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Muscle5: High-accuracy alignment ensem-
bles enable unbiased assessments of
sequence homology and phylogeny

Robert C. Edgar 1

Multiple sequence alignments are widely used to infer evolutionary relation-
ships, enabling inferences of structure, function, and phylogeny. Standard
practice is to construct one alignment by some preferredmethod and use it in
further analysis; however, undetected alignment bias can be problematic. I
describe Muscle5, a novel algorithm which constructs an ensemble of high-
accuracy alignment with diverse biases by perturbing a hidden Markov model
and permuting its guide tree. Confidence in an inference is assessed as the
fraction of the ensemble which supports it. Applied to phylogenetic tree
estimation, I show that ensembles can confidently resolve topologies with low
bootstrap according to standard methods, and conversely that some topolo-
gies with high bootstraps are incorrect. Applied to the phylogeny of RNA
viruses, ensemble analysis shows that recently adopted taxonomic phyla are
probably polyphyletic. Ensemble analysis can improve confidence assessment
in any inference from an alignment.

Multiple sequence alignment (MSA) algorithms are ubiquitous in
molecular biology, with popular software such as Clustal-Omega1,
MAFFT2 and MUSCLE3 receiving hundreds of citations per year. Despite
decades of research into automated alignment, current algorithms
predict > 30% columns incorrectly on structure-based benchmarks4,5.
Most alignment algorithms are based on highly simplified models of
evolution parameterised by substitution scores and gap penalties.
Default values for model parameters are somewhat arbitrary as they
are trainedondata of varying relevance to aparticular set of sequences
in practice. Systematic changes, and hence the opportunity for sys-
tematic errors, may be induced by changing parameters. For example,
reducing gap penalties tends to increase the number of gaps. Most
algorithms, including Clustal-Omega, MAFFT and MUSCLE, use pro-
gressive alignment according to a guide tree6 which may cause bias
towards this tree e.g. in an estimated phylogeny7. However, standard
practice is to construct a singleMSAusing somepreferredmethod and
proceed on the assumption that bias (henceforth understood to
include alignment errors of any kind which may affect downstream
inference) can be neglected.

The Muscle5 algorithm constructs a collection (H-ensemble) of
high-accuracy MSAs (replicates) such that no particular MSA from the

collection (or by any other method) is preferred a priori (see Supple-
mentary Table S1 for summary of terminology). An MSA is built fol-
lowing the strategy pioneered by ProbCons8: posterior probabilities
for aligning all letter pairs are computed using a hiddenMarkovmodel
(HMM), a consistency transformation9 is applied, and the final MSA is
constructed bymaximumexpected accuracy pair-wise alignments10 by
progressive alignment according to a guide tree. HMMparameters and
its guide tree arefixed inone replicate and variedbetween replicates to
maximise differences in bias between replicates without degrading
accuracy. If each replicate has different bias, then averaging results
over replicates can correct for bias, and comparing results from dif-
ferent replicates can assess whether bias is important in a particular
downstream analysis. Variations are introduced by multiplying HMM
probabilities by a random number in the range −0.25… +0.25, the
largest range found to maintain accuracy on structural benchmarks.
The guide tree, an important potential source of bias, is also varied by
permuting the joining order of large subgroups close to the root. A
divide-and-conquer strategy enables scaling to tens of thousands of
sequences (details and survey of related prior work in Methods and
Supplementary Methods). Compared to earlier versions of MUSCLE,
Muscle5 has substantially better accuracy (primarily achieved by
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maximum expected accuracy alignments and the consistency trans-
formation) and scales to much larger datasets; compared to Prob-
Cons, Muscle5 has marginally better accuracy, scales to much larger
datasets, and adds support for nucleotide alignments.

The H-ensemble confidence (HEC) of inference from anMSA is the
fraction of replicates which supports it. For example, if all replicates
support the same inference, then HEC= 1. HEC is calculated using a
diversified H-ensemble, which is designed to generate the greatest
possible variety in the alignments, especially in systematic errors, so
that averaging over the ensemble mitigates MSA bias. This approach
can be applied to the alignments themselves: the Column Confidence
(CC) is the HEC of an alignment column, i.e. the fraction of replicates
where the column is reproduced. Unlike typical conservation-based
metrics, a column with many gaps or with biochemically dissimilar
amino acids will be assigned high CC if it is consistently reproduced.
Alignment Confidence (AC) is the mean column confidence of a
replicate, and MAC is the mean AC over the ensemble. If MAC= 1, all
replicates are identical and the alignment is robust; if MAC is smaller,
then the alignment is more sensitive to small parameter adjustments.
Differences between alignments necessarily reflect errors, and lower
MAC values, therefore, necessarily indicate higher error rates in a
typical MSA from the ensemble. The robustness of a phylogenetic tree
against MSA bias can be assessed by comparing replicate trees, i.e.
trees estimated from different alignment replicates (Fig. 1). Edge
Confidence (EC) is the HEC of a tree edge, i.e. the fraction of replicate

trees where the edge is reproduced. Topology Confidence (TC) is the
fraction of replicates supporting the branching order of designated
subgroups such as taxonomic clades, andEnsembleMonophyly (EM) is
the mean monophylicity for a subgroup. These phylogenetic tests are
independent of bootstrapping as there is no re-sampling of columns.

Guide tree bias canbe assessedby comparing results on replicates
where the guide tree is heldfixed. If inferences differ and correlatewith
the choice of guide tree, then guide tree bias is present by definition. In
general, a stratified ensemble has subsets (strata) where some para-
meters are held fixed while others are varied. Comparing results from
different strata enables the detection of particular types of bias in any
inference from an MSA.

In this work, I show that high-accuracy alignment ensembles
enable novel, unbiased metrics of confidence in alignments and
inferences therefrom.

Results
Alignment accuracy
As shown in Fig. 2 and Supplementary Table S2, the accuracy of
Muscle5 on structure-based benchmarks (Balibase4 for proteins and
Bralibase5 for RNA) is higher than state-of-the-art represented by
Clustal-Omega and MAFFT. There is a negligible difference in average
accuracy between parameter variants, showing that all replicates are
equally plausible a priori. On a benchmark with 10,000 protein
sequences per set, Muscle5 aligns 59%of columns correctly, which is a
13% improvement over Clustal-Omega (52% columns correct) and
26% over MAFFT (47% correct) (Supplementary Material). Figure 2 also
shows that CC and AC provide predictive unsupervised estimates of
accuracy (i.e., the estimates are independent of a trusted reference
alignment). This is illustrated in Fig. 3, which shows replicate align-
ments of four proteins, focusing on a region with a well-conserved
sequence and secondary structure and a more variable surface loop
where neither sequence nor structure aligns well. This transition in
secondary structure is reflected in the column confidence values,
where the first 15 columns have CC = 1.0 and later values drop to
CC ≈0.5 in the loop, thereby identifying a segment where the align-
ment is error-prone.

RNA virus phylogeny
I investigated whether reported phylogenies of RNA viruses from the
recent literature are reproducible and supportable, focusing on the
topology of the four Coronaviridae genera and five Riboviria phyla
inferred from alignments of the RNA-dependent RNA polymerase
(RdRp) gene, which is widely used for phylogenetic and taxonomic
analysis of viruses11 (see Fig. 1 for workflow). Coronavirus genera have
well-conserved RdRp alignments with amino acid (a.a.) identities ~
60%.Riboviriaoverall are highlydivergedwithRdRp identities often as
low as 5% to 10%, representing a very challenging case. I created
diversified ensembles using Muscle5, findingMACwas 0.91 for genus,
indicating generally high confidence with some variability in the
alignments, but only 0.18 for phylum, indicating a high error rate.
Trees were estimated by six different methods: RAxML12, PhyML13, IQ-
Tree14, FastTree15, and neighbour-joining (NJ) and minimum-evolution
(ME) using MEGA16. Trees were rooted using outgroups Torovirus for
genus and reverse transcriptases for phylum. As shown in Fig. 4, four
of the tree methods report a strong consensus (((A,B),G),D) for
the genus topology (A=Alphacoronavirus, B = Betacoronavirus, G =
Gammacoronavirus and D=Deltacoronavirus), while the faster but
more approximate methods MEGA-NJ and FastTree reported more
variants. The combined ensemble topology confidence of the con-
sensus is 98.4% (82.5%) including (excluding) the latter twomethods. A
conventional analysis using the default Muscle5 MSA gave low boot-
strap confidence to most edges (Fig. 5). Here, ensemble analysis con-
fidently resolves topology while a single MSAwith bootstrapping does
not. For phylum, there is no consensus; all treemethods report varying
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Fig. 1 | Typical ensembleworkflowfor alignment andphylogenyassessment.An
ensemble of MSAs is generated and assessed for accuracy using Muscle5. Gray
rectangles are processing steps made by an algorithm or software package. First,
Muscle5 (step 1) generates an ensemble of MSAs (step 2), each alignment is gen-
erated by a different combination of a perturbed HMM and permuted guide tree.
The accuracy of the MSAs can be assessed by Muscle5 (step 3) using accuracy
metrics such as Column Confidence (CC). A phylogeny algorithm (step 4), e.g.
maximum likelihood (ML), is used to predict a tree from eachMSA (step 5). Finally,
accuracy metrics, e.g. Ensemble Confidence (EC), are calculated from the resulting
ensemble of trees (step 6). The Newick package (https://github.com/rcedgar/
newick) was used to calculate the novel metrics described in this paper.
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topologies across the ensemble (Fig. 6). Figure 7 shows trees and
bootstraps obtained onMSAs with two different guide trees and other
parameters fixed. All six tree methods agree with each other on the
topology according to one of these MSAs, but the topologies conflict,
and therefore, one or both must be wrong. Further, the bootstraps of

most methods are high, with values ≥84 for all edges from all
maximum-likelihoodmethods except for FastTree on edge k. Thus, for
phylum, high bootstraps for at least one incorrect topology are
necessarily inducedbyMSAbias, and ensemble analysis shows that the
topology cannot be reliably resolved. Coronavirus trees reported in
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recent literature are shown in Fig. 8, which are seen to have conflicting
genus topologies with high bootstraps, suggesting that systematic
alignment errors induced overconfidence.

Monophylicity of phyla in Riboviria
A deep RNA virus phylogeny was recently reported in11 (hereinafter
Wolf2018) and subsequently used as the basis for introducing new
taxonomic ranks including phylum17. I measured the monophylicity of
the new phyla on a diversified ensemble. For each MSA, a tree was
estimated using RAxML, and the best-fit subtree identified for each
phylum. To investigate whether the Wolf2018 MSA might be more
accurate than Muscle5, I checked the alignment of essential catalytic
residues, finding that Muscle5 is better by this measure (Fig. 9, Meth-
ods). Results are shown in Fig. 10. Panel a is theWolf2018 tree topology
showing the high reported bootstrap values which supported the
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putative monophylicity of the new phyla, panel b shows a typical tree
from the ensemble exhibiting similarly high bootstrap values for a
conflicting topology. Panel c showsmonophyly of the phyla, where EM
ranges from41% forDuplornaviricota to 64% forNegarnaviricota. Panel
d shows the composition of false-positive leaves under the best-fit
subtree for each phylum, showing substantial mixing of all pairs of
phyla (note thatwhileNegarnaviricota has relatively few FPs, it has 25%
FNs mixed into other subtrees). Combined, these results strongly
suggest that the high bootstrap values in the Wolf2018 tree are arte-
facts of biases in their MSA, and the newly-adopted phyla are far from
monophyletic.

Discussion
High accuracy ensembles enable improved confidence
estimates
It is de facto standard practice in biological sequence analysis to make
a “best effort” analysis based on one preferred alignment, proceeding
on the implicit assumption that this alignment is correct, or at least
good enough tomake the desireddownstream inferences. Sometimes,
columns considered to be less reliable (e.g. “gappier”) may be dis-
carded, but the possible impact of any remaining biases are almost
universally neglected, presumably due to a lack of awareness that they
may be present combined with a lack of convincing methods for
identifying and mitigating such errors. The results presented here
show that alignment bias can have a significant impact, and as an
important special case that tree bootstrapping from a single MSAmay
give high confidence to incorrect edges caused by bias in the MSA. In
contrast to previous ensemble methods, Muscle5 generates align-
ments with a greater diversity of systematic errors (if present) while

maintaining state-of-the-art benchmark accuracy, thereby enabling
detection and mitigation of incorrect inferences due to MSA bias.

Ensemble analysis complements bootstrapping
The Felsenstein bootstrap relies on several assumptions18: the align-
ment is correct, sites evolve independently according to Markov
models, the best tree is successfully identified for each resampled
alignment, and the best tree will converge on the true tree as more
columns are sampled from the underlying distribution, i.e., that the
evolutionary model is a good enough approximation to identify the
correct tree. All these assumptions are surely violated in practice.
Alignments are often wrong. Sites are not independent, and their
evolution is not strictly Markovian. The space of trees is too large to
search exhaustively for more than a few leaves. The best tree may not
be the true tree, which seems almost certain in non-trivial cases
because evolutionary models are highly simplified. Thus, boot-
strapping may be unreliable, as illustrated by examples presented in
this work. Ensemble analysis assumes that alignment errors are sam-
pled sufficiently across the ensemble to induce variations in down-
stream inferences comparable in size with a typical inference error.
This assumption is violated if the alignment is robust against para-
meter perturbations but nevertheless wrong. Thus, for assessment of
phylogenies, bootstrapping and ensemble analysis are com-
plementary. If there is no variation in the ensemble, then standard
bootstrapping alone is appropriate. If the ensemble is variable,
ensemble confidence may be more credible than bootstrapping, as
shown by the examples of coronavirus genera and RNA virus phyla
where bootstrapping and ensemble confidence imply different con-
clusions but the ensemble is more credible.

Extending the ensemble approach
Ensemble confidence can straightforwardly be applied to other infer-
ences from an alignment, such as predicted secondary structure,
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paralog/ortholog discrimination and so on. The topology of putative
clades can be assessed by comparing results when different subsets of
sequences are selected; in particular resampling of sequences with
replacement can be considered bootstrapping of rows rather than
columns, noting that the rows should be realigned after resampling. If
phylogeny is estimated from multiple genes, results can be compared
on different subsets of genes. The Felsenstein bootstrap can be
improved by sampling columns from an MSA ensemble rather than a
single MSA (ensemble bootstrap), thereby accounting for alignment
uncertainty in addition to under-sampling of columns19. However, I
would not advocate relying on the ensemble bootstrap as a complete
solution to accounting for MSA bias in phylogenetic tree estimation.
While ensemble bootstrap values froma Muscle5 ensemblewill surely
be more reliable than conventional bootstrapping from a single MSA,
there is no substitute for intelligently assessing robustness by repli-
cating an analysis in distinctly different ways, paying particular atten-
tion to likely sources of systematic bias.

Reported RdRp phylogeny is not replicated
The results reported here show definitively that high bootstrap values
for the RdRp-based phylogeny reported in Wolf2018 are artefacts of
MSA bias. Typical approaches to improving phylogeny inference from
sequence alignments include adding other genes and removing less-
conserved columns, but neither approach is applicable in this case
because even the most conserved columns are not correctly aligned
(Fig. 9), and other RNA virus genes cannot be used to infer deep
branching order because RdRp is the only universal gene and the only
gene with recognisable sequence similarity between more diverged
groups. Ancient groups and their branching order reported by
Wolf2018 are not reproduced in an ensemble analysis based on MSAs
that are more accurate than the Wolf2018 alignment. This, it appears
that new taxa based on these groups were introduced prematurely as
they are probably far from monophyletic.

Ensembles enable sequence analysis replicates
Science is suffering from a replication crisis driven by practices such as
p-value hacking, harking (hypothesis after result is known) and cherry-
picking20. Sequence analysis software offers the biologist a bewildering
array of alternatives for ubiquitous routine tasks such as alignment and
tree-building. MUSCLE or MAFFT? The maximum likelihood or mini-
mum evolution? RAxML or PhyML? How many discrete gamma cate-
gories should you have in your model? Common practice is to choose
one protocol for a mix of stated and unstated reasons which may be
more or less defensible: my colleague does it this way, it got a good
benchmark score, or it gave a result I like better onmyowndata. Picking
a single best protocol disregards the possibility that the bestmay not be
good enough. You can guard against this pitfall by performing your own
replication study. This may be as simple as trying different software
packages with a few different options. Even if alternative protocols are
believed to be less accurate, a thoughtful comparison of the results
provides a useful indication of whether the preferred protocol can be
trusted. While automated sequence analysis methods should never be
entirely trusted, including methods for constructing replicates, high-
accuracy alignment ensembles enable a substantial improvement in
assessment of inferences in many areas of molecular biology.

Methods
Related work
Several methods for generating collections of alternative sequence
alignments have previously been described in the literature. The ear-
liest I am aware of date from 199521,22. In21 the author assessed the
robustness of arthropod phylogenies under variation in transversion-
transition probabilities and gap penalties, noting that “[the] disturbing
circularity of the interaction between the specification of [insertion-
deletion and substitution probabilities] a priori and their inference a

posteriori is a general and central problem inmolecularphylogenetics”.
The Elisionmethod22 concatenates variantMSAs before estimating a
phylogenetic tree. A 1997 study23 of 18S ribosomal RNA in Apicomplexa
assessed robustness of phylogenetic inferences using multiple align-
ments from different software packages, finding that “different align-
ments produced trees that were on averagemore dissimilar from each
other than did the different tree-building methods used”. More recent
proposals along similar lines include19,24,25. Muscle5 improves on pre-
vious ensemble methods in two crucial respects. First, all Muscle5
replicates have high accuracy such that no other MSA is preferred a
priori, while in previous methods there is a clearly preferred MSA, i.e.
the alignment generated by the algorithm and parameter combination
giving the best benchmark score. In my terminology, previous meth-
ods generated S-ensembles while Muscle5 generates H-ensembles
(Supplementary Table S1). Second, Muscle5 replicates explore a
substantially greater range of possible biases by introducing more
consequential variations into substitution scores and guide trees.
Scaling to large datasets by a divide-and-conquer strategies was
implemented in an update to MAFFT26, followed by Clustal-Omega27

and others. Below, the Muscle5 algorithm is briefly described; further
details of the algorithm and its improvements over previous work are
provided in Supplementary Material.

Hidden Markov model
Posterior probabilities for aligning every pair of letters in the input
sequences are calculated using a hidden Markov model (HMM) with
topology shown in Supp. Fig. S1. This is a coupled Markov model10,
extended to double-affine gaps as found in ProbCons source code
version 1.12, which differs from theHMMdescribed in the paper8. For a
pair of sequences x, y, alignment columns are emitted by the match
stateM and by insert states Ix, Iy, Jx and Jy.M emits a column containing
an aligned pair of letters. Ix and Jx emit one letter from x, similarly Ix and
Jx emit one letter from y. The I states induceshort gapswhile the J states
induce longer gaps. Alignments begin in the start state S. Match state
emission probabilities are obtained from the joint-probability form of
the BLOSUM62 matrix28; insert states emit letters according to the
marginal probabilities of BLOSUM62. In ProbCons, transition prob-
abilities were trained by expectation-maximisation on version 2 of the
Balibase benchmark. For Muscle5, I chose somewhat arbitrary
round numbers, guided by the defaults in ProbCons and the premise
that small differences should be immaterial to alignment quality.
Symmetries are enforced between x and y and between sequences and
reversed sequences, giving five independent sets of probabilities for
mutually exclusive alternative events: (1) transitions from the start
state S (symmetric with transitions into the end state E), (2) transitions
out of M, (3) transitions out of I, (4) transitions out of J, and (5) letter-
pair emissions.

Muscle5 algorithm
The corecomponent ofMuscle5 is a parallelised re-implementationof
ProbCons. Iterative consistency transformations are applied to the
posterior probabilities (two rounds by default); a greedy maximum
expected accuracy guide tree is constructed; and refinement by ran-
domised partitioning is applied (100 rounds by default). Scaling to
large datasets is achieved by a divide-and-conquer strategy (the
Super5 algorithm); details in Supplementary Material. A single MSA is
generated by (1) perturbing the HMM, (2) choosing a guide tree per-
mutation, and (3) executing parallel ProbCons. An ensemble is gen-
erated by repeating this procedure.

HMM perturbations
Perturbations are introduced by adjusting all probabilities according
to the rule P→ (1 + αδ)P, where α (amplitude) is a constant and δ is a
random number uniformly distributed between − 1 and + 1. All prob-
abilities including transitions and emissions are perturbed.
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Perturbations are introduced before calculating posteriors, then the
HMM is held fixed. This procedure is independent of the data; there is
no attempt to optimise parameters. By default, α = 0.25, causing per-
turbations up to ± 25%. This value was chosen by trial and error on a
subset of Balibase. To maintain normalisation (i.e., ensure that
0 < P < 1 for all P and the sum over mutually exclusive events is 1), a
second adjustment Pk→ Pk/∑iPi is applied after all probabilities have
been perturbed by the first rule. The sum in the denominator is over
probabilities in the same set of mutually exclusive events as k, e.g.
transitions from M. A single parameter (α) sets a scale for all pertur-
bations, reducing possible concerns about over-fitting (too many
parameters) and over-tuning (choosing a value that performs well on
the training set but poorly on new data) to a minimum.

Guide tree permutations
The goal of permuting the guide tree is to induce substantive variation
into any systematic errors due to progressive alignment, without com-
promising accuracy. Optimising accuracy requires that closely-related
sequences are aligned before more diverged sequences are added3,6,
which in turn requires that the guide tree joining order should be pre-
served close to its leaves. Substantive variations require that larger
groups are joined in different orders. These constraints imply that the
tree should be mostly unchanged close to the leaves and large changes
should be made to the joining order of larger groups close to the root,
but these goals can be conflicting in practice as guide trees are often
highly unbalanced, i.e. many nodes join small groups to large groups, in
which case naive re-arrangements of the tree may fail to induce sub-
stantive variations. With these considerations in mind, Muscle5
manipulates the guide tree T as follows. An edge is identified which
divides the leaves of T into subsets a and bc such that the ratio ∣a∣/
∣bc∣≈ 1/2, i.e. ahas approximately one third of the leaves inT. The tree bc
is then divided into subsets b and c of equal size so that ∣b∣/∣c∣≈ 1.
Regardless of the original guide tree topology, when there are many
leaves this procedure successfully divides T into three subtrees a, b and
c of approximately equal size where the joining order close to the leaves
is mostly preserved. Progressive alignment is performed using the ori-
ginal guide tree and permutations ((a,b), c), ((a, c),b) and ((b, c),a),
abbreviated to none, abc, acb and bca respectively. A replicate is iden-
tified as perm.s, e.g. abc.3, where perm is the guide tree permutation
and s is the random number seed, where the special case s=0 indicates
that no perturbations are applied, i.e. default HMM parameters are
used. See Supplementary Materials for further details and discussion.

Diversified ensemble
A diversified ensemble is designed to maximise variation among
replicates by setting the random number seed s =0, 1. . .N where N is
the desired number of replicates, while guide tree permutations cycle
through the four variants none, abc, acb and bca. For the results
reported in this work, N = 100 was used. Alternatively, convergence
criteria could be set which terminate generation of further replicates
when sufficient diversity has been sampled, though this featurewasnot
implemented in the codedescribedhere. For convergence, I suggest an
upper limit ofm replicates wherem is the median number of columns
in the ensemble so far, and also testing thenumber of singletondistinct
columns (n1, found in exactly one replicate) compared to the number
of reproduced distinct columns (n2, found in two replicates). If n2 > n1,
most of the potential diversity in the ensemble has been sampled. In
practice, when sequences are closely relatedmost of all replicates may
be identical; in such cases setting convergence criteria would save
substantial computing resources in high-throughput applications.

Best-fit subtree
Given a tree and categories assigned to a subset of its leaves (e.g.,
phylum names), the best fit for category C is identified as the node t
which minimises the number of errors in its subtree. The number of

true positives (TP) is the number of leaves under t which belong to C.
Errors include false positives (FP, i.e. leaves under twhich are not inC),
and false negatives (FN, i.e. leaves in C which are not under t).

Ensemble Monophyly
Given a tree and a category C (e.g. phylum name), the best-fit subtree t
is identified. Monophyly of C is then m = TP/(TP + FP + FN). If C is
monophyletic,m = 1, otherwisem < 1, andm is smaller with increasing
errors (Supp. Fig. S7). Ensemble Monophyly is mean m over an
ensemble of trees.

Root identification by an out-group
Given a tree and an out-group category C, the best-fit subtree is
identified after assigning all leaves not belonging to C to a second
category. The root is then placed in the edge joining the best-fit sub-
tree of C to the rest of the tree. This procedure accommodates the
trivial case where C is monophyletic in the estimated tree, and also
more difficult cases where C is polyphyletic.

Condensed tree
Given a rooted tree T and category labels on a subset of its leaves (e.g.,
phylum names), the best-fit node is identified for each category (Supp.
Fig. S7). Edges in the path from each best-fit node to the root are
preserved, all other edges are deleted. This produces a tree Tb in which
all leaves are best-fit nodes. Each unary node u in Tb is collapsed by
replacing u and its incoming and outgoing edges ui and uo by a single
edge eu; this is repeated until all nodes have degree > 1. The length of eu
is the sumof the lengths of ui and uo; the bootstrap value assigned to eu
is the larger of the bootstraps for ui and uo. The resulting tree is the
condensed treeofT according to the category labels.A condensed tree
summarises the branching order of its categories, assuming they are
monophyletic or approximately monophyletic so that best-fit nodes
are estimates of most recent common ancestors.

RdRp alignment quality
The Palmscan algorithm29 uses position-specific scoring matrices
(PSSMs) to identify three well-conserved motifs in the RdRp palm
domain, which are conventionally designated A, B and C, respectively.
Thesemotifs include six essential catalytic residues: two aspartic acids
(D) in motif A, a glycine (G) in motif B, and GDD in motif C30. The quality
of an RdRp alignment was assessed by using Palmscan to identify the
position of each of these catalytic residues in all sequences, which
successfully matched the PSSMs. If a catalytic residue appears in a
different column fromthemajority of other sequences, it is considered
to be misaligned (Fig. 9). The total number of misaligned catalytic
residues was used as a quality metric.

Validation on simulated data
Alignment and tree inference methods are often validated by simu-
lating sequence evolution in silico. I chose not to do so in this work.
Simulations employ drastically simplified models of evolution which
are similar to the drastically simplified models used by multiple
alignment and tree inference algorithms. In reality, sequenceevolution
is an enormously complex process disrupted by historical con-
tingencies ranging from fortuitous outcomes of DNA repairmachinery
failures and narrowly-won host-pathogen arms races to asteroid
impacts. Therefore, simulations of deep evolutionary history are at
best suggestive and at worst entirely uninformative if one is interested
in real biology. Simulations also exacerbate a common sociological
problem in computational biology, namely that the developers of a
new method have an opportunity to fish for significance before pub-
lication. Confronted with disappointing results, authors may rationa-
lise tweaking a simulation until improved (simulated) performance is
obtained for their method. These considerations beg the question of
whether simulations could convincingly support the main claims of
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this paper, which are (1) Muscle5 MSA replicates have high and
practically indistinguishable accuracy, and (2) the effects of alignment
errors can be assessed by comparing inferences from different repli-
cates. Claim (1) is supported by results on structure-based bench-
marks. While structural similarity does not necessarily imply sequence
homology, structural alignments are largely independent of sequence,
and greater agreement with structural alignments therefore surely
correlates strongly with more accurate alignment of homologous
residues. If a simulation fails to recapitulate relative algorithm per-
formance according to structure, the failure is more plausibly
explained by a defect in the simulation than a defect in the structural
benchmark. Claim (2) is self-evidently true because two different
alignments of the same sequences cannot both be correct.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Code and scripts required to reproduce experimental results are
available under theGPLv3 licenseat: https://github.com/rcedgar/rdrp_
tree_experiments. Balibase v3 is available at https://www.re3data.org/
repository/r3d100012946. Bralibase is available at https://projects.
binf.ku.dk/pgardner/bralibase/.

Code availability
Binaries and source code are available under the GPL v3 license at:
https://github.com/rcedgar/musclehttps://github.com/rcedgar/
newickhttps://doi.org/10.5281/zenodo.7255768.
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