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Full-spectrum nonmetallic plasmonic
carriers for efficient isopropanol
dehydration

Changhai Lu1,4, Daotong You2,4, Juan Li1, Long Wen1, Baojun Li 1,
Tuan Guo 2,3 & Zaizhu Lou 1

Plasmonic hot carriers have the advantage of focusing, amplifying, and
manipulating optical signals via electron oscillations which offers a feasible
pathway to influence catalytic reactions. However, the contribution of non-
metallic hot carriers and thermal effects on the overall reactions are still
unclear, and developing methods to enhance the efficiency of the catalysis is
critical. Herein, we proposed a new strategy for flexibly modulating the hot
electrons using a nonmetallic plasmonic heterostructure (named W18O49-
nanowires/reduced-graphene-oxides) for isopropanol dehydration where the
reaction rate was 180-fold greater than the corresponding thermocatalytic
pathway. The key detail to this strategy lies in the synergetic utilization of
ultraviolet light and visible-near-infrared light to enhance the hot electron
generation and promote electron transfer for C-O bond cleavage during iso-
propanol dehydration reaction. This, in turn, results in a reduced reaction
activation barrier down to0.37 eV (compared to 1.0 eV of thermocatalysis) and
a significantly improved conversion efficiency of 100% propylene from iso-
propanol. This work provides an additional strategy tomodulate hot carrier of
plasmonic semiconductors and helps guide the design of better catalytic
materials and chemistries.

As the second-largest petrochemical after ethylene, propylene iswidely
used inmany fields, especially in the formof polypropylene used in the
medical field1,2. In industry, propylene is manufactured via steam
cracking of light naphtha and fluid catalytic cracking of natural gas or
coal with high energy consumption3,4. However, the nonrenewable
nature of fossil fuels has forced people to explore the production of
propylene from a sustainable source (e.g., biomass)5–7. For example,
propylene can be produced from bioethanol via dimerization and
metathesis processes at high temperature (673–773 K), with Al2O3,
zeolites, nickel (II) 2-iminopyridine, etc., a as catalysts8,9. With the
development of carbohydrate fermentation for bioisopropanol
production10, a highly selective isopropanol dehydration reaction is
more attractive for propylene production. Gallium borates with

Brønsted acid sites were reported to show 98.3% conversion of iso-
propanol to 100% propylene at 573K11. Chen et al. studied the active
sites on the WOx/Pt (111) surface for the dehydration and dehy-
drogenation of isopropanol, demonstrating dominant dehydration
reaction on W3O9 clusters with an activation barrier of 1.23 eV12. How-
ever, all these reports showed that a high temperature was required to
active the catalysts and that the reactions were associated with high
activation barriers. It is imperative to develop miniature operated
solutions under mild conditions and to demonstrate highly efficient
and selective isopropanol dehydration for propylene production.

Metal nanoparticles with surface plasmon resonance (SPR) can
generate highly active hot electrons for chemical reactions13–16. Halas
et al. quantified the effects of the metallic plasmonic carrier and
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photothermal on the promotion of catalytic ammonia decomposition
via Cu-Ru, verifying the dominant role of hot carriers in boosting the
reaction17. Compared to noble metals, low-cost semiconductors with
heavy doping also exhibit SPR in the visible and near-infrared (NIR)
regions. Moreover, their abundant surface vacancies provide many
active sites for chemical reactions18–21. For example, plasmonic Bi2WO6

with oxygen vacancies close to W atoms exhibits SPR-dependent
methane generation during the CO2 reduction reaction18. WO3-x nano-
wires (NWs) with strong SPR in the visible-NIR spectral region have
been used to promote the Suzuki coupling reaction, hydrogen gen-
eration and CO2 reduction22–25. Recently, dehydration and dehy-
drogenation of ethanol were realized by using plasmonic WO3-x as a
catalyst driven by solar energy26,27, and Ma et al. constructed WO3-x/
carbon hybrids to enhance bioethanol dehydration for ethylene28.
However, the contribution of nonmetallic hot carriers and thermal
effects on catalysis are still unclear, and how to enhance the catalytic
efficiency of nonmetallic plasmonic carriers remains a challenging task.

Herein, we propose a new strategy for flexibly modulating hot
electrons using a nonmetallic plasmonic heterostructure synthesized
by controlling W18O49-NW growth on reduced graphene oxides (rGO),
in which the rGO can stabilize the surface oxygen vacancies of the
plasmonicW18O49-NWs to achieve strong SPR and providemore active
sites for photocatalytic isopropanol dehydration. Under full-spectrum
irradiation, ultraviolet light excited electron accumulation and
visible–NIR-excited SPR on heterostructure W18O49-NWs/rGO have a
synergy on enhancing hot electron generation, and which has been
demonstrated to play a dominant role in boosting isopropanol dehy-
dration by promoting electron transfer to break C–O bond in the
transition stare during dehydration, thus reducing the reaction

activation barrier to 0.37 eV (compared to 1.0 eV for thermocatalysis).
Therefore, the optimal W18O49-NWs/rGO-1% can catalyze isopropanol
dehydration to achieve nearly 100% propylene with a rate of
437mmol g−1 h−1, which is over 180-fold higher than that of thermo-
catalysis. This work provides a crucial strategy to modulate the non-
metallic hot carriers of plasmonic semiconductor and helps guide the
design of better catalytic chemistries.

Results
Structural and optical properties of nonmetallic plasmonic
heterostructures
Tungsten oxidesW18O49 with abundant oxygen vacancies and SPR were
chosen to construct the plasmonic heterostructures for catalysis. rGO
layers30 and plasmonic W18O49-NWs31 with a diameter of 10–15 nm and a
length of 1.5–2μm were synthesized as references (Fig. 1a, b). A GO
solutionwasmixedwith aWCl6 precursor in ethanol. After solvothermal
treatment, rGO with tungsten oxide grew on the surface as plasmonic
heterostructures. Figure 1c, d shows the morphologies of these hetero-
structures as fine NWs (5 nm in diameter) dispersed uniformly on rGO
layers. The high-resolution transmission electron microscopy (HRTEM)
image (Fig. 1e) shows a clear lattice spacing of 0.38 nm for theNWs (blue
area), which was assigned to the (010) facets of W18O49

29. Moreover, the
disordered atomic arrangements (orange area) indicate abundant oxy-
gen vacancies on the surface. The morphologies of W18O49-NWs/rGO
with different compositions are shown in Fig. S1. As the content of
rGO increased, theW18O49-NWsbecameuniformlydispersedon the rGO
layers, and their surface became covered by rGO. Further analysis using
high-angle annular dark-field STEM (HAADF-STEM) (Fig. 1f) shows
clear NWs loading on the rGO layers. EDS elemental mapping images
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Fig. 1 | Characterization of catalysts with various analysis techniques. a, b TEM
images of rGO and W18O49-NWs. c, d TEM, e HRTEM, f HAAD-STEM and g–j EDS
elements (W, O, C) mapping images of W18O49-NWs/rGO-1% heterostructures.

k UV–visible–NIR DRS of rGO, W18O49-NWs and W18O49-NWs/rGO-1%. l UV
irradiation-induced DRS varies of W18O49-NWs/rGO-1%. m EPR spectra of W18O49-
NWs and W18O49-NWs/rGO-1%.
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(Fig. 1g, j) show that the W and O atoms were mainly located on NWs,
while, the C atoms were mainly distributed on the layers. X-ray diffrac-
tion patterns (Fig. S2) show the crystal structures of the W18O49-NWs.
Their Raman spectra (Fig. S3) show two peaks located at 1580 and
1350 cm−1 corresponding to the G andD bands of rGO32. The G bandwas
assigned to the vibration of sp2-bonds, while, the D band was correlated
with defects derived from grain boundaries and vacancies33. The ID/IG
ratio was calculated to be 0.86, 1.00, and 1.15 for GO, rGO, and W18O49-
NWs/rGO-1%, respectively, implying more oxygen vacancies in the
heterostructure34.

The optical properties of the W18O49-NWs/rGO heterostructure
were investigated by UV‒visible–NIR diffuse reflectance spectroscopy
(DRS, Fig. 1k). The W18O49-NWs exhibited strong SPR in the visible-NIR
spectral region, caused by the electron oscillation35. The DRS of
W18O49-NWs/rGO-1%wasenhanced in the visible regiondue to the light
absorption of rGO, furthermore, their SPR band was enhanced and
slightly blueshifted because of the greater number of oxygen vacan-
cies. As the rGO content increased from 0.5 to 2wt%, the hetero-
structures showed a stronger SPR band (Fig. S4). More rGO covered
the W18O49-NWs, stabilizing the surface oxygen vacancies to generate
strong SPR but restricting surface active site exposure for catalysis.
Under UV light irradiation, their SPR band became stronger and
slightly blueshifted, and the strongest intensity was observed at 10 s
(Fig. 1l). These results indicate that UV-excitation can cause electron
accumulation for SPR modulation, and which can facilitate hot elec-
tron generation. The electron paramagnetic resonance (EPR) spectra
(Fig. 1m) showed that more oxygen vacancies were present on the
plasmonic heterostructure W18O49-NWs/rGO-1% 36–38. The molar pro-
portion of W5+ among tungsten atoms was detected by W 4 f XPS
spectra (Fig. S5) to be 11.5% and 17.1% for W18O49-NWs and W18O49-
NWs/rGO-1%, respectively, indicating moreW5+ was present in W18O49-
NWs/rGO-1% 39,40. The light-induced increase in W5+ was verified by the
in situ XPS measurement (Fig. S6), indicating photoelectron trapping
on plasmonicW18O49-NWs. In addition, their C 1sXPS spectra (Fig. S7a)
show thatmore C =O and C–Obonds are present inW18O49-NWs/rGO-

1%, indicating that W18O49-NWs and rGO may be connected via W-O-C
bonds. Moreover, oxygen vacancies and surface OH groups were
detected onW18O49-NWs/rGO-1% byO1sXPS spectra (Fig. S7b). Thus, it
was concluded that more oxygen vacancies on W18O49-NWs/rGO-1%
cause strong SPR and that UV excitation can modulate SPR, which can
boost hot electron generation under full-spectrum excitation.

Photocatalytic isopropanol dehydration reaction
Abundant oxygen vacancies on nonmetallic plasmonic W18O49-NWs/
rGO provide active sites for alcohol dehydration, therefore, their
photocatalytic performancewas tested by an isopropanol dehydration
reaction (Fig. 2a). First, 0.1mL of isopropanol was mixed with 5mg of
sample in a reaction chamber (100mL). Under full-spectrum irradia-
tion, W18O49-NWs/rGO-1% exhibited 109.4mmol g−1 propylene gen-
eration as a result of isopropanol dehydration in 15min (Fig. 2b), with
near 100% selectivity (Fig. S8), which is over 6-fold and 45-fold higher
than those of W18O49-NWs and rGO (18.1mmol g−1 and 2.4mmol g−1),
respectively. These results demonstrate that the main active sites for
the isopropanol dehydration reaction were located on W18O49-NWs.
The small diameter and good dispersion of W18O49-NWs on rGO can
provide more active sites for the isopropanol dehydration reaction
leading to greatly enhanced catalysis. The influence of their compo-
sitions on catalytic performance was investigated as shown in Fig. 2c,
S9. With rGO, the isopropanol dehydration reaction was dramatically
increased and W18O49-NWs/rGO-1% exhibited the optimal perfor-
mance, while, is the performance decreased as the rGO content
increased from 1 to 2wt%. The propylene generation rates were cal-
culated to be 12, 74.9, 398.2, 437.5, 321.6, and 147.6mmol g−1 h−1 for
rGO, W18O49-NWs, W18O49-NWs/rGO-0.5%, W18O49-NWs/rGO-1%,
W18O49-NWs/rGO-1.5% and W18O49-NWs/rGO-2%, respectively, with
near 100% selectivity. The isopropanol conversion efficiency was
estimated to be 2.3, 14.3, 76.1, 83.6, 61.5, and 28.2% in 15min, respec-
tively. rGO stabilized oxygen vacancies to enhance the SPR of W18O49-
NWs/rGO, promoting isopropanol dehydration for propylene. How-
ever,when the rGOcontentwas >1wt%, the surfaceofW18O49-NWswas

Fig. 2 | Photocatalytic isopropanol dehydration to propylene. a Diagram
depicting photocatalytic isopropanol dehydration in a reaction chamber.
b Propylene generation from isopropanol dehydration over rGO, W18O49-NWs,
W18O49-NWs/rGO-1% and without catalysts under full-spectrum irradiation.
c Propylene generation rates over various W18O49-NWs/rGO heterostructures. Bars
represent mean values ± SD. d Twelve cycles of isopropanol dehydration reactions

over 3 days. e Long term continuous isopropanol dehydration reaction for pro-
pylene (10 h). f Photocatalytic performance of W18O49-NWs/rGO-1% in several
alcohol dehydration reactions. g, h Isopropanol dehydration from isopropanol/
water and isopropanol/ethanol mixtures with various ratios, and i their conversion
efficiency and selectivity. The irradiation source was full-spectrum (200–1100nm)
light with an intensity of 200mW/cm2 supplied by a Xenon lamp.
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covered by rGO and the surface active site exposure was restricted for
catalysis. The stability of W18O49-NWs/rGO-1% during the isopropanol
dehydration reactionwas investigated by 12 recycles in 3 days (Fig. 2d)
and 10 h of continuous reaction (Fig. 2e), and their performance
showed no substantial decrease. The TEM image and XRD patterns of
W18O49-NWs/rGO-1% after photocatalysis also showed no obvious
changes (Fig. S10). Consequently, plasmonicW18O49-NWs/rGO-1%with
a strong SPR band and more active site exposure exhibited optimal
photocatalytic performance in the isopropanol dehydration reaction.

Considering that the bioproduction of isopropanol is generally
accompanied by ethanol in aqueous solution, the activity and selec-
tivity of plasmonic W18O49-NWs/rGO on the dehydration of different
alcohols were investigated, as shown in Fig. 2f. Under full-spectrum
light irradiation, n-propanol dehydration over W18O49-NWs/rGO-1%
exhibited 54.9mmol g−1 h−1 propylene generation, much lower than
that from isopropanol. Furthermore, the ethylene generation rate was
only 20.6mmol g−1 h−1 fromethanol dehydration and noproducts were
detected from glycerol, verifying the preferential performance of
W18O49-NWs/rGO-1% on catalytic isopropanol dehydration. In the case
of 1 vol% isopropanol/watermixtures (Fig. 2g), 1.15mmol g−1 propylene
was generated by W18O49-NWs/rGO-1% in 15min. It exhibited a 10-fold
enhancement to 11.2mmol g−1 from 10 vol% solution. Furthermore,
23.0 and 56.1mmol g−1 propylene were obtained from 20 and 50 vol%
aqueous solution, which were 20-fold and 50-fold higher than that
from a 1 vol% solution. The isopropanol conversion efficiency (Fig. 2i)
was calculated to be 88.1, 85.5, 86.0, and 85.8 for 1, 10, 20, and 50 vol%
aqueous solutions, respectively, with near 100% propylene generation.
For isopropanol/ethanol mixtures (Fig. 2h), 1.15, 11.3, 23.4, and
57.1mmol g−1 propylene was generated from 1, 10, 20, and 50 vol%
mixtures, respectively. The isopropanol conversion efficiency of these
mixtures (Fig. 2i) was calculated to be 85.8%, 88.1%, 86.5%, and 89.3%,
respectively. Furthermore, the selectivity of propylene generation was
dramatically improved from 15% (1 vol%mixture) to 75, 87, and 94% for

the 10, 20 and 50vol% mixtures, respectively. When isopropanol was
mixed with ethanol and water at a ratio of 1:1:8, over 85% of the iso-
propanol (Fig. S11) was converted to propylene with 99% selectivity in
15min. Consequently, the plasmonic W18O49-NWs/rGO-1% hetero-
structures exhibited preferential performance for photocatalytic iso-
propanol dehydration even in aqueous or ethanol mixtures.

Contributions of nonmetallic plasmonic carriers and thermal
effects in catalysis
Due to the nonradiative decay of plasmonic carriers,W18O49-NWs/rGO
generated a strong thermal effect causing a surface temperature
increase, which was detected by a thermal camera. UV‒Vis–NIR irra-
diation induced the surface temperature of W18O49-NWs/rGO-1% to
increase to 142.8 °C in 15min (Fig. 3a, S12), much higher than the 95 °C
of plasmonic W18O49-NWs (Fig. S13) and 77.4 °C of rGO (Fig. S14). The
higher photocurrent of W18O49-NWs/rGO-1% than that of W18O49-NWs
under full-spectrum

light irradiation indicates that somephotoelectrons transferred to
rGO (Fig. S15) underwent nonradiative decay for the photothermal
effect. Those results indicate that W18O49-NWs are the dominant con-
tributors and that rGO also partially contributes to the high photo-
thermal effect of plasmonic W18O49-NWs/rGO-1%. The W18O49-NWs/
rGO-1% heterostructure with strong SPR for plasmonic carriers and
thermal effect promoted isopropanol dehydration for propylene.
Different-light-irradiation-induced thermal effects on W18O49-NWs/
rGO-1%weredetected at 59.1, 77.2, 135.1, 104.9, 141.2, and 142.8 °C after
15min of UV, Vis, NIR, UV–Vis, Vis–NIR, and UV–Vis–NIR irradiation,
respectively, with a constant intensity of 200mWcm−2. Figures 3a,
S16–20 show that the plasmonic thermal effect ofW18O49-NWs/rGO-1%
was mainly caused by NIR-light excited SPR. The effect of different
light irradiation on the photocatalytic performance of W18O49-NWs/
rGO-1% was tested by the isopropanol dehydration reaction. The
propylene generation rates were 3.6, 3.2, 5.5, 9.4, 95.3, and
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437.5mmol g−1 h−1 for UV, Vis, NIR, UV‒Vis, Vis–NIR, and UV‒Vis–NIR
irradiation, respectively. (Fig. 3b, S21) Compared to NIR-irradiation,
Vis–NIR- and UV‒Vis–NIR-irradiation induced 17-fold and 79-fold
enhancement in isopropanol dehydration, demonstrating that the
thermal effect was not the dominant cause for the enhanced reaction.
UV-irradiation generated photoelectrons for trapping to enhance the
SPR of W18O49-NWs/rGO-1% (Fig. 1l) and facilitated hot carrier gen-
eration. Therefore, synergy between UV and Vis–NIR irradiation on
W18O49-NWs/rGO-1% greatly accelerated the isopropanol dehydration
reaction. The thermocatalytic performance of W18O49-NWs/rGO-1%
was tested at 143 °C in the dark, and the propylene generation rate was
only 2.6mmol g−1 h−1. The thermocatalytic and photocatalytic iso-
propanol dehydration reactions were compared, as shown in Fig. 3c,
and it is clear that the propylene generation rate was only improved
from 0.06 to 0.74μmol g−1 s−1 for thermocatalysis as the temperature
increased from 91.2 to 151.1 °C. The photocatalytic propylene genera-
tion rate was improved dramatically from 21.3 to 136.6μmol g−1 s−1,
which is over 184-fold higher than that of thermocatalysis. These
results demonstrate that the plasmonic thermal effect ofW18O49-NWs/
rGO-1% was not the key factor for the enhanced catalytic isopropanol
dehydration reaction.

To quantify the contribution of the plasmonic carrier in catalytic
isopropanol dehydration, the reaction rates were investigated by
varying the temperature under UV‒Vis–NIR-irradiation. Figure 3d
shows that the production rate of propylene over plasmonic W18O49-
NWs/rGO-1% increased as the surface temperature increased, much
faster than that of plasmonic W18O49-NWs and rGO. By the Arrhenius
equation k =Ae�Ea=RT (1), the apparent activation barrier (Ea) of the
isopropanol dehydration reaction was calculated to be 1.05, 0.75 and
0.58 eV for rGO, W18O49-NWs and W18O49-NWs/rGO-1% under
150mWcm−2 light irradiation, respectively (Fig. 3e). The lower Ea of
plasmonic W18O49-NWs/rGO-1% was attributed to its strong SPR with
more hot carrier generation. The effect of different light irradiations
on Ea was investigated in terms of the reaction rates, which were
measured by varying the light wavelength region with a constant
intensity of 150mWcm−2 (Fig. 3f). Their Ea values were calculated to be
1.0, 0.93, 0.88, 0.83, 0.79, 0.62 and 0.58 eV for dark, Vis, UV, NIR, UV‒
Vis, Vis–NIR and UV‒Vis–NIR irradiation, respectively (Fig. 3g). Com-
pared to UV, Vis and NIR irradiation, full-spectrum irradiation excited
the intrinsic band and SPR band of plasmonic W18O49-NWs/rGO
simultaneously, and the continuous electron accumulation enhanced
the SPR to boost hot carrier generation leading to the lowest Ea. The
intensity of incident light determined the plasmonic carrier generation
of W18O49-NWs/rGO, and its effect on the reaction rate was studied, as
shown in Fig. 3h. The reaction rate increased as the light intensity
increased from 50 to 200mWcm−2, and their corresponding Ea values
(Fig. 3i) were calculated to be 0.95, 0.82, 0.62, 0.52, and 0.37 eV,
respectively, showing a linear relation as a red fitting line. The domi-
nant contribution of monometallic plasmonic hot electrons to

enhanced catalysis was also demonstrated by ethanol and propanol
dehydration reactions (Fig. S22), and their Ea was reduced to 0.52 and
0.50 eV (compared to 1.22 and 1.18 eV for thermocatalysis), respec-
tively. This evidence is sufficient to demonstrate that the Ea was
determined by the hot electron. Consequently, the hot electron of
plasmonicW18O49-NWs/rGO-1%played a dominant role in boosting the
isopropanol dehydration reaction by reducing Ea.

Catalytic mechanism of the isopropanol dehydration reaction
The surface chemical states of W18O49-NWs/rGO-1% during photo-
catalytic isopropanol dehydration were monitored by in situ XPS mea-
surements. The in situ O 1s XPS spectra (Fig. 4a) showed that oxygen
vacancies (Ov) (531.6 eV) andhydroxyl (–OH) (532.6 eV) increased as the
light irradiation was time prolonged27, indicating that light induced
more oxygen vacancies to absorb H2O for more –OH28. Photoelectron
accumulation on plasmonic W18O49-NWs was verified by in situ W 4 f
XPS spectra (Fig. S6), and W5+ was increased from 17.1 to 24.6% in
W18O49-NWs/rGO-1% after 20min of light irradiation. More information
about isopropanol dehydration was obtained from the in situ C 1s XPS
spectra, and the enhanced peak at ~286.1 eV and new peak at ~283.1 eV
assigned to C–O and –CH– bonds41–43 verified the successful iso-
propanol absorption on W18O49-NWs/rGO-1%. Under light irradiation,
the intensity of the C–O bond weakened over time, indicating the
reduction of absorbed isopropanol (isopropanol*). Furthermore, a new
peak at ~285.5 eV assigned to sp2C appeared at 10min and became
stronger at 20min44, proving propylene generated from photocatalytic
isopropanol dehydration. The dehydration reaction pathway of iso-
propanol was investigated by in situ FTIR transmission spectra of
W18O49-NWs/rGO-1% under light irradiation. Peaks at ~1072, 1156, and
1251 cm−1 assigned to ν(C–OH), ν(C–O), and δ(C–O) vibrations, respec-
tively, were observed, as shown in Fig. 4b45, which resulted from
isopropanol* on plasmonicWO-NWs/rGO-1%. Upon irradiationwith full-
spectrum light, the intensity of those peaks decreased, suggesting the
C–O bond cleavage of isopropanol. Furthermore, the intense peak at
~955 cm−1 assigned to ν(=CH) became stronger, and anewpeak assigned
to ν(C=C) was observed at 1645 cm−1, which were attributed to the
intermediate of absorbed propylene (propylene*) generated from iso-
propanol dehydration45. Consequently, in situ XPS and FTIR spectra
clearly show that light irradiation can promote C–O bond cleavage of
isopropanol to boost the dehydration reaction for propylene.

Based on the above discussions and previous studies23, a possible
reactionmechanismof isopropanol dehydrationoverW18O49-NWswas
proposed, as described in Fig. 5. Surface oxygen vacancies of plas-
monicW18O49-NWs can absorb H2Omolecules to formOHmoieties as
Brønsted acid sites which are active in catalyzing isopropanol dehy-
dration for propylene12,28. When isopropanol molecules diffuse to the
surface of W18O49-NWs, they are coordinated to OH groups by
hydroxyl accepted a proton. Then, the dehydration transition state
occurs, in which the C–O bond is activated for cleavage at first state,

Fig. 4 | In situ spectroscopy analysis of samples during photocatalysis. a, b In
situ O 1s and C 1s XPS spectra, and c in situ FTIR transmission spectra of W18O49-

NWs/rGO-1% during the isopropanol dehydration reaction under full-spectrum
light irradiation.
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and subsequently the incipient water molecule mediates β-elimination
by accepting a proton from the Cβ-carbon, which donates a different
proton back to the active site of the W18O49 catalyst23,46. During the
reaction pathways, the transition state of C-O bond breaking is the
limiting step determining the dehydration reaction activation barrier
as described in Fig. 5. In the case of W18O49-NWs/rGO-1%, the Ea(D) of
thermocatalysis is estimated to be 1.0 eV in the dark. With abundant
oxygen vacancies, UV-excited electron transfer from the valance band
(VB) to the defect band (DB) close to the conduction band of plas-
monicW18O49 for accumulation facilitates the electron transfer during
the transition state of isopropanol dehydration, resulting in a low Ea(L)
of0.88 eV. The surfaceelectrons for SPR canbeexcitedbyVis-NIR light
to generate highly active hot electrons reducing Ea(L) to 0.62 eV.
However, the fast nonradiative decay of hot electrons causes a strong
thermal effect restricting hot electrons for enhanced catalysis. Under
full-spectrum irradiation, the UV-excited electrons have a continuous
injection from VB to DB enhancing SPR for hot electron generation,
furthermore, the decay of hot electrons is restricted for long lifetimes.
In this case, the electron transfer for C–O bond cleavage is greatly
promoted for a lowest Ea(L) of 0.37 eV, leading to the highest reaction
rate of isopropanol dehydration. Therefore, the nonmetallicplasmonic
W18O49-NWs/rGO heterostructure with full-spectrum-modulated SPR
can promote hot electron generation to reduce the reaction activation
barrier for enhanced photocatalysis.

Discussion
The dominant contribution of nonmetallic plasmonic carriers in
enhanced catalysis was demonstrated by constructing plasmonic
W18O49-NWs/rGO heterostructures for catalytic isopropanol dehydra-
tion reactions. The rGO was combined with plasmonic W18O49-NWs to
stabilize the oxygen vacancies for enhanced SPR; moreover, the UV-

excited intrinsic band of W18O49-NWs induces an electron accumula-
tion for their SPRmodulation. Therefore, the intrinsic band and SPR of
plasmonic W18O49-NWs/rGO heterostructures are excited simulta-
neously by full-spectrum irradiation to synergistically boost hot elec-
tron generation, which promotes electron transfer for C–O bond
cleavage during isopropanol dehydration, resulting in the lowest
activation barrier of 0.37 eV. Isopropanol dehydration to achieve
nearly 100% propylene occurred with a rate of 437mmol g−1 h−1, over
180-fold higher than thermocatalysis. Consequently, the flexibly
modulating SPR of plasmonic semiconductors opens a new door to
explore highly active plasmonic materials with enhanced hot carrier
generation for photocatalysis.

Methods
Catalyst preparation
The W18O49-NWs/rGO composite was synthesized by using a sol-
vothermalmethod. In a typical procedure, 150mgofWCl6 powder was
dissolved into 30mL of ethanol, and which was vigorously stirred to
obtain a yellow suspension. Subsequently, 0.75mL of GO solution
(2mg/mL) was added to the above solution. After vigorous magnetic
stirring for 15min, themixture was transferred to a 50mL Teflon-lined
stainless-steel autoclave. After solvothermal treatment at 180 °C for
24 h, the sample was separated from the solution. Before further use
and characterization, the sample was dried in a vacuum oven at 60 °C
for 12 h. W18O49-NWs/rGO samples with different compositions were
synthesized following the above experiment set using 0.375, 0.75,
1.125, and 1.50mL of GO solution, respectively.

Catalytic isopropanol dehydration reaction tests
A 5mg sample was plastered on a cover glass and then placed on the
bottom of the reaction chamber (100mL). Then, the chamber was
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Fig. 5 | Reaction mechanism and energy profile analysis. Detailed reaction
pathway of thermocatalytic and photocatalytic isopropanol dehydration on the
surface of plasmonic W18O49, and schematic energetics of the reaction activation
barrier (from step 2 to 3). Surface oxygen vacancies ofW18O49-NWs can absorbH2O
molecule to form OH as Brønsted acid sites. Step 1: The isopropanol molecule
diffuses to the W18O49 surface to be absorbed isopropanol (Isopropanol*); Step 2:
Isopropanol* is activated for the dehydration transition state with C–O bond
cleavage and water molecule elimination; Step 3: Isopropanol is dehydrated to be

absorbed H2O (H2O*) and propylene (Propylene*); Step 4: H2O* and Propylene* are
released from the W18O49 surface. The blue cycle inset at right side shows full-
spectrum-modulated plasmonic electron mechanism on W18O49. UV-excited elec-
tron transfer from the valence band (VB) to the defect band (DB), causing increased
electron density and enhanced surface plasmon resonance (SPR), furthermore, the
SPR is excited by Vis–NIR light generating hot electrons that can promote electron
transfer during the isopropanol dehydration transition state.
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sealed with thick quartz cover glass and degassed with pure nitrogen
for 20min. Subsequently, 0.1mL isopropanol solution was injected
into the reaction chamber and full-spectrum (UV‒Vis–NIR) light (Per-
fectlight, PLS-SXE300D) was irradiated for the reaction. The gaseous
products were detected by a gas chromatograph (Shimadzu, GC-
2014A) equipped with one TCD and two flame ionization detectors
(FID). Other photocatalytic reaction measurements followed the same
procedure with different light irradiation which was realized by using
different light-cutoff filters (UV: 200–400nm, visible: 420–780 nm,
Vis-NIR: >420 nm, NIR: >800 nm). The temperature of the reaction
chamberwas controlled by using a thermaloil bath. All light irradiation
was maintained at a constant intensity of 200mW/cm2.

Activation barrier calculation
The reaction activation barrier of isopropanol dehydration is calcu-
lated by the Arrhenius equation as follows:

lnk = lnA� Ea

RT
ð1Þ

where k is the reaction rate constant, A is the Arrhenius constant, Ea is
the activation barrier, R is the molar gas constant, and T is the surface
temperature of the catalysts. The surface temperature of the catalysts
was detected by a thermal camera (FLUKE TiS65 THERMAL IMAGER).

In situ FTIR measurement
The in situ FTIR transmission spectra were measured by an in situ
diffuse reflectance Fourier transform infrared spectrometer (Bruker
Tensor II FTIR NEXUS). Before the experiment, the sample was
degassed for 4 h at 150 °C. Then each samplewaspurgedwith nitrogen
for 1 h to blow out all the gases adsorbed on the samples. After that, a
mixed gas of 0.1mL isopropanol and water vapor was flowed into the
specimen chamber for another 30min to ensure sorption equilibrium
before irradiation. The FTIR transmission spectra of the sample were
recorded every 2min.

Catalyst characterization
The X-ray diffraction (XRD) patterns of the sample were obtained by a
Rigaku Rint-2500 diffractometer with Cu Kα radiation at a scanning
rate of 0.1° s−1. The morphologies were observed by transmission
electron microscopy (JEOL, 2100, operated at 100 kV) and high-
resolution TEM (JEM-3000F, operated at 300 kV). The high-angle
annular dark-field scanning TEM images were collected by a spherical
aberration corrected transmission electronic microscope (JEM-2100 F,
JEOL) equipped with double spherical aberration (Cs) correctors for
both the probe-forming and image-forming objective lenses. The
in situ XPS spectra were collected using an ESCALAB 250Xi+ analyzer,
with Al Kα (hv = 1486.6 eV) as the excitation source. EPR signals were
collected from a Bruker A300 spectrometer. Raman spectra were
obtained from a Raman microscope (HORIBA XPLORA PLUS) with a
532nm laser as the xcitation source. UV‒vis–NIR diffuse reflectance
spectra (DRS) were recorded by a UV‒vis/NIR spectrophotometer
(JASO V-570).

Data availability
All the data supporting the findings of this study are available within
the article and its Supplementary Information or from the corre-
sponding authors upon reasonable request. Source data are provided
with this paper.
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