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Path sampling of recurrent neural networks
by incorporating known physics

Sun-Ting Tsai1,2, Eric Fields3,4, Yijia Xu1,2,5, En-Jui Kuo1,5 & Pratyush Tiwary 2,3

Recurrent neural networks have seen widespread use in modeling dynamical
systems in varied domains such as weather prediction, text prediction and
several others. Often one wishes to supplement the experimentally observed
dynamics with prior knowledge or intuition about the system. While the
recurrent nature of these networks allows them to model arbitrarily long
memories in the time series used in training, it makes it harder to impose prior
knowledge or intuition through generic constraints. In this work, we present a
path sampling approach based on principle ofMaximumCaliber that allows us
to include generic thermodynamic or kinetic constraints into recurrent neural
networks.We show themethod here for a widely used type of recurrent neural
network known as long short-term memory network in the context of sup-
plementing time series collected from different application domains. These
include classicalMolecular Dynamics of a protein andMonteCarlo simulations
of an open quantum system continuously losing photons to the environment
anddisplayingRabi oscillations. Ourmethod can be easily generalized to other
generative artificial intelligence models and to generic time series in different
areas of physical and social sciences, where one wishes to supplement limited
data with intuition or theory based corrections.

Artificial neural networks (ANNs) and modern-day Artificial Intelli-
gence (AI) seek to mimic the considerable power of a biological brain
to learn information from data and robustly perform a variety of tasks,
such as text and image classifications, speech recognition, machine
translation, and self-driving cars1–9. In recent years, ANNs have been
shown to even outperform humans in certain tasks such as playing
board games and weather prediction10–12. Closer to physical sciences,
ANNs have been used to make predictions of folded structures
of proteins13, accelerate all-atom molecular dynamics (MD)
simulations14–17, learn better order parameters in complex molecular
systems18–21, and many other exciting applications. While the possible
types of ANNs is huge, in this work we are interested in Recurrent
Neural Networks (RNNs). These are a class of ANNs that incorporate
memory in their architecture allowing them to directly capture tem-
poral correlations in time series data22,23. Furthermore, RNN

frameworks such as long short-term memory (LSTM) neural
networks24 can account for arbitrary and unknown memory effects in
the time series being studied. These features have made RNNs very
popular for many applications such as weather, stock market predic-
tion and dynamics of complex molecular systems6,12,25,26. In such
applications, the assumption of independence between data points at
different time steps is also invalid, and furthermore events that
occurred at an arbitrary time in the past can have an effect on future
events6,12,23,26.

In spite of their staggering success, one concern applicable to
RNNs and ANNs in general is that they are only able to capture the
information present in their training datasets, unless additional
knowledge or constraints are incorporated. Since a training dataset is
limited by incomplete sampling of the unknown, high-dimensional
distribution of interest, this can cause a model to overfit and not
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precisely represent the true distribution27. For instance, in the context
of generalizing and extrapolating time-series observed from finite
length simulations or experiments, partial sampling when generating a
training dataset is almost unavoidable. Thismay come fromonly being
able to simulate dynamics on a particular timescale that is not long
enough to completely capture characteristics of interest28 or simply
thermal noise. This could then manifest as a misleading violation of
detailed balance29, and a RNN model trained on such a time-series
would dutifully replicate these violations. In such cases, enforcing
physics inspired constraints corresponding to the characteristics of
interest when training an RNN-based model is critical for accurately
modeling the true underlying distribution of data.

Given the importance of this problem, numerous approaches
have been proposed in the recent past to add constraints to LSTMs,
which we summarize in Sec. 2.2. However, they can generally only deal
with very specific types of constraints, complicated further by the
recurrent or feedback nature of the networks30–32. In this work we
provide a generalizable, statistical physics based approach to add a
variety of constraints to LSTMs. To achieve this, we use ideas of path
sampling combined with LSTM, facilitated through the principle of
Maximum Caliber. Our guiding principle is our previous work26 where
we show that training an LSTM model is akin to learning path prob-
abilities of the underlying time series. This facilitates generating a large
number of trajectories in a controlled manner and in parallel, that
conform to the thermodynamic and dynamic features of the input
trajectory. From these, we select a sub-sample of trajectories that are
consistent with the desired static or dynamical knowledge. The bias
due to sub-sampling is accounted for using the Maximum Caliber
framework33 by calculating weights for different possible trajectories.
A new roundof LSTM is then trained on these sub-sampled trajectories
that in one-shot combines observed time series with known static and
dynamical knowledge. This framework allows for constrained learning
without incorporating an explicit constraint within the loss function.

We demonstrate the usefulness of our approach by adding ther-
modynamic and kinetic constraints to several problems, including a
3-state Markov model, a synthetic peptide α-aminoisobutyric acid 9
(Aib9) in all-atom water and an open quantum system continuously
dissipating photons to the environment. Irrespective of the origin of
the dynamics, the approach developed here, which we call Path Sam-
pling LSTM, is shown to be capable of blending prior physics based
constraints with the observed dynamics in a seamless manner. Apart
from its practical relevance, we believe the Path Sampling LSTM
approach also provides a computationally efficient way of exploring
the trajectory space of generic physical systems, and investigating how
the thermodynamics of trajectories changes with different
constraints34.

Results
Recapitulating long short-term memory (LSTM) networks
In this work, we use long short-term memory (LSTM) networks24,26 to
generated trajectories conforming to prior knowledge. We first sum-
marize what LSTMs are. These are a specific class of RNNs that work
well for predicting time series through incorporating feedback con-
nections whereby past predictions are used as input for future
predictions24. We have shown in ref. 26 that we can let a simple lan-
guage model built upon LSTM learn a generative model from time
series generated from dynamical simulations or experiments per-
formed upon molecular systems of arbitrary complexity. Such a time
series used can be denoted as {χ(t)}, where χ 2 R is a one-dimensional
order parameter corresponding to some collective properties of a
higher-dimensional molecular system and t denotes time. χ is dis-
cretized into N states represented by a set of N-dimensional binary
vectorsor one-hot encoding vectorsv(t). Theseone-hot vectors have an
entry equalling one for the representative state and all the other
entries are set to zeros. In ref. 26, we also introduced the embedding

layer from language processing into the LSTM architecture to learn
molecular trajectories. The embedding layermaps the one-hot vectors
v(t) to a M-dimensional densely distributed vector x(t) via

xðtÞ =ΛvðtÞ ð1Þ

where Λ is the embedding matrix and serves as a trainable look-up
table. The time series of the dense vectors x(t) is then used as the input
for LSTM.

A unique aspect of LSTMs is the use of a gating mechanism for
controlling the flowof information35,36. It uses x(t) as input to generate a
L-dimensional hidden vector h(t), where L is called the RNN or LSTM
unit and h(t) is called the hidden unit. The x(t+1) and h(t) are then used as
the inputs for the next time step following the equations of forward
propagation as described in the Supplementary Information (SI). The
hidden state h(t) at each time step is also mapped to a final output
vector ŷðtÞ through a dense layer. This final output ŷðtÞ is then inter-
preted as the probability for any state to happen as obtained through
minimizing the loss function J defined below:

J = �
XT�1

t =0

vðt + 1Þ � ln ŷðtÞ ð2Þ

where T is the length of the input time series26.

Previous approaches to add constraints to LSTM networks and
their limitations
A naive way of applying constraints when training LSTMs is incorpor-
ating a termwithin the loss function in Eq. (2)whose value decreases as
the model’s adherence to the constraint increases. This approach has
been successfully applied for instance in the context of 4-D flight tra-
jectory prediction30. A limitation of this naive approach is that the
desired constraint must have an explicit mathematical formulation
parameterized by the RNN’s raw output, so that the value of the reg-
ularization term in the constraint can be adjusted through training. In
the case of LSTMs, the raw output of the model passed through a
softmax layer is equivalent to the probability of a future event condi-
tioned on an observed past event. Formulating mathematical con-
straints solely in terms of such conditional probabilities has been done
for specific constraints30 and can be very challenging in general.
Alternative more nuanced approaches to enforcing constraints in
LSTMs have also been employed specific to the particular application.
For example, when applying LSTMs to generate descriptions of input
images, ref. 31 constrained part of speech patterns to match syntacti-
cally valid sentences by incorporating a part of speech tagger, that tags
words as noun, verb etc. within a parallel LSTM language model
architecture. The success of this approach relies on being able to
reliably introduce more information to the model through the pre-
dictive part of the speech tagger. In applying LSTMs to estimating
geomechanical logs, ref. 32 incorporated a physical constraint by
adding an additional layer into the LSTM architecture to represent a
known intermediate variable in physical models. The success of this
approach as well relies on utilizing a known physical mechanism
involved in the specific engineering problem.

Our approach: path sampling LSTM
The approaches described in Section ”Previous approaches to add
constraints to LSTM networks and their limitations”while useful in the
specific contexts for which they were developed, are not generally
applicable to different constraints. For instance, when combining
experimental time series formolecular systemswith known theoretical
knowledge, the constraints are often meaningful only in an ensemble-
averaged sense. This per definition involves replicatingmany copies of
the same system. With dynamical constraints involving rates of tran-
sitions, the problem is arguably even harder as it involves averaging
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over path ensembles. Our statistical physics based approach dealswith
these issues in a self-contained manner, facilitated by our previously
derived connections between LSTM loss functions and path entropy26.

Our key idea behind constraining recurrent neural networks with
desired physical properties is to sample a subset from predicted tra-
jectories generated from the trained LSTM models. The sampling is
performed in a way such that the subset satisfies desired thermo-
dynamic or dynamic constraints. For a long enough training set, we
have shown in our previous work26 that LSTM learns the path prob-
ability, and thus a trained LSTMgenerates copies of the trajectory from
the correct path ensemble. In other words, the final output vector ŷðtÞ

will learn how to generate PΓ ≡ P(x(0)…x(T)), where PΓ is the path prob-
ability associated to a specific path Γ in the path ensemble character-
izedby the input trajectory fed to the LSTM.Theprinciple ofMaximum
Caliber or MaxCal33,37,38 provides a way to build dynamical models that
incorporate any known thermodynamic or dynamic i.e. path-
dependent constraints into this ensemble. Per MaxCal33, one can
derive PΓ by maximizing the following functional called Caliber:

C =
X
Γ

PΓ ln
PΓ

PU
Γ

�
X
i

λi
X
Γ

siðΓÞPΓ � �si

 !
ð3Þ

where λi is the Lagrangemultiplier associated to the i-th constraint that
helps enforce path-dependent static or dynamical variables si(Γ) to
desired path ensemble averaged values �si. With appropriate normal-
ization conditions for probabilities, maximizing Caliber in Eq. (3)
relates the constrained path probability P*

Γ to the reference or
unconstrained path probability PU

Γ as follows:

P*
Γ / e�

P
i
λ*i siðΓÞPU

Γ
ð4Þ

where the similar derivation for continuous time can be found using
variational principle in Ref. 38.

From Eq. (4), it is easy to show that for two dynamical systems
labeled A and B that only differ in the ensemble averaged values for
some j-th constraint being �sAj and �sBj , then their respective path

probabilities for some path Γ are connected through:

PB
Γ / e�Δλj sj ðΓÞPA

Γ ð5Þ

where Δλj = λ
B
j � λAj .

With this formalism at hand, we label our observed time series as
the system A and its corresponding path probability as PA

Γ . This time
series or trajectory has some thermodynamic or dynamical j-th
observable equaling �sAj . On the basis of some other knowledge coming
from theory, experiments or intuition, we seek this observable to
instead equal �sAj . In accordance with ref. 26 we first train a LSTM that
learnsPA

Γ . Our objective now is to train a LSTMmodel that can generate
paths with probability PB

Γ with desired, corrected value of the con-
straint. For this we use Eq. (5) to calculate Δλ. This is implemented
through the following efficient numerical scheme. We write down the
following set of equations:

�sBj =
P
Γ
PB
Γ sjðΓÞ

=
P

k2Ωsj ðΓk Þe
�Δλj sj ðΓk ÞP

k2Ωe
�Δλj sj ðΓk Þ

ð6Þ

where Ω is the set of labeled paths sampled from the path probability
PA
Γ . By solving for Δλj from Eq. (6) we have the sought PB

Γ . In practice,
this is achieved through the procedure depicted in Fig. 1, where the
LSTM model trained with time series for the first physical system is
used to generate a collection of predicted paths with a distribution
proportional to path probability PA

Γ . A re-sampling with an appropriate
estimate of Δλj is then performed to build a subset. This value is
obtained by computing the right hand side of the second line in Eq. (6)
over the resampled subset such that correct desired value of the
constraint is obtained. This subset denotes sampling from the desired
path probability PB

Γ and is used to re-train a new LSTM that will now
give desired �sBj . The method can be easily generalized to two or more
constraints. For example, in order to solve for two constraints, we can
rewrite Eq. (5) as

PB
Γ / e�Δλj sj ðΓÞ�Δλk sk ðΓÞPA

Γ ð7Þ

where Δλj and Δλk are two unknown variables to be solved with two
equations for the ensemble averages �sBj and �sBk .

Henceforth, we refer to the unconstrained version of LSTM as
simply LSTM and the constrained version introduced here as ps-LSTM
for “path sampled” LSTM. Note that ps-LSTM is only used to avoid
confusion with the unconstrained LSTM. Therefore, we do not change
the actual infrastructure,mathematics of the LSTMprocedure, or even
claim that ps-LSTM is a new variant of LSTM.

Numerical examples
In what follows, we will provide illustrative examples to elaborate the
protocol developed in Section “Our approach: Path sampling LSTM”.
Here we show how we can constrain static and dynamical properties
for different time series. Without loss of generality, we restrict our-
selves to time series obtained from MD and Monte Carlo (MC) simu-
lations of different classical and quantum systems. The protocol
should naturally be applicable to time series from experiments such as
singlemolecule force spectroscopy26. These include (1) time series of a
model 3-state system following Markovian dynamics, and (2) non-
Markovian dynamics for the synthetic peptide Aib9 undergoing con-
formational transitions in all-atom water. The non-Markovianity for
Aib9 arises because we project the dynamics of the 14,241-dimensional
system onto a single degree of freedom. Our neural networks were
built using Pytorch 1.1039. Further details of system/neural network
parametrization as well as training and validation details are provided
in the SI.

Subset

Re-train LSTM with subset

P(s(Γi)) ∝ e−Δλs(Γi)

LSTM

Predict

Path sampling

s(Γ1)

s(Γ2)

s(Γ3)

Time series

Train

Fig. 1 | Procedure for path sampling LSTM. This schematic plot shows the
workflow for constraining some static or dynamical variable s(Γi), given an
unconstrained LSTMmodel. The workflow begins with generating numerous pre-
dicted trajectories from the constraint-free LSTMmodel. The corresponding vari-
ables that we seek to constrain can be calculated from the predicted trajectories
and are denoted by s(Γ1), s(Γ2), s(Γ3) in the plot.We then performpath sampling and
select a smaller subset of trajectories in a biased manner that conforms to the
desired constraints, with a probability PðsðΓiÞÞ / e�ΔλsðΓiÞ, where Δλ is solved by the
Eq. (6). The subset is then used as a new dataset to train the LSTM model.
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Three-state Markovian dynamics
For the first illustrative example, we apply LSTM to a 3 state model
system following Markovian dynamics for moving between the
3 states. This system, comprising states labeled 0, 1 and 2 is illustrated

in Fig. 2(a). Figure 2(a) also shows the state-to-state transition rates for
the unconstrained system. We then seek to constrain the average
number of transitions per unit time between states 0,1 and 1,2 as
defined below

hNi= 1
Ltraj

ðN0$1 +N1$2Þ ð8Þ

where Ltraj is the length of trajectory andN0↔1 andN1↔2 are the number
of times a transition occurs between states 0 and 1 or states 1 and 2
respectively. This example can then be directly compared with the
analytical result Eq. (18) derived in the Appendix, thereby validating
the findings from ps-LSTM.

Given the transition kernel shown in Fig. 2 (a), we generate a time
series that conforms to it. Following Sec. 2.3, we train ps-LSTM using
this time series and the constraint on 〈N〉 described in Eq. (8). As per
theMarkovian transition kernel we have 〈N〉 =0.0894,whilewe seek to
constrain it to 0.13. In other words, given a time series we want to
increase the number of transitions per unit time between 2 of the 3
pairs of states. In Fig. 2 (b), we show the transition kernel obtained
from the time series generated by ps-LSTM via direct counting. In
particular, we would like to highlight that when enforcing a faster rate
of state-to-state transitions sampling to increase the average number
of nearest neighbor transitions, the transition matrix of ps-LSTM pre-
dictions show correspondingly increased rates of transition without
completely destroying the original kinetics of the system. Using Eq.
(19) provided in Appendix, we can predict the new transition kernel
given by ps-LSTM. The comparison is also shown in SI.

Fig. 2 | 3 state Markovian system: LSTM, ps-LSTM and analytical predictions.
Here we show results of applying ps-LSTM to the 3 state Markovian system where
we constrain 〈N〉. In (a), we provide the input transition kernel without constraints.
In (b), we show the transition kernel obtained from ps-LSTM generated time-series
via direct counting, where we achieve a 〈N〉 close to the target 〈N〉=0.13. The cal-
culated values for 〈N〉 are shown in (c) for LSTM as the average of 100 predictions
and for ps-LSTM as the average of 200 predictions. The error represents “error
percentage” which is defined as the difference between ps-LSTM result and target
value 〈N〉=0.13 divided by the target value.

Fig. 3 | Comparing predictions at 200ns for different values of the symmetry
parameter κ. Here we show that ps-LSTM learns the correct symmetry κ. The
original training data is a 20ns Aib9 trajectory generated from MD simulation at
500K, where (a) shows its calculated free energy profile has an asymmetry of
population between L andR helix states. The snapshots of L andR configurations at
χ = 5.2 and χ = − 5.31 are also displayed as insets above the free energy profile.
Training LSTMmodel with this asymmetric data and using it to predict what would
happen at 200ns leads to the result shown in (b),where the LSTMpredictions retain
and even enhance the undesired free energy asymmetry while the free energies

calculated from a longer 200ns trajectory shows the desired symmetric profile. In
(c), we show that ps-LSTM trained as described in Section ”Equilibrium constraint
on Aib9” can not only predict the correct symmetry, but also deviate less from the
true free energy calculated from the reference 200ns data. The table in (d) shows
the κ values defined in Eq. (9) for different trajectories. The free energy profiles and
the κ values in (b) and (c) are averaged over 10 independent training processes. The
corresponding error bars are calculated as standard errors and filled with trans-
parent colors.
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MD simulations of α-aminoisobutyric acid 9 (Aib9)
For our second, more ambitious application, we study the 9-residue
synthetic peptide α-aminoisobutyric acid 9 (Aib9)40,41. Aib9 undergoes
transitions between fully left-handed (L) helix and fully right-handed
(R) helix forms. This is a highly collective transition involving con-
certed movement of all 9 residues. During this global transition, there
are many alternate pathways that can be taken, connected through a
network of several lowly-populated intermediate states40,41. Thismakes
it hard to find a good low-dimensional coordinate along which the
dynamics can be projectedwithout significantmemory effects40,41. The
problem is further accentuated by the presence of numerous high-
energy barriers between the metastable states that result in their poor
sampling when studied through all-atom MD. For example, through
experimentalmeasurements42 and enhanced sampling simulations40,41,
the achiral peptide should show the same equilibrium likelihood of
existing in the L and R forms. However, due to force-field
inaccuracies40 and insufficient sampling, MD simulations typically are
too short to obtain such a result. In the first type of constraint, which
enforces static or equilibriumprobabilities, we show how our ps-LSTM
approach can correct the time series obtained from such a MD simu-
lation to enforce the symmetric helicity. In a second type of dynamical
constraint, we show howwe can enforce a desired local transition rate
between different protein conformations.

Equilibrium constraint on Aib9
We first discuss results for enforcing the constraint of symmetric
helicity on Aib9, shown in Fig. 3. Here we have defined the free energy
F = � kBT lnP, where kB and T are the Boltzmann constant and tem-
perature, and P is the equilibrium probability calculated by direct
counting from a respective time series. In Fig. 3 (a)–(c) we have pro-
jected free energies from different methods along the summation χ of
the 5 inner dihedral anglesϕ, which allows us to distinguish the L andR
helices. We define χ �P7

i = 3 ϕi and note that χ ≈ 5.4 and χ ≈ − 5.4 for L
and R respectively41. In order to have a reference to be compared with,
we perform the simulation at temperature 500K under ambient pres-
sure. As can be seen from Fig. 3(b), we are able to see a symmetric free
energy profile after 100ns.

For LSTM to process the time series for χ as done in Ref. 26, we
first spatially discretize χ into 32 labels or bins. To quantify the sym-
metry between left- and right-handed populations, we define a sym-
metry parameter κ:

κ =
Pi= 15

i=0 PiPi= 32
i= 16 Pi

ð9Þ

where Pi denotes equilibrium probability for being found in bin label i.
For symmetric populations we expect κ ≈ 1. In Fig. 3 (a), we show the
free energy from the first 20ns segment of time series from MD. This
20ns time series is then later used to train our LSTM model. It can be
seen that the insufficient amount of sampling results in an incorrect
asymmetry of populations betweenL andRhelix stateswith κ ≈0.5.We
first train a constraint-free LSTM on this trajectory following Ref. 26
with which we generate a 200ns time series for χ. Figure 3(b) shows
how a longer 200ns MD trajectory would have been sufficient to
converge to a symmetric free energy with κ ≈ 1. However, Fig. 3(b) also
shows thepopulation along χmeasured from the LSTMgenerated time
series, which preserves the initially asymmetry that it witnessed in the
original training trajectory.

In Fig. 3(c) we show the results from using ps-LSTM where we
apply the constraint κ = 1. For this, we let the constraint-free LSTM
model generate 200 indepdendent time series of length 20ns long and
used the method from Section “Our approach: Path sampling
LSTM” 2.3 to enforce the constraint κ = 1 for 200ns long time series.We
calculate κ values from the different predicted time series and use
Eq. (6) to solve for an appropriate Δλ needed for 〈κ〉 = 1. We then

perform path sampling with a biased probability∝ e−Δλ to select 10
trajectories from the 200 predictions. These 10 time series were then
used to construct a subset and train a new ps-LSTM. As can be seen in
Fig. 3(c), ps-LSTM captures the correct symmetric free energy profile
giving κ = 1. Interestingly, ps-LSTM also significantly reduces the
deviations from the reference free energy at ∣χ∣ > 10. In the SI, we have
also provided the eigenspectrum of the transition matrix and shown
that relative to LSTM, ps-LSTM pushes the kinetics for events across
timescales in the correct direction. In Fig. 3(d), we show the κ calcu-
lated from the trajectories of 20ns and 200nsMD simulations of Aib9
and from the predicted 200ns trajectories of LSTM and ps-LSTM.

Dynamical constraint on Aib9
Our second test is performed to enforce a dynamical constraint i.e. one
that explicitly depends on the kinetics of the system43. Specifically, we
constrain the ensemble averaged number of nearest neighbor transi-
tions per unit time 〈N〉 along the sum of dihedral angle χ introduced in
Section “Equilibrium constraint on Aib9”. 〈N〉 is defined as

hNi= 1
Ltraj

X
i

Ni,i+ 1 ð10Þ

where Ltraj is the length" of trajectory, andNi,i+1 equals 1 if the values of
χ at times i and i + 1 are separated only by a single bin, otherwise 0. The
nearest neighbor transitions can be seen as a quantification of diffu-
sivity when comparing the form of transition rate matrix from the
discretized Smoluchowski equation to the one derived from principle
of Maximum Caliber43. In Fig. 4(a), we show a free energy profile cal-
culated froma 100nsMDtrajectory. As canbe seenhere, this trajectory
is long enough to give symmetric populations for the L and R helix
states. We find that the averaged number of nearest neighbor transi-
tions 〈N〉 for this trajectory is approximately 0.4. In Fig. 4(a) we have
also shown the free energy from a 200ns longMD simulationwhich we
use later for comparison. In Fig. 4(b), we show trajectory generated
from training constraint-free LSTM26 which follows the same Boltz-
mann statistics and kinetics as the input trajectory.

In order to constrain 〈N〉, we generate 800 independent time
series from the constraint-free LSTM, and sample a subset consisting
of 10 timeseries.With an appropriateΔλ, our path-sampled subsets are
constrained to two different 〈N〉 values and used for training two dis-
tinct ps-LSTMs. In Fig. 4(c) and (d), we have shown the free energy
profiles corresponding to ps-LSTMpredictions trained on subsets with
〈N〉 =0.38 and 〈N〉 =0.42. As can be seen, compared to the actual
200ns MD simulation of Aib9, the potential wells of L and R helix
become narrower for 〈N〉 =0.38 and wider for 〈N〉 =0.42, which is the
direct effect of changing fluctuations via nearest-neighbor transitions.
Moreover, the potential barriers along χ become higher for 〈N〉 =0.38
and become lower for 〈N〉 =0.42. In Fig. 4(e), we provide the averaged
transition times τ from L to R helix states and vice versa, where we can
also see that the transition times do become longer for smaller 〈N〉 and
shorter for larger 〈N〉, which is the expected result for decreased and
increased diffusivities respectively43,44.

To summarize so far, the results from constraining 〈N〉 show that
through the path sampling method, ps-LSTM extrapolates the phe-
nomena affected by changing small fluctuations, which was not pro-
vided in the training data set.

Open quantum system
In this sub-section, we will demonstrate ps-LSTM applied to an open
quantum system consisting of a single two-level atom with a single-
mode cavity initially populated by seven photons, where the photons
continuouslydissipate to the environment via a certain dissipation rate
(see Fig. 5). Simulating the dynamics of general open quantum systems
has been a long-lasting challenge. As a result, several methods such as
quantum jump approach and associated path sampling techniques
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have been proposed45–47. Here, we combine the quantum jump
approach48,49 and ps-LSTM to generate quantum trajectories that
provide correct expectation values of generic observables.

The example we study here is intrinsically hard because the sys-
tem has a Hilbert space with at least 16 dimensions yet we only let
LSTM see the individual quantum trajectories of a 1-dimensional
observable. Although the quantum trajectories produced by Monte
Carlo simulation in the full Hilbert space are Markovian, the dimen-
sionality reduction from high-dimensional Hilbert space to the
observable results in non-Markovian trajectories. In this example, we
will let LSTM learn a dissipative observable which is the number of
photons in the system.Wewill then showhowwe canuse our ps-LSTM
method to learn to predict trajectories with dissipation rate γ =0.2
given training data consisting of only trajectories generated from
simulations with γ = 0.1.

The time-evolution of an open quantum system with dimH=N is
governed by Lindblad Master equation50–53:

_ρ = � i
_
½H,ρ�+

XN2�1

i = 1

γi LiρL
y
i �

1
2

Lyi Li,ρ
n o� �

: ð11Þ

where ρ is the density matrix, H is a Hamiltonian of the system, and Li
are commonly called the Lindblad or jump operators of the system. γi
is the dissipation rate corresponding to jump operator Li. For con-
venience, we choose the natural unit where ℏ = 1. For a large system,
directly solving (11) is a formidable task. Therefore, an alternative
approach is to performMonte Carlo (MC) quantum-jumpmethod54–56,

which requires us to generate a large enough number of trajectories to
produce correct expectation values of observables. Our training data
for LSTM is therefore a set of quantum jump trajectories generated by
the Monte Carlo quantum jump algorithm. Here we consider a simple
two-level atomcoupled to a leaky single-mode cavity through a dipole-
type interaction57:

Hsys =ω1a
ya+ω2σ + σ� + gðσ�a

y +aσ + Þ ð12Þ

where the a, a† and σ−, σ+ are the annihilation and creation operators of
photon and spin, respectively. Suppose above system is surrounded in
a dissipative system which induces single-photon loss of cavity. In the
quantum jump picture, we can write down following non-Hermitian
Hamiltonian

H =Hsys �
iγ
2
aya ð13Þ

where there is only one dissipation channel which is called photon
emission with jump operator

ffiffiffi
γ

p
a.

We use the built-in Monte Carlo solver in the QuTiP package48,49

with a pre-selected dissipation rate γ to generate a bunch of quantum
jump trajectories of the cavity photon number nt. It is important to
note that although the Lindbladian and quantum jump method are
Markovprocesses inHilbert space, the quantum jump trajectories ofnt
learnedbyLSTMdonot need tobeMarkovian in a coarse-grained state
space 〈n〉.

Fig. 4 | Comparing predictions at 200ns for different values of the dynamical
constraint 〈N〉. In this plot, we show the free energy profiles calculated from (a) the
100ns trajectory in the training set, (b) both the actual 200ns trajectory and direct
prediction from LSTM, (c) the reference 200ns trajectory and ps-LSTM prediction
with constraint of nearest-neighbor (NN) transitions 〈N〉 =0.38, and (d) the refer-
ence200ns trajectoryandpredictionwith constraint 〈N〉 =0.42. The table in (e) lists
the kinetic constraint 〈N〉 calculated fromcorresponding trajectories. The averaged
transition time τR→L and τL→R in picoseconds were calculated by counting the

numbers of transitions in each trajectory. For reference MD, the error bars were
calculated by averaging over transition time in a single 100ns or 200ns trajectory,
while for the predictions from LSTM and ps-LSTM, the error bars were averaged
over 10 independent predictions with the transition time for each predicted tra-
jectory calculated in the same way as MD trajectories. The free energy profiles and
the first NN values 〈N〉 in (b)–(d) are averaged over 10 independent training pro-
cesses. The corresponding error bars are calculated as standard errors and filled
with transparent colors.
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In an approximate sense, the dissipation rate γ appears as a
parameter controlling the classically exponential decay of 〈nt〉:

hntitheory≈n0e
�γt ð14Þ

therefore, given the values of γ and t, we can estimate the corre-
sponding hntitheory. This hntitheory will later be used as the constraint
variable for ps-LSTM.

In general, the Lindbladian equation describes the time-evolution
of a N ×N matrix which is computationally challenging. However, the
averaged trajectory of the observables, i.e. 〈nt〉, is typically governed
by a set of differential equations whose number of coefficients ismuch
less than N2. Previous work58 has already demonstrated that standard
LSTM can learn the feature of decaying pattern from the averaged
trajectory 〈nt〉, while it is definitely more useful yet challenging for the
LSTM to learn the probabilistic model from the individual quantum
trajectories nt and generate the stochastic trajectories with the correct
expectation of the observable at every single time step since learning
such stochastic trajectories allows us to do ps-LSTM and generate
trajectories with a different dissipation rate.

Here we demonstrate how to apply ps-LSTM trained by individual
trajectories fromonedissipation rate to generate quantum trajectories
with another dissipation rate. The parameters of Hamiltonian Eq. (12)
areω1 =ω2 = 2π, and g = π

2. As what we did in the previous example, we
first spatially discretize nt, which is the trajectories generated from the
actual Monte Carlo quantum jump simulations with γ =0.1, into 20
bins. We then let LSTM learn such trajectories and generate a set of
predictions given only the starting condition of nt = 7, as shown in
Fig. 5(c). In Fig. 5(d), it can be seen that these predictions from LSTM
follow the correct evolution curve averaged from the actual Monte
Carlo quantum jump simulation with γ = 0.1. Next we constrain the
LSTMmodel to learn a different dissipation rate γ =0.2. In order to use
ps-LSTM to sample γ =0.2, we use Eq. (14) to estimate the corre-
sponding hni*t within the time interval t∈ (5, 7). Following the similar

spirit of s-ensemble34,59, we define a dynamical variable δn, where

δn=
1
Δt

XK
j = 1

Xt +Δt
s

k nj
s � hnsitheoryk2 ð15Þ

where 〈n〉theory is calculated fromEq. (14)with γ = 0.2.K is the number of
subsamples, which was chosen to be 2000. t = 5 and Δt = 2 are chosen
such that minimizing δn leads to a curve fit of exponential decay in
classical regime. The ps-LSTM is then performed by constraining
δn =0. Constraining LSTM to learn a different γ is very challenging if
we only let LSTM learn the averaged trajectory as in Ref. 58, since the
oscillating featurewithin the first 5 time units is a quantummechanical
effect and is hard to capture by simply changing γ.

However, by performing path sampling, we show that by con-
straining only the δn in classical regime, ps-LSTMproduced the correct
quantum dynamics it captures from the quantum jump trajectories,
which can be seen in Fig. 5(d). It is also worth noting that we actually
perform a more challenging task in the prediction, where we let LSTM
and ps-LSTM predict 5 time units more than the trajectories in the
training set. That said, LSTMandps-LSTMstill give thepredictionof 〈nt〉
for t > 20, wherein it captures that the cavity photon number has been
mostly dissipated and the averaged photon number does not change.

Discussion
In this work, we proposed a method integrating statistical mechanics
with machine learning in order to add arbitrary knowledge in the form
of constraints to the widely used long short-termmemory (LSTM) used
for predicting generic time series in diverse problems from biological
and quantumphysics. Thesemodels are trainedon available time series
for the systemat hand,whichoftenhave errors of different kinds. These
errors could arise from either poor sampling due to rareness of the
underlying events, or simply represent instrumentation errors. Using
high fidelity artificial intelligence tools26,60,61 to generate computation-
ally cheaper copies of such time series is then prone to preserving such
errors. Thus, it is extremely important to introduce systematic con-
straints that introduce prior knowledge in the LSTM network used to

Fig. 5 | Quantum jump trajectories generated fromps-LSTM. a Schematic of the
open quantum system we simulate. The system consists of a two-level atom sur-
rounded by the cavity, where the initial state is chosen to be ∣7i � ∣ "�. The cavity
photons not only experience interaction with the atom but also interact with the
environment via continuously dissipating photons to the environment. The system
can be described by the Hamiltonian written below the plot, where system
HamiltonianHsys is just Eq. (12) withω1 =ω2 = 2π.b Some representative trajectories
from the quantum jump simulations which we use to train LSTM and ps-LSTM.
cThe expectation value of number of photons 〈n〉 as a function of timeobtainedby

averaging over 2000 MC simulations with γ =0.1 (dashed red line) and 2000 pre-
dictions generated by LSTM (solid orange line). The inserted panel shows the dis-
tribution of the variance calculated over each trajectory, where the x-axis is the
variance and the y-axis is the corresponding probability.dThe expectation value of
number of photons 〈n〉 as a function of time obtained by averaging over 2000 MC
simulations with γ =0.2 (dashed red line) and 2000 predictions generated by ps-
LSTM (solid blue line). The inserted panel shows the distribution of the variance
calculated over each trajectory.
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replicate the time series provided in training. The recurrent nature of
the LSTM and the non-Markovianity of the time series make it hard to
impose such constraints in a trainable manner. For this, here our
approach involves path sampling method with the principle of Max-
imum Caliber, and is called ps-LSTM. We demonstrated its usefulness
on illustrative examples with varying difficulty levels and knowledge
that is thermodynamic or kinetic in nature. Finally, as ourmethod relies
only on data post-processing and pre-processing, it should be easily
generalized to other neural network models such as transformers and
others60,62, and for modeling time series from arbitrary experiments. In
principle, our method can also be applied to non-physical systems as
long as the distribution of path probability is known.Wewould also like
to emphasize that equations such as Eq. (4) which are the cornerstone
of this work, have been proposed previously in the literature for
instance in the context of the dynamics of glass-forming liquids and the
glass transition34. However, trajectory space is not easy todealwith, and
ourps-LSTMapproachprovides apracticalwayofnavigating this space.

Methods
In this section, we develop useful, exact results for constraining state-
to-state transitions in Markov processes that serve as useful bench-
marking. It has been shown that if constraining pairwise statistics,
maximizing Eq. (3) with appropriate normalization conditions yields
the Markov process63

P*
Γ =pi0

YT�1

k =0

pik ik + 1
ð16Þ

where pik ik + 1
are the time-independent transition probabilities defined

by theMarkov transitionmatrix. For such simpleMarkovian dynamics,
we can easily solve for the outcome transition kernel by theΔλ chosen.

Now we suppose we would like to adjust the frequency of tran-
sition from state m to state n. With Eq. (16), following Ref. 63, we can
rewrite Eq. (5) as

YT�1

k =0

pB
ik ik + 1

/ e�Δλ
PT�1

k =0
δik ,m

δik + 1 ,n
YT�1

k =0

pA
ik ik + 1

ð17Þ

where δij is the Kronecker delta, equalling 1 when i = j and 0 otherwise.
Therefore, it can then be shown that

pB
mn / e�Δλ � pA

mn ð18Þ

Eq. (18) with predetermined Δλ can be used to predict our numerical
results.

Based on Eq. (8) and the equations in the Appendix, we can ana-
lyze the difference in transition kernel:

pps�LSTM
mn / e

� Δλ
Ltraj

ðδm0δn1 + δm1δn0 + δm1δn2 + δm2δn1Þ � pLSTM
mn

ð19Þ

where Δλ we used is –56.1.

Data availability
All data used in this study are available through github.com/tiwarylab/
ps-LSTM.

Code availability
All code associatedwith thiswork is available at github.com/tiwarylab/
ps-LSTM.
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