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Clinical prognostic models can assist patient care decisions. However, their
performance can drift over time and location, necessitatingmodelmonitoring
and updating. Despite rapid and significant changes during the pandemic,
prognostic models for COVID-19 patients do not currently account for these
drifts. We develop a framework for continuously monitoring and updating
prognosticmodels and apply it to predict 28-day survival in COVID-19 patients.
We use demographic, laboratory, and clinical data from electronic health
records of 34912 hospitalized COVID-19 patients from March 2020 until May
2022 and compare three modeling methods. Model calibration performance
drift is immediately detected with minor fluctuations in discrimination. The
overall calibration on the prospective validation cohort is significantly
improved when comparing the dynamically updated models against their
static counterparts. Our findings suggest that, using this framework, models
remain accurate and well-calibrated across various waves, variants, race and
sex and yield positive net-benefits.

Clinical prognostic models are used as tools for clinical decision
making. Several well established models such as the sequential organ
failure assessment score SOFA1, CURB-652, the Apgar score3,4, the
Nottingham prognostic index4,5, and the Manchester triage system4,6

have been developed and are in common use in hospitals. These
prognostic models are traditionally static7. However, model perfor-
mance can drift and models can lose their predictive abilities over
time7–12. Drifts in the predictive performance ofmodels can appear as a
reduction in overall accuracy13 ormiscalibration8,14,15 and can be due to

changes in patient characteristics14–17, as well as new treatments,
changes in preventative care, or changes in treatment algorithms14.
These reductions in predictive performance of models can render
thesemodels lessuseful18 or evenmisleading18,19, emphasizing theneed
to detect and correct these performance drifts.

Various approaches to compensate for model performance cali-
bration drift have been proposed in the past. Newer or recalibrated
versions of existing models have occasionally been developed to
account for various patterns of invalidity13, whenmodel parameters are
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no longer optimal, due to changes in the case mix of patients, patient
outcomes, and updates to the standard of care provided for hospita-
lized patients. For example, EuroSCORE was initially developed to
predictmortality after heart surgery20, and it was updated twelve years
later14. Another clinical prognostic model, QRISK, which predicts the
risk of a patient developing a heart attack or stroke within ten years is
updated annually15,21,22. Dynamic updating approaches7 update the
model parameters at a specific time window11,23,24 or when deemed
necessary10–13. For the latter, the frequency of updating depends on the
dynamics of the performancedrift of suchmodels,making the case for
monitoring of prospective model performance. While rapid and con-
tinuous geographic validation of a newly developed model is
challenging18,25–27, temporal validation within one site or institution can
be feasible, due to continuous recording of patient data as part of the
standard of care.

With many well-established prognostic models of disease, model
performance drift is a slow process and frequent monitoring or
updating might not be required. The COVID-19 pandemic manifested
itself as multiple geographically and temporally distinct waves that
exhibited different characteristics such as different heterogeneous
patient populations and different standard treatment methods28.
Moreover, virus variants, changing vaccination rates, waning of vac-
cine protection, and emergence of novel COVID-19 treatments also
contributed to a highly dynamic environment for patient character-
istics and outcomes29–32. A commonly reported change was related to
the significant decrease of case mortality rate of hospitalized patients
in certain areas33–35, as well as the number of intubated patients35 and
overall hospitalized patients between waves. Since the ongoing novel
coronavirus pandemic is a situation in which many prognostic models
were developed19,36,37 on geographically distinct populations alongside
rapid changes in patient populations and standards of care38, it is
unsurprising that a growing number of studies are reporting drifts in
the performance of such models across different geographic
regions39–41 or different temporal windows39,40. While the need for
model updating in COVID-19 is clear, there are no proposed self-
monitoring and automatically updating prognosticmodels for COVID-
19 patients.

Ourmainobjectivewas todevelop a survival calculator forCOVID-
1942 that self-monitors and automatically updates whenever needed.
Weexamined theneed to recalibrate bymonitoringdiscrimination and
calibration from three modeling approaches over time. We compared
model performance without updating to various model updating
techniques13,23,24 with each of the modeling approaches. We built a
framework that can be applied both in traditional prediction model
methods aswell asmachine learning-basedmethods and enables them
tobe easilymonitored andupdated accordingly. These techniques and
ideas were tested using data from nearly 35,000 COVID-19 patients
across the three major virus variants during the pandemic (alpha,
delta, omicron) and three prognostic model architectures: our custom
generalized linear model (GLM), logistic regression, and gradient
boosted decision trees. The analysis was performed for a 28-day time
horizon. Performance of all models with and without the self-
monitoring and auto-updating capabilities were measured, and sensi-
tivity and decision-curve analyses were conducted.

Results
Patient characteristics
A total of 38,078 electronic health records (EHRs) were considered in
this study. Of these, 3166 were excluded because they were either
transferred to a hospital outside of the health system and their out-
comes were unknown, were started on invasivemechanical ventilation
prior to admission, or had a do not resuscitate order placed outside of
five days of death. All patients admitted after April 3, 2022 were also
excluded to enforce the 28-day follow-up period. The remaining
patients (n = 34,912, Table 1) were included in the development

(n = 7346), retrospective (n = 1889), and prospective (n = 25,677) vali-
dation cohorts. The included patients (combined development and
retrospective versus prospective) had amedian age of 65 yearswith an
interquartile range of [IQR 54-76] versus 67 years [IQR 54–79]), and
(40% versus 47%) were female. The overall 28-day survival percentages
were 77.0% for the combined development and retrospective versus
89.1% for the prospective cohorts.

Development of survival prognostic models
To determine the predictors of survival, training data were collected
from patients hospitalized in 11 of 12 included Northwell Health hos-
pitals (Fig. 1). Three different model types—generalized linear model
with the least absolute shrinkage and selection operator (LASSO)
penalization (the Northwell COVID-19 Survival Calculator (NOCOS))42,
logistic regression (LR) with LASSO penalization43, and extreme gra-
dient boosted decision tree (XGBoost)44—were trained on patients
from the development cohort for 28-day survival. The optimal pre-
dictors of survival were similar across each model. Age, serum blood
urea nitrogen, lactate, and red cell distribution width were chosen as
predictors, either in a linear or logarithmic scale, for all three models;
albumin serum was chosen as a predictor for two of the three models;
and respiratory rate and platelet count were each chosen once.
Sometimes the linear and log scale of a singlemeasurement were used
as predictors within a model.

Validation of survival prediction model
The retrospective validation included data collected from patients
discharged from Long Island Jewish Hospital (n = 1889 [1470 survived
past 28days]) (Fig. 1). Based on this data, the 28-dayNOCOSCalculator
had a discriminative performance of the area under the receiver-
operating-characteristic curve (AUROC) of 0.772 [95% CI 0.762, 0.782]
(Fig. 2a) and the area under the precession-recall curve AUPR of 0.912
[0.906, 0.918] (Fig. 2a) and had a calibration performance of the
integrated calibration index (ICI) of 0.047 [0.042, 0.054] (Fig. 2b),
given the 22% mortality.

The prospective validation based upon data collected from
patients discharged from all 12 Northwell hospitals (n = 25,677 [22,876
with 28-day survival]) (Fig. 1), with 28-day NOCOS Calculator dis-
criminative performance AUROC 0.758 [0.755, 0.762] (Fig. 2a) and
AUPR 0.945 [0.944, 0.947] (Fig. 2a). While the overall AUROC dropped
slightly between the retrospective and prospective validation cohorts
(p = 0.005one-sidedunpaired t-test) and the overall AUPR significantly
improved (p <0.001 one-sided unpaired t-test), the overall calibration
performance degraded significantly from ICI 0.047 [0.042, 0.054] to
ICI 0.119 [0.117, 0.120] (p <0.001 one-sided unpaired t-test) (Fig. 2b, c).

Updating the survival prediction model
Due to calibration degradation during the course of the COVID-19
pandemic, a 2000-patient sliding window was incremented at 500-
patient intervals, and the models were updated when the ICI was
greater than 0.03 (Fig. 3). The window size and updating threshold
were selected based on hyperparameter optimization (Supplementary
Fig. 6). All updating methods for the 28-day NOCOS produce similar
AUROCs (Table 2). All updatingmethods were significantly better than
the original model without updating with regard to ICI, with a range of
ICI improvement from0.098 to 0.105, (p < 0.001 one-sided unpaired t-
test) (Fig. 3, Table 2).We selected logistic recalibration as our updating
method for the 28-day NOCOS Calculator for generalization purposes,
since it requires fewer patients for updating and fewer parameters to
tune and also retains the same predictors45; it’s also worth noting that
intercept only recalibration is almost as good as full logistic recali-
bration. The overall results of this updating method are presented
in Fig. 4.

We also performed similar updates and comparisons for 28-day
survival logistic regression and XGBoost models (Figs. 2–4). All
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Table 1 | Demographic, clinical, and laboratory data of COVID-19 patients hospitalized at northwell health

All included patients Alive 28 days Died 28 days Missing no. (%)

n 34,912 29,984 4928

Alpha (% of alpha patients) 25,009 20,967 (83.8) 4042 (16.2) 0 (0.0)

Delta (% of delta patients) 3475 3138 (90.3) 337 (9.7) 0 (0.0)

Omicron (% of omicron patients) 6428 5879 (91.5) 549 (8.5) 0 (0.0)

Female (%) 15,805 (45.3) 13,817 (46.1) 1988 (40.3) 0 (0.0)

Male (%) 19,107 (54.7) 16,167 (53.9) 2940 (59.7) 0 (0.0)

Age, y (%)

18–40 (%) 3434 (9.8) 3334 (11.1) 100 (2.0) 0 (0.0)

41–60 (%) 9618 (27.5) 8902 (29.7) 716 (14.5) 0 (0.0)

61–80 (%) 14,746 (42.2) 12,298 (41.0) 2448 (49.7) 0 (0.0)

81–106 (%) 7114 (20.4) 5450 (18.2) 1664 (33.8) 0 (0.0)

Race (%)

Asian (%) 2818 (8.1) 2398 (8.0) 420 (8.5) 0 (0.0)

Black (%) 6403 (18.3) 5537 (18.5) 866 (17.6) 0 (0.0)

Declined (%) 225 (0.6) 196 (0.7) 29 (0.6) 0 (0.0)

Other (%) 7821 (22.4) 6838 (22.8) 983 (19.9) 0 (0.0)

Unknown (%) 888 (2.5) 764 (2.5) 124 (2.5) 0 (0.0)

White (%) 16,757 (48.0) 14,251 (47.5) 2506 (50.9) 0 (0.0)

Ethnicity (%)

Declined (%) 157 (0.5) 140 (0.4) 7 (0.1) 0 (0.0)

Hispanic or Latino (%) 5878 (16.8) 5148 (17.2) 730 (14.8) 0 (0.0)

Not Hispanic or Latino (%) 27,516 (78.8) 23,537 (78.5) 3979 (80.7) 0 (0.0)

Unknown (%) 1361 (3.9) 1149 (3.8) 212 (4.3) 0 (0.0)

English (%) 29,657 (84.9) 25,564 (85.3) 4093 (83.1) 0 (0.0)

Length of stay, days (median [IQR]) 5.92 [3.15, 11.26] 5.74 [3.08, 10.72] 8.16 [3.96, 14.67] 0 (0.0)

Vented (%) 3713 (10.6) 1542 (5.1) 2171 (44.1) 0 (0.0)

Last emergency department vital sign measurement (median [IQR])

Systolic blood pressure, mmHg 129.00 [115.00, 145.00] 129.00 [115.00, 145.00] 126.00 [111.00, 143.00] 1526 (4.4)

Diastolic blood pressure, mmHg 73.00 [65.00, 82.00] 74.00 [65.00, 82.00] 70.00 [61.00, 79.00] 1526 (4.4)

Heart rate, beats per minute 88.00 [77.00, 100.00] 88.00 [77.00, 99.00] 90.00 [78.00, 103.00] 1509 (4.3)

Respiratory rate, breaths per minute 20.00 [18.00, 22.00] 19.00 [18.00, 21.00] 20.00 [18.00, 24.00] 1589 (4.6)

Temperature, Celsius 37.10 [36.70, 37.70] 37.10 [36.70, 37.70] 37.10 [36.70, 37.90] 1889 (5.4)

Oxygen saturation, % 97.00 [95.00, 99.00] 97.00 [95.00, 99.00] 96.00 [94.00, 99.00] 1594 (4.6)

Body mass index, kg/m2 27.80 [24.30, 32.30] 27.90 [24.40, 32.30] 27.30 [23.60, 31.60] 15,643 (44.8)

Height, cm 167.64 [160.02, 175.26] 167.64 [160.02, 175.26] 167.64 [160.02, 175.26] 10,765 (30.8)

Weight, kg 79.40 [68.00, 93.00] 79.40 [68.00, 93.40] 77.10 [65.52, 90.70] 12,327 (35.3)

Comorbidities, %

Coronary artery disease (%) 2672 (7.7) 2110 (7.0) 562 (11.4) 8598 (24.6)

Diabetes (%) 6790 (19.4) 5620 (18.7) 1170 (23.7) 8598 (24.6)

Hypertension (%) 12,293 (35.2) 10,237 (34.1) 2056 (41.7) 8598 (24.6)

Heart failure (%) 1484 (4.3) 1115 (3.7) 369 (7.5) 8598 (24.6)

Lung disease (%) 3194 (9.1) 2693 (9.0) 501 (10.2) 8598 (24.6)

Kidney disease (%) 1757 (5.0) 1378 (4.6) 379 (7.7) 8598 (24.6)

Last emergency department laboratory result (median [IQR])

White blood cell count, K/µL 7.34 [5.40, 10.07] 7.24 [5.34, 9.86] 8.05 [5.73, 11.56] 1851 (5.3)

Absolute neutrophil, No., K/µL 5.51 [3.80, 8.01] 5.38 [3.73, 7.77] 6.49 [4.32, 9.66] 2648 (7.6)

Automated neutrophil, % 76.70 [68.30, 83.40] 75.90 [67.60, 82.60] 81.30 [73.80, 87.00] 2618 (7.5)

Automated lymphocyte, No., K/µL 0.93 [0.62, 1.37] 0.96 [0.65, 1.41] 0.75 [0.50, 1.11] 2644 (7.6)

Automated lymphocyte, % 13.10 [8.10, 19.90] 13.90 [8.70, 20.50] 9.60 [5.70, 15.00] 2617 (7.5)

Automated eosinophil, No., K/µL 0.01 [0.00, 0.05] 0.01 [0.00, 0.06] 0.00 [0.00, 0.02] 2695 (7.7)

Automated eosinophil, % 0.10 [0.00, 0.80] 0.10 [0.00, 0.90] 0.00 [0.00, 0.20] 2637 (7.6)

Automated monocyte, No., K/µL 0.51 [0.34, 0.74] 0.51 [0.34, 0.74] 0.48 [0.30, 0.72] 2644 (7.6)

Automated monocyte, % 7.00 [4.90, 9.60] 7.10 [5.00, 9.70] 6.00 [3.90, 8.60] 2617 (7.5)

Hemoglobin, g/dL 12.90 [11.40, 14.20] 13.00 [11.50, 14.30] 12.40 [10.60, 14.00] 1850 (5.3)

Red cell distribution width, % 13.70 [12.80, 15.00] 13.60 [12.80, 14.80] 14.40 [13.30, 16.00] 1876 (5.4)
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updating methods for LR and XGBoost yielded ICIs that were sig-
nificantly better than not updating (p < 0.001 one-sided unpaired t-
test) (Table 2). Neither logistic regression nor XGBoost, when updated,
yielded a significantly lower ICI than the self-monitoring, auto-
updating NOCOS. However, our analysis shows that updating is nee-
ded in all cases regardless of the model type whether it’s a linear or
nonlinear machine learning model. Since we favor updating methods
with fewer parameters, and there were not drastic differences in per-
formance across all of the different updating methods, we propose
logistic recalibration for logistic regression and intercept only recali-
bration for XGBoost as the preferred updating methods.

Changes in predictor importance
The dynamic Bayesian logistic regression is batch updated at each
window position regardless of the current ICI estimate and provides a
smoothly time-varying set of coefficients that can be compared to the
selected updatemethods for the logistic regressionmodel. The 28-day
coefficients (Fig. 5) with logistic recalibration (Supplementary Fig. 4)
are reasonable approximations to the dynamic Bayesian coefficients.

Decision curve analysis
To better assess the clinical utility of the models, decision curve ana-
lysis was performed. The original yields a positive net benefit on the

Table 1 (continued) | Demographic, clinical, and laboratory data of COVID-19 patients hospitalized at northwell health

All included patients Alive 28 days Died 28 days Missing no. (%)

Automated platelet count, K/µL 214.00 [163.00, 280.00] 216.50 [166.00, 283.00] 197.00 [145.00, 263.00] 1888 (5.4)

Serum sodium, mmol/L 137.00 [134.00, 139.00] 137.00 [134.00, 139.00] 136.00 [133.00, 140.00] 1879 (5.4)

Serum potassium, mmol/L 4.10 [3.70, 4.50] 4.10 [3.70, 4.50] 4.20 [3.80, 4.70] 2076 (5.9)

Serum chloride, mmol/L 100.00 [97.00, 104.00] 100.00 [97.00, 104.00] 100.00 [96.00, 104.00] 1882 (5.4)

Serum carbon dioxide, mmol/L 24.00 [21.00, 26.00] 24.00 [22.00, 26.00] 23.00 [20.00, 25.00] 1872 (5.4)

Serum blood urea nitrogen, mg/dL 18.00 [12.00, 29.00] 17.00 [12.00, 26.00] 28.85 [18.00, 48.00] 1873 (5.4)

Serum creatinine, mg/dL 1.02 [0.80, 1.44] 1.00 [0.79, 1.34] 1.36 [0.97, 2.23] 1871 (5.4)

eGFR mL/min/1.73m2 70.00 [44.00, 92.00] 73.00 [48.00, 94.00] 46.00 [25.00, 72.00] 2168 (6.2)

Serum glucose, mg/dL 122.00 [104.00, 160.00] 120.00 [103.00, 155.00] 136.00 [111.00, 188.00] 1872 (5.4)

Serum albumin, g/dL 3.50 [3.10, 3.90] 3.60 [3.10, 3.90] 3.20 [2.70, 3.60] 2225 (6.4)

Total serum bilirubin, mg/dL 0.50 [0.30, 0.70] 0.50 [0.30, 0.70] 0.50 [0.40, 0.80] 2229 (6.4)

Serum alkaline phosphatase,U/L 78.00 [61.00, 103.00] 77.00 [61.00, 101.00] 82.00 [63.00, 112.00] 2267 (6.5)

Alanine aminotransferase (ALT/SGPT), U/L 29.00 [18.00, 48.00] 29.00 [18.00, 48.00] 29.00 [18.00, 48.00] 2330 (6.7)

Aspartate aminotransferase (AST/SGOT), U/L 37.00 [25.00, 59.00] 36.00 [24.00, 57.00] 48.00 [31.00, 76.00] 2335 (6.7)

Serum C-Reactive Protein, mg/L 8.50 [4.00, 15.12] 7.93 [3.70, 14.06] 12.20 [6.58, 20.42] 23730 (68.0)

Serum Lactate, mmol/L 1.70 [1.30, 2.20] 1.60 [1.20, 2.10] 2.00 [1.50, 2.90] 15506 (44.4)

Age is binned in this table for presentation purposes, and the age variable is used as a numeric variable in the models.
eGFR estimated glomerular filtration rate using the CKD-EPI equation, IQR interquartile range.

Development/Training
11 Northwell Health hospitals

7346 included patients
5638 survived past 28 days

Prospective Monitoring / 
Updating

12 Northwell Health hospitals
25677 included patients

22876 survived past 28 days

Retrospective Validation
1 Northwell Health hospital

1889 included patients
1470 survived past 28 days

Hospitalized Patients
Percent Mortality
Alpha
Delta
Omicron
Died
Update Window

Fig. 1 | Dataset overview and study design. The data sets include training, ret-
rospective validation, prospective monitoring/updating comprising 34,912
patients. The number of hospitalized patients across the course of the pandemic is
plotted asbluebars, with the 7-day rolling averagemortality plottedasa reddashed

line. The three different dominant variants (alpha, delta and omicron) are repre-
sented as background colors). The vertical dashed red lines indicate the left edges
of the 2000 patient sliding window that increments by 500 patients at a time.
NOCOS Northwell COVID-19 Survival.
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retrospective cohort across most decision thresholds (Fig. 2d). The
original model without updating yields a negative net benefit over a
wide range of preferences, showing that use of this model would
worsen decision making, compared to the best treatment strategy
overall. Worth reminding is that the probabilities used in our decision
curve analysis refer to mortality, rather than survival. When we apply

the updating methods, the models tend to provide a positive net
benefit. (Fig. 4c, Supplementary Fig. 3c).

Sensitivity analysis
To examine whether the proposed framework remains accurate and
well calibrated across different virus variants, sex and race/ethnicities,

Treat None
Retrospective Treat All
Retrospective Validation
Prospective Treat All
No Updates

a

d

b

c

NOCOS LR XGBoost
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Fig. 2 | Retrospective and prospective validation of static 28-day survival
models. a ROC and PR curves with AUC and 95% CI for the retrospective (n = 1889)
and prospective (n = 25,677; no updates) validation cohorts, b calibration plots for
the retrospective validation cohort, c calibration plots for the prospective (no
updates) validation cohort and d decision curves for the retrospective and pro-
spective (no updates) cohorts based on the original NOCOS, logistic regression,
and XGBoost models. The blue dots on the calibration plots show the actual

proportion of outcomes averaged over deciles of the predicted probabilities. The
red histograms show the counts of patients that survived past 28 days binned by
the predicted probabilities. The green histograms show the counts of patients that
died before 28 days binned by the predicted probabilities. The diagonal black lines
indicate perfect calibration. The ICIs along with their 95% CIs are reported. ROC
receiver operating characteristic, PRprecision recall, AUCareaunder theROCorPR
curve, CI confidence interval, ICI integrated calibration index.

No Updates
Dynamic Logistic Regression
Update Intercept
Logistic Recalibration
Reestimation
Reestimation with Extension

a b c

Fig. 3 | Temporal progressionof performancemetrics across all 28-day survival
models and updating procedures. Discrimination (AUROC) and calibration (ICI)
performance metrics in a 2000-patient sliding window with a step size of 500
patients for the original and dynamically updated 28-day a NOCOS, b logistic
regression, and c XGBoost models. The updating methods are listed in the legend,

and dynamic logistic regression is only applicable to the logistic regression model.
Updates are performed when the ICI is greater than the threshold of 0.03. AUROC
area under the receiver operating characteristic curve, ICI integrated calibration
index, LR logistic regression.

Table 2 | 28-day performance metrics for the prospective (n = 25,677) cohort

AUROC [95% CI] NOCOS Logistic regression XGBoost

No updates 0.758 [0.755, 0.762] 0.759 [0.755, 0.762] 0.762 [0.759, 0.766]

Intercept only 0.753 [0.750, 0.757] 0.754 [0.751, 0.758] 0.759 [0.756, 0.763]

Logistic recal 0.755 [0.752, 0.759] 0.756 [0.753, 0.760] 0.759 [0.756, 0.763]

Reestimation 0.749 [0.745, 0.752] 0.756 [0.753, 0.760] 0.749 [0.745, 0.752]

Reest ext 0.758 [0.754, 0.762] 0.746 [0.742, 0.749] 0.736 [0.732, 0.740]

Dynamic Bayes N/A 0.758 [0.754, 0.761] N/A

AUPR [95% CI] NOCOS Logistic regression XGBoost

No updates 0.945 [0.944, 0.947] 0.961 [0.959, 0.962] 0.947 [0.945, 0.948]

Intercept only 0.959 [0.957, 0.960] 0.960 [0.958, 0.961] 0.959 [0.958, 0.960]

Logistic recal 0.959 [0.958, 0.961] 0.960 [0.959, 0.961] 0.958 [0.957, 0.960]

Reestimation 0.956 [0.955, 0.957] 0.960 [0.959, 0.961] 0.955 [0.954, 0.956]

Reest ext 0.958 [0.957, 0.959] 0.957 [0.956, 0.958] 0.952 [0.951, 0.953]

Dynamic Bayes N/A 0.960 [0.959, 0.961] N/A

ICI [95% CI] NOCOS Logistic regression XGBoost

No updates 0.119 [0.117 0.120] 0.116 [0.114 0.118] 0.109 [0.108 0.111]

Intercept only 0.021 [0.020 0.022] 0.017 [0.016 0.018] 0.015 [0.014 0.016]

Logistic recal 0.016 [0.014 0.017] 0.015 [0.014 0.016] 0.016 [0.014 0.017]

Reestimation 0.014 [0.013 0.016] 0.018 [0.016 0.019] 0.015 [0.014 0.016]

Reest ext 0.019 [0.018 0.021] 0.016 [0.015 0.018] 0.017 [0.015 0.018]

Dynamic Bayes N/A 0.024 [0.023 0.026] N/A

Bold entries indicate the chosen update method for each model based on ICI.
AUROC area under the receiver-operating-characteristic curve, AUPR area under the precision-recall curve, ICI integrated calibration index, NOCOS Northwell COVID-19 Survival Calculator.
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we performed sensitivity analysis focusing on the performance char-
acteristics of all models across these subgroups. Our results, shown in
Fig. 6 and Supplementary Table 4 for the 28-dayNOCOSmodel, as well
as for all other models shown in Supplementary Fig. 7 and Supple-
mentary Table 3, reveal small differences in performancemetrics. The
observed differences in ICI across all subgroups of our sensitivity
analysis are not expected to affect the net benefit to the patient and
showcase that the proposed approach works efficiently across virus
variants, sex and races and ethnicities.

Discussion
We developed a framework of self-monitoring, auto-updating prog-
nostic models to predict the probability of 28-day survival for COVID-
19 patients upon admission to the hospital. We applied this framework
using three different model architectures: a custom GLM, logistic
regression, and XGBoost. The same analysis was repeated for 7-day
survival in the supplement. The initial onset of the first wave of the
pandemic in New York City was a time when factors such as survival,
standard treatment methods, and patient case-mix were under

Treat None
Treat All
No Updates
Update Intercept
Logistic Recalibration

a

b

c

NOCOS LR XGBoost

Fig. 4 | Prospective validation of all 28-day self-monitoring, auto-updating
models. a ROC and PR curves with AUC and 95% CI for the prospective (n = 25,677)
validation cohort, b calibration plots for the prospective validation cohort, and
c decision curves for the prospective cohort based on NOCOS updated using
logistic recalibration, logistic regression updated using logistic recalibration, and
XGBoost updated using intercept only recalibration. The blue dots on the cali-
bration plots show the actual proportion of outcomes averaged over deciles of the

predicted probabilities. The red histograms show the counts of patients that sur-
vived past 28 days binned by the predicted probabilities. The green histograms
show the counts of patients that died before 28 days binned by the predicted
probabilities. The diagonal black lines indicate perfect calibration. The ICIs along
with their 95%CIs are reported. ROC receiver operating characteristic, PRprecision
recall, AUC area under the ROC or PR curve, CI confidence interval, ICI integrated
calibration index.
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a b c

Fig. 5 | 28-daymodel coefficient importance. aNOCOS, b logistic regression, and
c XGBoost model predictor importances are plotted. The importance of the
NOCOS and logistic regression model predictors are the coefficients of the linear
predictor scaled by the standard deviations of the predictors from the

development cohort. The importance of the XGBoost model coefficients is the
weighted average over the ensemble of trees of the difference in node risk between
the parent and children nodes due to splitting at each predictor.

a

b

Variant Sex Race / Ethnicity

Fig. 6 | Sensitivity analysis of the 28-day updating NOCOS model across var-
iants, sex and race/ethnicity. a ROC and PR curves with AUC and 95% CI for the
prospective (n = 25677) validation cohort and b their corresponding calibration
plots based on the 28-day NOCOS updated with logistic recalibration. The model
was filtered by variant, sex, and race/ethnicity. The points on the calibration plot

show the actual proportion of outcomes averaged over deciles of the predicted
probabilities. The diagonal black lines indicate perfect calibration. The ICIs along
with their 95%CIs are reported. ROC receiver operating characteristic, PRprecision
recall, AUC area under the ROC or PR curve, CI confidence interval; ICI integrated
calibration index.
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constant flux. These factors resulted in model performance drifts,
showcased by the degradation of calibration performance from the
retrospective to the prospective validation cohorts. In order to main-
tain calibration over time, a dynamic updating approach consisting of
a 2000-patient sliding window with a 500-patient step was used to
monitor the calibration and apply several model updating strategies if
the miscalibration exceeded a threshold. The resulting models main-
tained good discrimination capabilities and calibration throughout the
different waves of the pandemic, regardless of model architecture,
always outperforming their initial versions. This is also thefirst study to
our knowledge that performs temporal updating of COVID-19 prog-
nostic survival models to correct for model performance
calibration drift.

Prognostic models are frequently optimized for discriminative
performance, but miscalibration can be harmful when clinical deci-
sions are based on biased predictions46. The magnitude of the per-
formance drift as well as the speed at which it manifests can have a
potential impact on the perception of the severity of a patient. This can
have an incremental effect on the treatment and, equally importantly,
on the trust that clinicians have for these algorithms. While an error of
1–2% in a probability of survival estimate for a specific patient might
not change any specific decision making, an average error of 9–10%
across thousands of patients means that some patients will have an
error a lot higher than 10% which can be misleading and result in
confusion, delayed decisionmaking, and loss of trust of the clinician to
the algorithms. Our study emphasizes minimizing bias by reporting
and maintaining calibration performance through model updates.
Notably, despite calibration degradation, discriminative performance
remained well-maintained, emphasizing the need for closemonitoring
of calibration characteristics (e.g., ICI) in addition to discrimination
characteristics (e.g., AUC of ROC and PR curves).

We show thatmodel updating is crucial, particularly in the setting
of rapidly changing outcomes (e.g., survival), as in the course of the
COVID-19 pandemic at our health system (Table 1) and elsewhere47,48.
However, updating involves additional complexity, data gathering,
and cost7. Ad hoc updated models like EuroSCORE are relatively
inexpensive but are not responsive to calibration drift on a short
timescale, and periodically updated models like QRISK are more
expensive but react to calibration drift sooner. Dynamic models with
continuous model surveillance have the benefit of increased respon-
siveness but also add complexity24,49 to the validation steps since there
is no standardized validation methodology7–10. We validated our
models temporally by calculating the performance metrics in a
sequence of sliding window positions, similar to the dynamic calibra-
tion curves used by Davis et al. albeit with a fixed window size and
averaged over all predicted probabilities12. We also provided an overall
validation of all models, by accumulating the predictions of the
updated models and calculating the performance over all data, after
initial development. Ultimately, standardized approaches to dynamic
models that provide support in the context of healthcare systems will
move us closer to learning health systems50.

Our dynamic monitoring and updating method could be oper-
ationalized in a relatively straightforward manner. This deployment
would feature a program that monitors the number of patients since
deployment, and as soon as the number of patients reaches the
required window size, will test the latest model calibration and, if
needed, update the model. Creating that program is of minimal cost,
and maintaining it can be rather trivial computationally, since these
steps don’t require any additional computational infrastructure. The
minimum requirement is to maintain an actively updated database on
a regular basis with a scheduled database query, employing in our use
case specific filters for COVID-19 patients and notifications to inform
clinicians of current performance and possible updates. As with every
tool, it would be preferable to have a clinician, a developer. or ideally
both, to review proper function of the pipeline, as well as the updates,

periodically. These processes can be run in a centralized location on a
single workstation that interfaces with the electronic health records
(EHR) of the institution it is deployed.

Another important factor to consider when updating models is
the number of available samples. There is an inherent tradeoff between
stationarity and sample size in the update cohort51. While small tem-
poral windows can follow the dynamics of the nonstationary changes
in the data, they might not have enough power in samples to enable
certain modeling approaches, while larger windows that have ade-
quate sample sizes might not be able to follow quickly changing
dynamics11. In order to strike the balance for this tradeoff, our
approach was to determine the size of the window based on a com-
bination of formulas that estimate the proper sample size for LR
models52 and to perform a hyperparameter optimization that esti-
mates the proper sample size for the custom GLM model (Supple-
mentary Fig. 6). We ultimately recalibrated/retrained our existing
model based on a 2000-patient sliding window of data rather than
retraining the model on all of the data first.

We evaluated several updating methods: logistic recalibration
with intercept only, full logistic recalibration with gain and intercept,
retraining the model with fixed predictors, retraining the model with
all candidate predictors13, and dynamic Bayesian logistic
regression23,24. In addition, other recentmethods that smoothly update
their parameters like the dynamic logistic state spacemodel53may also
be valuable within a dynamic updating framework. We selected the
update method by finding the optimal integrated calibration index
with minimal impact to discriminative performance. Most of the
updatingmethods exhibited similar performance and all were superior
to not updating, similar to other studies that employed model
updating for other use cases11. In addition, our method included a lag
equal to the follow-upperiodbeforeupdating themodel to ensure that
updating was done prospectively, unlike the approach by Schnellinger
et al. that was inherently retrospective11, which we found to be overly
optimistic (see hyperparameter optimization and causal model design
in Supplementary Fig. 6). Other methods in the literature for correct-
ing model performance calibration drift include a closed test
procedure54, applying bootstrap resampling while evaluating the
updating methods and scoring rules10, and dynamically adjusting the
window lengths12. These methods could also be implemented as a
variation of our sliding window approach, but we found a single
updating method with fixed window size sufficient without additional
complexity. The closed testing procedure and retrainingmethods also
require more data points than recalibration methods11, and reestima-
tion would not have been our optimal choice had fewer patients been
initially available resulting in a reduced window size (see hyperpara-
meter optimization in Supplementary Fig. 6).

Our results were also similar across model types, demonstrating
robustnessof the updating framework to the choiceofmodel, whether
that is a custom generalized linear model like NOCOS, a standard GLM
like logistic regression, or a nonlinear ensemble model like XGBoost.
It’s interesting to note that XGBoost, a nonlinear machine learning
model, did not yield significantly better results than a simple GLM or
logistic regression model. This is likely because we constrained the
models to only a few predictors or because the relationships in
the data weremostly linear55,56. The results were also similar across the
virus variant, sex, and race and ethnicity indicating that the updating
methods are also robust to these variations in the data as well.

Updating a model, or more generally, making any change to a
procedure, onlymakes sense if there is a clinical net benefit that results
from the change. Since model performance calibration drift biases the
model, we expected that there would be a net benefit from correcting
the model calibration so that clinicians could make better decisions
based on the model outcome. Decision curve analysis is a technique
that graphs the net benefit of an intervention against a clinical
preference57. All static models developed showed a negative net
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benefit across a wide range of threshold values, indicating possible
detriment if these models were used. When updated, the positive net
benefit across a wide range of threshold preferences, indicates that
these updates made the models generally useful, correcting for biases
that can impact the net-benefit of these models.

Prognostic models for COVID-19 and other diseases are particu-
larly useful clinically and operationally for health systems. For COVID-
19 in particular, the NOCOS survival model was used extensively by
triage teams (to better inform decisions about appropriate level of
care and hospital discharge), clinical rounding teams (for risk assess-
ment), primary medical and palliative care teams (to better guide
shared medical decision making), and hospital operations teams (for
load-balancing, resource, and personnel planning). Clinical decisions
should not be based only on the predicted probability of survival, but
also be based on a risk-benefit analysis that may be dependent upon
current hospital resources37. Given these multiple uses with significant
clinical and operational implications, ongoing monitoring, main-
tenance, and recalibration is necessary to maintain optimal
performance.

The study population only included patients within the New York
City metropolitan area. External, and more specifically geographic,
validation of similar models has been limited and has demonstrated
significant performance drifts41,58. While our model has been trained
and validated using patients from the New York population, one of the
most demographically and ethnically diverse areas in the world, it
could still demonstrate performance drifts in different geographic
locations.Webelieve, as demonstrated in this study, thatour proposed
framework can quickly correct for performance drifts, even those
appearing immediately upon implementation.

The data were collected entirely from EHRs, which supported
robust and rapid analysis of a large cohort of patients. However,we did
not include data elements that would require manual chart review,
such as symptom information or radiographs. Due to the retrospective
study design, not all laboratory tests were completed on all patients,
and the performance of these variables could not be adequately
assessed.

Finally, deploying dynamic prediction models that self-monitor
and auto-update can be technically challenging as they necessitate
specific data pipelines and retraining scripts requiring maintenance
andmonitoring. One specific examplemay include the need for a data
pipeline that is capable of dynamically updating the imputation
models as well. Also, monitoring dashboards are essential, since
engineering teams and stakeholders need to be alerted of model
performance drifts and informed of any automatic updates, including
specific details on changes occurring in updates. While these chal-
lenges can increase the technical burden of deploying these models,
we believe that stable pipelines and data monitoring dashboards are
necessary, not only for the case of dynamic models but for any
deployed clinical predictive model.

This study demonstrates the importance of updating prognostic
models in settings with rapidly changing clinical dynamics and pro-
poses a self-monitoring, auto-updating survival model for COVID-19
patients. Biasedmodels can result in potentially harmful biased clinical
decisions. This is the first study to our knowledge that performs
dynamic updating of COVID-19 prognostic survival models to correct
for model performance calibration drift, a methodology that can be
extended to other clinical prognostic models.

Methods
Data acquisition
Data were collected from the enterprise EHR (Sunrise Clinical Man-
ager, Allscripts, Chicago, IL). Transfers from one in-system hospital to
another weremerged and considered one hospital visit. Data collected
for the development and internal validation of the tool included
patient demographic information, comorbidities, laboratory values,

and outcome (28-day survival and discharge). Our project utilized
clinical data, obtained retrospectively, which was determined by the
Northwell Health Institutional Review Board (IRB) to meet the
requirements for review under exemption category 4) Secondary
research uses of identifiable private information, (iii) The research
involves only information collection and analysis involving the inves-
tigator’s use of identifiable health information when that use is regu-
lated under 45 CFR parts 160 and 164, subparts A and E, for the
purposes of “health care operations” or “research” as those terms are
defined at 45 CFR 164.501 or for “public health activities and purposes”
as described under 45 CFR 164.512(b).

Study design and setting
This study includes retrospective development and validation, and
prospective validation of models to predict 28-day survival of patients
hospitalized with COVID-19 between March 2, 2020, and April 3, 2022
(Table 1). The development cohort includes patients admitted to 11
acute care facilities in the Northwell Health system between March 2,
2020 (all date/times are at midnight), and April 23, 2020 (n = 7346).
Long Island Jewish Hospital, the hospital that contained the most
COVID-19 positive patients during the same timeperiod, was left out of
the development set, and was used for retrospective validation
(n = 1889). We repeat this process, sequentially leaving one hospital
out as the validation cohort, and we report the variation of retro-
spective performance metrics (Supplementary Table 5). The pro-
spective validation cohort included patients admitted to all 12 acute
care facilities in the Northwell Health system between April 23, 2020,
and April 3, 2022 (n = 25,677). The final date of follow-up was
May 1, 2022.

Patients were included in the development and retrospective and
prospective validation datasets if they were adults (≥18 years old)
admitted to the hospital with COVID-19 confirmed by a positive result
from polymerase chain reaction testing of a nasopharyngeal sample.
Clinical outcomes (i.e., discharge, mortality) were monitored until the
final date of follow-up. Patients were excluded if they received invasive
mechanical ventilation before admission, either before presentation to
or during their stay in the emergency department. Another exclusion
criterion is when a do not resuscitate order (DNR) was created up to
five days prior to expiration, since these DNRs can potentially bias the
outcome. Patients were also excluded if they were transferred to a
hospital outside of the health system and their outcomes were
unknown.

Potential predictive variables
Potential predictive variables were included if they were available as
discrete data points in the EHR for more than half of study patients at
the time of admission. For variables with multiple values at admission,
such as vital signs and labs, the last value before time of admissionwas
used for analysis. This approachensured that the resultswould contain
data points routinely available upon admission. In the overview of our
dataset (Table 1), continuous variables are presented as median and
interquartile range, and categorical variables are expressed as the
number of patients and percentage. Demographic variables included
age, sex, race, ethnicity, and language preference as English or non-
English. Vitals signs included systolic blood pressure, diastolic blood
pressure, heart rate, respiratory rate, oxygen saturation, temperature,
bodymass index, height, andweight. Comorbidities included coronary
artery disease, diabetes mellitus, hypertension, heart failure, lung
disease, and kidney disease. Laboratory variables that have a miss-
ingness less than 50% included white blood cell count, absolute neu-
trophil count, automated lymphocyte count, automated eosinophil
count, automated monocyte count, hemoglobin, red cell distribution
width, automated platelet count, serum sodium, serum potassium,
serum chloride, serum carbon dioxide, serum blood urea nitrogen,
serum creatinine, estimated glomerular filtration rate, serum glucose,
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serum albumin, serum bilirubin, serum alkaline phosphatase, alanine
aminotransferase, aspartate aminotransferase, and serum lactate.
C-reactive protein serum was also included even though it was more
than 50% missing because other studies found it to be predictive of
mortality59,60. The logarithms of numeric variables were used in addi-
tion to the linear scale. It is possible that both scales for a given mea-
surement can be selected which can assist in modeling nonlinear
effects. Categorical variables were dummy encoded by expanding the
number of variables to include a binary representation of all but one of
the categories where at most one variable at a time can be true.

Imputation
Missing values were assumed to be missing at random and imputed
using multiple imputations by chained equations (MICE)61 using the R
programming language, version 1.4.1717 (R Foundation for Statistical
Computing). Some predictors like body mass index (BMI) and the
natural logarithmof the laboratory values and vital signswere imputed
using passive imputation to preserve the deterministic relationships
between different missing variables in the imputed data. Outcomes
were also included in the imputation models as recommended by
Steyerberg in 7.4.3 of Clinical Prediction Models Second Edition since
missing values were imputed using random draws13. Due to the nature
of fully conditional specification and that the imputation models were
trained on the development set, prospective outcomes are not
necessary for imputing prospective data. Five imputed data sets were
created using five random draws for each missing value. The imputa-
tion models were created on the development data, and new patients
can be imputed using the same imputation models. Once the missing
values have been imputed, the dynamic updating can proceed as if the
values were known. We are effectively proposing method 6 from
Hoogland et al.62. In a real-time implementation, to produce an indi-
vidual risk prediction, a range of probabilities can be obtained from
multiple imputation. This range along with the average estimated
probability can be reported back so that an individual risk along with
the impact of the missing values to this risk can be assessed by a
clinician.

Outcomes
Outcomes collected included death and discharge. The primary out-
come was 28-day survival. Patients who were discharged alive within
28 days or were alive and in the hospital longer than 28 days had a
positive survival outcome. Patients who died in less than 28 days had a
negative survival outcome. The 28-day follow-up ensured that all
outcomes were known for patients still in the hospital.

Prediction model development
We previously developed the Northwell COVID-19 Survival Calculator
(NOCOS); a generalized linear model that selected predictors from a
pool of vitals, labs, and patient demographics using lasso
regression42,43. NOCOSuses six variables to calculate a prognosis for in-
hospital survival at the time of admission.

For this study, we monitored and retrained a NOCOS model for
28-day survival. The development cohort did not include one of the
hospitals, Long Island JewishHospital and the cutoff datewasmodified
to use patients that were admitted before April 23, 2020 rather than
discharged before April 23, 2020, since the original NOCOS develop-
ment set was inadvertently biased towards shorter duration patients.
We also imputed the data using MICE with five imputations since the
original NOCOS used mean imputation. Lastly, wemade use of a more
recent data set that includes patients admitted past our final date of
follow-up,May 1, 2022 (n = 34,912, 29,984 survived 28 days) so that the
28-day follow-up period started on Apr 3, 2022.

The data were standardized by taking the z-score, which puts all
measurements on the same scale. All analyses were performed in
MATLAB 2020b (Mathworks, Inc., Natick, MA). The five imputed

development cohorts were combined via concatenation for model
development63 and weighted so as not to artificially increase the
sample size, and the minority class (patients that died) was randomly
oversampled with replacement64,65 to correct for class imbalance. L1-
penalized linear regression followed by Bayes theorem was used to
predict the survival of hospitalized patients with COVID-19 (Supple-
mentary Methods). The class-conditional likelihood functions of the
linear predictors for survival past 28 days and death before 28 days
were estimated with Pareto tails and a Lévy alpha-stable distribution in
the center using maximum likelihood estimation, and the priors were
estimated as the fraction of patients that either survived or died. The
posterior probability of survival past 28 days was evaluated using
Bayes Theorem. Similar to logistic regression, linear regression fol-
lowed by class-conditional likelihood estimation and Bayes theorem
canalso be formulated as a generalized linearmodelwith a custom link
function.

For comparison, we also developed an L1-penalized logistic
regression model and an extreme gradient boosted decision trees
model for the 28-day outcome. The LR model did not require resam-
pling, and the XGBoost model corrects for class imbalance via its cost
function that incorporates the fraction of each outcome class. The
XGBoost model can also be recalibrated just like the other models
because it also predicts a probability. The hyperparameters for the LR
models were selected to yield six predictors in the same way as
NOCOS. Six predictors were selected for the XGBoost models by
including all candidate predictors, ranking the predictors by their
importance that is based on averaging changes in the node risk due to
splits on every predictor66, and then retraining the models using only
the six most important predictors.

Prediction model validation
The generalizability of the 28-day NOCOS calculator, as well as the LR
andXGBoostmodels, were validatedwith the retrospective cohort and
prospective cohort for each imputed data set. Predictive performance
of the model was assessed via AUROC, AUPR, and ICI. AUPR is a
measure that is well-suited for imbalanced data, and its values range
from the sample prevalence (indicating random performance) to 1
(indicating perfect classification)67. ICI is the expected error between
the actual and ideal calibration curves and approaches 0 when there is
perfect calibration68.

Ninety-five percent confidence intervals (95% CI) on the AUROCs
were calculated using the method described by Hanley and McNeil69,
95% CI for the AUPRs were calculated using the method described by
Boyd, Eng, and Page70, and the 95%CI for the ICIs were estimated using
a bootstrapping approach with 200 replicates. All confidence intervals
were determined over the union of the five imputed data sets. The
confidence intervals for both area under the curves (AUCs) and ICIs
were compared for significance using one-sided, two-sample t-tests,
which are appropriate because AUCs are U-statistics, and the boot-
strapped ICIs are observed to be approximately normally distributed.

Prediction model updating
A sliding window was used for model surveillance and updating. The
windowed patients were evaluated on the current model and the dis-
crimination (AUROC and AUPR) and calibration (ICI) performance
metrics were computed. This sweeps out performance versus time
curves. In order to evaluate the overall performance, the predicted
probabilities of the 500 most recent patients were accumulated over
the course of the simulation and the performance metrics were
recalculated over all of the accumulated data at the end of the simu-
lation. If the ICI crossed a threshold, the model would be updated
based on the current window of patients but not applied to new
patients until after the follow-up since the patients’ outcomes are not
known at the time of admission. Hyperparameter optimization was
performed by sweeping the window size, the ICI threshold, and the

Article https://doi.org/10.1038/s41467-022-34646-2

Nature Communications |         (2022) 13:6812 11



number of imputations and partially rerunning the simulation
(through November 15, 2021) to select the optimal values. Hyper-
parameters that are relatively insensitive to the performance would be
expected to be robust with prospective data. The sliding window
procedure was used for each updating method—no updating, inter-
cept only logistic recalibration (updating the intercept of the linear
predictor), full logistic recalibration (updating the intercept and
applying a gain to the linear predictor), reestimation of the model
parameters using the same predictors, and reestimation and selection
of themodel parameters using all candidate predictors13. The LRmodel
also included a dynamic Bayesian logistic regression23 updating
method that was batch updated at each window position without a
threshold.

In addition, a realizable model was compared with an acausal,
unrealizable model. When causality is off in the simulation, patient
outcomes are assumed to be known immediately, and the updated
model is applied to new patients prior to the follow-up period. This
results in an overly optimistic performance. We aimed to quantify the
optimism bias based on this assumption for comparison, and the
causal model used in all other experiments.

Decision curve analysis
Decision curve analysis was performed by plotting the net benefit vs
the preference. NB pt

� �
=TPR pt

� �
*φ�w pt

� �
*FPR pt

� �
* 1� φð Þ �

Net Harm where TPR is the true positive rate or sensitivity at the
threshold probability pt, FPR is the false positive rate at the threshold
probability pt, φ is the estimated population event rate, and the
weights w = pt

1�pt
where pt is the threshold probability. The decision

curve is compared against the treat-all (TPR = 1, FPR = 1) and treat-none
(TPR = 0, FPR = 0) reference curves. In our decision curve analysis, the
threshold probability refers to the mortality probability (in contrast to
the survival probabilities of the models), to adhere to the commonly
preferredway that decision curves are computed. There is no net harm
from administering this test71.

Sensitivity analysis
Based on data from the New York State Department of Health72, the
alpha variant was dominant from the start of our data until about June
15, 2021. The delta variant was dominant between June 15, 2021 and
December 15, 2021. Then the omicron variant was the dominant strain
from December 15, 2021 through the end of our data. Race and eth-
nicity were combined so that White and Other Hispanics and Latinos
were grouped with Hispanics and Latinos, but Black and Asian His-
panics and Latinos were grouped with Black and Asian respectively.
The results of the primary analysis were indexed according to these
groupings.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The tabular data that support the findings of this study are available in
the synapse.org database - (https://doi.org/10.7303/syn39792658.1).
The data being shared, acquired after a full waiver of authorization
issued by the IRB, are not considered identifiable data as per the Safe
Harbormethod for deidentification articulated at45CFR 164.514(b)(2).
Moreover, perturbation as per 45 CFR 164.514(b)(1) has been applied
for additional reidentification risk mitigation.

Code availability
Updating code can be downloaded from https://zenodo.org/badge/
latestdoi/480857206 and a web calculator implementation is located
at https://mlmd.org/nocos.

References
1. Jones, A. E., Trzeciak, S. & Kline, J. A. The Sequential Organ Failure

Assessment score for predicting outcome in patients with severe
sepsis and evidence of hypoperfusion at the time of emergency
department presentation. Crit. Care Med. 37, 1649–1654 (2009).

2. Lim, W. et al. Defining community acquired pneumonia severity on
presentation to hospital: an international derivation and validation
study. Thorax 58, 377–382 (2003).

3. Jarman, B. et al. The hospital standardised mortality ratio: a pow-
erful tool for Dutch hospitals to assess their quality of care? Qual.
Saf. Health Care 19, 9–13 (2010).

4. Steyerberg, E.W. et al. Prognosis Research Strategy (PROGRESS) 3:
Prognostic Model Research. PLoS Med. 10, e1001381 (2013).

5. Haybittle, J. L. et al. A prognostic index in primary breast cancer. Br.
J. Cancer 45, 361–366 (1982).

6. Emergency Triage: Manchester Triage Group, 3rd Edition | Wiley.
https://www.wiley.com/en-us/Emergency+Triage%3A
+Manchester+Triage+Group%2C+3rd+Edition-p-9781118299067.

7. Jenkins, D. A. et al. Continual updating and monitoring of clinical
prediction models: time for dynamic prediction systems? Diag-
nostic Prognostic Res. 5, 1 (2021).

8. Su, T.-L., Jaki, T., Hickey, G. L., Buchan, I. & Sperrin, M. A review of
statistical updating methods for clinical prediction models. Stat.
Methods Med. Res. 27, 185–197 (2018).

9. Jenkins, D. A., Sperrin, M., Martin, G. P. & Peek, N. Dynamic models
to predict health outcomes: current status and methodological
challenges. Diagnostic Prognostic Res. 2, 23 (2018).

10. Davis, S. E. et al. A nonparametric updating method to correct
clinical prediction model drift. J. Am. Med. Inform. Assoc. 26,
1448–1457 (2019).

11. Schnellinger, E. M., Yang, W. & Kimmel, S. E. Comparison of
dynamic updating strategies for clinical prediction models. Diagn.
Progn. Res. 5, 20 (2021).

12. Davis, S. E., Greevy, R. A., Lasko, T. A., Walsh, C. G. &Matheny, M. E.
Detection of calibration drift in clinical prediction models to inform
model updating. J. Biomed. Inform. 112, 103611 (2020).

13. Steyerberg, E. Clinical Prediction Models: A Practical Approach to
Development, Validation, and Updating. (Springer International
Publishing, 2019). https://doi.org/10.1007/978-3-030-16399-0.

14. Nashef, S. A. M. et al. EuroSCORE II. Eur. J. Cardiothorac. Surg. 41,
734–744 (2012).

15. Development and validation ofQRISK3 risk prediction algorithms to
estimate future risk of cardiovascular disease: prospective cohort
study. BMJ https://www.bmj.com/content/357/bmj.j2099.

16. Gulati, G. et al. Generalizability of cardiovascular disease clinical
prediction models: 158 independent external validations of 104
unique models. Circ.: Cardiovasc. Qual. Outcomes https://doi.org/
10.1161/CIRCOUTCOMES.121.008487 (2022).

17. Wessler, B. S. External validations of cardiovascular clinical pre-
diction models: a large-scale review of the literature. Circ.: Cardi-
ovasc. Qual. Outcomes https://doi.org/10.1161/CIRCOUTCOMES.
121.007858 (2021).

18. Martin, G. P., Sperrin, M. & Sotgiu, G. Performance of prediction
models for Covid-19: the caudine forks of the external validation.
Eur. Respiratory J. https://doi.org/10.1183/13993003.03728-
2020 (2020).

19. Wynants, L. et al. Prediction models for diagnosis and prognosis of
covid-19: systematic review and critical appraisal. BMJ 369,
m1328 (2020).

20. Nashef, S. A. et al. European system for cardiac operative risk eva-
luation (EuroSCORE). Eur. J. Cardiothorac. Surg. 16, 9–13 (1999).

21. Hippisley-Cox, J. et al. Derivation and validation of QRISK, a new
cardiovascular disease risk score for the United Kingdom: pro-
spective open cohort study. BMJ 335, 136 (2007).

Article https://doi.org/10.1038/s41467-022-34646-2

Nature Communications |         (2022) 13:6812 12

https://doi.org/10.7303/syn39792658.1
https://zenodo.org/badge/latestdoi/480857206
https://zenodo.org/badge/latestdoi/480857206
https://mlmd.org/nocos
https://www.wiley.com/en-us/Emergency+Triage%3A+Manchester+Triage+Group%2C+3rd+Edition-p-9781118299067
https://www.wiley.com/en-us/Emergency+Triage%3A+Manchester+Triage+Group%2C+3rd+Edition-p-9781118299067
https://doi.org/10.1007/978-3-030-16399-0
https://www.bmj.com/content/357/bmj.j2099
https://doi.org/10.1161/CIRCOUTCOMES.121.008487
https://doi.org/10.1161/CIRCOUTCOMES.121.008487
https://doi.org/10.1161/CIRCOUTCOMES.121.007858
https://doi.org/10.1161/CIRCOUTCOMES.121.007858
https://doi.org/10.1183/13993003.03728-2020
https://doi.org/10.1183/13993003.03728-2020


22. Collins, G. S. & Altman, D. G. Predicting the 10 year risk of cardi-
ovascular disease in the United Kingdom: independent and
external validation of an updated version of QRISK2. BMJ 344,
e4181 (2012).

23. McCormick, T. H., Raftery, A. E., Madigan, D. & Burd, R. S. Dynamic
logistic regression and dynamic model averaging for binary clas-
sification. Biometrics 68, 23–30 (2012).

24. Hickey, G. L. et al. Dynamic prediction modeling approaches for
cardiac surgery. Circ. Cardiovasc. Qual. Outcomes 6, 649–658
(2013).

25. Yamada, G. et al. External validation and update of prediction
models for unfavorable outcomes in hospitalized patients with
COVID-19 in Japan. J. Infect. Chemother. https://doi.org/10.1016/j.
jiac.2021.04.008 (2021).

26. Brajer, N. et al. Prospective and external evaluation of a machine
learning model to predict in-hospital mortality of adults at time of
admission. JAMA Netw. Open 3, e1920733 (2020).

27. Gupta, S. et al. Factors associatedwith death in critically Ill patients
with coronavirus disease 2019 in the US. JAMA Intern. Med. 180,
1436 (2020).

28. Iftimie, S. et al. First and second waves of coronavirus disease-19: a
comparative study inhospitalizedpatients in Reus, Spain.PLoSONE
16, e0248029 (2021).

29. Freeman, A. et al. Wave comparisons of clinical characteristics and
outcomes of COVID-19 admissions - Exploring the impact of treat-
ment and strain dynamics. J. Clin. Virol. 146, 105031 (2022).

30. Saban, M., Myers, V. &Wilf-Miron, R. Changes in infectivity, severity
and vaccine effectiveness against delta COVID-19 variant ten
months into the vaccination program: the Israeli case. Preventive
Med. 154, 106890 (2022).

31. Rosenberg, E. S. et al. Covid-19 vaccine effectiveness in New York
State. N. Engl. J. Med. 386, 116–127 (2022).

32. Zhang, X. et al. Viral and host factors related to the clinical outcome
of COVID-19. Nature 583, 437–440 (2020).

33. Horwitz, L. I. et al. Trends in COVID-19 risk-adjusted mortality rates.
J. Hosp. Med. 16, 90–92 (2021).

34. Dennis, J. M., McGovern, A. P., Vollmer, S. J. & Mateen, B. A.
Improving Survival of Critical Care Patients With Coronavirus Dis-
ease 2019 in England:ANationalCohort Study,March to June2020.
Crit. Care Med. 49, 209–214 (2021).

35. Kurtz, P. et al. Evolving changes in mortality of 13,301 critically ill
adult patients with COVID-19 over 8 months. Intensive Care Med.
47, 538–548 (2021).

36. Razavian, N. et al. A validated, real-time prediction model for
favorable outcomes in hospitalized COVID-19 patients. npj Digital
Med. 3, 1–13 (2020).

37. Klaveren, Dvan et al. COVID outcome prediction in the emergency
department (COPE): using retrospective Dutch hospital data to
develop simple and valid models for predicting mortality and need
for intensive care unit admission in patients who present at the
emergency department with suspected COVID-19. BMJ Open 11,
e051468 (2021).

38. Menk, M. et al. Current and evolving standards of care for patients
with ARDS. Intensive Care Med. 46, 2157–2167 (2020).

39. Nikparvar, B., Rahman, Md. M., Hatami, F. & Thill, J.-C. Spatio-
temporal prediction of the COVID-19 pandemic in US counties:
modeling with a deep LSTM neural network. Sci. Rep. 11,
21715 (2021).

40. Vahedi, B., Karimzadeh, M. & Zoraghein, H. Spatiotemporal pre-
diction of COVID-19 cases using inter- and intra-county proxies of
human interactions. Nat. Commun. 12, 6440 (2021).

41. Barish, M., Bolourani, S., Lau, L. F., Shah, S. & Zanos, T. P. External
validation demonstrates limited clinical utility of the interpretable
mortality prediction model for patients with COVID-19. Nat. Mach.
Intell. 3, 25–27 (2021).

42. Levy, T. J. et al. Development and validation of a survival calculator
for hospitalized patients with COVID-19. Preprint at https://www.
medrxiv.org/content/10.1101/2020.04.22.20075416v3 (2020).

43. Tibshirani, R. RegressionShrinkage andSelectionVia the Lasso. J. R.
Stat. Soc.: Ser. B (Methodol.) 58, 267–288 (1996).

44. Friedman, J. H. Greedy function approximation: a gradient boosting
machine. Ann. Stat. 29, 1189–1232 (2001).

45. PatternRecognition - 4th Edition. https://www.elsevier.com/books/
pattern-recognition/koutroumbas/978-1-59749-272-0.

46. Van Calster, B. et al. Calibration: the Achilles heel of predictive
analytics. BMC Med. 17, 230 (2019).

47. Horwitz, L. et al. Trends in Covid-19 risk-adjusted mortality rates. J
Hosp Med. 16, 90–92 (2021).

48. Ciceri, F. et al. Decreased in-hospital mortality in patients with
COVID-19 pneumonia. Pathog. Glob. Health 114, 281–282 (2020).

49. Jenkins, D. A. et al. Continual updating and monitoring of clinical
prediction models: time for dynamic prediction systems? Diag-
nostic Prognostic Res. 5, 1 (2021).

50. Friedman, C. P., Rubin, J. C. & Sullivan, K. J. Toward an information
infrastructure for global health improvement. Yearb. Med Inf. 26,
16–23 (2017).

51. Marmarelis, P. V. Z. Nonlinear Dynamic Modeling of Physiological
Systems. (John Wiley & Sons, 2004).

52. Riley, R. D. et al. Calculating the sample size required for develop-
ing a clinical prediction model. BMJ 368, m441 (2020).

53. Jiang, J., Yang, W., Schnellinger, E. M., Kimmel, S. E. & Guo, W.
Dynamic logistic state space prediction model for clinical decision
making. Biometrics n/a, (2021).

54. Vergouwe, Y. et al. A closed testing procedure to select an appro-
priate method for updating prediction models. Stat. Med. 36,
4529–4539 (2017).

55. Feng, C., Kephart, G. & Juarez-Colunga, E. Predicting COVID-19
mortality risk in Toronto, Canada: a comparison of tree-based and
regression-based machine learning methods. BMC Med. Res.
Methodol. 21, 267 (2021).

56. Yadaw, A. S. et al. Clinical features of COVID-19 mortality: devel-
opment and validation of a clinical prediction model. Lancet Digital
Health 2, e516–e525 (2020).

57. Vickers, A. J., van Calster, B. & Steyerberg, E. W. A simple, step-by-
step guide to interpreting decision curve analysis. Diagnostic
Prognostic Res. 3, 18 (2019).

58. Gupta, R. K. et al. Systematic evaluation and external validation of
22 prognosticmodels among hospitalised adultswithCOVID-19: an
observational cohort study. Eur. Respiratory J. https://doi.org/10.
1183/13993003.03498-2020 (2020).

59. Villoteau, A. et al. Elevated C-reactive protein in early COVID-19
predicts worse survival among hospitalized geriatric patients. PLoS
ONE 16, e0256931 (2021).

60. Lentner, J. et al. C-reactive protein levels associated with COVID-19
outcomes in the United States. J. Osteopath. Med. 121, 869–873
(2021).

61. Buuren, Svan & Groothuis-Oudshoorn, K. mice: Multivariate impu-
tation by chained equations in R. J. Stat. Softw. 45, 1–67 (2011).

62. Handling missing predictor values when validating and applying a
prediction model to new patients - Hoogland - 2020 - Statistics in
Medicine - Wiley Online Library. https://onlinelibrary.wiley.com/
doi/full/10.1002/sim.8682.

63. Austin, P. C., Lee, D. S., Ko, D. T. & White, I. R. Effect of variable
selection strategy on the performance of prognostic models when
using multiple imputation. Circulation: Cardiovascular Qual. Out-
comes 12, e005927 (2019).

64. Varotto, G. et al. Comparison of resampling techniques for imbal-
anced datasets in machine learning: application to epileptogenic
zone localization from interictal intracranial EEG recordings in
patients with focal epilepsy. Front. Neuroinform. 15, 715421 (2021).

Article https://doi.org/10.1038/s41467-022-34646-2

Nature Communications |         (2022) 13:6812 13

https://doi.org/10.1016/j.jiac.2021.04.008
https://doi.org/10.1016/j.jiac.2021.04.008
https://www.medrxiv.org/content/10.1101/2020.04.22.20075416v3
https://www.medrxiv.org/content/10.1101/2020.04.22.20075416v3
https://www.elsevier.com/books/pattern-recognition/koutroumbas/978-1-59749-272-0
https://www.elsevier.com/books/pattern-recognition/koutroumbas/978-1-59749-272-0
https://doi.org/10.1183/13993003.03498-2020
https://doi.org/10.1183/13993003.03498-2020
https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8682
https://onlinelibrary.wiley.com/doi/full/10.1002/sim.8682


65. Batista, G. E. A. P. A., Prati, R. C. & Monard, M. C. A study of the
behavior of several methods for balancing machine learning train-
ing data. SIGKDD Explor. Newsl. 6, 20–29 (2004).

66. Menze, B. H. et al. A comparison of random forest and its Gini
importance with standard chemometric methods for the feature
selection and classification of spectral data. BMC Bioinforma. 10,
213 (2009).

67. Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the
precision-recall curve as a performance metric for rare binary
events. Methods Ecol. Evol. 10, 565–577 (2019).

68. Austin, P. C. & Steyerberg, E. W. The Integrated Calibration Index
(ICI) and related metrics for quantifying the calibration of logistic
regression models. Stat. Med. 38, 4051–4065 (2019).

69. Hanley, J. A. &McNeil, B. J. Themeaning and use of the area under a
receiver operating characteristic (ROC) curve. Radiology 143,
29–36 (1982).

70. Boyd, K., Eng, K. H. & Page, C. D. Area under the Precision-Recall
Curve: Point Estimates and Confidence Intervals. in Machine
Learning and Knowledge Discovery in Databases (eds. Blockeel, H.,
Kersting, K., Nijssen, S. & Železný, F.) 451–466 (Springer, 2013).
https://doi.org/10.1007/978-3-642-40994-3_29.

71. Vickers, A. J., Cronin, A. M., Elkin, E. B. & Gonen, M. Extensions to
decision curve analysis, a novel method for evaluating diagnostic
tests, prediction models and molecular markers. BMC Med. Inf.
Decis. Mak. 8, 53 (2008).

72. COVID-19 Variant Data. Department of Health https://coronavirus.
health.ny.gov/covid-19-variant-data.

Acknowledgements
We acknowledge and honor all our Northwell team members who
consistently put themselves in harm’s way during the COVID-19 pan-
demic. Their vital contribution to knowledge about COVID-19 and
sacrifices on the behalf of patients made this possible. We would also
like to acknowledge Challace Pahlevan-Ibrekic and Jackson Yeh for
regulatory guidance and help with data de-identification and sharing.
This work was supported by grants R24AG064191 from the National
Institute on Aging, R01LM012836 from the U.S. National Library of
Medicine, K23HL145114 from the National Heart, Lung, and Blood Insti-
tute (KWD), and ME-1606-35555 from the Patient-Centered Outcomes
Research Institute (PCORI) Award (DvK, DMK, TPZ).

Author contributions
T.J.L. designed themodel and the computational framework, carried out
the implementation, performed all data analysis, created all tables and
figures, wrote themanuscript. K.C. collected and prepared the datasets.
J.C. carried out the implementation of the online version of the model.
D.P.B. provided critical feedback and assisted in writing the manuscript.
M.D.P. provided critical feedback on aspectsofmodel design. S.L.C. and

A.M. provided critical feedback on the clinical interpretation and
proofread the manuscript. D.vK. and D.M.K. provided critical feedback
on statistical methods and model design, proofread the manuscript.
K.W.D. provided critical feedback on clinical interpretation, assistedwith
planning and overall direction. J.S.H. assisted in the collection and
preparation of the datasets, provided critical feedback on the model
design and clinical interpretation and assisted in writing themanuscript.
T.P.Z. conceived the study, designed the model and the computational
framework, oversaw overall direction and planning, assisted in creating
all tables and figures and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-34646-2.

Correspondence and requests for materials should be addressed to
Theodoros P. Zanos.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-34646-2

Nature Communications |         (2022) 13:6812 14

https://doi.org/10.1007/978-3-642-40994-3_29
https://coronavirus.health.ny.gov/covid-19-variant-data
https://coronavirus.health.ny.gov/covid-19-variant-data
https://doi.org/10.1038/s41467-022-34646-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Development and validation of self-monitoring auto-updating prognostic models�of survival for hospitalized COVID-�19�patients
	Results
	Patient characteristics
	Development of survival prognostic models
	Validation of survival prediction model
	Updating the survival prediction model
	Changes in predictor importance
	Decision curve analysis
	Sensitivity analysis

	Discussion
	Methods
	Data acquisition
	Study design and setting
	Potential predictive variables
	Imputation
	Outcomes
	Prediction model development
	Prediction model validation
	Prediction model updating
	Decision curve analysis
	Sensitivity analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




