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Prognostic and predictive value of a
pathomics signature in gastric cancer

Dexin Chen 1,2,6, Meiting Fu3,6, Liangjie Chi1,4,6, Liyan Lin5,6, Jiaxin Cheng1,
Weisong Xue1, Chenyan Long 1, Wei Jiang1, Xiaoyu Dong1, Jian Sui1,4, Dajia Lin1,4,
Jianping Lu5, Shuangmu Zhuo 2 , Side Liu 3 , Guoxin Li 1 ,
Gang Chen 5 & Jun Yan 1

The current tumour-node-metastasis (TNM) staging system alone cannot
provide adequate information for prognosis and adjuvant chemotherapy
benefits in patients with gastric cancer (GC). Pathomics, which is based on the
development of digital pathology, is an emerging field that might improve
clinical management. Herein, we propose a pathomics signature (PSGC) that is
derived from multiple pathomics features of haematoxylin and eosin-stained
slides. We find that the PSGC is an independent predictor of prognosis. A
nomogram incorporating the PSGC and TNM staging system shows sig-
nificantly improved accuracy in predicting the prognosis compared to the
TNM staging system alone. Moreover, in stage II and III GC patients with a low
PSGC (but not in those with a high PSGC), satisfactory chemotherapy benefits
are observed. Therefore, the PSGC could serve as a prognostic predictor in
patients with GC and might be a potential predictive indicator for decision-
making regarding adjuvant chemotherapy.

Despite the remarkably reduced incidence and mortality of gastric
cancer (GC), it remains an important contributor to the global burden
of cancer1. Currently, the tumour-node-metastasis (TNM) staging sys-
tem is considered the cornerstone for prognosis prediction and
treatment decision-making in GC2. However, prognostic stratification
of patients withGC according to the latest TNM staging system is often
poor3. Adjuvant chemotherapy is recommended for advanced GC
because of the improvement of oncological outcomes, but large var-
iations in survival benefits from adjuvant chemotherapy have been
reported even in patients with the same stage of disease and receiving
similar treatment regimens3,4. These findings suggest that the present
TNM staging system provides inadequate prognostic information and
cannot accurately identify patients who aremore likely to benefit from

adjuvant chemotherapy, which highlights the urgent need for dis-
covering new biomarkers that are associated with prognosis and
adjuvant chemotherapy benefits in GC.

To understand the heterogeneous prognoses and adjuvant che-
motherapy benefits seen in the clinic, several subtyping algorithms
based on gene expression data have been investigated5–7. Although
these methods have greatly improved our knowledge regarding GC
and the potential of subgroup-specific rational treatment strategies
has been enumerated by several studies, the cost and complexity of
transcriptomic analyses, including expressionmicroarray andRNA-seq
analyses, prevent their active utilization in clinical practice8,9.

Evaluation of haematoxylin and eosin (H&E)-stained slides by
experienced pathologists is indispensable for determining the TNM
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stage and histological classification of GC cases in the clinic. Full
digitalization of the stained tissue sections has become feasible
because of advances in slide scanning technology and reductions in
the cost of digital storage10. Recently, the term “pathomics” has
attracted increased attention. Pathomics embodies a wide variety of
data that are captured from digital pathology image analyses to gen-
erate quantitative features for characterizing diverse phenotypes of
tissue samples, and these data are subsequently analysed to determine
diagnosis or predict survival outcomes11–13. Therefore, we hypothe-
sized that analyses of the automatic digital pathomics features
extracted from H&E-stained slides could predict the prognosis and
survival benefits associated with adjuvant chemotherapy in patients
with GC.

Integration of multiple features into a single signature, rather
than individual analyses, might improve the performance of the
prognostic prediction14,15. The least absolute shrinkage and
selection operator (LASSO)-Cox regression model is a state-of-
the-art machine learning method for regression analysis of the
relationships between high-dimensional features and survival16–18.
Here, we propose a pathomics signature of GC (PSGC) that was
developed with multiple pathomics features extracted from H&E-
stained sections using a LASSO-Cox regression model. Thus, in
this study, we intended to assess the prognostic value of the PSGC
for overall survival (OS) and disease-free survival (DFS) and
explore whether the PSGC could identify patients with stage II and
III diseases who might benefit from adjuvant chemotherapy.

Results
Participants
Table 1 lists the clinicopathological characteristics of patients in the
training (n = 264) and validation (n = 216) cohorts. Of the 480 patients
included in this study, 69.4% (333/480) were male, and the median
[interquartile range (IQR)] age was 58 (49–65) years. The majority of
the patients (76.3%, 366/480) were diagnosed with stage II or III dis-
ease. No significant difference in clinicopathological characteristics
between the training and validation cohorts was found. The clin-
icopathological characteristics of patients with and without complete
datawere similar (Supplementary Table 1). Themedian (IQR) follow-up
duration in the training cohort was 64 (27–72) months, with 5-year OS
and DFS rates of 58.7% and 55.3%, respectively (Supplementary Fig. 1a,
b). In the validation cohort, themedian (IQR) follow-updurationwas 55
(22.25–92)months. The 5-yearOS andDFS rates were 47.7% and 45.4%,
respectively (Supplementary Fig. 1c, d).

Table 1 | Characteristics of patients in the training and vali-
dation cohorts

Variables Training
cohort (n = 264)

Validation
cohort (n = 216)

P

n % n %

Age 0.417

≤60 years 160 60.6 123 56.9

>60 years 104 39.4 93 43.1

Age (years), med-
ian (IQR)

57 (49–65) 59 (51–65) 0.443

Sex 0.571

Male 186 70.5 147 68.1

Female 78 29.5 69 31.9

ECOG PS 0.840

0 190 72.0 158 73.1

1 68 25.8 55 25.5

2 6 2.2 3 1.4

CEA level 0.158

Normal 216 81.8 187 86.6

Elevated 48 18.2 29 13.4

CA 19-9 level 0.385

Normal 223 84.5 176 81.5

Elevated 41 15.5 40 18.5

Tumour location 0.690

Fundus of the
stomach

61 23.1 43 19.9

Body of the stomach 49 18.6 43 19.9

Antrum of the
stomach

154 58.3 130 60.2

Tumour size 0.299

≤4 cm 147 55.7 110 50.9

>4 cm 117 44.3 106 49.1

Tumour grade 0.725

Grade 1 18 6.8 12 5.6

Grade 2 54 20.5 44 20.4

Grade 3 169 64.0 135 62.5

Grade 4 23 8.7 25 11.5

Lauren type 0.530

Intestinal type 120 45.5 92 42.6

Diffuse and
mixed type

144 54.5 124 57.4

Depth of invasion 0.307

T1 48 18.2 30 13.9

T2 24 9.1 17 7.9

T3 29 11.0 19 8.8

T4a 143 54.2 124 57.4

T4b 20 7.5 26 12.0

Lymph node
metastasis

0.803

N0 112 42.4 81 37.5

N1 50 18.9 40 18.5

N2 42 15.9 38 17.6

N3a 37 14.0 34 15.7

N3b 23 8.8 23 10.7

Distant metastasis 0.999

M0 253 95.8 207 95.8

M1 11 4.2 9 4.2

TNM stage 0.310

Table 1 (continued) | Characteristics of patients in the training
and validation cohorts

Variables Training
cohort (n = 264)

Validation
cohort (n = 216)

P

n % n %

Stage I 54 20.5 30 13.9

Stage II 74 28.0 66 30.5

Stage III 125 47.3 111 51.4

Stage IV 11 4.2 9 4.2

Adjuvant
chemotherapy

0.626

Yes 161 61.0 127 58.8

No 103 39.0 89 41.2

The comparisons of continuous age variables between two groups are performed using a two-
sidedMann–Whitney U test, and the rest variables are compared using a two-sided χ2 or Fisher’s
exact test.
IQR interquartile range, ECOG PS Eastern Cooperative Oncology Group performance status,
CEA carcinoembryonic antigen, CA carbohydrate antigen, TNM tumour-node-metastasis.
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Construction of the PSGC
The framework for constructing the PSGC is presented in Fig. 1. In the
training cohort, a LASSO-Cox regression model with 10-fold cross-
validation was used to construct the PSGC. The final PSGC included 12
pathomics features (Supplementary Fig. 2). The PSGC calculation for-
mula is presented in the Supplementary Note, from which the PSGC of
the validation cohort was acquired directly. No statistically significant
difference in the distribution of the PSGC [median (IQR)] was found
between the training [1.211 (0.857–1.593)] and validation [1.196
(0.902–1.734)] cohorts [median difference: −0.050; 95% confidence
interval (CI): −0.151 to 0.051; P =0.340]. In particular, compared with
the intestinal type, a significantly higher PSGC was detected in diffused
and mixed type, with a median difference of 0.376 (95% CI:
0.250–0.497; P <0.001) in the training cohort and 0.393 (95% CI:
0.258–0.541; P < 0.001) in the validation cohort (Supplementary
Fig. 3). In terms of the tumour grade, the PSGC in patients with grade 3
and grade 4 tumours was significantly higher than that in patients with
grade 1 and grade 2 tumours in both the training (median difference:
0.415; 95% CI: 0.271–0.553; P <0.001) and validation (median differ-
ence: 0.463; 95% CI: 0.307–0.630; P <0.001) cohorts (Supplementary
Fig. 4). In addition, thedistributionof PSGCwas similar according to the
tumour size subgroups in both the training (median difference: 0.099;
95% CI: −0.036 to 0.235; P =0.158) and validation (median difference:

0.119; 95% CI: −0.031 to 0.268; P =0.125) cohorts (Supplemen-
tary Fig. 5).

Association of the PSGC with prognosis
An optimum cutoff value of 1.16, which provided the highest stan-
dardized log-rank statistic, was determined with the training cohort
(Supplementary Fig. 6). Accordingly, patients in both the training and
validation cohorts were classified into high- and low-PSGC groups. The
distribution of the PSGC across survival statuses as well as select
pathomics features is shown in Supplementary Fig. 7, which revealed
that a higher PSGC was associated with a higher risk of recurrence
or death.

In the training cohort, the 5-yearOS and DFS rates were 83.7% and
80.5% in low-PSGC patients, respectively, which were significantly
reduced to 36.2% and 33.3% in high-PSGC patients (Fig. 2a, b, both log-
rank P < 0.001). We subsequently performed the same analyses in the
validation cohort. Among low-PSGC patients, the 5-year OS and DFS
rates were 73.6% and 71.7%, respectively, and significantly worse 5-year
OS and DFS rates of 22.7% and 20.0% were found in high-PSGC patients
(Fig. 2c, d, both log-rank P <0.001). The PSGC remained a significant
prognostic indicator after stratification by clinicopathological vari-
ables, indicating the independent association of the PSGC with the
prognosis (Supplementary Figs. 8–11).
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Fig. 1 | Schematic illustration of PSGC construction. a Selection of a representa-
tive H&E tile. The H&E-stained images of all included 480 patients are used, and 10
regions of interest with a field of view of 1000 × 1000 pixels per image containing
the greatest number of tumour cells are randomly selected for analysis. One pixel is
equal to 0.504μm. Scale bars: 1500 and 50μm, respectively. b Framework for
constructing the PSGC. The pathomics features are extracted from the H&E-stained

image tiles, and then the potential predictors are selected using a LASSO-Cox
regressionmodel in the training cohortwith 264 patients. The PSGC is calculated via
a linear combinationof the selected features, and the PSGC for the validation cohort
with 216 patients is directly calculated from the formula obtained in the training
cohort. PSGC pathomics signature of gastric cancer, H&E haematoxylin and eosin,
LASSO least absolute shrinkage and selection operator.
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Development and validation of the pathomics nomogram for
prognosis
In the univariate Cox regression analysis, the PSGC, carcinoem-
bryonic antigen (CEA) level, carbohydrate antigen (CA) 19-9 level,
tumour location, tumour size, Lauren type, depth of invasion (T
stage), lymph node metastasis (N stage) and distant metastasis (M
stage) were significantly associated with OS in the training cohort
(Table 2). The backwards stepwise multivariate Cox regression
analysis showed that the PSGC, depth of invasion, lymph node
metastasis and distant metastasis were independent predictors of
OS. The same results were found in the Cox regression analysis
for DFS. The proportional hazards (PH) assumption tests for the
Cox regression models were valid (Supplementary Figs. 12 and
13). No interaction effects were observed between PSGC and the
TNM staging system for OS and DFS (Supplementary Tables 2–4).
Therefore, two pathomics nomograms were developed to predict
OS and DFS by incorporating the four independent predictors
(Fig. 3). Lymph node metastasis had the most important con-
tribution to the prognostic prediction in the pathomics nomo-
grams, followed by the PSGC (Supplementary Fig. 14).

In the training cohort, the pathomics nomogram yielded a
concordance index (C-index) of 0.809 (95% CI: 0.741–0.878) for

OS and 0.792 (95% CI: 0.718–0.866) for DFS. In addition, the time-
dependent receiver operating characteristic (ROC) curve of the
pathomics nomogram at 5 years produced an area under the
receiver operating characteristic curve (AUROC) of 0.901 (95% CI:
0.863–0.939) for OS and 0.891 (95% CI: 0.850–0.932) for DFS
(Supplementary Fig. 15a, b). Furthermore, the calibration curves
showed good agreement between the nomogram-predicted sur-
vival and actual survival (Supplementary Fig. 16a, b). The good
discrimination with a C-index of 0.784 (95% CI: 0.706–0.862) for
OS and 0.794 (95% CI: 0.709–0.873) for DFS was externally vali-
dated in the validation cohort. The AUROCs for OS and DFS were
0.887 (95% CI: 0.842–0.931) and 0.888 (95% CI: 0.844–0.933),
respectively (Supplementary Fig. 15c, d). The favourable agree-
ment between the nomogram-predicted survival and actual sur-
vival of the calibration curves was also confirmed in the validation
cohort (Supplementary Fig. 16c, d). Finally, the decision curve
analysis indicated that using the pathomics nomograms to pre-
dict OS and DFS provided more net benefits than using the treat
all scheme or treat none scheme in both the training and valida-
tion cohorts (Supplementary Fig. 17), indicating that the patho-
mics nomograms were clinically applicable.
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performed using a two-sided log-rank test. OS overall survival, DFS disease-free
survival, PSGC pathomics signature of gastric cancer. Source data are provided as a
Source data file.
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Incremental value of the PSGC added to the TNM stage model
Two TNM stage models for OS and DFS were built based on multi-
variate Cox regression analyses without the PSGC to elucidate the
incremental value of the PSGC added to clinicopathological variables
for predicting the prognosis (Supplementary Table 5). In the training
cohort, the C-index of the PSGC for the prediction of OS and DFS was
0.727 (95% CI: 0.641–0.813) and 0.712 (95% CI: 0.622–0.802), respec-
tively, and the TNM stage models showed a C-index of 0.782 (95% CI:
0.709–0.855) for OS and 0.770 (95% CI: 0.694–0.846) for DFS. Com-
pared with the TNM stage models, the pathomics nomograms, which
were based on the combination of PSGC and the TNM staging system,
displayed a significantly improved C-index of 0.809 (95% CI:
0.741–0.878; P =0.002) for OS and 0.792 (95% CI: 0.718–0.866;

P =0.022), respectively (Supplementary Table 6). Similarly, the AUR-
OCs of the PSGC for OS and DFS were 0.798 (95% CI: 0.744–0.852) and
0.794 (95% CI: 0.739–0.848), respectively, and the TNM stage models
yielded an AUROC of 0.868 (95% CI: 0.825–0.910) for OS and 0.859
(95% CI: 0.814–0.904) for DFS. Compared with the TNM stagemodels,
the pathomics nomograms exhibited a significantly higher AUROC of
0.901 (95% CI: 0.863–0.939; P = 0.004) for OS and 0.891 (95% CI:
0.850–0.932; P = 0.005) for DFS (Supplementary Fig. 15a, b). The
decision curve analysis indicated that compared with the TNM stage
models, the pathomics nomograms showedgreater net benefits across
most of the range of reasonable threshold probabilities (Supplemen-
tary Fig. 17a, b). Moreover, the pathomics nomograms showed a net
reclassification improvement (NRI) of 0.177 (95% CI: 0.021–0.319;

Table 2 | Univariate and multivariate Cox regression analyses of the PSGC and clinicopathological characteristics for overall
survival and disease-free survival in training cohort

Variables Overall survival Disease-free survival

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

Age (years) (>60 years vs.
≤60 years)

1.153 (0.794–1.675) 0.454 1.107 (0.771–1.590) 0.583

Sex (female vs. male) 0.769 (0.504–1.172) 0.221 0.722 (0.478–1.090) 0.121

ECOG PS 0.295 0.519

0 Reference – Reference –

1 1.361 (0.912–2.032) 0.132 1.252 (0.846–1.852) 0.261

2 1.399 (0.441–4.437) 0.568 1.214 (0.384–3.843) 0.741

CEA level (Elevated vs. normal) 1.870 (1.219–2.866) 0.004 1.742 (1.147–2.646) 0.009

CA 19-9 level (Elevated vs.
normal)

1.658 (1.049–2.622) 0.031 1.942 (1.357–2.780) 0.041

Tumour location 0.005 0.007

Cardia of the stomach Reference – Reference –

Body of the stomach 0.756 (0.449–1.272) 0.291 0.838 (0.509–1.381) 0.489

Antrum of the stomach 0.504 (0.331–0.776) 0.001 0.532 (0.353–0.801) 0.003

Tumour size (>4 cm vs. ≤4 cm) 2.142 (1.475–3.109) <0.001 2.194 (1.529–3.149) <0.001

Tumour grade 0.060 0.079

Grade 1 Reference – Reference –

Grade 2 4.529 (1.068–19.215) 0.040 5.176 (1.228–21.812) 0.025

Grade 3 5.344 (1.312–21.764) 0.019 5.433 (1.336–22.103) 0.018

Grade 4 7.291 (1.645–32.324) 0.009 7.176 (1.619–31.819) 0.009

Lauren type (Diffuse and mixed
vs. intestinal)

1.700(1.159–2.494) 0.007 1.579 (1.092–2.281) 0.015

Depth of invasion <0.001 0.018 <0.001 0.049

T1 Reference – Reference – Reference – Reference –

T2 3.442 (0.822–14.401) 0.091 2.256 (0.529–9.623) 0.272 2.129 (0.616–7.354) 0.232 1.437 (0.409–5.052) 0.572

T3 7.039 (1.962–25.248) 0.003 3.228 (0.872–11.947) 0.079 4.639 (1.633–13.177) 0.004 2.415 (0.828–7.042) 0.106

T4a 12.661 (3.995–40.125) <0.001 4.688 (1.415–15.533) 0.011 8.172 (3.312–20.163) <0.001 3.198 (1.233–8.296) 0.017

T4b 24.761 (7.151–85.744) <0.001 7.282
(1.967–26.956)

0.003 14.135
(5.120–39.025)

<0.001 4.175
(1.408–12.383)

0.010

Lymph node metastasis <0.001 <0.001 <0.001

N0 Reference – Reference – Reference – Reference –

N1 2.372 (1.266–4.445) 0.007 1.548 (0.817–2.932) 0.180 2.078 (1.148–3.762) 0.016 1.345 (0.732–2.470) 0.340

N2 4.353 (2.402–7.889) <0.001 2.533 (1.364–4.702) 0.003 3.745 (2.136–6.567) <0.001 2.257 (1.251–4.071) 0.007

N3a 8.563 (4.818–15.218) <0.001 3.874 (2.111–7.107) <0.001 8.264 (4.816–14.180) <0.001 3.875 (2.174–6.909) <0.001

N3b 12.189 (6.566–22.629) <0.001 5.973 (3.057–11.671) <0.001 10.779
(5.935–19.577)

<0.001 4.753 (2.477–9.120) <0.001

Distant metastasis (M1 vs. M0) 3.540 (1.887–6.643) <0.001 2.611 (1.350–5.051) <0.001 3.450 (1.840–6.466) <0.001 2.518 (1.306–4.854) 0.006

PSGC 4.263 (3.054–5.952) <0.001 2.209 (1.539–3.170) <0.001 4.281 (3.084–5.943) <0.001 2.372 (1.646–3.420) <0.001

Association of all variables with prognosis is analysed using a two-sided Cox proportional hazard regression analysis.
PSGC pathomics signature of gastric cancer, CEA carcinoembryonic antigen, CA carbohydrate antigen, HR hazard ratio, CI confidence interval, ECOG PS Eastern Cooperative Oncology Group
performance status.
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P =0.026) for OS and 0.218 (95% CI: 0.048–0.344; P =0.012) for DFS
compared to the TNM stage models (Supplementary Table 7). The
abovementioned resultswerewell validated in the validation cohort. In
the validation cohort, the PSGC demonstrated a C-index of 0.725 (95%
CI: 0.627–0.823) for OS and 0.738 (95% CI: 0.642–0.834) for DFS,
respectively, and the TNM stage models presented a C-index of 0.742
(95%CI: 0.656–0.828) for OS and0.748 (95%CI: 0.660–0.836) for DFS.
Compared with the TNM stage models, a significantly increased
C-index of 0.784 (95% CI: 0.706–0.862; P < 0.001) for OS and 0.794
(95% CI: 0.709–0.873; P <0.001) for DFS was observed in the patho-
mics nomograms (Supplementary Table 6).Meanwhile, the AUROCsof
the PSGC for OS and DFS were 0.774 (95% CI: 0.710–0.837) and 0.775
(95% CI: 0.711–0.839), respectively, and the TNM stage models exhib-
ited an AUROC of 0.848 (95% CI: 0.797–0.900) for OS and 0.846 (95%
CI: 0.794–0.898) for DFS. Compared with the TNM stage models, a
significantly enhanced AUROC of 0.887 (95% CI: 0.842–0.931;
P =0.003) for OS and 0.888 (95% CI: 0.844–0.933; P =0.003) for DFS
was also confirmed in the pathomics nomograms (Supplementary
Fig. 15c, d). In addition, higher net benefits acrossmost of the range of
reasonable threshold probabilities in the pathomics nomograms
compared to the TNM stage models were detected (Supplementary

Fig. 17c, d). Finally, an NRI of 0.318 (95% CI: 0.147–0.497; P = 0.010)
for OS and 0.380 (95% CI: 0.141–0.556; P = 0.028) for DFS in the
pathomics nomograms compared to the TNM stagemodelswas found
in the validation cohort (Supplementary Table 7). Herein, the PSGC
could provide additional prognostic value to the TNM staging sys-
tem for GC.

Predictive value of the PSGC for adjuvant chemotherapy
response
To assess the predictive value of the PSGC for adjuvant chemotherapy
response, we evaluated the association between the PSGC and survival
among GC patients with stage II and stage III disease who either
received or did not receive postoperative adjuvant chemotherapy.
Patient information after stratification according to adjuvant che-
motherapy status is listed in Supplementary Table 8. For the low-PSGC
patients, adjuvant chemotherapy was significantly associated with
improved OS and DFS in the training, validation and total cohorts;
however, the improved prognosis was not observed in high-PSGC
patients (Fig. 4). Similar results were obtained from the subgroup
analyses of patients with stage II and III tumours (Supplementary
Figs. 18, 19). No difference in the performance status of patients with a
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
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2−year probability of OS
0.10.20.30.40.50.60.70.80.90.95

3−year probability of OS
0.10.20.30.40.50.60.70.80.90.95

5−year probability of OS
0.10.20.30.40.50.60.70.80.90.95

a Pathomics nomogram for OS
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0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
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2−year probability of DFS
0.10.20.30.40.50.60.70.80.90.95
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0.10.20.30.40.50.60.70.80.90.95
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b Pathomics nomogram for DFS

Fig. 3 | Pathomics nomograms for the prediction of OS and DFS. a Pathomics
nomogram for OS. b Pathomics nomogram for DFS. The patient’s T stage on the
depth of the invasion axis is first located using the nomogram. Then, a line is drawn
straight upward to the Points axis to determine how many points the patient
receives from the T stage. This process is repeated for each variable, and the points

obtained from each risk factor are summed. Finally, the final sum is located on the
Total point axis. A line is drawn straight down to find the patient’s probability of
survival. OS overall survival, DFS disease-free survival, PSGC pathomics signature of
gastric cancer. Source data are provided as a Source data file.
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high PSGC to tolerate the full course of chemotherapy was observed
(Supplementary Table 9). Subsequently, a test of the interaction
between the PSGC and adjuvant chemotherapy indicated that patients
with a low PSGC had superior adjuvant chemotherapy benefits com-
pared to patients with a high PSGC, with the P for interaction <0.05 for
OS and DFS (Table 3, Supplementary Table 10). Taken together, these
results indicated that the PSGC could identify stage II and III GCpatients
who might obtain survival benefits from adjuvant chemotherapy.

Discussion
Accurate prediction of prognosis and adjuvant chemotherapy benefits
is integral to the risk stratification and management of GC patients in
the clinic. In this study, we constructed the PSGC to predict the prog-
nosis of patients with GC and found that the PSGC successfully strati-
fied patients into high- and low-PSGC groups with significant
differences in terms of OS and DFS. Furthermore, by combining the
PSGC and TNM staging systems, we developed and validated two
pathomics nomograms with significantly improved prognostic

predictions compared with the TNM staging system alone. These
results indicate that the PSGC might provide complementary infor-
mation about the prognosis of GC.

Adjuvant chemotherapy is a standard treatment for nonmeta-
static advanced GC3,19. However, the variations in survival outcomes
even in patients with the same TNM stage who receive the same regi-
mens indicate that a considerable number of patients do not benefit
from adjuvant chemotherapy. Individualized biomarkers that can dis-
tinguish patients who are likely to benefit from adjuvant chemother-
apy could improve tailored therapy20. Our results revealed that
patients with a low PSGC were predicted to benefit from adjuvant
chemotherapy, but in patients with a high PSGC, limited benefits were
observed. Patient performance status is an important factor thatmight
affect tolerance to adjuvant chemotherapy. In this study, we did not
observe a difference in the performance status of patients with a high
PSGC to tolerate the full course of chemotherapy, indicating that the
predictive value of the PSGC for adjuvant chemotherapy benefitsmight
be also applicable to patients with a poor physical condition. Although
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Fig. 4 | Association between the PSGC and survival benefits from adjuvant
chemotherapy in stage II and stage III GC. a Survival benefits from adjuvant
chemotherapy for the low-PSGC patients in the training cohort. b Survival benefits
from adjuvant chemotherapy for the high-PSGC patients in the training cohort.
c Survival benefits from adjuvant chemotherapy for the low-PSGC patients in the
validation cohort. d Survival benefits from adjuvant chemotherapy for the high-

PSGC patients in the validation cohort. e Survival benefits from adjuvant che-
motherapy for the low-PSGC patients in the total cohort. f Survival benefits from
adjuvant chemotherapy for the high-PSGC patients in the total cohort. The com-
parisons of OS and DFS between the two groups are performed using a two-sided
log-rank test. PSGC pathomics signatureof gastric cancer, GCgastric cancer, Chemo
chemotherapy. Source data are provided as a Source data file.
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patients receiving neoadjuvant therapy were excluded, most patients
included in this study were still diagnosed with locally advanced GC,
which did not imply that patients with a potentially lower risk were
included. To our knowledge, this is the first study to demonstrate the
utility of fully quantitative imaging features extracted from H&E-
stained slides to predict prognosis and benefits from adjuvant
chemotherapy in GC.

Two factorswere critical for the construction of the PSGC. Thefirst
factor is the use of a convenient image-processing approach to extract
quantitative pathomics features. To date, a consensus about the
extraction of pathomics features has not been reached12,13. CellProfiler
is a free, open-source software that automatically measures pheno-
types from biological images and has been used in digital pathology
analysis with satisfactory performance21,22. Therefore, CellProfiler is an
easy-to-use and reproducible platform that allows clinicians to extract
quantitative pathomics features. The second factor is a practical
machine learning method for the selection of prognostic features23.
For this purpose, the LASSO-Cox regression model was employed
because of its ability to deal with high-dimensional data16,17.

Despite its limited performance, the TNM staging system remains
the cornerstone for predicting the prognosis of patients with GC. To
date, some investigators have explored potential biomarkers that
might provide additional prognostic information in GC. Based on the
gene expression data, several molecular classifications have been
proposed. For example, according to The Cancer Genome Atlas pro-
ject, GC was divided into four subtypes based on molecular classifi-
cation, including tumours positive for Epstein-Barr virus,
microsatellite unstable tumours, genomically stable tumours and
tumours with chromosomal instability, which might aid in patient
stratification and tailoring therapy5,7. However, the cost and com-
plexity of gene expression data analyses prevent their clinical appli-
cation, especially in developing countries. In addition, a radiomics
analysis of radiological images has also shown a favourable ability for
predicting the prognosis of GC24,25. Other studies have also revealed
that the stromal immune cells, such as tumour-associated macro-
phages, cytotoxic T cells and neutrophils, are indicators of the GC
prognosis26,27. Prospective studies and further evaluations are needed
tobetter clarify their impacts on the prognosis ofGC. In addition to the
pathological diagnosis, the evaluation of H&E-stained sections has
provided limited information on patient prognosis and chemotherapy
response. Currently, the literature regarding the prognostic informa-
tion of pathomics analysis in GC has not yet been reported. In this
study, we discovered that the PSGC could also contribute to the pre-
diction of prognosis and identify patients who are more likely to
benefit from adjuvant chemotherapy in GC. Because the PSGC was
derived from the routinely used H&E-stained sections in the clinic, the

PSGC might be conveniently applied in clinical practice without addi-
tional financial burden and might favour the development of tailored
therapy for GC. We expect that these biomarkers, includingmolecular
subtypes, radiomics, stromal immune cells, and pathomics, will be
utilized together to improve the prediction of prognosis and che-
motherapy response of GC in the future.

In Western countries, patients with locally advanced GC are
recommended to receive neoadjuvant chemotherapy because of the
prolonged survival28,29; however, radical gastrectomy followed by
adjuvant chemotherapy remained the standard of care for these
patients in Eastern Asia2,30, and patients with locally advanced GC are
treated with this therapeutic strategy in our medical centre31. Patients
receiving neoadjuvant chemotherapy were excluded from our study,
as neoadjuvant chemotherapy would result in morphological changes
in the H&E-stained sections, including tumour regression and fibrosis;
thus, the prediction models developed in this study might be inap-
propriate to be extended to patients with GCwho receive neoadjuvant
chemotherapy. However, our results revealed that the pathomics
analysis reflected tumour heterogeneity, which was a potential indi-
cator of the prognosis and chemotherapy response of patients with
GC. Thus, the pathomics analysis might also be suitable for evaluating
the response and outcomes of neoadjuvant chemotherapy. Further
investigations are required in this specific setting.

Pathomics is a novel method that has been utilized to explore
tumour heterogeneity since different degrees of disease progression,
clinical outcomes, and treatment responses correspond to a range of
histologic features in different tumour cells11. Traditional pathological
examination is performed by experienced pathologists at multiple
magnifications to evaluate the characteristics of tumour cells; how-
ever, pathologists do not and cannot routinely characterize more
detailed information for every slide. Thus, pathomics can serve as a
useful method to complement traditional pathological evaluation32.
Our results revealed significant differences in the Lauren type and
tumour grade subgroups, indicating that the local image features
would change according to the Lauren type and tumour grade, and the
Lauren type and tumour grade might drive the PSGC. Moreover, a
similar distribution of PSGC was found between the tumour size sub-
groups, which implied no bias in the selection of regions of interest
due to tumour size.

The PSGC was found to be a potential predictor of prognosis and
adjuvant chemotherapy benefits for GC patients. However, it remains
unclear whether the predictive value of the PSGC is determined by
tumour intrinsic factors or tumour microenvironment effects. Cur-
rently, the integrative analysis of pathomics features and genomics
data provides a feasible way to explore the underlying mechanisms of
PSGC with prognosis and adjuvant chemotherapy benefits33,34. Thus,

Table 3 | Association of the PSGC with overall survival and disease-free survival in stage II and III patients receiving adjuvant
chemotherapy

PSGC level Adjuvant
chemotherapy

Overall survival Disease-free survival

No chemo Chemo HR (95% CI) P Pinteraction HR (95% CI) P Pinteraction

Training cohort (n = 199)

High PSGC (Chemo vs. No chemo) 29 90 0.748 (0.454–1.233) 0.255 0.001 0.840 (0.513–1.377) 0.490 <0.001

Low PSGC (Chemo vs. No chemo) 23 57 0.366 (0.136–0.786) 0.013 0.388 (0.165–0.914) 0.030

Validation cohort (n = 177)

High PSGC (Chemo vs. No chemo) 30 60 1.028 (0.639–1.657) 0.908 <0.001 1.203 (0.753–1.924) 0.439 <0.001

Low PSGC (Chemo vs. No chemo) 27 60 0.459 (0.221–0.955) 0.037 0.475 (0.231–0.979) 0.044

Total cohort (n =376)

High PSGC (Chemo vs. No chemo) 59 150 0.834 (0.591–1.177) 0.302 <0.001 0.947 (0.675–1.329) 0.751 <0.001

Low PSGC (Chemo vs. No chemo) 50 117 0.392 (0.224–0.687) 0.001 0.434 (0.250–0.755) 0.003

Association of all variables with prognosis is analysed using a two-sided Cox proportional hazard regression analysis.
PSGC pathomics signature of gastric cancer, HR hazard ratio, CI confidence interval, Chemo chemotherapy.
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further investigations should focus on the relationship between
pathomics features and genomics data.

The tumour grade is a common term used to diagnose GC in the
clinic, which evaluates the progression of tumour cells. Our data
showed that the PSGC substantially outperformed the tumour grade in
predicting the OS and DFS (Supplementary Table 11 and Supplemen-
tary Fig. 20). The prognostic performance of the TNM staging system
was not increased when the tumour grade was added; conversely,
significantly improvedprognostic performancewasdetectedwhen the
PSGC was added to the TNM staging system (Supplementary Table 12
and Supplementary Fig. 21). Thus, the PSGC performed better when it
was included in the pathomics nomogram than when it was replaced
by the tumour grade.

The improvement in AUROC ranged from 3.2% to 4.2% when the
PSGC was added to the TNM staging system, and the corresponding
improvement in the C-index ranged from 2.2% to 4.6%, which might
seem small. In this study, the pathomics nomograms were developed
based on the depth of invasion, lymph node metastasis, distant
metastasis and PSGC. In terms of the individual variables, the prog-
nostic value of the PSGC was comparable to that of the lymph node
metastasis (Supplementary Tables 13 and 14). However, in the patho-
mics nomograms, lymph node metastasis had the most important
contribution to predict the prognosis, followed by the PSGC. Based on
these results, lymphnodemetastasis exertedmore powerful effects on
the AUROCs and C-indexes of the pathomics nomograms than the
PSGC, although the individual prognostic performance of the two
variables was comparable, which explained the small incremental
value of adding PSGC to the TNM staging system. Several prognostic
biomarkers with statistically different but numerically small incre-
mental values have also been reported previously35–37. Although the
incremental value of adding PSGC to the TNM staging system for pre-
dicting the prognosis was small, it did provide additional prognostic
information. Meanwhile, the ability of the PSGC to predict response to
adjuvant chemotherapy was valuable, which might avoid the toxic
effects of chemotherapy in those patients least likely to benefit. Thus,
from the perspective of clinicians, the PSGC was clinically relevant and
worth further investigation.

The AUROCs of the pathomics nomograms were acquired from
the multivariate analysis of potential prognostic factors. Currently, a
unanimous consensus has not been reached about the calculation of
sample size in the multivariate analysis for developing a prediction
model. According to the TRIPOD Statement, at least 10 events per
variable are needed38. Thus, the minimum sample size of patients with
recurrence is 100 according to the 10 events per variable criteria to
assess the difference in AUROCs between the pathomics nomograms
and TNM stage models. In the training cohort, 122 patients suffered
from recurrence. Thus, our sample size in the training cohort was
adequate to conduct the multivariate analysis. For the sample size in
the validation cohort, Lei et al.39 suggested that the ratio between the
training and validation cohorts was 7:3. In our study, the validation
cohort contained 216 patients, which was also sufficient.

Considering the survival differences between the training and
validation cohorts (OS: 58.7% vs. 47.7%; DFS: 55.3% vs. 45.4%), we
speculated that it might be due to the socioeconomic differences
despite the similar clinicopathological characteristics between the
two cohorts. The training cohort and validation cohort came from
Guangdong and Fujian in China, respectively. Guangdong is themost
economically advanced province in China, most patients in the
training cohort live in urban areas, and the local medical insurance
covers more examinations and therapies; conversely, the economic
level of Fujian is moderate in China, and considerable numbers of
patients in the validation cohorts reside in rural areas, and the local
medical insurance covers the costs of fewer examinations and
therapies40. Therefore, despite the rigorous follow-up after surgery,
early detection and treatment of recurrent diseases are limited for

patients in the validation cohort, thus resulting in differences in
survival.

According to the Global Burden of Diseases, Injuries, and Risk
Factors Study (GBD) 2017 Stomach Cancer Collaborators, the esti-
mated 5-year OS of GC is approximately 20%, with the exceptions of
65% in Japan and 71·5% in South Korea,where population screening has
led to the effective diagnosis of tumours at early stages1. In this study,
all included GC patients who had received radical gastrectomy; how-
ever, the data sources of the GBD 2017 were derived from patients
diagnosed with GC, regardless of resectable or unresectable diseases.
Thus, the survival outcomes of the included patients are high by global
standards. In addition, the 5-year OS of GC patients receiving radical
gastrectomy generally ranges from 45% to 60% in China, indicating
that the survival outcomes of patients with GC included in this study
are similar to those in other parts of China30.

Our results revealed that elevated CEA and CA 19-9 levels were
significantly associated with a worse prognosis. In clinical practice,
CEA and CA 19-9 levels are the most common tumour markers mea-
sured before surgery and during follow-up for GC. CEA and CA 19-9
levels have been used as diagnostic markers and are apt to rise
2–3 months before metastatic lesions become detectable by imaging
modalities2. Several studies have also reported that elevated pre-
operativeCEA andCA 19-9 levels are associatedwith aworse prognosis
for patientswith resectableGC41,42. Currently, the intrinsicmechanisms
of elevated CEA and CA 19-9 levels for worse survival are still unclear.
One possible explanation might be that CEA and CA 19-9, which are a
ligand of E-selectin and an intercellular adhesion molecule, respec-
tively, play critical roles in the intercellular adhesion of tumour cells to
vascular endothelial cells and contribute to tumour invasion and
metastasis43,44. Thus, the prognostic values of CEA and CA 19-9 levels
for GC need to be further investigated.

In general, there are twomain types of artificial intelligence-based
computational approaches for pathomics analysis: deep neural
network-based approaches and handcrafted feature-based
approaches12. The method used in this study is a handcrafted
feature-based approach that was developed based on the close colla-
boration between pathologists and oncological surgeons, and thus
could be complex and time-consuming45. Deep neural network-based
approaches are developed through unsupervised feature learning,
which depends on the existence of learning sets and annotated
exemplars from the categories of interest, and the network design
usually focuses on fine-tuning the algorithm to maximize accuracy
while minimizing processing time46. In addition, deep neural network-
based approaches trained on a particular disease subtype could be
applied to other subtypes as well12. However, in terms of interpret-
ability, because of beingmore interpretable than deep neural network-
based approaches, handcrafted feature-based approaches might be
more likely to be used for high-level decision-making, such as that
regarding oncological prognosis or prediction of benefit from therapy;
in contrast, deep neural network-based approaches might be more
appropriate in situations where the need to “explain the decision” is
reduced; such situations could include low-level tasks such as object
detection or segmentation12,47,48. Considering the application scene of
this study and that oncologists and pathologists are the primary end
users, we select the handcrafted feature-based approaches.

There are some limitations in our study. First, given the retro-
spective design, our study was not free from inherent biases. Second,
all enroled participants came from twomedical centres in China. Thus,
further validation in prospective randomized trials incorporating
diverse populations is warranted to test the clinical utility of the PSGC
for individualized decision-making.

In conclusion, our study constructed the PSGC and found that the
PSGC was significantly associated with the prognosis of patients with
GC. By integrating the PSGC with the TNM staging system, we devel-
oped and validated two pathomics nomograms, which improved the
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prediction of the GC prognosis compared to the TNM staging system
alone. Moreover, the PSGC could distinguish patients with stage II and
III diseases who were likely to derive benefits from adjuvant
chemotherapy.

Methods
This studywas approvedby the Institutional ReviewBoards ofNanfang
Hospital of Southern Medical University and the Fujian Cancer Hos-
pital of Fujian Medical University. Written informed consent was
obtained from all patients before surgery, which contained a state-
ment on the formalin-fixed, paraffin-embedded samples and clin-
icopathological data for scientific research. All procedures involving
human participants were in accordance with the Declaration of
Helsinki.

Participants
A retrospective cohort study was conducted based on consecutive
patients who underwent radical gastrectomy for GC from twomedical
centres. A training cohort including 264 consecutive patients from
March 2012 to December 2013 at Nanfang Hospital of Southern Med-
ical University was built. The inclusion criteria were as follows: (i) his-
tologically diagnosed GC and treated with curative surgery, (ii) at least
15 lymph nodes were harvested, (iii) no history of other malignancies,
and (iv) complete clinicopathological and follow-up information were
available. Patients receiving neoadjuvant chemotherapy, radiotherapy
or chemoradiotherapywere excluded because neoadjuvant anticancer
therapy not only results in microscopic morphological changes in the
H&E-stained sections, including tumour regression and fibrosis but
also affects the prognosis of patients with GC. A total of 216 con-
secutive patients were included fromFujian Provincial CancerHospital
of Fujian Medical University between August 2010 and September
2012 using the same inclusion and exclusion criteria.

Patient baseline information, including age, sex, Eastern Coop-
erative Oncology Group performance status (ECOG PS), CEA level, CA
19-9 level, tumour location, tumour size, tumour grade, Lauren type,
depth of invasion, lymph node metastasis, distant metastasis, TNM
stage, postoperative adjuvant chemotherapy and follow-up data (fol-
low-upduration and survival status), was collected. TheTNMstagewas
reclassified according to the eighth version of the AJCC Cancer Staging
Manual of the American Joint Committee on Cancer. Patients were
followeduponceevery3months in thefirst 2 years after surgery, every
6 months in the next 3 years, and annually thereafter. The follow-up
duration was measured from the time of surgery to the last follow-up
date, and the survival status at the last follow-up was recorded. OS was
defined as the interval between surgery and death or the last date of
follow-up. DFS was defined as the time from surgery to recurrence at
any site or all-cause death, whichever came first.

Sample preparation and region of interest selection
The H&E-stained slides of all included patients were prepared using
formalin-fixed paraffin-embedded samples. Then, sections most
representative of the depth of invasion in each case were selected by
the director of the Department of Pathology, Fujian Cancer Hospital
(G.C.), who had 25 years of experience in the pathological diagnosis of
GC. Subsequently, all selected slides were scanned by using the Aperio
ScanScope Scanner system (Leica Biosystems) with the ×20 objective,
and images were digitized as svs. format files, which were managed
with the Aperio ImageScope software (version 12.4.6). Under the
quality control of the director of the Department of Pathology, Fujian
Cancer Hospital (G.C.), the tumour areas in each section were deter-
mined. Ten nonoverlapping representative tiles of each case contain-
ing the greatest number of tumour cells with a field of view of
1000 × 1000 pixels (one pixel is equal to 0.504μm) were selected by a
pathologist and then confirmed by the other pathologist (L.L. and J.L.),
who had 9 and 13 years of experience in the pathological diagnosis of

GC, respectively, to reduce the computational time. The regions of
tissue folds were excluded and the selected tiles were saved as.tif
format files. If the abovementioned two pathologists differed in their
opinions, they consulted with the third pathologist (G.C.) to make a
decision.

Extraction of pathomics features from images
The quantitative pathomics features of the selected tiles were extrac-
ted by using CellProfiler (version 4.0.7), an open-source image analysis
software developed by the Broad Institute (Cambridge, MA)21,22. The
H&E-stained images were split into haematoxylin-stained and eosin-
stained greyscale images using the “UnmixColors”module49. The H&E-
stained images were also converted to greyscale images using the
“ColorToGray” module based on the “Combine” method for further
analysis. First, the features that indicated the image quality of the
greyscale H&E, haematoxylin and eosin images were assessed by using
the “MeasureImageQuality” and “MeasureImageIntensity” modules
with three types of features, including blurred features, intensity fea-
tures and threshold features50–53. The threshold features were extrac-
ted by automatically calculating the threshold for each image to
identify the tissue foreground from theunstainedbackgroundwith the
Otsu algorithm54. Subsequently, the colocalization and correlation
between intensities in each haematoxylin-stained image and eosin-
stained imagewere calculated on a pixel-by-pixel basis across an entire
image by using the “MeasureColocalization”module55. In addition, the
granularity features of each image were assessed using the “Measur-
eGranularity”module, which outputted spectra of size measurements
of the textures in the image, with a granular spectrum range of 1656,57.
Further description of the pipeline for feature extraction is described
in the Supplementary Methods. A summary of the pathomics features
is presented in Supplementary Table 15.

Construction of the PSGC
The LASSO-Cox regression model uses an L1 penalty to shrink the
coefficients of each feature to zero, and this model has been broadly
applied in the regression analysis of high-dimensional data for survival
analysis16,17. The penalty parameter λ, also called the tuning constant,
controls the strength of the penalty. If λ is reduced and the penalty is
relaxed, then more predictors can enter the model. In this study, 10-
fold cross-validation withminimum criteria was used to determine the
optimum value of λ by measuring partial likelihood deviance in the
training cohort. The PSGC was constructed via a linear combination of
the selected features, and the PSGC for the validation cohort was
directly calculated from the formula obtained in the training cohort.

Association of the PSGC with prognosis
Based on the individual PSGC, an optimum cutoff value was identified
via the maximally selected rank statistics to classify patients into high-
and low-PSGC groups in the training cohort, and then the same cutoff
value was applied to the validation cohort58. Potential associations of
the PSGCwithOS andDFSwere first assessed in the training cohort and
then validated in the validation cohort. The differences in the survival
curves of the high- and low-PSGC groups were evaluated.

Development and validation of the pathomics nomogram for
prognosis
In the training cohort, the PSGC and clinicopathological characteristics
were incorporated into the univariate Cox regression analyses for OS
and DFS. Variables with P <0.05 were selected for themultivariate Cox
regression analyses. The backwards stepwise regressionwas utilized to
detect the independent predictors. Two pathomics nomograms
including the independent predictors were developed to predict OS
and DFS, respectively.

To quantify the discrimination performance, the C-index and
5-year AUROC were calculated59. To compare the agreement between
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predicted survival probabilities and the actual probabilities, calibra-
tion curves were generated60. To evaluate the clinical usefulness of the
pathomics nomograms, decision curve analysis was used to assess the
net benefits of the prediction model at different threshold
probabilities61,62. The context for decision curve analysis is a situation
where individuals’ risks for an undesirable outcome will be evaluated,
and individuals with sufficiently high risk will be recommended for
some intervention or treatment. Thepathomicsnomogramswere then
applied in the validation cohort to validate the discrimination, cali-
bration, and clinical usefulness38.

Incremental value of the PSGC for prognosis prediction
Two clinicopathological models incorporating independent clin-
icopathological risk factors for the prediction of OS and DFS were
developed in the training cohort, respectively, and then applied to the
validation cohort to determine the incremental value of the PSGC for
the individualized prediction of the prognosis when added to the
clinicopathological risk factors. The incremental value of the PSGC to
the clinicopathological models was assessed with respect to the C-
index, time-independent AUROC, NRI, and decision curve analysis38.
The C-indexes and time-independent AUROCs at 5 years between the
twomodels were compared by using the z-score test and DeLong test,
respectively63,64. The NRI of the pathomics nomogram to the clin-
icopathological model was assessed by using the Z test65.

Statistical analysis
Continuous variables were compared using the independent samples,
unpaired t-test if they were normally distributed or using the
Mann–Whitney U test if they were nonnormally distributed. When
comparing a categorical variable, if at least one expected cell count
was <5 in the 2 ×C contingency table, Fisher’s exact test was used;
otherwise, the χ2 test was performed. Survival curves were generated
using the Kaplan–Meiermethod and compared using the log-rank test.
Cox regression analysis was used for univariate and multivariate ana-
lyses, and the hazard ratio (HR) with 95% CI was calculated. The PH
assumption was checked for the Cox regression models by con-
structing test statistics based on asymptotically mean-zero
processes66. If the global P < 0.05, the PH assumption was violated;
otherwise, the assumptionwas valid66. The relative importance of each
variable in the multivariable model to predict the prognosis was
assessed by using the χ2 statistic minus the corresponding degree of
freedom67. Interactions between the PSGC and adjuvant chemotherapy
were detected by means of Cox regression analysis. Assessment of the
effects of PSGC onadjuvant chemotherapy benefits in stage II and III GC
patients was prespecified. All statistical analyseswere performed using
SPSS (version 19.0) and R (version 4.0.5) software. The LASSO-Cox
regressionmethodwas performed using the “glmnet” package. The PH
assumption was checked using the “CoxPhLb” package. The develop-
ment, validation and performance assessment of the prognostic
nomograms were conducted using the “rms” package. Comparisons of
C-indexes between different models were performed using the “com-
pareC” package. The time-dependent ROC curves were plotted using
“riskRegression” package. Decision curve analysis was performed with
the function of “stdca.R”. The “survminer” package was used for com-
puting survival analyses. Tests were 2-sided, and P <0.05 was con-
sidered to indicate statistical significance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The H&E images and clinical information analysed during the current
study are not publicly available for patient privacy purposes. Data

access can be obtained through a reasonable request to J.Y. (yanjun-
fudan@163.com). Access to the data will be restricted to non-
commercial research which removes patient-sensitive information.
All requests will be answered within 10 working days. The source data
underlying Figs. 2–4 and Supplementary Figs. 1–21 is provided as a
Source data file. Source data are provided with this paper.

Code availability
The codes used for the slide image process and feature extraction are
publicly available at https://github.com/CellProfiler/CellProfiler22. The
codes used to develop and evaluate the prediction model are publicly
available at https://github.com/Dexin-Chen/Pathomics-analysis and
are also placed on the Zenodo platform68.
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