Article

Molecular oxygen enhances H₂O₂ utilization for the photocatalytic conversion of methane to liquid-phase oxygenates

Received: 12 May 2022

Accepted: 26 October 2022

Published online: 05 November 2022

Check for updates

Xiao Sun^{1,6}, Xuanye Chen^{1,6}, Cong Fu¹, Qingbo Yu², Xu-Sheng Zheng³, Fei Fang¹, Yuanxu Liu⁴, Junfa Zhu \mathbb{O}^3 , Wenhua Zhang \mathbb{O}^1 & Weixin Huang $\mathbb{O}^{1,5}$

H₂O₂ is widely used as an oxidant for photocatalytic methane conversion to value-added chemicals over oxide-based photocatalysts under mild conditions, but suffers from low utilization efficiencies. Herein, we report that O₂ is an efficient molecular additive to enhance the utilization efficiency of H_2O_2 by suppressing H₂O₂ adsorption on oxides and consequent photogenerated holes-mediated H₂O₂ dissociation into O₂. In photocatalytic methane conversion over an anatase TiO₂ nanocrystals predominantly enclosed by the {001} facets (denoted as TiO₂{001})-C₃N₄ composite photocatalyst at room temperature and ambient pressure, O₂ additive significantly enhances the utilization efficiency of H₂O₂ up to 93.3%, giving formic acid and liquid-phase oxygenates selectivities respectively of 69.8% and 97% and a formic acid yield of 486 μ mol_{HCOOH}·g_{catalyst}⁻¹·h⁻¹. Efficient charge separation within TiO₂{001}-C₃N₄ heterojunctions, photogenerated holes-mediated activation of CH₄ into ·CH₃ radicals on TiO₂{001} and photogenerated electrons-mediated activation of H₂O₂ into ·OOH radicals on C₃N₄, and preferential dissociative adsorption of methanol on TiO₂{001} are responsible for the active and selective photocatalytic conversion of methane to formic acid over TiO₂{001}-C₃N₄ composite photocatalyst.

Methane has been considered as an abundant and promising feedstock for future energy and chemical productions, especially after discovery of large reserves of shale gas and methane hydrate^{1,2}. Direct conversion of methane to value-added chemicals has been attracting great interest, however, due to a stable C–H bond, a small polarizability, a high ionization potential and a low electron affinity stability of methane, it remains as a long-standing challenge^{3–5}. Harsh reaction conditions, such as high temperatures^{6–8} and/or high pressures^{9–15}, are required for traditional heterogeneous thermocatalytic selective conversion of methane. Recently, photocatalysis has been explored for selectively converting methane mainly to valuable liquid oxygenates at room temperature and ambient pressure^{16–24}.

 H_2O_2 is widely used as an oxidant for photocatalytic selective conversion of methane over oxide-based photocatalysts. Photocatalytic activation of H_2O_2 by photo-generated electrons into ·OH radicals (0.06 eV vs *RHE*)²⁵ or ·OOH radicals (-0.38 eV vs *RHE*)²⁶, depending on the conduction band edges of semiconductor photocatalysts, is generally considered as the key step. However, photocatalytic activation of H_2O_2 by photo-generated holes into O_2 usually occurs facilely²⁵, which strongly competes and decreases the utilization

¹Hefei National Research Center for Physical Sciences at the Microscale, iChEM, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, School of Chemistry and Materials Science, University of Science and Technology of China, 230026 Hefei, China. ²Department of Materials Science and Engineering, Anhui University of Science and Technology, 232001 Huainan, China. ³National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 Anhui, China. ⁴School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei 230012 Anhui, China. ⁵Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, 116023 Dalian, China. ⁶These authors contributed equally: Xiao Sun, Xuanye Chen, 🖂 e-mail: huangwx@ustc.edu.cn efficiency of H_2O_2 for the methane conversion, defined as the ratio of the H_2O_2 amount consumed for methane conversion against the total consumed H_2O_2 amount. So far, the highest utilization efficiency of H_2O_2 , in the means of \cdot OH radicals, was reported as 72.3% in photocatalytic CH₄ conversion over a Fenton-type Fe-based catalyst²¹. Adsorption of H_2O_2 molecules on photocatalyst surfaces is a prerequisite for occurrences of photocatalytic reactions. Here, we show O_2 additive as a general strategy to enhance utilization efficiencies of H_2O_2 for the photocatalytic CH₄ conversion over oxide-based photocatalysts up to 93.3% by suppressing the H_2O_2 adsorption on photocatalysts surfaces and the consequent side reaction of photocatalytic H_2O_2 dissociation into O_2 .

Results

Synthesis and structural characterizations

Anatase TiO₂ nanocrystals (NCs) predominantly enclosed by the {001} facets (denoted as TiO₂{001}), the {100} facets (denoted as TiO₂{100}) and the {101} facets (denoted as TiO₂{101}) were prepared following well-established recipes²⁷. XRD patterns, TEM and HRETM images of as-synthesized various TiO₂ NCs (Fig. 1a, Supplementary Fig. 1) agree with those reported previously²⁷. TiO₂ NCs-C₃N₄ composites were prepared by calcination of mixture of calculated amounts of dicyandiamide (C₂H₄N₄) and TiO₂ NCs in Ar at 550 °C and denoted as TiO₂ NCs-C₃N₄-x, in which x was the actual TiO₂:C₃N₄ mole ratio acquired by TGA analysis (Supplementary Fig. 2 and Table 1). TEM, HRTEM and element mapping images (Fig. 1b–d, Supplementary Fig. 3a–c) show that various TiO₂ NCs preserve their original morphologies and form smooth anatase TiO₂:g-C₃N₄ in the HRTEM images (Supplementary Fig. 3d) likely due to the strong damage effect of high-energy electron beam on the structure of $g-C_3N_4$, but its presence in the TiO₂ NCs-C₃N₄ composites is identified by XRD patterns (Supplementary Fig. 3e) and XPS spectra (Supplementary Fig. 3f).

Photocatalytic performance

H₂O₂ barely decomposes at 300 K over various oxides (P25, ZnO, Fe₂O₃, WO₃, CuO and V₂O₅) without Xe light illumination. Under Xe light illumination, H₂O₂ decomposition predominantly to O₂ occurs slightly in an Ar atmosphere without the presence of oxides but substantially with the presence of oxides (Supplementary Table 2), demonstrating facile occurrence of photogenerated holes-mediated H₂O₂ decomposition to O₂. Photocatalytic H₂O₂ decomposition over various TiO₂ NCs was observed dependent on the surface structure. TiO₂{001} NCs exhibit the lowest photocatalytic activity and O₂ selectivity while TiO₂{101} NCs exhibit the highest (Supplementary Table 3). C₃N₄ is poor in photocatalytic H₂O₂ decomposition, and comparing corresponding TiO₂ NCs, TiO₂ NCs-C₃N₄ composites exhibit much decreased photocatalytic activity and O₂ selectivity (Supplementary Table 3). Interestingly, we found that photocatalytic H₂O₂ decomposition over oxides gets greatly suppressed in an O₂/Ar atmosphere, together with slight decrease of O₂ selectivity; moreover, such an O₂ suppress effect varies with the structures of TiO₂ NCs and TiO₂ NCs-C₃N₄ composites (Supplementary Tables 2 and 3). As shown in Fig. 1e, the H₂O₂ decomposition percentage/H₂O₂ decomposition rate/O₂ selectivity are 31.2%/610.9 µmol h⁻¹/93.0% over TiO₂{001} NCs in the Ar atmosphere and decrease to 15.4%/ $301.5 \,\mu\text{mol}\,h^{-1}/91.8\%$ in the $10\% \,O_2/Ar$ atmosphere, while they are $20.4\%/399.4 \,\mu\text{mol}\,h^{-1}/89.0\%$ over TiO₂{001}-C₃N₄-0.1 in the Ar

CH₄ conversion over (f) 20 mg TiO₂{001} under the reaction condition of 8% CH₄ + 92%Ar + 110 μ L H₂O₂ + 20 mL H₂O or 8%CH₄ + 1.6%O₂ + 90.4%Ar + 110 μ L H₂O₂ + 20 mL H₂O for 5 h and over (g) 20 mg TiO₂{001}-C₃N₄-0.1 under the reaction condition of 8%CH₄ + 92%Ar + 165 μ L H₂O₂ + 20 mL H₂O or 8%CH₄ + 4% O₂ + 88%Ar + 165 μ L H₂O₂ + 20 mL H₂O for 8 h at 298 K. Source data are provided as a Source Data file.

atmosphere and decrease to 8.26%/161.7 $\mu mol \cdot h^{-1}\!/86.4\%$ in the 10% O2/Ar atmosphere.

The suppress effect of O₂ on photocatalytic H₂O₂ decomposition into O₂ was observed to generally enhance not only H₂O₂ utilization efficiency but also H₂O₂ conversion, and consequently CH₄ conversion in aqueous-phase photocatalytic conversion of methane with H_2O_2 using oxide photocatalysts due to the reaction coupling between photocatalytic H_2O_2 and CH_4 reactions (Supplementary Table 4). Under the studied condition, the H₂O₂ utilization efficiency and CH₄ conversion with an O₂ addition are 1.30-1.78 and 1.4-2.0 times of those without O₂ addition, respectively. We then optimized the O₂ enhancement effect and photocatalytic performance over TiO₂ NCs and TiO₂ NCs-C₃N₄ composites (Supplementary Tables 5-10), both of which were observed to vary with structures of TiO₂ NCs. TiO₂{001} NCs are more photocatalytic active than TiO₂{100} and TiO₂{101} NCs, and the produced liquid-phase oxygenates are CH₃OH and HCOOH over TiO₂{001} NCs and CH₃OH over TiO₂{100} and TiO₂{101} NCs. Over TiO₂{001} NCs (Fig. 1f), the O₂ addition increases the methane conversion rate from 39.5 to 69.7 µmol·g_{catalyst}⁻¹·h⁻¹, the selectivity of liquid-phase oxygenates and HCOOH respectively from 50.8% to 70.7% and from 30.4% to 53.9%, the HCOOH yield from 12.0 to 37.6 μ mol·g_{catalyst}⁻¹ h⁻¹, and the H₂O₂ utilization efficiency from 21.4% to 32.1%. TiO2 NCs-C3N4-0.1 composites exhibit much better photocatalytic performance and more significant O₂ promotion effect than corresponding TiO₂ NCs. The produced liquid-phase oxygenates are CH₃OH and HCOOH over TiO₂{001}-C₃N₄-0.1, CH₃OH and CH₃OOH over TiO₂{100}-C₃N₄-0.1, and CH₃OOH over TiO₂{101}-C₃N₄-0.1. Over TiO₂{001}-C₃N₄-0.1 (Fig. 1g), the O₂ addition increases the methane conversion rate from 358.5 to 696.3 µmol g_{catalyst}⁻¹ h⁻¹, the selectivity of liquid-phase oxygenates and HCOOH respectively from 93.7% to 97.0% and from 56.4% to 69.8%, the HCOOH yield from 202.2 to 486 μ mol g_{catalyst}⁻¹ h⁻¹, and the H₂O₂ utilization efficiency from 53.4% to 93.3%.

The above results demonstrate an interesting photocatalytic system for efficiently converting CH₄ to liquid-phase oxygenates in the presence of H₂O₂ and O₂ at room temperature and ambient pressure over oxide-based photocatalysts, which presents high H₂O₂ utilization efficiencies due to the suppress effect of O₂ on photocatalytic H₂O₂ decomposition into O₂. The best photocatalyst, TiO₂{001}-C₃N₄-O.1, exhibits an unprecedented H₂O₂ utilization efficiency of 93.3%, leading to a liquid-phase oxygenates selectivity of 97% and formic selectivity and yield respectively of 69.8% and 486 μ mol_{HCOOH}·g_{catalyst}⁻¹h⁻¹. Its apparent quantum efficiency at 365 nm was measured to be 0.48%.

 $TiO_2\{001\}$ - C_3N_4 -0.1 is stable and its performance maintains well within six cycles of photocatalytic activity evaluations (Supplementary Fig. 4). Routine structural characterization results (Supplementary Fig. 5), including XPS, VB-XPS, UV-Vis spectra and photocurrent measurements, show few difference between the as-synthesized and used $TiO_2\{001\}$ - C_3N_4 -0.1 catalysts.

Reaction mechanism

The carbon balance was calculated above 96.7% for all studied photocatalytic reactions. Blank photocatalytic experiment of photocatalytic reaction in the presence of TiO₂{001}-C₃N₄-0.1 but absence of CH₄ in the reactant did not produce detectable C-contained products; meanwhile, using ¹³CH₄, all C-contained products only contained ¹³C (Supplementary Fig. 6). Thus, all C-contained products as a function of reaction time were examined over TiO₂{001}-C₃N₄-0.1 (Supplementary Table 11). At a reaction time of 10 min, CH₃OOH, CH₃OH and HCHO were detected, and CH₃OOH was the major product. The CH₃OOH, CH₃OH and HCHO productions increased at a reaction time of 30 min, meanwhile, HCOOH and CH₃CH₂OH appeared. As a reaction time of 1 h, the CH₃OOH production decreased and HCHO was not detected, whereas the CH₃OH and HCOOH productions increased greatly and the CH₃CH₂OH production increased slightly, meanwhile, CH₃COOH emerged. These observations suggest CH₃OOH as the primary product and CH₃OH, HCHO, HCOOH, CH₃CH₂OH and CH₃COOH as the secondary products that are produced sequentially. Moreover, the reaction rate of HCHO seems to be faster than the formation rate.

 $^{18}O_2$ and $H_2^{18}O$ were used to trace origins of oxygen atoms in the liquid-phase oxygenate products. 18O2 were observed to exert similar enhancement effects on the H₂O₂ utilization efficiency to ¹⁶O₂ and to slightly affect the product selectivity (Supplementary Table 12). It is noteworthy that CH₃OOH decomposes completely into CH₃OH during the mass spectroscopy analysis (13). Over TiO₂{001} NCs (Supplementary Figs. 7, 8), no ¹⁸O-labelled product was detected when H₂¹⁸O was used, while CH₃¹⁸OH and HC¹⁸O¹⁶OH were detected with CH₃¹⁸OH/ CH3¹⁶OH and HC¹⁸O¹⁶OH/HC¹⁶O¹⁶OH ratios respectively of around 0.12 and 0.11 when ¹⁸O₂ was used. Over TiO₂{001}-C₃N₄-0.1 (Fig. 2a-d and Supplementary Fig. 9), only CH₃C¹⁸O¹⁶OH for CH₃COOH and no other ¹⁸O-labelled oxygenate were detected when H₂¹⁸O was used, while CH₃¹⁸OH, HC¹⁸O¹⁶OH and CH₃CH₂¹⁸OH were detected with CH₃¹⁸OH/ CH₃¹⁶OH, HC¹⁸O¹⁶OH/HC¹⁶O¹⁶OH and CH₃CH₂¹⁸OH/CH₃CH₂¹⁶OH ratios respectively of around 0.14, 0.13 and 0.25 when ¹⁸O₂ was used, and CH₃C¹⁶O¹⁶OH and CH₃C¹⁶O¹⁸OH were detected for CH₃COOH. Therefore, the oxygen atoms in CH₃OOH, CH₃OH, HCOOH and CH₃CH₂OH are contributed majorly by H_2O_2 and minor by O_2 , but seldom by H_2O_2 . Interestingly, HCOOH is formed via CH₃OH oxidation exclusively by H₂O₂ whereas CH₃COOH is formed via CH₃CH₂OH oxidation exclusively by H₂O, suggesting that they follow different mechanisms. This was further supported by the observations that HC16O16OH/HC18O16OH and CH₃C¹⁸O¹⁶OH/CH₃C¹⁸O¹⁸OH were detected when ¹⁸O₂ and H₂¹⁸O were used (Supplementary Fig. 10). Photocatalytic CH₃CH₂OH oxidation with H₂O to CH₃COOH was reported to be mediated by •OH radicals generated by photogenerated holes-participated activation of H_2O , typically occurring in the aqueous solution^{28,29}. Thus, photocatalytic reactions to other liquid-phase products occur on the photocatalyst surfaces. Meanwhile, only a tiny amount of C¹⁶O¹⁸O was detected in the gas phase products while no C¹⁸O and C¹⁸O₂ was detected when ¹⁸O₂ was used for both TiO₂{001} NCs and TiO₂{001}-C₃N₄-0.1 (Supplementary Fig. 11).

In order to further clarify the role of O₂, the O₂ concentration in the reactant was increased from 4% (8%CH₄ + 4%O₂ + 88%Ar + 165 μ L H₂O₂ + 20 mL H₂O) to 12% (8%CH₄ + 12%O₂ + 80%Ar+165 µL H₂O₂ + 20 mL H₂O), and the photocatalytic reaction was studied over TiO₂{001}- C_3N_4 -0.1 comparatively with ${}^{16}O_2$ or ${}^{18}O_2$. Using ${}^{16}O_2$ or ${}^{18}O_2$ gave similar H₂O₂ utilization efficiencies of around 94% and slightly different CH₄ conversion rates and product selectivity (Supplementary Table 13). Using ¹⁸O₂, the CH₃¹⁸OH/CH₃¹⁶OH, HC¹⁸O¹⁶OH/HC¹⁶O¹⁶OH and CH₃CH₂¹⁸OH/CH₃CH₂¹⁶OH ratios in the liquid-phase products were measured respectively as around 0.19, 0.17 and 0.22 (Supplementary Figs. 12-14), similar to the case of the reactant with 4% O₂; however, C¹⁸O and C¹⁸O₂ were detected and the fraction of C¹⁶O¹⁸O in CO₂ is much larger than that of C¹⁶O¹⁶O, different from the case of the reactant with 4% O₂. Therefore, during photocatalytic aqueous-phase CH₄ conversion in the presence of H₂O₂ and O₂, CH₄ preferentially reacts with H₂O₂ to produce liquid-phase oxygenates, while O₂ acts mainly as a promoter to enhance H₂O₂ utilization efficiency and consequently CH₄ conversion, and minorly as a reactant.

Using 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) as the radical trapping agent, in situ EPR was used to probe radicals generated by photo-induced activation of various reactants. As shown in Fig. 2e and Supplementary Fig. 15, under UV light illumination, H₂O is activated to \cdot OH radicals³⁰ by photogenerated holes (h^{+}) over various TiO₂ NCs and TiO₂ NCs-C₃N₄-O.1 composites, which barely changes upon the addition of O₂. \cdot O₂⁻ radicals formed by O₂ activation with photogenerated electrons (e^{-}) can not be observed in ESR spectra due to the instability in the aqueous solution, but their formation is evidenced by in situ ESR spectra in the methanol solution³¹ (Supplementary Fig. 16). Over TiO₂ NCs, the \cdot OH radical signal grows slightly upon the addition of H₂O₂

Fig. 2 | **Reaction mechanism.** Mass spectra of (a) methanol, (b) formic acid, (c) ethanol and (d) acetic acid formed during photocatalytic CH₄ conversion over TiO₂{001}-C₃N₄-0.1 under the reaction condition of 8%CH₄ + 4%O₂ + 88%Ar + 165 μ L H₂O₂ + 20 mL H₂O, 8%CH₄ + 4%¹⁵O₂ + 88%Ar + 165 μ L H₂O₂ + 20 mL H₂O, 8%CH₄ + 4%O₂ + 88%Ar + 165 μ L H₂O₂ + 20 mL H₂O, or 8% CH₄ + 4%O₂ + 88%Ar + 165 μ L H₂O₂ + 20 mL H₂O, or 8% CH₄ + 4%O₂ + 88%Ar + 165 μ L H₂O₂ + 20 mL H₂O₁¹⁶O. Photocatalyst amount: 20 mg; reaction temperature: 25 °C; reaction time: 8 h. e In situ ESR spectra of H₂O, H₂O + O₂, H₂O + H₂O₂ and H₂O + O₂ + H₂O₂ solutions under UV light illumination at 298 K in the presence of DMPO over TiO₂{001} NCs and TiO₂{001}-C₃N₄-0.1. f In situ

ESR spectra of $CH_4 + H_2O$ mixture under UV light illumination at 298 K in the presence of DMPO over $TiO_2\{101\}$ (olive), $TiO_2\{100\}$ (dark yellow) and $TiO_2\{001\}$ (magenta) NCs, $TiO_2\{101\}-C_3N_4-0.1$ (blue), $TiO_2\{100\}-C_3N_4-0.1$ (red) and $TiO_2\{001\}-C_3N_4-0.1$ (black) composites. Schematic diagrams of proposed dominant photocatalytic aqueous-phase CH_4 reaction paths to liquid-phase oxygenates in the presence of H_2O_2 and O_2 over (**g**) TiO_2 NCs and (**h**) TiO_2 NCs- C_3N_4 . The 0.06 eV and -0.38 eV refer to the redox potential of H_2O_2 activated to \cdot OH radicals and \cdot OOH radicals at pH = 7. Source data are provided as a Source Data file.

and greatly upon the co-addition of H2O2 and O2. Over TiO2 NCs- C_3N_4 -0.1 composites, the ·OH radical signal does not vary upon the addition of H_2O_2 , while the ·OOH radical signal^{25,26} appears, and its intensity increases greatly upon the co-addition of H₂O₂ and O₂. Thus, under UV light illumination, in addition to the h^+ -mediated decomposition into O₂, H₂O₂ undergoes the e⁻-mediated activation into ·OH radicals over TiO₂ NCs and ·OOH radicals over TiO₂ NCs-C₃N₄-0.1 composites. The e-mediated formation of dominant ·OOH radicals but few ·OH radicals over TiO₂ NCs-C₃N₄-0.1 composites indicates that e⁻ for H₂O₂ activation is located on the conduction band mainly of C₃N₄ but seldom of TiO₂, pointing to efficient interfacial transfer of e^{-} from the conduction band of TiO₂ to the conduction band of C₃N₄. When CH₄ was introduced to the aqueous solutions containing TiO₂ NCs or TiO_2 NCs-C₃N₄-0.1 composites under UV light illumination (Fig. 2f), \cdot CH₃ radicals^{22,26}, in addition to \cdot OH radicals, were detected. They greatly grew when isopropanol was added to quench ·OH radicals (Supplementary Fig. 17), but could not be detected in the presence of H_2O_2 and O_2 when h^+ was quenched using methanol (Supplementary Fig. 18). Thus, photocatalytic CH_4 activation to $\cdot CH_3$ radicals is mainly mediated by h^+ , instead of by OOH, $\cdot OH$ and $\cdot O_2^-$ radicals.

Based on the above isotope-labelled and ESR results, photocatalytic CH₄ conversion with H₂O₂ is initiated by the reaction of *h*⁺-generated ·CH₃ with *e*⁻-generated ·OH to CH₃OH over TiO₂ NCs (Fig. 2g) and with *e*⁻-generated ·OH to CH₃OOH over TiO₂ NCs-C₃N₄–0.1 composites (Fig. 2h). The addition of O₂ opens up minor reaction pathways, including the reaction of *h*⁺-generated ·CH₃ with O₂ to CH₃OO· radicals that facilely transform to CH₃OOH^{22,32} and the reaction of CH₄ with Ti–O· formed by *e*⁻-mediated ·O₂⁻ reactions on TiO₂ surfaces directly to CH₃OH³³. We consider that the ·CH₃ + O₂ reaction occurs mainly for TiO₂ NCs-C₃N₄–0.1 composites due to the lack of enough *e*⁻ on the TiO₂ NCs due to the absence of CH₃OOH in the products. Moreover, the addition of O₂ greatly enhances the intensities of ·OOH radicals over TiO₂ NCs-C₃N₄–0.1 composites and ·OH radicals over TiO₂ NCs formed by the e^{-} -mediated H₂O₂ activation, and consequently the photocatalytic CH₄ conversions. Since the presence of O_2 efficiently suppresses the h^+ -mediated H_2O_2 decomposition to O₂ under UV light illumination, the enhancement effect of O₂ on ·OH and ·OOH generations from photocatalytic H₂O₂ activation is probably due to O_2 -suppressed h^+ -mediated H_2O_2 decomposition to O_2 rather than O_2 -promoted e^- -mediated H_2O_2 decomposition to OHand \cdot OOH radicals. O₂ does not compete with H₂O₂ for h^+ that is localized on the TiO₂ surface, thus O₂ likely suppresses H₂O₂ adsorption on TiO₂, instead of reaction of adsorbed H_2O_2 with h^+ , to suppress the h^+ -mediated H₂O₂ decomposition to O₂. Both TiO₂ NCs and TiO₂ NCs-C₃N₄-0.1 composites exhibit TiO₂ facet-dependent intensities of various radicals. The ·OH radicals are strongest over TiO₂{001} NCs among all TiO₂ NCs and the ·OOH radicals are strongest over TiO₂{001}-C₃N₄-0.1 composite among all TiO₂ NCs-C₃N₄ composites (Supplementary Fig. 19). The \cdot CH₃ radicals are strongest over TiO₂{100} NCs among various TiO₂ NCs and over TiO₂{001}-C₃N₄-0.1 composite among various TiO₂ NCs-C₃N₄ composites (Supplementary Fig. 20). Meanwhile, TiO₂ NCs-C₃N₄ composites exhibit more reactive radicals than corresponding TiO₂ NCs. These results are consistent with the results of photocatalytic activity.

The band structures of various TiO₂ NCs and TiO₂ NCs-C₃N₄-0.1 photocatalysts were determined using UV-vis spectra and valence band XPS spectra (Supplementary Fig. 21). TiO2 NCs-C3N4-0.1 exhibits smaller band gaps than corresponding the TiO₂ NCs, suggesting stronger capacity for light absorption and charge generation. The conduction band edges of TiO₂ NCs and TiO₂ NCs-C₃N₄ composites were measured to be -0.14~-0.34 and -0.41~-0.47 vs RHE, respectively, consistent with the experimental observations that H₂O₂ undergoes the e⁻-mediated activation into ·OH radicals over TiO2 NCs and ·OOH radicals over TiO₂ NCs-C₃N₄-0.1 composites (Fig. 2g, h). ESR spectra (Supplementary Fig. 22a) show that TiO₂ NCs-C₃N₄-0.1 exhibit much lower densities of F ⁺ and Ti³⁺ defects than TiO₂ NCs and the defect density follows an order of $TiO_{2}\{101\} > TiO_{2}\{100\} > TiO_{2}\{001\} > TiO_{2}\{101\} - C_{3}N_{4} - 0.1 > TiO_{2}\{100\}$ - $C_3N_4-0.1 > TiO_2\{001\}-C_3N_4-0.1$. Accordingly, PL spectra (Supplementary Fig. 22b) show that the PL peak arising from the recombination of photoexcited electrons and holes displays an intensity order of $TiO_{2}\{101\} > TiO_{2}\{100\} > TiO_{2}\{001\} > TiO_{2}\{101\} - C_{3}N_{4} - 0.1 > TiO_{2}\{100\}$ $C_3N_4-0.1 > TiO_2\{001\}-C_3N_4-0.1$. EIS spectra of various TiO₂ NCs and TiO₂ NCs-C₃N₄-0.1 photocatalysts were also measured, in which a smaller radius represents a low charge transfer resistance. All photocatalysts exhibit semicircle EIS spectra (Supplementary Fig. 22c), and the semicircle radius and consequently the charge transfer resistance follow an order of $TiO_2\{101\} > TiO_2\{100\} > TiO_2\{001\} > TiO_2\{101\}$ $C_3N_4-0.1 > TiO_2\{100\}-C_3N_4-0.1 > TiO_2\{001\}-C_3N_4-0.1$. ESR, PL and EIS are all bulk-sensitive characterization techniques, and their characterization results show that TiO₂ NCs-C₃N₄-0.1 exhibit higher charge separation and transfer efficiencies than corresponding TiO₂ NCs and that TiO₂{001} is the best of various TiO₂ NCs while TiO₂{001}-C₃N₄-0.1 is the best of TiO₂ NCs-C₃N₄-0.1 composite photocatalysts, consistent with the photocatalytic activity results.

NEXAFS acquired in a mode of total electron yield is a surface sensitive technique to probe the density of states of the orbitals involved in the electron transitions. UV light illumination excites electrons from the valence band to the conduction band, which consequently changes the density of states of the involved orbitals. We thus measured Ti L-edge, O K-edge, N K-edge and C K-edge NEXAFS spectra under dark and UV light illumination conditions of various samples (Fig. 3a–d, Supplementary Figs. 23, 24). The valence and conduction bands of TiO₂ consist of the O 2*p* and Ti 3*d* orbitals, respectively, and the Ti L-edge and O K-edge NEXAFS features arise from the Ti $2p\rightarrow 3d$ and O 1 $s\rightarrow 2p$ electron transitions, respectively. The valence and conduction bands of C₃N₄ consist of the N 2*p* and C 2*p* orbitals, respectively, and the N K-edge and C K-edge NEXAFS features arise from the N 1 $s\rightarrow 2p$ electron transitions, respectively. TiO₂ NCs-C₃N₄ composites exhibit enhanced Ti L-edge and O K-edge features than corresponding TiO₂ NCs but weakened C K-edge and N K-edge NEXAFS features than C₃N₄. This indicates an occurrence of TiO₂→C₃N₄ electron transfer within TiO₂ NCs-C₃N₄ composites, which decreases the electron density on TiO₂ but increases the electron density of C₃N₄. Using the Ti L-edge and C K-edge NEXAFS features as examples (Fig. 3e), TiO₂{001}-C₃N₄ composite exhibits the largest intensity variations of both Ti-L edge and C-K edge absorption features among all TiO₂ NCs-C₃N₄ composites, demonstrating the most extensive electron transfer from TiO₂{001} NCs to C₃N₄.

UV light illumination excites electrons from the valence bands of TiO_2 or C_3N_4 to the conduction bands, and consequently results in weakened Ti L-edge NEXAFS features of TiO2 NCs, enhanced O K-edge NEXAFS features of TiO₂ NCs and TiO₂ NCs-C₃N₄-0.1 composites, and weakened C K-edge and enhanced N K-edge NEXAFS features of C₃N₄ and TiO₂ NCs-C₃N₄-0.1 composites. But TiO₂ NCs-C₃N₄-0.1 composites exhibit stronger Ti L-edge NEXAFS features under UV light illumination than under dark condition. This supports the formations of Z-scheme TiO₂-C₃N₄ heterojunctions within TiO₂ NCs-C₃N₄-0.1 composites³⁴, in which the photogenerated electrons on the conduction band of TiO₂ (Ti 3d orbital) efficiently transfer to the valence band of C₃N₄ (N 2p orbital) and recombine with photogenerated holes therein (Fig. 2h). Moreover, the total transferred electrons from the conduction band of TiO₂ are more than the photogenerated electrons, likely due to a large number of photogenerated holes in the valence band of C₃N₄, which results in a less-occupied Ti 3d orbital and consequently a stronger Ti L-edge NEXAFS features of TiO₂-C₃N₄-0.1 composites under UV light illumination than under dark condition. Figure 3f presents the ratios (IUV/Idark) of Ti L-edge, O K-edge, N K-edge and C K-edge NEXAFS features of various photocatalysts under UV light illumination against in dark, whose deviations from the unity reflect the photogenerated charges on the photocatalyst surfaces. Much larger concentrations of photogenerated electrons and holes are present on TiO₂ surfaces than on C₃N₄ surface, suggesting more efficient charge separation and migration to surface within TiO₂ NCs. C₃N₄ surface exhibits similar concentrations of photogenerated electrons and holes while TiO₂ surfaces exhibit larger concentrations of photogenerated holes than of photogenerated electrons. TiO2 NCs-C3N4-0.1 composite surfaces exhibit slightly smaller concentrations of photogenerated holes than corresponding TiO₂ NCs surfaces but larger concentrations of photogenerated charges than C₃N₄ surfaces. Thus, the Z-scheme TiO₂-C₃N₄ heterojunctions within TiO₂ NCs-C₃N₄-0.1 composites contribute to the charge separation and migration to surface over C₃N₄ component more than over TiO₂ component. Among various TiO₂ NCs or TiO₂ NCs-C₃N₄-0.1 composites, the photocatalysts consisting TiO₂{001} NCs exhibit the largest concentrations of photogenerated charges on the surfaces, leading to the largest concentrations of ·OH radicals over TiO₂{001} NCs, ·OOH and ·CH₃ radicals over TiO₂{001}-C₃N₄ composite. However, TiO₂{100} NCs, instead of TiO₂{001} NCs, exhibit the largest concentration of ·CH₃ radicals, which is likely relevant to the adsorption behaviors of CH₄ on various photocatalysts. The adsorption heats of CH4 were measured similar for various TiO₂ NCs (16.8-17.7 kJ/mol) or TiO₂ NCs-C₃N₄-0.1 composites (11.1-14.5 kJ/mol) (Supplementary Figs. 25-27), while the adsorption amounts followed orders of $TiO_2{100} > TiO_2{101} >$ $TiO_{2}{001}$ and of $TiO_{2}{001}-C_{3}N_{4} > TiO_{2}{100}-C_{3}N_{4} > TiO_{2}{101}-C_{3}N_{4}$.

Various TiO₂ NCs and TiO₂ NCs-C₃N₄-0.1 composites show not only TiO₂ facet-dependent activity but also TiO₂ facet-dependent selectivity in photocatalytic CH₄ conversion with H₂O₂ or H₂O₂ + O₂. The photocatalysts with low photocatalytic activity exhibit low selectivity toward the liquid-phase products because more oxidizing radicals are available to eventually convert the liquid-phase intermediates to CO₂. TiO₂{001} NCs and TiO₂{001}-C₃N₄-0.1 composite exhibit the highest photocatalytic activity and consequently the highest photocatalytic selectivity toward the liquid-phase products among

Fig. 3 | **Interfacial charge transfer. a** Ti L-edge, **(b)** O K-edge, **(c)** N K-edge and **(d)** C K-edge NEXAFS spectra of TiO₂[001] NCs (black line), TiO₂[001] NCs-C₃N₄-0.1 composite (red line) and C₃N₄ (blue line) in dark (thick line) and under UV light illumination (thin line). **e** Ti L-edge intensity ratios of TiO₂ NCs-C₃N₄-0.1

composites against corresponding TiO₂ NCs and C K-edge intensity ratios of TiO₂ NCs-C₃N₄–0.1 composites against C₃N₄. **f** Intensity ratios of Ti L-edge, O K-edge, C K-edge and N K-edge features of various photocatalysts under UV light illumination against in dark. Source data are provided as a Source Data file.

various TiO₂ NCs and various TiO₂ NCs-C₃N₄-0.1 composites, respectively. Moreover, distributions of liquid-phase products vary with the TiO₂ facets. Especially, HCOOH is the major liquid-phase product for the photocatalysts containing TiO₂{001} NCs, but is barely observed for the photocatalysts containing TiO₂{101} or TiO₂{100} NCs. In situ DRIFTS spectra were used to explore surface reaction mechanisms of photocatalytic CH₄ conversion with H₂O₂ + O₂ over TiO₂ NCs-C₃N₄-0.1 composites (Fig. 4). The observed vibrational bands (Supplementary Table 14) were assigned based on in situ DRIFTS spectra of CH₃OH and HCOOH adsorption on various TiO2 NCs (Supplementary Fig. 28) and previous reports³⁵⁻³⁹. As the photocatalytic reaction prolongs over TiO₂{001}-C₃N₄-0.1 composite (Fig. 4a), the vibrational features of adsorbed CH₃ (1473 cm⁻¹), CH₂ (1445 cm⁻¹), CH₃OH (1019 and 1092 cm⁻¹), CH₃O (1042 and 1156 cm⁻¹), CH₂O (1712 cm⁻¹), HCOO (1526, 1556 and 1564 cm⁻¹), HCOOH (1664 cm⁻¹) and carbonates (1504 and 1592 cm⁻¹) species and gaseous HCOOH (1760 and 1782 cm⁻¹) emerge and grow at the expense of gaseous CH₄ (1304 cm⁻¹). These results directly evidence the occurrences of photocatalytic oxidation of CH₄ to CH₃OH via the CH₃ intermediate and further to HCOOH via the CH₃O, CH₂O and HCO (in the form of HCOO_{TiO2}) intermediates, as schematically shown in Fig. 2g, h. Although the carbonate intermediates were observed, no signals of CO or CO₂ appeared, indicating that the carbonate intermediates are very stable on TiO₂{001}-C₃N₄ composite. Comparing TiO₂{001}-C₃N₄-0.1 composite, TiO₂{100}-C₃N₄-0.1 and TiO₂{101}-C₃N₄-0.1 composites exhibit very different in situ DRIFTS spectra (Fig. 4b). The gaseous CH₄ consumptions and the CH₃OH(a) formation are greatly smaller over TiO₂{100}-C₃N₄-0.1 and TiO₂{101}-C₃N₄-0.1 composites than over TiO₂{001}-C₃N₄-0.1 composite. Meanwhile, only very minor vibrational features of surface intermediates appear whereas obvious vibrational features of gaseous CO (2135 and 2170 cm⁻¹) and CO₂ (2340 and 2360 cm⁻¹) emerge over $TiO_{2}{100}-C_{3}N_{4}-0.1$ and $TiO_{2}{101}-C_{3}N_{4}-0.1$ composites, respectively.

These in situ DRIFTS results are consistent with the photocatalytic reaction data that $TiO_2\{001\}$ - C_3N_4 -0.1 composite are much more photocatalytic active and selective toward the liquid-phase products in photocatalytic CH₄ conversion with H₂O₂+O₂ than TiO₂{100}-C₃N₄-0.1 and TiO₂{101}-C₃N₄-0.1 composites.

Theoretical calculations

DFT calculations were carried out to understand O₂-suppressed photocatalytic H₂O₂ decomposition to O₂ and facet-dependent photocatalytic selectivity of CH₄. Since both photocatalytic H₂O₂ decomposition to O₂ and photocatalytic CH₄ conversion are mediated by photogenerated holes located predominantly on TiO2 NCs, thus we considered TiO₂ facets, but not TiO₂-C₃N₄ interfaces, during the DFT calculations. As reported previously^{35,40-44}, the anatase $TiO_2(001)$ surface exposed on TiO₂{001} NCs exhibits a typical reconstructed (001)- (1×4) surface with fourfold-coordinated Ti cations (Ti_{4c}) at the (1×4) added row, fivefold-coordinated Ti cations (Ti_{5c}) at the (1×1) basal surface and twofold-coordinated O anions (O_{2c}) , the anatase TiO₂(100) surface exposed on TiO₂{100} NCs exhibits a typical reconstructed (1 \times 2) surface with the Ti_{5c}, O_{2c} and threefold-coordinated O (O_{3c}) sites, and the anatase TiO₂(101) surface exposed on TiO₂{101} NCs exhibits a (1 \times 1) unreconstructed surface with the Ti_{5c}, O_{2c} and O_{3c} sites (Supplementary Fig. 29). The Ti_{4c} sites on TiO₂(001) surface show much stronger adsorption ability than the Ti_{5c} sites on TiO_2 (001), (100) and (101) surfaces. As shown in Fig. 5a and Supplementary Fig. 30, the adsorption energy of H_2O_2 is -1.46, -0.80 and -0.77 eV on TiO₂ (001), (100) and (101) surfaces, respectively, and greatly decreases to -0.53, -0.18 and -0.10 eV on O₂-covered TiO₂ (001), (100) and (101) surfaces, respectively. The adsorption energy of O_2 is -0.49, -0.18 and -0.14 eV on TiO₂ (001), (100) and (101) surfaces, respectively (Fig. 5b and Supplementary Fig. 31). These DFT calculation results demonstrate that O₂ is capable of weakening H₂O₂ adsorption on TiO₂

Fig. 4 | **In situ characterization. a** In situ DRIFTS spectra of photocatalytic CH₄ conversion at 298 K under different light irradiation times over TiO₂{001}-C₃N₄-0.1 with DRIFTS spectra prior to UV light illumination as the background spectra. **b** In situ DRIFTS spectra of photocatalytic CH₄ conversion at 298 K under light

irradiation for 80 min over $TiO_2[001]$ - C_3N_4 -0.1, $TiO_2[100]$ - C_3N_4 -0.1 and $TiO_2[101]$ - C_3N_4 -0.1 with DRIFTS spectra prior to UV light illumination as the background spectra. Source data are provided as a Source Data file.

to suppress the h^+ -mediated H₂O₂ decomposition to O₂. The strongest adsorption of O_2 on TiO₂(001) surface exerts the strongest suppress effect on H₂O₂ decomposition to O₂ on TiO₂{001} NCs. CH₄ adsorption on TiO₂ (001), (100) and (101) surfaces are very weak with an adsorption energy of -0.17, -0.03 and -0.04 eV (Supplementary Fig. 32). Adsorption energy of CH₃OOH on TiO₂ (001), (100) and (101) surfaces is -0.69, -0.22 and -0.04 eV, respectively (Fig. 5c and Supplementary Fig. 33). CH₃OH adsorbs both molecularly and dissociatively with adsorption energy respectively of -0.84 and -1.69 eV on TiO₂ (001) surface, -0.57 and -0.16 eV on TiO2 (100) surface, -0.49 and -0.65 eV on TiO₂(101) surface (Fig. 5d and Supplementary Fig. 34). The calculated adsorption energies of various liquid-phase products on TiO₂ (001), (100) and (101) surfaces are consistent with the experimentally observed different selectivity toward liquid-phase products in photocatalytic CH₄ conversion over TiO₂ {001}, {100} and {101} NCs, suggesting that desorption of various products from TiO₂ surface play a key role in determining the selectivity. Preferential dissociation of produced CH₃OH on TiO₂{001} NCs and TiO₂{001}-C₃N₄-0.1 composite forms methoxy species which is further photooxidized to HCOOH (Fig. 2g, h), leading to the experimental results that HCOOH is the major liquid-phase product. The very weak adsorption of produced CH₃OOH on TiO₂(101) surface makes it as the sole liquid-phase product over TiO₂{101}-C₃N₄-0.1 composite.

Discussion

Therefore, O₂ is a general and efficient molecular additive to suppress H₂O₂ adsorption on oxide photocatalysts and consequently photogenerated holes-mediated H₂O₂ decomposition to O₂ during photocatalytic reactions. Such a suppress effect, together with efficient charge separation within TiO₂{001}-C₃N₄ heterojunctions, photogenerated holes-mediated activation of CH₄ into ·CH₃ radicals on TiO₂{001} and photogenerated electrons-mediated activation of H₂O₂ into ·OOH radicals on C₃N₄, and preferential dissociative adsorption of methanol on TiO₂{001}, leads to an unprecedented high H₂O₂ utilization efficiency of 93.3% and highly active and selective to liquid-phase oxygenates with formic acid as the major product during

Fig. 5 | **DFT calculations.** Calculated adsorption energies of (**a**) H₂O₂ on clean and O₂-covered TiO₂ (001), (100) and (101) surfaces, (**b**) O₂, (**c**) CH₃COOH and (**d**) molecular and dissociative CH₃OH adsorption on TiO₂ (001), (100) and (101) surfaces. Source data are provided as a Source Data file.

photocatalytic conversion of methane with H_2O_2 and O_2 . H_2O_2 production is known as an environment-unfriendly and economic-costly process⁴⁵, therefore, our findings point to co-use of H_2O_2 and O_2 in photocatalytic oxidation reactions over oxide-based photocatalysts as a promising strategy to achieve high H_2O_2 utilization efficiency and excellent photocatalytic performance.

Methods

Materials

 H_2O_2 aqueous solution (20 wt.%), HF aqueous solution (40 wt.%), acetate, acetic acid, methanol, isopropanol, Ti(OBu)₄, K₂TiO(C₂O₄)₂, P25, ZnO, Fe₂O₃, WO₃ and V₂O₅ were all with the analytical grade and purchased from Sinopharm Chemical Reagent Co. CuO (≥99%), dicyandiamide (≥98%), pentane-2,4-dione (≥98%), 5, 5-dimethyl-1pyrroline N-oxide (DMPO) (≥97%) and 3-(trimethylsilyl)–1-propanesulfonic acid sodium salt (DSS) (≥97%) were purchased from Sinopharm Chemical Reagent Co. Reactants of CH₄ (8%) + O₂(4%) + Ar (88%) and CH₄ (8%) + O₂ (4%) + O₂ (10%) + Ar (78%) were purchased from Nanjing Shang Yuan Industry Factory. ¹³CH₄ (¹³C enrichment > 99%atom), ¹⁸O₂ (¹⁸O enrichment ≥ 98%atom) and H₂¹⁸O (¹⁸O enrichment ≥ 98%atom) were purchased from Wuhan Newradar Gas Co. All chemicals and gases were used as received.

Catalyst synthesis

TiO₂ NCs predominantly exposing different types of facets were prepared following previous procedures²⁷.

Synthesis of anatase TiO₂{001} NCs: typically, 25 mL Ti(OBu)₄ and 3 mL HF aqueous solution (40 wt%) were mixed under stirring at RT (Caution: Hydrofluoric acid (HF) is extremely corrosive and a contact poison, and it should be handled with extreme care! Hydrofluoric acid solution is stored in Teflon containers in use.). The solution was then transferred into a 50 mL Teflon lined stainless steel autoclave and kept at 180 °C for 24 h. The resulted white precipitate was collected by centrifugation, washed repeatedly with ethanol and water, and dried at 70 °C for 12 h. The acquired powder was dispersed in 700 mL NaOH aqueous solution (0.1 mol/L), stirred for 24 h at RT, centrifuged, and washed repeatedly with water until the pH value of aqueous solution was of 7–8.

Synthesis of anatase $TiO_2\{100\}$ and $TiO_2\{101\}$ NCs: typically, 6.6 mL $TiCl_4$ was added dropwise into 20 mL HCl aqueous solution

(0.43 mol/L) at 0 °C. After stirring for an additional 0.5 h, the solution was added dropwise into 50 mL NH₃ aqueous solution (5.5 wt%) under stirring at RT. Then the pH value of the solution was adjusted to between 6 and 7 using 4 wt% NH₃ aqueous solution, after which the system was stirred at RT for 2 h. The resulted precipitate was filtered, washed repeatedly with water until no residual Cl⁻ could be detected. and then dried at 70 °C for 12 h to acquire Ti(OH)₄ precursor. To prepare anatase TiO₂-{100} nanocrystals, 2.0 g Ti(OH)₄ and 0.5 g (NH₄)₂SO₄ were dispersed in a mixture of 15 mL H₂O and 15 mL isopropanol under stirring at RT, then the mixture was transferred into a 50 mL Teflon-lined stainless steel autoclave and kept at 180 °C for 24 h. The obtained white precipitate was collected and washed repeatedly with water. To prepare anatase TiO₂-{101} nanocrystals, $2.0 \text{ g Ti}(OH)_4$ and 0.2 g NH_4Cl were dispersed in a mixture of 15 mL H₂O and 15 mL isopropanol under stirring at RT, then the mixture was transferred into a 50 mL Teflon-lined stainless steel autoclave and kept at 180 °C for 24 h. The obtained white precipitate was collected and washed repeatedly with water.

Synthesis of anatase $TiO_2 NCs-C_3N_4$ composites: calculated amounts of dicyandiamide ($C_2H_4N_4$) and $TiO_2 NCs$ were mixed in a crucible. The crucible was placed into a tube furnace, purged in Ar 1 h, and heated to 550 °C at a rate of 2.5 °C/min and kept for 4 h, then cooled to room temperature. The acquired powders were taken out and grind to obtain $TiO_2 NCs-C_3N_4$ composites.

Structure characterizations

Powder X-ray diffraction (XRD) patterns were recorded on a Philips X'Pert Pro Super diffractometer with Cu K α radiation (λ = 0.15406 nm) operated at 40 kV and 50 mA. Transmission infrared spectra were recorded on a Nicolet 8700 spectrometer at room temperature. Electron paramagnetic resonance (ESR) spectra with and without Xenon lamp irradiation were recorded on a JEOL JES-FA200 ESR spectrometer (9.063 GHz, X-band) at 130 K with employed microwave power, modulation frequency, and modulation amplitude of 0.998 mW, 100 kHz, and 0.35 mT, respectively. Steady-state photoluminescence spectra were measured on a HORIBA LabRAM HR spectrograph with a continuous wave 325 nm laser as the exciting source and the signal was collected by passing through a filter with cutoff wavelengths below 380 nm. UV-vis diffuse reflectance spectra (UV-vis DRS) were obtained on a Shimadzu DUV-3700 spectrophotometer equipped with an integrating sphere attachment. X-ray photoelectron spectroscopy (XPS) measurements were performed on an ESCALAB 250 high-performance electron spectrometer using monochromatized Al K α (hv = 1486.7 eV) as the excitation source, and the likely charging of samples was corrected by setting the C 1s binding energy of the adventitious carbon to 284.8 eV. Near-edge X-ray absorption fine structure (NEXAFS) spectra were measured at photoelectron spectroscopy end-station of National Synchrotron Radiation Laboratory. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and element mapping images were performed with a JEOL JEM-2100F instrument at an acceleration voltage of 120 kV.

Adsorption microcalorimetry measurements were carried out on a home-setup equipment consisting of a Setaram Sensys EVO 600 Tian-Calvet microcalorimeter and an Micromeritics Autochem II 2920 automated chemisorption apparatus⁴⁶. Typically, 50 mg sample was placed in the sample quartz tube and degassed in He (flow rate: 50 mL/ min) at 200 °C for 60 min, then the sample was cooled to –100 °C, and the gas stream was switched to 2% CH₄/He (flow rate: 50 mL/min) for adsorption. After CH₄ adsorption reached saturation, the gas stream was switched back to He (flow rate: 50 mL/min) for desorption. The adsorption/desorption amounts and accompanying heat flows were quantified by the chemisorption apparatus and microcalorimeter, respectively, from which the adsorption/desorption heats were calculated.

In situ DRIFTS experiments were performed at 298K on a Thermo Scientific Nicolet iS50 FTIR Spectrometer with a mercury cadmium telluride detector cooled with liquid nitrogen. The spectrometer was equipped with a Harrik Praying Mantis diffuse reflection accessory and a Harrick high-temperature reaction cell with ZnSe windows. The reaction cell was connected to a SH-110 dry scroll vacuum pump (Agilent Technologies), H₂O₂ aqueous solution stored in a quartz tube welded with Kovar, and 8%CH₄ + 4%O₂ + 88% Ar gas via three closed valves. The 30% H₂O₂ aqueous solution was purified by repeated cycles of freeze-pump-thaw treatments. The UV light irradiation on the sample was accomplished through the front window of the high-temperature reaction chamber using a 100 W high-pressure Hg arc lamp (Oriel 6281), which provides a pressure-broadened emission spectrum from gaseous Hg in the UVlight region. A water filter was used to remove the IR portion of the emission spectrum. Typically, the sample was loaded in the sample holder of the reaction cell, then the reaction cell was evacuated by opening the valve connecting the vacuum pump. After the pressure decreased to 10 Torr, the valve connecting the vacuum pump was closed, and the valve connecting the H₂O₂ aqueous solution was opened to reach a stable pressure, and then the valve connecting to 8%CH₄ + 4%O₂ + 88%Ar gas was open to allow the pressure of the reaction cell to 1 atm, and finally both valves were closed. The DRIFTS spectrum of the sample prior to UV light illumination was firstly taken as the background spectrum, then the UV light was turned on to irradiate the sample and the DRIFTS spectra were taken in a sequential mode. The DRIFTS spectrum of the sample was also taken after the turn off of the UV light. All DRIFTS spectra were measured with 128 scans at a resolution of 4 cm⁻¹.

Photocatalytic activity measurements

Photocatalytic activity of various samples in aqueous-phase methane conversion was evaluated in a quartz reactor with a cooling-water jacket to maintain the reaction temperature at 25 °C under atmospheric pressure using a 300 W Xe lamp as the light source whose spectrum is shown in the Supplementary Fig. 35. Typically, 20 mg photocatalyst, 20 mL deionized water and a certain amount of H_2O_2 aqueous (1 mol/L) solution were mixed in the reactor. The reaction system was adequately deaerated by reaction gas for 1 h, and then was irradiated by the Xe lamp. then the photocatalytic reaction was carried out. After a desirable reaction time, 0.5 mL gas was sampled from the reaction system and its composition products was analyzed by a Fuli GC9720 gas chromatography equipped with FID and TCD detectors.

Liquid-phase oxygenate products were analyzed and quantified by ¹H nuclear magnetic resonance (NMR) spectra acquired on a JEOL ECS 400 MHz NMR spectrometer. A DSS solution in D₂O (0.020 wt.%) with the ¹H chemical shift at δ = 0.0 ppm was prepared to calibrate the chemical shift. Typically, 0.70 mL clear aqueous solution was sampled from the reaction system and mixed with 0.10 mL DSS solution in a NMR tube and the ¹H NMR spectrum was taken. The intensity of measured ¹H NMR peak of various products were compared to the corresponding ¹H NMR working curve acquired using pure product of different concentrations (Supplementary Fig. 36). Since pure CH₃OOH could not be purchased while both CH₃OOH and CH₃OH have the methyl group, the amount of CH₃OOH in the liquid-phase products was quantified using the working curve of CH₃OH²².

The concentration of HCHO was quantified by the colorimetric method²². Typically, 100 mL of the reagent aqueous solution was prepared by dissolving 15 g ammonium acetate, 0.3 mL acetic acid, and 0.2 mL pentane-2,4-dione in water. Then, 0.5 mL liquid product was mixed with 2.0 mL water and 0.5 mL reagent solution. The mixed solution was maintained at 35 °C and measured by UV – vis absorption spectrum until the absorption intensity at 412 nm did not further

increase. The concentration of HCHO in the liquid product was determined by the standard curve (Supplementary Fig. 37).

The concentration of H_2O_2 in the aqueous solution was quantified by the colorimetric method^{13,21}. Typically, a reagent aqueous solution was prepared by dissolving 0.636 g $K_2TiO(C_2O_4)_2$ and 20 µL concentrated H_2SO_4 (98%) in 100 mL deionized water. 0.2 mL aqueous solution was exacted from the reaction system and mixed with 4.0 mL reagent solution. Then the UV – vis absorption spectrum of the mixed solution was measured, and the intensity of the absorption peak at 398 nm arising from the complex formed by $K_2TiO(C_2O_4)_2$ and H_2O_2 was compared to the working curve acquired using pure H_2O_2 aqueous solution of different concentrations (Supplementary Fig. 38) to quantify the H_2O_2 concentration.

Methane conversion, product selectivity, H_2O_2 conversion and H_2O_2 utilization efficiency were calculated as the following:

Methane conversion (%) = $(n(CH_4)_{before reaction} - n(CH_4)_{after reaction})/n(CH_4)_{before reaction} \times 100\%$

Product selectivity (%) = $n_{Product} / (n(CH_4)_{before \ reaction} - n(CH_4)_{after \ reaction}) \times 100\%$

$$\begin{split} H_2O_2conversion (\%) &= (n(H_2O_2)_{before \ reaction} \\ &- n(H_2O_2)_{after \ reaction}) / n(H_2O_2)_{before \ reaction} \times 100\% \end{split}$$

 H_2O_2 utilization efficiency (%) = $(n(H_2O_2)_{before \ reaction})$

 $- n(H_2O_2)_{after \ reaction} - n(H_2O_2)_{decomposition \ to \ O2} \big) / n(H_2O_2)_{before \ reaction} \times 100\%$

 $n(H_2O_2)_{decomposition \ to \ O2} = n(O_2)_{after \ reaction} - n(O_2)_{before \ reaction} - n_{O2reacted}$

Carbon balance (%) = $n_{carbon in all products}/$ (n(CH₄)_{before reaction} - n(CH₄)_{after reaction})×100%

Where n was the quantified amount of reactants or products, while n_{O2} reacted was calculated from the amount of products and the ratio of the products formed by O_2 based on the isotope-labelling results. For photocatalytic reactions using ${}^{18}O_2$, n_{18O2} reacted was calculated by $(n({}^{18}O_2)_{before\ reaction}-n({}^{18}O_2)_{after\ reaction})$, in which $n({}^{18}O_2)$ was quantified using GC-MS. The carbon balance was calculated not less than 96.7% for all studied photocatalytic reactions.

Product analysis of photocatalytic reactions using isotopelabelled reactants

Liquid-phase oxygenates produced by aqueous-phase photocatalytic methane conversion using ¹³CH₄ were analyzed by ¹H NMR and ¹³C with decoupling NMR spectrometer as described above. Products of aqueous-phase photocatalytic methane conversion using ¹⁸O₂ and or H₂¹⁸O were analyzed by mass spectrometer as the following: 0.5 mL gas was sampled from the reaction system and its composition was analyzed on a Trace GC/ISQ MS; and 3 mL clear aqueous solution was sampled from the reaction system and transferred into a quartz tube welded with Kovar and then connected to a QIC20 mass spectrometer (Heiden Analytical Ltd.) and a Hicube 80 Eco pump station by two closed valves. The aqueous solution was purified by repeated cycles of freeze–pump–thaw treatments and its composition was analyzed by the QIC20 mass spectrometer.

Theoretical calculations

All theoretical calculations were carried out using the Vienna ab initio simulation package (VASP)^{47,48}, and the exchange-correlation term was described by the Perdew, Burke and Ernzerhof version within the generalized gradient approximation (PBE-GGA)⁴⁹. The project-augmented wave (PAW)^{50,51} method was used to represent the core-

valence electron interaction. The titanium 3 s, 3p, 3d, 4 s, and the carbon and oxygen 2 s. 2p electrons were treated as valence electrons and an energy cutoff of 400 eV for the basis-set expansion was used. The anatase $TiO_2(001)$ -(1 × 4), $TiO_2(101)$ and $TiO_2(100)$ surface was modeled as a periodic slab with six O-Ti-O trilayers of oxide. A vacuum between slabs >15 Å and corresponding $1 \times 1 \times 1$ k-point mesh were used during the calculations. Adsorption was modeled on one side of the slab, and during structural optimizations, all of the atoms except those in the bottom TiO₂ trilayer of the slab, were allowed to relax until atomic forces reached below 0.05 eV/Å. The adsorption energy (E_{ads}) was expressed using the average adsorption energy calculated by $E_{ads} = E_{ad/sub} - (E_{sub} + E_{ad})$ in which $E_{\rm ad/sub}$ is the total energy of the interacting system containing adsorbed molecules and TiO₂ support in a surface cell, E_{sub} is the total energy of the anatase TiO_2 slab and E_{ad} is the total energy of the molecule in gas phase.

Details on structural characterizations, activity evaluations, and DFT calculations can be found in the supplementary information.

Data availability

The data supporting the findings of the study are available within the paper and its Supplementary Information. Source data are provided with this paper.

References

- 1. Boswell, R. Is gas hydrate energy within reach? Science **325**, 957–958 (2009).
- Kerr, R. A. Natural gas from shale bursts onto the scene. Science 328, 1624–1626 (2010).
- McFarland, E. Unconventional chemistry for unconventional natural gas. Science 338, 340–342 (2012).
- Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. *Chem. Rev.* **117**, 8497–8520 (2017).
- Meng, X. et al. Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis. *Chem* 5, 2296–2325 (2019).
- Ito, T. & Lunsford, J. J. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. *Nature* 314, 721–722 (1985).
- Wang, L. et al. Dehydrogenation and aromatization of methane under non-oxidizing conditions. *Catal. Lett.* 21, 35–41 (1993).
- 8. Guo, X. et al. Direct, Nonoxidative conversion of methane to ethylene, aromatics, and hydrogen. *Science* **344**, 616–619 (2014).
- Hammond, C. et al. Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5. Angew. Chem. Int. Ed. 51, 5129–5133 (2012).
- 10. Cui, X. et al. Room-temperature methane conversion by grapheneconfined single iron atoms. *Chem* **4**, 1902–1910 (2018).
- Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. *Science* 367, 193–197 (2020).
- Zhu, K. et al. Highly efficient conversion of methane to formic acid under mild conditions at ZSM-5-confined Fe-sites. *Nano Energy* 82, 105718 (2021).
- Agarwal, N. et al. Aqueous Au–Pd colloids catalyze selective CH₄ oxidation to CH₃OH with O₂ under mild conditions. Science **358**, 223–227 (2017).
- Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. *Nature* 551, 605–608 (2017).
- Tang, Y. et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. *Nat. Commun.* 9, 1231 (2018).

- Li, L. et al. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn⁺-modified zeolite. *Angew. Chem. Int. Ed.* 50, 8299–8303 (2011).
- Murcia-López, S., Villa, K., Andreu, T. & Morante, J. R. Partial oxidation of methane to methanol using bismuth-based photocatalysts. ACS Catal. 4, 3013–3019 (2014).
- López, S. M. et al. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta Zeolite. ACS Catal. 7, 2878–2885 (2017).
- Xie, J. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide supported iron species. *Nat. Catal.* **1**, 889–896 (2018).
- Zhou, Y., Zhang, L. & Wang, W. Direct functionalization of methane into ethanol over copper modified polymeric carbon nitride via photocatalysis. *Nat. Commun.* **10**, 506 (2019).
- Xing, Y. et al. Fe/Fe₃C boosts H₂O₂ utilization for methane conversion overwhelming O₂ generation. *Angew. Chem. Int. Ed.* 60, 8889–8895 (2021).
- Song, H. et al. Direct and selective photocatalytic oxidation of CH₄ to oxygenates with O₂ on Co catalysts/ZnO at room temperature in water. J. Am. Chem. Soc. **141**, 20507–20515 (2019).
- Song, H. et al. Selective photo-oxidation of methane to methanol with oxygen over dual-cocatalyst-modifified titanium dioxide. ACS Catal. 10, 14318–14326 (2020).
- Li, X., Xie, J., Rao, H., Wang, C. & Tang, J. Pt and CuO_x decorated TiO₂ photocatalyst for oxidative coupling of methane to C₂ hydrocarbons in a flow reactor. *Angew. Chem. Int. Ed.* 59, 19702–19707 (2020).
- Shi, S., Sun, Z., Bao, C., Gao, T. & Hu, Y. The special route toward conversion of methane to methanol on a fluffy metal-free carbon nitride photocatalyst in the presence of H₂O₂. *Int. J. Energy Res.* 44, 2740–2753 (2020).
- Zhu, S. et al. Efficient photooxidation of methane to liquid oxygenates over ZnO nanosheets at atmospheric pressure and near room temperature. *Nano Lett.* **21**, 4122–4128 (2021).
- Chen, S., Li, D., Liu, Y. & Huang, W. Morphology-dependent defect structures and photocatalytic performance of hydrogenated anatase TiO₂ nanocrystals. J. Catal. **341**, 126–135 (2016).
- Yang, J., Hao, J., Wei, J., Dai, J. & Li, Y. Visible-light-driven selective oxidation of methane to methanol on amorphous FeOOH coupled m-WO₃. *Fuel* **266**, 117104 (2020).
- 29. Bai, S. et al. High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium singleatom catalyst. *Nat. Commun.* **11**, 954 (2020).
- Martín, Á. L., Caballero, A. & Colón, G. Photochemical methane partial oxidation to methanol assisted by H₂O₂. J. Photoch. Photobio. A **349**, 216–223 (2017).
- Li, H., Li, J., Ai, Z., Jia, F. & Zhang, L. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. *Angew. Chem. Int. Ed.* 57, 122–138 (2018).
- Fan, Y. et al. Selective photocatalytic oxidation of methane by quantum-sized bismuth vanadate. *Nat. Sustain.* 4, 509–515 (2021).
- 33. Feng, N. et al. Efficient and selective photocatalytic CH_4 conversion to CH_3OH with O_2 by controlling overoxidation on TiO₂. *Nat. Commun.* **12**, 4652 (2021).
- Zhu, Y. et al. Red phosphorus decorated and doped TiO₂ nanofibers for efficient photocatalytic hydrogen evolution from pure water. *Appl. Catal. B-Environ.* 255, 117764 (2019).
- Fu, C. et al. Site sensitivity of interfacial charge transfer and photocatalytic efficiency in photocatalysis: Methanol oxidation on anatase TiO₂ nanocrystals. *Angew. Chem. Int. Ed.* **60**, 6160–6169 (2021).

- 36. Fu, C. et al. Spontaneous bulk-surface charge separation of TiO_2 -{001} nanocrystals leads to high activity in photocatalytic methane combustion. ACS Catal. **12**, 6457–6463 (2022).
- Chen, S. L. et al. Probing surface structures of CeO₂, TiO₂, and Cu₂O nanocrystals with CO and CO₂ chemisorption. *J. Phys. Chem. C.* 120, 21472–21485 (2016).
- 38. Panayotov, D. A., Burrows, S. P. & Morris, J. R. Photooxidation mechanism of methanol on rutile TiO_2 nanoparticles. *J. Phys. Chem.* C. **116**, 6623–6635 (2012).
- Wang, Y. et al. Binding of formic acid on anatase TiO₂(101). J. Phys. Chem. C. **124**, 20228–20239 (2020).
- Beinik, I. et al. Water dissociation and hydroxyl ordering on anatase TiO₂(001)-(1×4). Phys. Rev. Lett. **121**, 206003 (2018).
- Xiong, F. et al. Methanol conversion into dimethyl ether on the anatase TiO₂(001) surface. *Angew. Chem. Int. Ed.* 55, 623–628 (2016).
- 42. Ruzycki, N., Herman, G. S., Boatner, L. A. & Diebold, U. Scanning tunneling microscopy study of the anatase (100) surface. *Surf. Sci. Lett.* **529**, 239–244 (2003).
- Hebenstreit, W., Ruzycki, N., Herman, G. S., Gao, Y. & Diebold, U. Scanning tunneling microscopy investigation of the TiO₂ anatase (101) surface. *Phys. Rev. B* 62, R16334 (2000).
- 44. Yuan, W. et al. Visualizing H_2O molecules reacting at TiO₂ active sites with transmission electron microscopy. Science **367**, 428–430 (2020).
- 45. Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. *Angew. Chem. Int. Ed.* **45**, 6962–6984 (2006).
- You, R., Li, Z., Zeng, H. & Huang, W. A flow-pulse adsorptionmicrocalorimetry system for studies of adsorption processes on powder catalysts. *Rev. Sci. Instrum.* **89**, 064101 (2018).
- Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* 6, 15–50 (1996).
- Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* 54, 11169–11186 (1996).
- 49. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).
- Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. *Phys. Rev. B* 56, 1758–1775 (1999).
- 51. Blöchl, P. E. Projector Augmented-Wave Method. *Phys. Rev. B* **50**, 17953–17979 (1994).

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21525313, 91745202, 92145302), the Chinese Academy of Sciences, the Fundamental Research Funds for the Central Universities (20720220008), the Changjiang Scholars Program of Ministry of Education of China, and University of Science and Technology of China (KY2060000176).

Author contributions

W.H. conceived and supervised the project, oversaw all data analysis and discussion. X.S. performed the experiments and analyzed the data. X.C. performed the calculations. C.F., Q.Y., and F.F. assisted with the experiments. X.Z. and J.Z. assisted with the NEXAFS measurements. Y.L. discussed the data. W.Z. supervised the calculations. W.H. and X.S. prepared the paper.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-34563-4.

Correspondence and requests for materials should be addressed to Weixin Huang.

Peer review information *Nature Communications* thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/ licenses/by/4.0/.

© The Author(s) 2022