point estimate of the most likely parameter set given the data, one
obtains a measure of uncertainty from the spread of this distribution.

We find that, in the typical scenario (overdispersed data), the
posterior is fairly tight in both the qualitative regime space and in the
original parameter space (Fig. 3e). Both κ and θ are fairly identifiable,
allowing us to be optimistic that it is possible to infer biophysical
parameters related to transcription rate variation from single-cell data.
In the pessimistic scenario (Poisson-like data), model predictions
appear to be ‘sloppy’ with respect to κ, as expected, yielding a broad
distribution of possible κ and θ values.

Multimodal count distributions in sequencing datasets suggest
distinct modes of transcriptional regulation
Even if the Γ-OU and CIRmodels can be distinguished and fit to data in
principle, can they be distinguished and fit in practice? Real tran-
scriptomic data feature additional noise due to technical errors69, and
possibly confounding influences due to phenomena like cell growth
and division70. One can also face serious model misspecification

Fig. 3 | Model distinguishability and parameter inference. a Log Bayes factors
show models are distinguishable in most of parameter space. Plotted are the
average log Bayes factors capped at 2 (a common threshold for decisive evidence
in favor of one model). b Models are often strongly distinguishable. A slice of the
1000 cell row of the previous plot (without the cap at 2) for a moderate value of κ/
(κ + β + γ). Using both nascent and mature data is better than using either indivi-
dually, usually by at least an order ofmagnitude. c It is easy to distinguish the Γ-OU
and CIR models from trivial models. Same axes as in (b). Discriminability of Γ-OU
andCIRmodels versus Poissonandmixturemodels for a somewhat small value ofκ
(κ/(κ + β + γ) = 0.1), where discriminability is expected to be difficult. dNascent and

mature marginal distributions for the Γ-OU (red) and CIR (blue) models for a
maximally distinguishable parameter set. Histograms show synthetic data (5000
cells), while the smooth lines show the exact results. e Bayesian inference of noise
model parameters.We sampled the posterior distribution of the parameters of the
Γ-OUmodel (assuming it is known that β = 1, γ = 1.7, and 〈K〉 = 10), given a synthetic
data set of 1000 cells. Posteriors are presented in both the qualitative regimes
space, and in terms of the original parameters. For very Poisson-like data, pos-
teriors are broad in both spaces, because κ is no longer identifiable. MAP: mode of
posterior, avg: average of posterior, true: true parameter values.
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problems, where one finds that even though onemodel fits better than
others, none of them fit particularly well.

To show that thesemodels may be observed and distinguished in
real datasets, we analyzed single-cell transcriptomic data with tens of
thousands of genes from the glutamatergic neurons of four mice71

(31,649 genes after pseudoalignment yielding unspliced and spliced
RNA counts72,73). Because neurons generally do not grow or divide,
their gene expression dynamics should not be confounded by the
effects of cell growth and division. To guard against spurious conclu-
sions related to both technical noise and model misspecification, we
used a multi-step filtering procedure based on neuron subtypes from
a single mouse dataset to choose genes to examine (“Methods” and
Section 8 in the Supplementary Note).

We fit the Γ-OU and CIR models to the 80 genes that passed the
filtering step (Fig. 4a) to data from fourmice, using gradient descent to
find themaximum likelihoodparameter set, andusing likelihood ratios
for model selection. We discarded all results with absolute log-
likelihood ratios above 150, as they appeared to reflect failure to
converge to a satisfactory optimum (Supplementary Figs. 8–37). The
likelihood ratios for the remaining 73 genes are depicted in Fig. 4b
(points). To ensure that the likelihood ratios we obtained were not
distorted by the omission of uncertainty in estimates, or potentially
suboptimal fits, we further fit twelve of the genes using a Bayesian
procedure like the one used in Fig. 3e, demonstrating the distribution
of Bayes factors in the same axes (horizontal markers).

The predictions from the coarse filter were largely concordant
with the results from the full model, suggesting that it is effective for
selecting genes of interest from transcriptome-wide data. The model
assignments were typically consistent among datasets. Although
orthogonal targeted experiments are necessary to identifywhether the
proposed models effectively recapitulate the live-cell transcriptional

dynamics, the reproducibility of the findings suggests directions and
candidate genes for such investigations. Finally, the Bayes factorswere
largely quantitatively consistent with the likelihood ratios, suggesting
that the approximations made in the gradient descent procedure do
not substantially degrade the quality of the statistical results. However,
we did observe several discrepancies between likelihood ratios and
Bayes factors, confirming that the more computationally facile gra-
dient descent procedure does not perfectly recapitulate the full
Bayesian fit (cf. results for Ccdc39 and Birc6), possibly due to sub-
stantial omitted uncertainty in some genes’ parameters.

Five example fits are depicted in Fig. 4c, with the corresponding
gene names color-coded according to the best-fit model (red: Γ-OU,
blue: CIR, purple: mixture). The results for all genes and datasets are
shown in Supplementary Figs. 8–37. Model discrepancies mostly
appear to be due to differences in probability near distribution peaks.
Interestingly, only either the nascent marginal or mature marginal
exhibits obvious visual differences between model fits in some of the
genes depicted here, further motivating the use of multimodal data.

The location of each best-fit parameter set in the qualitative
regimes space is shown in Fig. 4d. Most Γ-OU fits exist in the top right
corner, suggestingweare effectively fitting a standardgeometric burst
model in these cases. Nonetheless, there are a number of genes for
which the parameter sets reside somewhere in the center, indicating
that the full complexity of the Γ-OU or CIR models is necessary to
describe the corresponding data.

The likelihood ratio procedure yields results that are (i) similar to
the distribution shapes observed in the raw data, up to possible
numerical errors; (ii) broadly consistent with the predictions from the
reducedmodel fit, although some discrepancies do occur, particularly
for ‘mixture-like’ genes that exhibit higher identifiability under the full
model; (iii) qualitatively consistent between datasets; and (iv) largely,
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Fig. 4 | Genes from comparable single-cell RNA sequencing datasets can be
consistently assigned to a particular biophysical model of transcription. a By
fitting models in the limiting regimes and calculating model Akaike weights,
visualized on a ternary diagram, we can obtain coarse gene model assignments
(colors: regimes predicted by the partial fit; red: Γ-OU-like genes; blue: CIR-like
genes; violet:mixture-like genes; gray: genesnot consistently assigned to a limiting
regime). b Likelihood ratios for selected genes are consistent across biological
replicates, and favor categories consistent with predictions (colors: regimes pre-
dicted by the partial fit; points: likelihood ratios; horizontal line markers: Bayes

factors; vertical lines: Bayes factor ranges; Bayes factor values beyond the plot
bounds have been omitted. n = 4 biologically independent animals, with 5343,
6604, 5892, and 4497 cells per animal). c The differences between model best fits
are reflected in raw count data (title colors: predicted regimes; lines: model fits at
maximum likelihood parameter estimates; line colors: models; histograms: count
data). d Non-distinguishable genes tend to lie in the slow-reversion and high-gain
parameter regime; distinguishable genes vary more, but tend to have relatively
high gain (colors: predicted regimes, large dots: genes illustrated in panel (c).
Genes with absolute log-likelihood ratios above 150 have been excluded).
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but not perfectly, coherent with a full Bayesian procedure. Therefore,
the distributions associated with the proposed models can be dis-
tinguished inpractice. Further, thesedifferences canbeprobedusing a
range of tools, some more approximate and suited to genome-wide
exploratory analysis, others more statistically rigorous and suited to
detailed study of specific gene targets.

Discussion
We have introduced a class of interpretable and tractable models of
transcription, and characterized the properties of two biologically
plausible members of that class. Our results foreground several con-
siderations for experimental design and modeling in modern tran-
scriptomics. Interpretable stochastic models encode mechanistic
insights, and motivate the collection of data necessary to distinguish
betweenmechanisms. A variety of stochastic differential equations can
describe a variety of biophysical phenomena. Through the methods
explored in the current study, they can be coupled to models of
downstream processing and used to generate testable hypotheses
about RNA distributions. Therefore, our SDE–CME framework can
guide experiments to parametrize and distinguish between biologi-
cally distinct models of transcription.

The results suggest that single-cell RNA sequencing data may be
sufficiently rich to enable Bayesian model discrimination. We analyzed
four biological replicates and identified genes that demonstrated visible
differences between the twomodels’fits, whichmay imply differences in
the underlying regulatory motifs. Interpreting the specific biochemical
meaning of the findings is challenging without accounting for features
which have been omitted in the discussion thus far, such as technical
noise and additional complexities in downstream processing of RNA. In
Section9 in theSupplementaryNote,wediscuss howthemodelsmaybe
extended to account for such phenomena.

The dramatic effect of dynamic contributions suggests that sim-
ple noise models need to be questioned. The slow-reversion regime
assumed by the mixturemodel, which presupposes that the evolution
of parameters is substantially slower than RNA dynamics, is attractive
but potentially implausible. The parameter set we use to illustrate the
slow-reversion regime (see Supplementary Table 5) has a noise time
scale κ−1 an order of magnitude longer than degradation, yet still
produces distributions that noticeably deviate from themixturemodel
in their tail regions (Supplementary Figs. 2 and 3). The lifetime of a
human mRNA is on the order of tens of hours74. Therefore, using a
mixture model is formally equivalent to postulating a driving process
with an autocorrelation time of weeks. In practice, if the noise time
scale is assumed tobeon the order of hours to tens of hours, it is useful
to explore non-stationary effects, especially if the analysis focuses on
tail effects47. Our SDE–CME tools facilitate this exploration.

The collection and representation of multimodal data are parti-
cularly fruitful directions for experimental design. Even if individual
marginals are too similar to use for statistics, joint distributionsmaybe
able to distinguish between mechanisms. Aggregating distinct mole-
cular species as a single observable (i.e., modeling the variable X =
XN + XM) neglects biologically important75–77 regulatory processes of
splicing and export buffering. Further, as demonstrated in Fig. 3d,
marginal distributions may be insufficiently distinct to identify one of
two competingmodel hypotheses, evenwith perfect knowledge of the
stationary distribution, autocorrelation, and chemical parameters. The
bioinformatic barriers to generating full gene-specific splicing graphs
based on uncharacterized and infrequent intermediate isoforms are
formidable. However, the analytical solutions easily accommodate
suchdata, by solving slightlymorecomplicated versions of theODEs in
Eqs. (14) and (16) (as discussed previously50 and summarized in Sec-
tion 9 in the Supplementary Note). Therefore, the deliberate collection
of multimodal data is a natural direction for the rational and model-
guided planning of high-throughput sequencing experiments.

The identical analytical results for the models’ lower moments
underscore the need to consider full distributions of molecular spe-
cies. Although moment-based estimates are useful for qualitative
comparisons, and computationally efficient for large bioinformatics
datasets, they are insufficient for resolving distinctions even between
relatively simplemodels68. Fits to simulated and synthetic data suggest
that joint distributions provide considerably more statistical power
than marginals.

In studying the Γ-OU and CIR models, we found and validated
several distinct asymptotic regimes. Both models recapitulate the
constitutive andmixturemodels in the slow-driving limit (κ very small).
However, in the limit of bursty production (κ large and θ large), they
produce qualitatively different behaviors: the Γ-OU model yields geo-
metric bursts of transcription, whereas the CIR model yields inverse
Gaussian driving (see Section 5.3 in the Supplementary Note) with an
infinite number of bursts in each finite time interval. We explicitly
solved the inverse Gaussian-driven system and computed the gen-
erating function, filling an apparent lacuna78 in the quantitative finance
literature. Discrepancies between the models motivate the quantita-
tive investigation of the effects of jump drivers on the molecule dis-
tributions, as even this preliminary study shows that they produce
drastically different tail behaviors. Further, we identified a fast-mean-
reversion, mean-field regime with rapid fluctuations (κ very fast),
which yields effectively constitutive behavior.

The mathematical methods detailed in the Supplementary Note
bear further mention, as they can be substantially generalized. The
solution for the Γ-OU model given in Section 3.2 exploits an iso-
morphism between the CME and the underlying driving SDE50. How-
ever, this relation is not practical to apply to broader classes ofmodels.
As shown in Section 3.3, the path integral method can recapitulate the
solution, with robust performance under wider classes of driving
processes. More generally, stochastic path integral and physics-
inspired methods have recently proven useful for obtaining analy-
tical solutions to relatively complicated stochastic models45,53,79,80. As
discussed in Section 3.1, we take this opportunity to explore the
diversity of solution methods and emphasize useful unifying themes.

Interestingly, certain superficially different models of regulation
can be described by the samemodels. We have motivated the SDEs by
endogenous mechanisms, localized to a single cell. However, these
models can also describe exogenous variability, such as the transport
of regulators into and out of a cell. For example, the mean-reversion
term in Eq. (4) can model passive equilibration with an extracellular
medium, while the noise term canmodel active transport into the cell.
The formof thenoisecoarsely encodes thephysicsof the transport: if a
regulator is introduced in bursts (e.g., by vesicle transport), the reg-
ulator’s concentration can be described by a Γ-OU process, whereas if
it is introducedby a constant-rate transporter, its concentration can be
described by a CIR process. This interpretation is intriguing in light of
extensively characterized gene co-expression patterns observed in
cultured cells81–83. Inspired by these results, we propose that the tool-
box of SDE–CME models can achieve a mechanistic, yet tractable,
treatment of co-expression, modeling the concentration of a multi-
gene regulator by a continuous stochastic process.

The availability of numerical solvers suggests natural directions
for future study. So far, we have treated the case of transcription rates
with time-independent parameters at steady state. However, if the
parameters vary with time, it is straightforward to adapt the numerical
routines to produce full time-dependent distributions for even more
general drivers with a combination of stochastic and deterministic
effects. This extension provides a route to explicitlymodeling the non-
stationary behavior of systems with relatively rapid driver time scales,
such as differentiation pathways and the cell cycle. Conversely, the
stochastic simulations designed for this study can be easily adapted to
describe systemswith complex phenomena, such as protein synthesis,
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reversible binding, and diffusion, which are intractable by analytical
approaches in all but the simplest cases.

As we have shown, fine details of transcription—including DNA
mechanics and gene regulation—may have signatures in single-cell
data, and a model-based, hypothesis-driven paradigm may help iden-
tify them. Just as microscopes permit biologists to see beyond their
eyes when inspecting a plate of cells, so too can mathematical tools
allow them to extract finer insight from the same transcriptomic data.

Methods
The Supplementary Note contains comprehensive derivations and
descriptions of analytical procedures. A complete list of major tech-
nical results is presented in Section 2. The Γ-OU and CIR models are
fullymotivated and solved in Section 3.Moments and autocorrelations
are derived in Section 4. Limiting cases are derived in Section 5.
Simulation details and validation of our exact results are presented in
Section 6. Brief summaries of certain aspects of this work covered
more fully in the supplement, and important miscellaneous informa-
tion, are provided below.

Notation
A complete guide to our mathematical notation is presented in Sec-
tion2.2 in the SupplementaryNote. Themolecular species of interest are
nascent transcripts N and mature transcripts M. Their respective
counts are denoted by random variables XN and XM. The gene locus
produces N with a time-dependent rate K(t) =Kt, described by a sto-
chastic process. Therefore, the probability density of the system is given
by P(XN= xN,XM= xM,Kt∈ [K,K+dK], t), i.e., the density associated with
finding the system in a statewith xNmolecules ofN , xMmolecules ofM,
and a transcription rate of K at time t. Having introduced this rather
formal notation, we use a shorthand that elides the random variables.

Model definitions
The Γ-OU and CIR models are mathematically defined via master
equations, which describe how probability flows between different
possible states. In particular,

dPðxN , xM ,K , tÞ
dt

=CME+FPE, ð18Þ

FPEΓ�OU = � ∂
∂K

½ðaθ� κKÞP�+a
X1
n= 2

ð�θÞn ∂
nP

∂Kn , ð19Þ

FPECIR = � ∂
∂K

½ðaθ� κKÞP�+ κθ ∂
2ðKPÞ
∂K2 : ð20Þ

The CME term is identical for both models, and encodes tran-
scription, splicing, and degradation reactions as in the constitutive
model67 (see Section 2 in the Supplementary Note). However, the
Fokker-Planck equation (FPE) terms beyond first order, which encode
transcription rate variation, are different.

Analytically solving the Γ-OU and CIR models
The Γ-OUmodel can be analytically solved using previous results for the
n-step birth-death process coupled to a bursting gene. This approach
exploits the fact that the source species of such a system has a Poisson
intensity described by the Γ-OU process, and is fully outlined in Sec-
tion 3.2 in the Supplementary Note. We set up a system with a bursting
gene coupled to a 3-step birth-death process, characterized by the path
graph+!a B× T 0 !

κ N !β M!γ +, where B ~Geom with mean θ/κ.
The stochastic process describing the Poisson intensity of T 0 is

precisely the Γ-OU process84. This implies that the joint distribution of
the downstream species coincides with the system driven by Γ-OU
transcription. The generating function of SDE-driven system can be

computed using the solution of the bursty system, reported in Eq. (13),
whereU0(s; uN, uM) =A0e

−κs +A1e
−βs +A2e

−γs can be computed by solving
Eq. (14):

A2 = uM
β

β� γ
κ

κ � γ
,

A1 =
κ

κ � β
uN � uM

β
β� γ

� �
,

A0 = � A1 � A2:

ð21Þ

The CIR model is solved using a state space path integral repre-
sentation of P(xN, xM,K, t) which combines a path integral representa-
tion of the CME59 with a more conventional continuous state space
path integral. The Γ-OU model can also be solved using this method,
along with a plethora of other discrete-continuous hybrid models.

Analytically computingmoments and autocorrelation functions
Themaster equation satisfied by P(xN, xM,K, t) can be recast as a partial
differential equation (PDE) satisfied by ϕ(uN, uM, s, t) (see Section 3 in
the Supplementary Note):

∂ϕ
∂t

= uN
∂ϕ
∂s

+ βðuM � uNÞ
∂ϕ
∂uN

� γuM
∂ϕ
∂uM

+aθs � κs
∂ϕ
∂s

+ f ðsÞ,
ð22Þ

f Γ�OUðsÞ= a
X1
n = 2

θnsn, ð23Þ

f CIRðsÞ= s2κθ
∂ϕ
∂s

: ð24Þ

By taking certain partial derivatives of the above PDEs, we can
recover ODEs satisfied by moments and autocorrelation functions.
These can then be straightforwardly solved to compute them.

Obtaining RNA count distributions from analytical solutions
The aforementioned analytical solutions to eachmodel are in the form
of generating functions. Tonumerically obtain predicteddistributions,
we first compute the generating function (Eq. (12)) by numerically
solvingODEs and integrating the results (i.e., using Eqs. (13) and (14) or
Eqs. (15) and (16)). Next, we take an inverse fast Fourier transform48,85.
To avoid artifacts, the ODEs must be evaluated for a sufficiently fine
grid of gN and gM on the complex unit sphere.

Stochastic simulation
Stochastic simulations can verify our analytical results and enable
further facile extensions to SDE-driven systems that are otherwise
analytically intractable. Because our models involve no feedback, we
split this problem into two parts: first, we simulate the continuous
stochastic dynamics of the transcription rate K(t), and then we simu-
late the discrete stochastic dynamics of the nascent and mature RNA
using a variant of Gillespie’s direct method86. This approach requires
evaluating reaction waiting times for time-varying transcription rates.
For the Γ-OUmodel, we computed these times exactly via the Lambert
W function. For theCIRmodel,weused a trapezoidal approximation to
the integral of the reaction flux.

To ensure that all regimes of interest are verified, we chose six
parameter sets to test: four of these lie in the extreme limits shown in
Fig. 2, and two lie in intermediate regimes. We performed 104 simula-
tions for each parameter set, with β = 1.2 and γ = 0.7. The trajectories
were equilibrated until a putative steady-state time Tss. Afterward, the
simulations were left to run until Tss + TR to enable the computation of
autocorrelations. The parameters as well as values of Tss and TR are
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reported in Supplementary Table 5. The implementation details and
simulation results are given in Section 6 in the Supplementary Note.

Data processing
We used four independent mouse datasets generated by the Allen
Institute for Brain Science71,87. We pseudoaligned the raw reads to a
combined intronic/exonic mm10 mouse genome reference using kal-
listo∣bustools, yielding spliced and unspliced count matrices72,88. We
used the default bustools filter to remove low-quality cells. To obtain
relatively homogeneous cell types, we did not recluster the data.
Instead, we used pre-existing cell type annotations, removing all cells
with fewer than 104 total molecules.

Filtering single-cell transcriptomic data
The filtering procedure used data from a single mouse (see Section 8
in the Supplementary Note), and involved the following steps. We
selected a series of moderate- to high-abundance glutamatergic cell
subtypes (L2/3 IT, L5 IT, L6 IT, L5/6 NP, and L6 CT, taken from sample
B08). Genes whose expression levels were too low (μN, μM ≤0.01, or
maxðXNÞ,maxðXMÞ≤ 3) or too high (maxðXNÞ,maxðXM Þ≥400) were
removed, leaving 3677 genes. Next, to find genes which are poten-
tially well-described by the Γ-OU and CIR models, we fit the three
computationally simpler overdispersed limiting models depicted in
Fig. 2 using the Monod package73. Within Monod, the SciPy imple-
mentation of L-BFGS-B was used to perform gradient descent89 and
obtain maximum likelihood estimates for the three-parameter
reduced models. We selected genes most consistently assigned to
each model (Fig. 4a) according to their Akaike weights90. This step
identified genes that appeared to be reproducibly described by each
model class, and provided a tentative basis for out-of-sample pre-
dictions. Finally, we restricted our analysis to the best-fit 35 genes in
each category, as quantified by themaximum rank of the chi-squared
statistic observed across the five subtype datasets. This filtering step
was applied to avoid contributions due to model misspecification or
poor convergence, and focus on the genes that best agreed with the
regimes of interest. The preliminary analysis produced 35 genes of
interest for the Γ-OU-like and CIR-like categories and 10 genes for the
mixture-like category.

Fitting SDE–CME models to simulated and single-cell tran-
scriptomic data
The SciPy implementation of L-BFGS-B was used to perform gradient
descent89 and obtain maximum likelihood estimates for the four-
parameter SDE–CME models. To control for potential failure to con-
verge, we omitted all results with log-likelihood ratios with magnitude
above 150 from visualization in Fig. 4. All fits to raw data are shown in
Supplementary Figs. 8–37. Fits with large likelihood ratios typically
corresponded topoorfits tooneor bothof themodels, possiblydue to
numerical issues. The Python package PyMC3 was used to sample the
parameter posteriors, using the non-gradient-based Markov chain
Monte Carlo sampler DEMetropolisZ91. Synthetic data inference used a
uniform prior, four chains, 1000 burn-in iterations, and 12,000 sam-
pling iterations. Biological data inference used a uniform prior, one
chain, and 1000 iterations.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Publicly available data were downloaded from the NeMO archive. The
metadata were obtained from http://data.nemoarchive.org/biccn/grant/
u19_zeng/zeng/transcriptome/scell/10x_v3/mouse/processed/analysis/
10X_cells_v3_AIBS/. Raw FASTQs were obtained from http://data.
nemoarchive.org/biccn/grant/u19_zeng/zeng/transcriptome/scell/10x_

v3/mouse/raw/MOp/. Pre-built genome references were obtained from
the 10× Genomics website, at https://support.10xgenomics.com/single-
cell-gene-expression/software/downloads/latest. The FASTQ files were
used to generate loom files with spliced and unspliced count matrices.
These count matrices are available in the Zenodo package 10.5281/
zenodo.726232892. The results of the fits generated with the Monod
package, the SDE gradient descent fit, and the MCMC fit are available at
https://github.com/pachterlab/GVFP_2021, as well as the Zenodo pack-
age 10.5281/zenodo.726232892. All synthetic data, generated using cus-
tomstochastic simulation code, aswell as the simulationparameters, are
deposited in the GitHub and Zenodo repositories92.

Code availability
Single-cell RNA sequencing data were pseudoaligned using kallisto∣-
bustools 0.26.0, wrapping kallisto 0.46.2 and bustools 0.40.0. Dataset
filtering, reduced model fits, and Akaike information criterion com-
putation were performed using Monod 0.2.4.0. MCMC parameter
inference was performed using PyMC3 3.11.4, dependent on Theano-
PyMC 1.1.2. Data input/output were performed using loompy 3.0.7.
Numerical procedures, such as gradient descent and quadrature, were
performed using SciPy 1.4.1 and NumPy 1.21.5. The algorithms were
implemented in the framework of Python 3.7.12. All code is available at
https://github.com/pachterlab/GVFP_2021 and the associated Zenodo
package 10.5281/zenodo.726232892. The GitHub and Zenodo reposi-
tories include scripts used to construct a mouse genome reference,
pseudoalign datasets, and generate all figures. They are modular: the
analysis can be restarted at a set of intermediate steps. The outputs of
certain steps, viz. pseudoaligned count matrices, results of theMonod
pipeline, the list of genes of interest, results of the gradient descent
procedure, and results of the Bayes factor computation procedure can
be recomputed, or loaded in based on files available in the reposi-
tories. Synthetic data generated by simulation, as well as the routines
used to generate the data, are available in the repositories. The CIR
simulation is implemented in Python 3.7.12. The Gamma-OU simula-
tion was developed usingMATLAB 2020a, and executed in the Python
wrapper for Octave, using versions oct2py 5.4.3 and octave-
kernel 0.34.1.
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