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The nonequilibrium cost of accurate
information processing

Giulio Chiribella 1,2,3 , Fei Meng 1,4, Renato Renner 5 & Man-Hong Yung4,6

Accurate information processing is crucial both in technology and in nature.
To achieve it, any information processing system needs an initial supply of
resources away from thermal equilibrium. Here we establish a fundamental
limit on the accuracy achievable with a given amount of nonequilibrium
resources. The limit applies to arbitrary information processing tasks and
arbitrary information processing systems subject to the laws of quantum
mechanics. It is easily computable and is expressed in terms of an entropic
quantity, which we name the reverse entropy, associated to a time reversal of
the information processing task under consideration. The limit is achievable
for all deterministic classical computations and for all their quantum exten-
sions. As an application, we establish the optimal tradeoff between none-
quilibrium and accuracy for the fundamental tasks of storing, transmitting,
cloning, and erasing information. Our results set a target for the design of new
devices approaching the ultimate efficiency limit, and provide a framework for
demonstrating thermodynamical advantages of quantum devices over their
classical counterparts.

Many processes in nature depend on accurate processing of infor-
mation. For example, the development of complex organisms relies on
the accurate replication of the information contained in their DNA,
which takes placewith an error rate estimated to be less than one basis
per billion1.

At the fundamental level, information is stored into patterns that
stand out from the thermal fluctuations of the surrounding
environment2,3. In order to achieve deviations from thermal equili-
brium, any information-processing machine needs an initial supply of
systems in a non-thermal state4,5. For example, an ideal copy machine
for classical data requires at least a clean bit for every bit it copies6–8.
For a general information-processing task, a fundamental question is:
what is the minimum amount of nonequilibrium needed to achieve a
target level of accuracy? This question is especially prominent at the
quantum scale, wheremany tasks cannot be achieved perfectly even in
principle, as illustrated by the no-cloning theorem9,10.

In recent years, there has been a growing interest in the interplay
between quantum information and thermodynamics11–13, motivated
both by fundamental questions14–18 and by the experimental realisation
of new quantum devices19–21. Research in this area led to the develop-
ment of resource-theoretic frameworks that can be used to study
thermodynamics beyond the macroscopic limit22–30. These frame-
works have been applied to characterise thermodynamically allowed
state transitions, to evaluate thework cost of logical operations31,32 and
to study information erasure and work extraction in the quantum
regime33–35. From a different perspective, relations between accuracy
and entropy production have been investigated in the field of sto-
chastic thermodynamics36–40, referring to specific physical models
such as classical Markovian systems in nonequilibrium steady states.

Here, we establish a fundamental tradeoff between accuracy and
nonequilibrium, valid at the quantum scale and applicable to arbitrary
information-processing tasks. The main result is a limit on the
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accuracy, expressed in terms of an entropic quantity, which we call the
reverse entropy, associated with a time reversal of the information-
processing task under consideration. The limit is attainable in a broad
class of tasks, including all deterministic classical computations and all
quantum extensions thereof. For the task of erasing quantum infor-
mation, our limit provides, as a byproduct, the ultimate accuracy
achievable with a given amount of work. For the tasks of storage,
transmission, and cloning of quantum information, our results reveal a
thermodynamic advantage of quantum setups over all classical setups
that measure the input and generate their output based only on the
measurement outcomes. In the cases of storage and transmission, we
show that quantummachines can break the ultimate classical limit on
the amount of work required to achieve a desired level of accuracy.
This result enables the demonstration of work-efficient quantum
memories and quantum communication systems outperforming all
possible classical setups.

Results
The nonequilibrium cost of accuracy
At themost basic level, the goal of information processing is to set up a
desired relation between an input and an output. For example, a
deterministic classical computation amounts to transforming a bit
string x into another bit string f(x), where f is a given function. In the
quantum domain, information-processing tasks are often associated
with ideal state transformations ρx 7!ρ0

x , in which an input state
described by a density operator ρx has to be converted into a target
output state described by another density operator ρ0

x , where x is a
parameter in some given set X.

Since every realistic machine is subject to imperfections, the
physical realisations of an ideal information-processing task can have
varying levels of accuracy. Operationally, the accuracy can be quanti-
fied by performing a test on the output of the machine and by
assigning a score to the outcomes of the measurement. The resulting

measure of accuracy is given by the expectation value of a suitable
observableOx, used to assess the closeness of the output to the target
state ρ0

x . In the worst case over all possible inputs, the accuracy
achieved in a given task T has the expression
FT ðMÞ= minx Tr½OxMðρxÞ�, where M is the quantum channel (com-
pletely positive trace-preserving map) describing the action of the
machine. Here, the dependence of the input states ρx and output
observables Ox on the parameter x is fully general, and includes in
particular cases where multiple observables are tested for the same
input state. The range of values for the function FT depends on the
choice of observables Ox: for example, if all the observables Ox are
projectors, the range of FT will be included in the interval [0, 1].

Accurate information processing generally requires an initial
supply of systems away from equilibrium. The amount of none-
quilibrium required to implement a given task can be rigorously
quantified in a resource-theoretic framework where Gibbs states are
regarded as freely available, and the only operations that can be per-
formed free of cost are those that transform Gibbs states into Gibbs
states28,32. Theseoperations, known asGibbs preserving, are the largest
class of processes that maintain the condition of thermal equilibrium.
The initial nonequilibrium resources can be represented in a canonical
form by introducing an information battery31,32, consisting of an array
of qubits with degenerate energy levels. The battery starts off with
some qubits in a pure state (hereafter called the clean qubits), while all
the remaining qubits are in the maximally mixed state. To implement
the desired information-processing task, the machine will operate
jointly on the input system and on the information battery, as illu-
strated in Fig. 1.

The number of clean qubits required by amachine is an important
measure of efficiency, hereafter called the nonequilibrium cost. For a
given quantum channel M, the minimum nonequilibrium cost of any
machine implementing channel M (or some approximation thereof)
has been evaluated in refs. 31, 32. Many information-processing tasks,

Fig. 1 | The nonequilibrium cost of accuracy. A source generates a set of input
states for an information-processing machine. The machine uses an information
battery (a supply of qubits initialised in a fixed pure state) and thermal fluctuations
(a reservoir in theGibbs state) to transformthe input stateρx into an approximation

of the ideal target statesρ0
x . Finally, the similarity between the output and the target

states is assessed by a measurement. The number of pure qubits consumed by the
machine is the nonequilibrium cost that needs to be paid in order to achieve the
desired level of accuracy.
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however, are not uniquely associatedwith a specific quantum channel:
for example, most state transitions ρ 7!ρ0 can be implemented by
infinitely many different quantum channels, which generally have dif-
ferent costs. When a task can be implemented perfectly by more than
one quantum channel, the existing results do not identify, in general,
the minimum nonequilibrium cost that has to be paid for a desired
level of accuracy. Furthermore, there also exist information-
processing tasks, such as quantum cloning9,10, that cannot be per-
fectly achieved by any quantum channel. In these scenarios, it is
important to establish a direct relation between the accuracy achieved
in the given task and theminimumcost that has to bepaid for that level
of accuracy. Such a relation would provide a direct bridge between
thermodynamics and abstract information processing, establishing a
fundamental efficiency limit valid for allmachines allowed by quantum
mechanics.

In this paper, we build concepts andmethods for determining the
nonequilibrium cost of accuracy in a way that depends only on the
information-processing task under consideration, and not on a specific
quantum channel. Let us denote by cðM,ΠAÞ the nonequilibrium cost
required for implementing a given channel M on input states in the
subspace specified by a projector ΠA. We then define the none-
quilibrium cost for achieving accuracy F in a task T as
cT ðFÞ : = minfcðM,ΠAÞ ∣FT ðMÞ≥ Fg. Note that the the specification of
the input subspace is included in the task T . In the following we focus
on tasks where the input subspace is invariant under time evolution,
namely [ΠA,HA] = 0, where HA is the Hamiltonian of the input system.
Our main goal will be to evaluate cT ðFÞ, the nonequilibrium cost of
accuracy.

In Methods, we provide an exact expression for cT ðFÞ. The
expression involves a semidefinite programme, which can be solved
numerically for low-dimensional systems, thus providing the exact
tradeoff between nonequilibrium and accuracy. Still, brute-force
optimisation is intractable for high-dimensional systems. For this rea-
son, it is crucial to have a computable bound that can be applied in a
broader range of situations. The central result of the paper is a uni-
versal bound, valid for all quantum systems and to all information-
processing tasks: the bound reads

cT ðFÞ≥ κT + log F , ð1Þ

where κT : = � log FT rev
max is an entropic quantity, hereafter called the

reverse entropy, and FT rev
max is the maximum accuracy allowed by

quantum mechanics to a time-reversed information-processing task
T rev, precisely defined in the following section (see Supplementary
Note 1 for the derivation of Eq. (1)). Note that the reverse entropy is a
monotonically decreasing function of FT rev

max, and becomes zero when
the time-reversed task can be implemented with unit accuracy.

Eq. (1) can be equivalently formulated as a limit on the accuracy
attainablewith a given budget of nonequilibrium resources: for a given
number of clean qubits c, themaximumachievable accuracy in the task
T , denoted by FT ðcÞ : = maxfFT ðMÞ ∣ cðM,ΠAÞ≤ cg, satisfies the
bound

FT ðcÞ≤ 2c�κT : ð2Þ

This bound represents an in-principle limit on the performance of
every information-processing machine. The bounds (1) and (2) are
achievable in a number of tasks, and have a number of implications
that will be discussed in the following sections.

Time-reversed tasks and reverse entropy
Here, we discuss the notion of time reversal of an information-
processing task. Let us start from the simplest scenario, involving
transformations of a fully degenerate system into itself. For a state
transformation task ρx 7!ρ0

x , we consider without loss of generality an

accuracymeasure for which the observablesOx are positive operators,
proportional to quantum states. We then define a time-reversed task
T rev, where the role of the input states ρx and of the output obser-
vables Ox are exchanged. The accuracy of a generic channel M in the
executionof the time-reversed task is specifiedby the reverse accuracy
FT rev

ðMÞ : = minx Tr½ρxMðOxÞ�. Maximising over all possible chan-
nels, we obtain FT rev

max and define κT = � logFT rev
max.

For systems with nontrivial energy spectrum, we define the time-
reversed task in terms of a time reversal of quantum operations
introduced by Crooks41 and recently generalised in ref. 42 (this time-
reversal operation is also related to Petz’s recovery map)43–45. In the
Gibbs preserving context, this time-reversal exchanges states with
observables, mapping Gibbs states into trivial observables (described
by the identity matrix) and vice-versa. More generally, the time-

reversal maps the states ρx into the observables eOx : = Γ
�1

2
A ρxΓ

�1
2

A and

the observablesOx into the (unnormalised) states eρx : = Γ
1
2
BOxΓ

1
2
B, where

ΓA and ΓB are the Gibbs states of the input and output systems,
respectively. The reverse accuracy of a channel M is then defined as

FT rev
ðMÞ : = minx Tr½eOxMðeρxÞ�. In the Methods section, we show that

the reverse entropy can be equivalently written as

κT = max
p

HminðA∣BÞωT ,p
: ð3Þ

wherep= ðpxÞx2X is a probability distribution,ωT ,p =
P

x px Γ
�1

2
A ρT

x Γ
�1=2
A �

Γ
1
2
BOxΓ

1
2
B is an operator acting on the tensor product of the input and

output systems, ρT
x is the transpose of the density matrix ρxwith respect

to the energy eigenbasis, and HminðA∣BÞωT ,p
: = � logminfTr½ΛB� ∣ ðIA �

ΛBÞ≥ωT ,pg is the conditional min-entropy43–45.

Crucially, the reverse entropy depends only on the task under
consideration, and not on a specific quantum channel used to imple-
ment the task. In fact, the reverse entropy is well-defined even for tasks
that cannot be perfectly achieved by any quantum channel, as in the
case of ideal quantum cloning, and even for tasks that are not for-
mulated in terms of state transitions (see Methods).

To gain a better understanding of the reverse entropy, it is useful
to evaluate it in some special cases. Consider the case of a classical
deterministic computation, corresponding to the evaluation of a
function y = f(x). In this case the reverse entropy is

κf =Dmaxðpf k gBÞ, ð4Þ

where Dmaxðp k qÞ= max
y

pðyÞ=qðyÞ is the max Rényi divergence
between two probability distributions p(y) and q(y)46, gB(y) is Gibbs
distribution for the output system, and pf(y) is the probability dis-
tribution of the random variable y = f(x), when x is sampled from the
Gibbs distribution (see Supplementary Note 2 for the derivation). Eq.
(4) shows that the reverse entropy of a classical computation is a
measure of how much the computation transforms thermal fluctua-
tions into states that deviate from thermal equilibrium.

In the quantum case, however, physical limits to the execution of
the time-reversed task can arise even without any deviation from
thermal equilibrium. Consider for example the transposition task
ρx 7!ρT

x
47–52, where x parametrises all the possible pure states of a

quantum system. This transformation does not generate any deviation
fromequilibriumas itmapsGibbs states intoGibbs states.On theother
hand, in the fully degenerate case the time-reversed task is still trans-
position, and perfect transposition is forbidden by the laws of quan-
tum mechanics47–52. The maximum fidelity of an approximate
transposition is Ftrans = 2/(d + 1) for d-dimensional quantum systems,
and therefore κtrans = log½ðd + 1Þ=2�.
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Condition for achieving the limit
The appeal of the bounds (1) and (2) is that they are general and easy to
use. But are they attainable? To discuss their attainability, it is impor-
tant to first identify the parameter range in which these bounds are
meaningful. First of all, the bound (1) is only meaningful when the
desired accuracydoesnot exceed themaximumaccuracyFmax allowed
by the laws of physics for the task T . Similarly, the bound (2) is only
meaningful if the initial amount of nonequilibrium resources does not
go below the smallest nonequilibrium cost of an arbitrary process
acting on the given input subspace, hereafter denoted by cmin. By
maximising the accuracy over all quantum channels with minimum
cost cmin, we then obtain a minimum value Fmin below which reducing
the accuracy does not result in any reduction of the
nonequilibrium cost.

We nowprovide a criterion that guarantees the attainability of the
bounds (1) and (2) in the full interval ½Fmin,Fmax�. Since the two bounds
are equivalent to one another, we will focus on bound (1). The condi-
tion for attainability in the full interval ½Fmin,Fmax� is attainability at the
maximum value Fmax. As we will see in the rest of the paper, this
condition is satisfied by a number of information-processing tasks,
notably including all classical computations and all quantum exten-
sions thereof.

Theorem 1. For every information-processing task T with [ΠA,HA] = 0,
if the bound (1) is attainable for a value of the accuracy F0, then it is
attainable for every value of the accuracy in the interval ½Fmin,F0�, with
Fmin = 2

cmin�κT . In particular, if the bound is attainable for themaximum
accuracy Fmax, then it is attainable for every value of the accuracy in the
interval ½Fmin,Fmax�.

In Supplementary Note 3, we prove the theorem by explicitly
constructing a family of channels that achieve the bound (1).

By evaluating the nonequilibrium cost of specific quantum chan-
nels, one can prove the attainability of the bound (1) for a variety of
different tasks. For example, the bound (1) is attainable for every
deterministic classical computation. Moreover, it is achievable for
every quantum extension of a classical computation: on Supplemen-
tary Note 4 we show that for every value of the accuracy, the none-
quilibrium cost is the same for the original classical computation and
for its quantum extension, and therefore the achievability condition
holds in both cases.

The nonequilibrium cost cT ðFÞ provides a fundamental lower
bound to the amount of work that has to be invested in order to
achieve accuracy F. Indeed, the minimum work cost of a specific
channel M, denoted by W ðM,ΠAÞ can be quantified by the minimum
number of clean qubits needed to implement the process in a scheme
like the one in Fig. 1, with the only difference that Gibbs preserving

operations are replaced by thermal operations, that is, operations
resulting from a joint energy-preserving evolution of the system
together with auxiliary systems in the Gibbs state24,25. Since thermal
operations are a proper subset of the Gibbs preserving operations28,
the restriction to thermal operations generally results into a larger
number of clean qubits, and the work cost is lower bounded as
W ðM,ΠAÞ≥ kTðln 2Þ cðM,ΠAÞ, where k is the Boltzmann constant and T
is the temperature. By minimising both sides over all channels that
achieve accuracy F, we then get the bound W T ðFÞ≥ kTðln 2Þ cT ðFÞ,
where W T ðFÞ : = minfW ðM,ΠAÞ ∣ FT ðMÞ≥ Fg is the minimum work
cost that has to be paid in order to reach accuracy F.

The achievability of this bound is generally nontrivial, except for
operations on fully degenerate classical systems, wherein the sets of
thermal operations and Gibbs preserving maps coincide due to
Birkhoff’s theorem53. Another example is the task of erasing quantum
states, corresponding to the state transformation ρx 7!∣0i 0h ∣, where ρx
is an arbitrary state and ∣0i is the ground state. In Supplementary
Note 4, we show that the bound W eraseðFÞ≥ kT ln 2 ceraseðFÞ holds with
the equality sign, and the minimum work cost of approximate erasure
is given by

W eraseðFÞ=ΔA+ kT lnF , ð5Þ

whereΔA is the difference between the free energy of the ground state
and the free energy of the Gibbs state, and the equality holds for every
value of F in the interval ½Fmin,Fmax�, with Fmin = e

�ΔA=ðkTÞ and Fmax = 1.

Nonequilibrium cost of classical cloning
Copying is the quintessential example of an information-processing
task taking place in nature, its accurate implementation being crucial
for processes such as DNA replication. In the following, wewill refer to
the copying of classical information as classical cloning. In abstract
terms, the classical cloning task is to transform N identical copies of a
pure state picked from an orthonormal basis into N0≥N copies of the
same state. Classically, this corresponds to the transformation
∣xi xh ∣�N 7!∣xi xh ∣�N0, where x labels the vectors of an orthonormal
basis. The reverse entropy can be computed from Eq. (4), which gives

κC
clon =

ΔN ΔAmax

kT ln 2
, ð6Þ

where ΔN : =N0 � N the number of extra copies, and ΔAmax is the
maximum difference between the free energy of a single-copy pure
state and the free energy of the single-copy Gibbs state. Physically,
κC
clon coincides with themaximum amount of work needed to generate

ΔN copies of a pure state from the thermal state25.
Since cloning is a special case of a deterministic classical com-

putation, the bound (1) is attainable, and theminimumnonequilibrium
cost of classical cloning is

cCclonðFÞ=
ΔN ΔA
kT ln 2

+ log F : ð7Þ

This result generalises seminal results by Landauer and Bennett
on the thermodynamics of classical cloning7,54,55, extending them from
the ideal scenario to realistic settings where the copying process is
approximate. For systemswith fully degenerate energy levels, one also
has the equality WC

clonðFÞ= kT ðln 2Þ cCclonðFÞ, which provides the mini-
mum amount of work needed to replicate classical information with a
target level of accuracy.

Nonequilibrium cost of quantum cloning
We now consider the task of approximately cloning quantum
information56. The accuracy of quantum cloning is important both for
foundational and practical reasons, as it is linked to the no signalling
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Fig. 2 | Maximum cloning fidelity for a given amount of nonequilibrium
resources. The optimal accuracy-nonequilibrium tradeoff is depicted for N ! N0
cloning machines with N = 1 and N0= 2,3,4. The fidelities for copying classical (red
region) and quantum data (blue region) are limited by the same boundary curve,
except that the fidelity for the task of copying quantum data cannot reach to 1 due
to the no-cloning theorem.
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principle57, to quantum cryptography56, quantum metrology58, and a
variety of other quantum information tasks59.

Here, we consider arbitrary cloning tasks where the set of single-
copy states includes all energy eigenstates. This includes in particular
the task of universal quantum cloning60–62, where the input states are
arbitrary pure states. The reverse entropy of universal quantum clon-
ing is at least as large as the reverse entropy of classical cloning: the
bound κQ

clon ≥ κ
C
clon follows immediately from Eq. (3), by restricting

the optimisation to probability distributions that are concentrated on
the eigenstates of the energy.

In Supplementary Note 5, we show that (i) the bound (1) is
attainable for universal quantum cloning, and (ii) κQ

clon = κ
C
clon. These

results imply that classical and quantum cloning exhibit exactly the
same tradeoff between accuracy and nonequilibrium: for every value
of the accuracy, the minimum nonequilibrium cost of information
replication is given by Eq. (7) both in the classical and in the quantum
case. An illustration of this fact is provided in Fig. 2. In terms of accu-
racy/nonequilibrium tradeoff, the only difference between classical
and quantum cloning is that the classical tradeoff curve goes all the
way up to unit fidelity, while the quantum tradeoff curve stops at a
maximum fidelity, which is strictly smaller than 1 due to the no-cloning
theorem9,10.

Considering the differences between quantum and classical
cloning, the fact that these two tasks share the same tradeoff curve is
quite striking. An insight into this phenomenon comes from connec-
tion between the nonequilibrium cost and the time-reversed task of
cloning. For fully degenerate systems, the time-reversed task is to
transformN0 copies of a state into N ≤N0 copies of the same state, and
in both cases it can be realised by discarding N0 � N systems. The
reverse accuracyof this task is the same for both classical andquantum
systems, and so is the reverse entropy. In the nondegenerate case, the
analysis is more complex, but the conclusion remains the same.

Although classical and quantum cloning share the same tradeoff
curve, in the following we will show that they exhibit a fundamental
difference in the way the tradeoff is achieved: to achieve the funda-
mental limit, cloning machines must use genuinely quantum
strategies.

Limit on the accuracy of classical machines
Classical copy machines scan the input copies and produce replicas
based on this information. Similarly, a classical machine for a general
task can be modelled as a machine that measures the input and pro-
duces an output based on the measurement result. When this

approach is used at the quantum scale, it leads to a special class of
quantum machines, known as entanglement breaking63.

Here, we show that entanglement breaking machines satisfy a
stricter bound. In fact, this stricter bound applies not only to entan-
glement breaking machines, but also to a broader class of machines,
called entanglement binding64. An entanglement binding channel is a
quantum channel that degrades every entangled state to a bound
(a.k.a. PPT) entangled state65,66. InMethods,we show that theminimum
nonequilibrium cost over all entanglement bindingmachines, denoted
by cebT ðFÞ, must satisfy the inequality

cebT ðFÞ≥ maxfκT ,κT * g+ log F , ð8Þ

where κT is the reverse entropy of the state transformation task
ρx ! ρ0

x , and κT * is the reverse entropy of the transposed task T *,
corresponding to the state transformation ρx 7!ðρ0

xÞT . This bound can
be used to demonstrate that a thermodynamic advantage of general
quantummachines over all entanglement bindingmachines, including
in particular all classical machines.

Quantum advantage in cloning
For quantum cloning, it turns out that no entanglement binding
machine can achieve the optimal accuracy/nonequilibrium tradeoff.
The reason for this is that the reverse entropy of the transpose task is
strictly larger than the reverse entropy of the direct task, namely
κclon*>κclon. In Supplementary Note 6, we prove the inequality

κclon* ≥ κclon + log
dN +N0 e�

N0ΔE
kT

dN0
, ð9Þ

where ΔE is the difference between the maximum and minimum
energy, and, dK = (K + d − 1)!/[K!(d − 1)!] for K =N or K =N +N0. Inserting
this inequality into Eq. (8), we conclude that every entanglement
binding machine necessarily requires a larger number of clean qubits
compared to the optimal quantum machine.

When the energy levels are fully degenerate, we show that the
bounds (8) and (9) are exact equalities.With this result at hand, we can
compare the exact performance of entanglement binding machines
and general quantum machines, showing that the latter achieve a
higher accuracy for every given amount of nonequilibrium resources.
The comparison is presented in Fig. 3.

Our result shows that entanglement binding machines are ther-
modynamically inefficient for the task of information replication.
Achieving the ultimate efficiency limit requires machines that are able
to preserve free (i.e., non-bound) entanglement. This observation fits
with the known fact that classical machines cannot achieve the max-
imumcopying accuracy allowedbyquantummechanics61,62,67. Here, we
have shown that not only classical machines are limited in their accu-
racy, but also that, to achieve such limited accuracy, they require a
higher amount of nonequilibrium resources. Interestingly, the ther-
modynamic advantage of general quantum machines vanishes in the
asymptotic limit N0 ! 1, in which the optimal quantum cloning can
be reproduced by state estimation68–70.

Thermodynamic benchmark for quantum memories and quan-
tum communication
Quantum machines that preserve free entanglement also offer an
advantage in the storage and transmission of quantum states, corre-
sponding to the ideal state transformation ρx↦ ρx where x para-
metrises the states of interest. In theory, a noiseless quantummachine
can achieve perfect accuracy at zero work cost. In practice, however,
the transmission is always subject to errors and inefficiencies, resulting
into nonunit fidelity and/or nonzero work. For this reason, realistic
experiments that aim to demonstrate genuine quantum transmission
or storage need criteria to demonstrate superior performance with
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Fig. 3 | Entanglement binding machines vs. general quantum machines. The
figure illustrates the accessible regions for the cloning fidelity when generating
N0 = 2,3,4 output copies fromN = 1 input copy, in the case of qubitswith degenerate
Hamiltonian. The values of the fidelity in the blue region are attainable by general
quantum machines, while the values in the orange region are attainable by entan-
glement binding machines. The difference between the two regions indicates a
thermodynamic advantage of general quantum machines over all classical
machines.
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respect to all classical setups. A popular approach is to demonstrate an
experimental fidelity larger than the maximum fidelity achievable by
classical schemes71–73. In the qubit case, the maximum classical fidelity
is Feb

max = 2=3
74, and is often used as a benchmark for quantum com-

munication experiments75–77. Here, we provide a different benchmark,
in terms of the nonequilibrium cost needed to achieve a target fidelity
F. In Supplementary Note 7, we show that the minimum none-
quilibrium cost over all entanglement binding machines for the sto-
rage/transmission of qubit states is

cebstore=transmitðFÞ= log F + e
ΔE
kT

ð2F � 1Þ2
1� F

" #
, ð10Þ

Eq. (10) is valid for every qubit Hamiltonian and for every value of F in
the interval ½Feb

min,F
eb
max�, with Feb

max = 2=3 and Feb
min = ðe

ΔE
kT + 1Þ=ð2eΔE

kT + 1Þ.
The minimum cost cebstore=storeðFÞ can be achieved by state estimation,
and therefore can be regarded as the classical limit on the
nonequilibrium cost.

For every F>Fmin, theminimumnonequilibriumcost (10) is strictly
larger than zero for every nondegenerate Hamiltonian. Since the
nonequilibrium cost is a lower bound to the work cost, Eq. (10) implies
that every entanglement binding machine with fidelity F requires at
least kTðln 2Þ cebstore=transmitðFÞ work. This value can be used as a bench-
mark to certify genuine quantum information processing: every rea-
listic setup that achieves fidelity F with less than
kT ln F + e

ΔE
kT ð2F � 1Þ2=ð1� FÞ

h i
work will necessarily exhibit a perfor-

mance that cannot be achieved by any classical setup. Notably, the
presence of a thermodynamic constraint (either on the none-
quilibrium or on the work) provides a way to certify a quantum
advantage even for noisy implementations of quantummemories and
quantum communication systems with fidelity below the classical
fidelity threshold Fmax = 2=3. A generalisation of these results for
higher dimensional systems is provided in Supplementary Note 7.

Discussion
An important feature of our bound (1) is that it applies also to state
transformations that are forbidden by quantum mechanics, such as
ideal quantum cloning or ideal quantum transposition. For state
transformations that can be exactly implemented, instead, it is inter-
esting to compare our bound with related results in the literature.

For exact implementations, the choice of accuracymeasure is less
important, and one can use any measure for which Eq. (1) yields a
useful bound on the work cost. For example, consider the problem of
generating a state ρ from the equilibrium state. By choosing a suitable
measure of accuracy (see Methods for the details), we find that the
nonequilibrium cost for the state transition Γ↦ ρ is equal to
Dmaxðρ k ΓÞ, where Dmaxðρ k σÞ : = lim

α!1
Dαðρ k σÞ is the max relative

entropy, Dðρ k σÞ : = logTr½ρασ1�α �=ðα � 1Þ ,α ≥0 being the the Rényi
relative entropies. In this case, the nonequilibrium cost coincides (up
to a proportionality constant kT ln 2)with theminimal amount ofwork
needed to generate the state ρ without errors25. Similarly, one can
consider the task of extractingwork from the state ρ, corresponding to
the state transition ρ↦ Γ. Ref. 25 showed that the maximum extrac-
tablework isDminðhρi k ΓÞ kT ln 2, whereDminðρ k σÞ : =D0ðρ k σÞ is the
min relative entropy as per Datta’s definition78 and 〈ρ〉 is the time-
average of ρ. This value can also be retrieved from our bound with a
suitable choiceof accuracymeasure (see SupplementaryNote 8 for the
details). Smooth versions of theseentropicquantities naturally arise by
smoothing the task, that is, by considering small deviation from the
input/output states that specify the desired state transformation (see
Methods).

Our bound can also be applied to the task of information erasure
with the assistance of a quantum memory33. There, a machine has
access to a system S and to a quantum memory Q, and the goal is to
reset system S to a pure state ηS, without altering the local state of the

memory. When the initial states of system SQ are drawn from a time-
invariant subspace, our bound (1) implies that the work cost satisfies
the inequality W=ðkT ln 2Þ≥DmaxðηS � γQ k ΓSQÞ � DmaxðeΓSQ k ΓSQÞ,
where eΓSQ is the quantum state obtained by projecting the Gibbs state
onto the input subspace, and γQ =TrS½eΓSQ� is the marginal state of the
memory. The bound is tight, and, for degenerate Hamiltonians, it
matches the upper bound from ref. 33 up to logarithmic corrections in
the error parameters (see Supplementary Note 9).

Another interesting issue is to determine when a given state
transition ρ 7!ρ0 can be implemented without investing work. For
states that are diagonal in the energy basis, a necessary and sufficient
conditionwas derived in ref. 26, adopting a frameworkwhere catalysts
are allowed. In this setting, ref. 26 showed that the state transition
ρ 7!ρ0 can be implemented catalytically without work cost if and only if

Dαðρ0 k ΓBÞ≤Dαðρ k ΓAÞ 8α ≥0: ð11Þ

These conditions can be comparedwith our bound (1). InMethods, we
show that, with a suitable choice of figure of merit, Eq. (1) implies the
lower boundW=ðkT ln 2Þ≥ Dmaxðρ0 k ΓBÞ � Dmaxðρ k ΓAÞ for the perfect
execution of the state transition ρ 7!ρ0. Hence, the work cost for the
state transition ρ 7!ρ0 satisfies the bound
W=ðkT ln 2Þ≥Dmaxðρ0 k ΓBÞ � Dmaxðρ k ΓAÞ, and the r.h.s. is nonpositive
only if Dmaxðρ0 k ΓBÞ≤Dmaxðρ k ΓAÞ. The last condition is a special case
of Eq. (11), corresponding to α→∞. Notably, this condition and Eq. (11)
are equivalent when the input and output states have well-defined
energy, including in particular the case where the Hamiltonians of
systems A and B are fully degenerate. Further discussion on the
relation between quantum relative entropies and the cost of accuracy
is provided in Supplementary Note 10.

While the applications discussed in the paper focussed on one-
shot tasks, our results also apply to the asymptotic scenario where the
task is to implement the transformation ρ�n

x 7!ρ0�n
x in the large n limit.

In Methods we consider the amount of nonequilibrium per copy
required by this transformation, allowing for small deviations in the
input and output states. This setting leads to the definitionof a smooth
reverse entropyof a task, whose value per copy is denotedby κT ,iid and
is shown to satisfy the bound

κT ,iid ≥ max
x

Sðρ0 k ΓBÞ � Sðρx k ΓAÞ, ð12Þ

where Sðρ k σÞ : =Tr½ρðlogρ� logσÞ� is the quantum relative entropy.
In the special case where the state transformation ρx ! ρ0

x can be
implemented perfectly, and where ðρxÞx2X is the set of all possible
quantum states of the input system, the r.h.s. of Eq. (12) (times kT ln 2)
coincideswith the thermodynamic capacity introduced by Faist, Berta,
and Brandão in ref. 79. In this setting, the results of ref. 79 imply that
the thermodynamic capacity coincides with the amount of work per
copy needed to implement the transformation ρx ! ρ0

x . Since the
amount of work cannot be smaller than the nonequilibrium cost, this
result implies that our fundamental accuracy/nonequilibrium tradeoff
is asymptotically achievable for all information-processing tasks
allowed by quantum mechanics.

In a different setting and with different techniques, questions
related to the thermodynamical cost of physical processes have been
studied in the field of stochastic thermodynamics36. Most of the works
in this area focus on the properties of nonequilibrium steady states of
classical systems with Markovian dynamics. An important result is a
tradeoff relation between the relative standard deviation of the out-
puts associated with the currents in the nonequilibrium steady state
and the overall entropy production37–40. This relation, called a ther-
modynamic uncertainty relation, is often interpreted as a tradeoff
between the precision of a process and its thermodynamical cost.
A difference with our work is that the notion of precision used in
stochastic thermodynamics is not directly related to general
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information-processing tasks. Another difference is that thermo-
dynamic uncertainty relations do not always hold for systems outside
the nonequilibrium steady state39, whereas our accuracy/none-
quilibrium tradeoff applies universally to all quantum systems. An
interesting avenue of future research is to integrate the information-
theoretic methods developed in this paper with those of stochastic
thermodynamics, seeking for concrete physical models that approach
the ultimate efficiency limits.

Methods
General performance tests
The performance of a machine in a given information-processing
task can be operationally quantified by the probability to pass a
test73,80,81. In the one-shot scenario, a general test T consists in pre-
paring states of a composite system AR, consisting of the input of the
machine and an additional reference system. The machine is
requested to act locally on system A, while the reference system
undergoes the identity process, or some other (generally noisy)
processRx implemented by the party that performs the test. Finally,
the reference system and the output of the machine undergo a joint
measurement, described by a suitable observable. The measurement
outcomes are regarded as the score assigned to the machine. The
test T is then described by the possible triples ðρx ,Rx ,OxÞx2X, con-
sisting of an input state, a process on the reference system, and an
output observable. In theworst case over all possible triples, one gets
the accuracy FT ðMÞ : = minx Tr½Ox ðM�RxÞðρxÞ�, where M is the
map describing the machine’s action. Note that the dependence of
the state ρx, transformation Rx , and measurement Ox can be arbi-
trary, and that the parameter x can also be a vector x = (x1,…, xn). For
example, the input state ρx could depend only on the subset of the
entries of the vector x, while the output observable Ox could depend
on all the entries, thus describing the situation where multiple
observables are tested for the same input state.

Performance tests provide a more general way to define
information-processing tasks. Rather than specifying a desired state
transformation ρx 7!ρ0

x , one can directly specify a test that assigns a
score to the machine. The test can be expressed in a compact way in
the Choi representation82. In this representation, the test is described
by a set of operators ðΩxÞx2X, called the performance operators81,
acting on the product of the input and output Hilbert spaces. The
accuracyof the testhas the simple expressionFT ðMÞ= minx Tr½MΩx �,
whereM : = ðIA �MÞð∣IA

�
IA
�

∣Þ, ∣IA
�
: =

P
i ∣ii � ∣ii is the Choi operator

of channel M, and IA is the identity on system A. In the following we
will take each operator Ωx to be positive semidefinite without loss of
generality.

Exact expression for the nonequilibrium cost
In Supplementary Note 1, we show that the nonequilibrium cost of a
general task T can be evaluated with the expression
cT ðFÞ= max

p
cT ,pðFÞ, where the minimum is over all probability dis-

tributions p= ðpxÞx2X and

cT ,pðFÞ= log max
XA � IB + zΩp ≤ Γ

0 � YB

Tr½ΓBYB�≤ 1

Tr½XA�+ z F ,
ð13Þ

withΩp≔∑x pxΩx, Γ
0 : =ΠAΓAΠA. Here, the maximisation runs over all

Hermitian operators XA(YB) acting on system A (B) and over all real
numbers z.

For every fixed probability distributionp, the evaluation of cT ,pðFÞ
is a semidefinite programme83, and can be solved numerically for low-
dimensional systems. A simpler optimisation problem arises by setting

XA =0, which provides the lower bound

cT ,pðFÞ≥ log max
zΩp ≤ Γ

0 � YB

Tr½ΓBYB�≤ 1

z F

= HðA∣BÞωT ,p
+ log F :

ð14Þ

(see Supplementary Note 1 for the derivation).

Time-reversed tasks and reverse entropy
For a given task T , implemented by operations with input A and
output B, we define a time-reversed task T rev, implemented by
operations with input B and output A. For example, consider the case
where the direct task is to transform pure states into pure states,
according to a given mapping ρx 7!ρ0

x , on a quantum system with fully
degenerate energy levels, and the accuracy of the implementation
measured by the fidelity FT ðMÞ= minx Tr½ρ0

xMðρxÞ�. In this case, the
time-reversed task is to implement the transformation ρ0

x 7!ρx , using
some channelMwith input B and output A. The accuracy is then given
by the reverse fidelity FT rev

ðMÞ= minx Tr½ρxMðρ0
xÞ�. More generally,

we define the time-reversed task T rev in terms of a time reversal for
quantum operations41,42, related to Petz’s recovery map43–45. The spe-
cific version of the time reversal used here maps the states ρx into the
observables eOx : = Γ

�1
2

A ρxΓ
�1

2
A and the observables Ox into the (unnor-

malised) states eρx : = Γ
1
2
BOxΓ

1
2
B
42. The reverse accuracy then

becomes FT rev
ðMÞ : = minx Tr½eOxMðeρxÞ�.

For a general information-processing task with performance
operators ðΩxÞx2X, we define the time-reversed task T rev with perfor-
mance operators ðΩrev

x Þx2X defined by

Ωrev
x : = ðΓ1=2B � Γ�1=2

A ÞEABΩ
T
x EABðΓ1=2B � Γ�1=2

A Þ, ð15Þ

where EAB : HA �HB ! HB �HA is the unitary operator that exchan-
ges systems A and B. The reverse accuracy of a generic quantum
channel M is then given by FT rev

ðMÞ : = minx Tr½Ωrev
x M�, where M is

the Choi operator ofM. Themaximumof the reverse accuracy over all
quantum channels can be equivalently expressed in terms of a condi-
tional min-entropy: indeed, one has

Fmax
T rev

= max
M

FT rev
ðMÞ

= max
M:M ≥0 ,TrA ½M� = IB

min
x

Tr½Ωrev
x M�

= max
M:M ≥0 ,TrA ½M�= IB

min
p

Tr½ωT ,p M�
ð16Þ

where the minimum is over all probability distributions p = (px), and
ωT ,p : = ðPxpxΩ

rev
x ÞT . Using von Neumann’s minimax theorem, we

then obtain

FT rev
max = min

p
max

M:M ≥0 ,TrA ½M� = IB
Tr½ωT ,p M�

= min
p

2�HminðA∣BÞωT ,p

=2
�max

p
HminðA∣BÞωT ,p ,

ð17Þ

where the second equality follows from the operational interpretation
of themin-entropy45. Taking the logarithm on both sides of the equality,
we then obtain the relation κT : = � log FT rev

max = maxp HminðA∣BÞωp
,

corresponding to Eq. (3) in the main text. The bound (1) then follows
from the relation cT ðFÞ= maxp cT ,p and from Eq. (14).

Bounds on the reverse entropy
When the test T consists in the preparation of a set of states ðρxÞx2X of
system A and in the measurement of a set of observables ðOxÞx2X on
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system B, the reverse entropy can be lower bounded as

κT ≥ max
x

� log Tr½ΓB Ox � � Dmaxðρx k ΓAÞ, ð18Þ

with the equality holding when ∣X∣ = 1 (see Supplementary Note 10 for
the proof and for a discussion on the relation between the none-
quilibrium cost of a state transformation task ρx 7!ρ0

x ,8x 2 X and the
nonequilibrium cost of the individual state transitions ρx 7!ρ0

x for a
fixed value of x).

A possible choiceofobservable isOx = Px, wherePx is theprojector
on the support of the target state ρ0

x . In this case, the bound (18)
becomes

κT ≥ max
x

Dminðρ0
x k ΓBÞ � Dmaxðρx k ΓAÞ : ð19Þ

An alternative choice of observables is
Ox = Γ

�1=2∣ψx

�
ψx

�
∣Γ�1=2= k Γ�1=2ρ0

xΓ
�1=2 k, where ∣ψx

�
is the normalised

eigenvector corresponding to the maximum eigenvalue of
Γ�1=2
B ρ0

xΓ
�1=2
B . With this choice, the bound (18) becomes

κ ≥ max
x

Dmaxðρ0
x k ΓBÞ � Dmaxðρx k ΓAÞ, with the equality when ∣X∣ = 1.

Combining this bound with Eq. (1), we obtain the following

Proposition 1. If there exists a quantum channel M such that
MðρxÞ= ρ0

x for every x∈ X, then its nonequilibrium cost satisfies the
bound cðMÞ≥ max

x
Dmaxðρ0

x k ΓBÞ � Dmaxðρx k ΓAÞ.
The proposition follows from Eq. (1) and from the fact that the

channel M has accuracy F ðMÞ= minx Tr½MðρxÞOx �= 1.

Smooth reverse entropy
For an information-processing task T with operators ðΩxÞx2X, one can
consider an approximate version, described by another task T 0 with
operators ðΩ0

xÞx2X0 that are close to ðΩxÞx2X with respect to a suitable
notion of distance. One can then define the worst (best) case smooth
reverse entropy of the task κT ,ϵ as the maximum (minimum) of κT 0

over all tasks T 0 that are within distance ϵ from the given task. The
choice between the worst case and the best case irreversibility
depends on the problem at hand. A best case irreversibility corre-
sponds to introducing an error tolerance in the task, thus discarding
low-probability events that would result in a higher cost25,33. Instead, a
worst case irreversibility can be used to model noisy scenarios, where
the input states may not be the ones in the ideal information-
processing task. An example of this situation is the experimental
implementation of quantum cloning, where the input states may not
be exactly pure.

Smoothing is particularly useful in the asymptotic scenario.
Consider the test T n that consists in preparing amulti-copy input state
ρ�n
x and measuring the observable Px,n, where Px,n is the projector on

the support of the target state ρ0 �n
x . A natural approximation is to

allow, for every x∈X, all inputs ρy,n that are ϵ-close to ρ�n
x , and all

outputs ρ0
x that are ϵ-close to ρ0�n

x . Choosing κT n ,ϵ
to be the worst case

smooth reverse entropy of the task T n, Eq. (19) gives the bound
κT n ,ϵ

≥ max
x

Dϵ
minðρ0�n

x k Γ�n
B Þ � Dϵ

maxðρ�n
x k Γ�n

A Þ, where Dϵ
min and Dϵ

max

are the smooth versions of Dmin and Dmax
78. One can then define the

regularised reverse entropy of the task as κT ,iid : = lim
ϵ!0

sup
n

κT n ,ϵ
=n.

Using the relations lim
ϵ!0

sup
n

Dϵ
minðρ0�n

x k Γ�n
B Þ=n= Sðρ0

x k ΓBÞ and

lim
ϵ!0

inf
n

Dϵ
maxðρ�n

x k Γ�n
A Þ=n= Sðρx k ΓAÞ78 we finally obtain the bound

κT,iid ≥ max
x

Sðρ0
x k ΓBÞ � Sðρx k ΓAÞ. The quantity on the r.h.s. coincides

with the thermodynamic capacity introduced by Faist, Berta, and
Brandão in ref. 79, where it was shown that the thermodynamic
capacity coincides with the amount of work per copy needed to
implement the transformation ρx ! ρ0

x . Combining this result with
our bounds, we obtain that the fundamental accuracy/nonequilibrium

in Eq. (1) is asymptotically achievable for all transformations allowed
by quantum mechanics.

Limit for entanglement binding channels
Entanglement binding channels generally satisfy amore stringent limit
than (1). The derivation of this strengthened limit is as follows: first, the
definition of an entanglement binding channel P implies that the map
PPT defined by PPTðρÞ : = ½PðρÞ�T is a valid quantum channel. Now, the
nonequilibrium cost of the channels P and PPT is given by
DmaxðPðΠAΓAΠA k ΓBÞÞ andDmaxðPPTðΠAΓAΠA k ΓBÞÞ (cf. Supplementary
Note 1). Since the max relative entropy satisfies the relation Dmaxðρ k
σÞ=DmaxðρT k σT Þ for every pair of states ρ and σ, the costs of P and
PPT are equal.

The second step is to note that the accuracy of the channel P for
the task specified by the performance operators (Ωx) is equal to the
accuracy of the channel PPT for the task specified by the performance
operators ðΩTB

x Þ, where TB denotes the partial transpose over system B.
Applying the bound (1) to channel PPT, we then obtain the relation

cðPÞ = cðPPTÞ
≥ κT * + log F,

ð20Þ

where κT * is the reverse entropy of the transpose task T *, with per-
formance operators ðΩTB

x Þ. Since entanglement binding channel is
subject to both bounds (1) and (20), Eq. (8) holds.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and in the supplementary
information files.

References
1. McCulloch, S. D. & Kunkel, T. A. The fidelity of DNA synthesis by

eukaryotic replicative and translesion synthesis polymerases. Cell
Res. 18, 148–161 (2008).

2. Wang, T. et al. Self-replication of information-bearing nanoscale
patterns. Nature 478, 225–228 (2011).

3. England, J. L. Statistical physics of self-replication. J. Chem. Phys.
139, 09B623_1 (2013).

4. Andrieux, D. & Gaspard, P. Nonequilibrium generation of informa-
tion in copolymerization processes. Proc. Natl Acad. Sci. USA 105,
9516–9521 (2008).

5. Jarzynski, C. The thermodynamics of writing a random polymer.
Proc. Natl Acad. Sci. USA 105, 9451–9452 (2008).

6. Bennett, C. H. The thermodynamics of computation-a review. Int. J.
Theor. Phys. 21, 905–940 (1982).

7. Landauer, R. Irreversibility and heat generation in the computing
process. IBM J. Res. Dev. 5, 183–191 (1961).

8. Leff, H. S. & Rex, A. F. Maxwell’s Demon: Entropy, Information,
Computing (Princeton University Press, 2014).

9. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned.
Nature 299, 802–803 (1982).

10. Dieks, D. Communication by EPR devices. Phys. Lett. A 92,
271–272 (1982).

11. Goold, J., Huber,M., Riera, A., Del Rio, L. & Skrzypczyk, P. The role of
quantum information in thermodynamics-a topical review. J. Phys. A
Math. Theor. 49, 143001 (2016).

12. Vinjanampathy, S. & Anders, J. Quantum thermodynamics. Con-
temp. Phys. 57, 545–579 (2016).

13. Binder, F., Correa, L. A., Gogolin, C., Anders, J. & Adesso, G. Ther-
modynamics in the Quantum Regime: Fundamental Aspects and
New Directions: Vol. 195 (Fundamental Theories of Physics). 1–2
(Springer, 2018).

14. Lloyd, S. Ultimate physical limits to computation. Nature 406,
1047–1054 (2000).

Article https://doi.org/10.1038/s41467-022-34541-w

Nature Communications |         (2022) 13:7155 8



15. Sagawa, T. & Ueda, M. Minimal energy cost for thermodynamic
information processing: measurement and information erasure.
Phys. Rev. Lett. 102, 250602 (2009).

16. Linden, N., Popescu, S. & Skrzypczyk, P. How small can thermal
machines be? The smallest possible refrigerator. Phys. Rev. Lett.
105, 130401 (2010).

17. Parrondo, J. M., Horowitz, J. M. & Sagawa, T. Thermodynamics of
information. Nat. Phys. 11, 131–139 (2015).

18. Goold, J., Paternostro, M. & Modi, K. Nonequilibrium quantum
landauer principle. Phys. Rev. Lett. 114, 060602 (2015).

19. Baugh, J., Moussa, O., Ryan, C. A., Nayak, A. & Laflamme, R.
Experimental implementation of heat-bath algorithmic cooling
using solid-state nuclear magnetic resonance. Nature 438,
470–473 (2005).

20. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E. & Sano, M. Experi-
mental demonstration of information-to-energy conversion and
validation of the generalized jarzynski equality. Nat. Phys. 6,
988–992 (2010).

21. Vidrighin, M. D. et al. Photonic maxwell’s demon. Phys. Rev. Lett.
116, 050401 (2016).

22. Janzing, D.,Wocjan, P., Zeier, R., Geiss, R. &Beth, T. Thermodynamic
cost of reliability and low temperatures: tightening landauer’s
principle and the second law. Int. J. Theor. Phys. 39,
2717–2753 (2000).

23. Horodecki, M., Horodecki, P. & Oppenheim, J. Reversible transfor-
mations from pure to mixed states and the unique measure of
information. Phys. Rev. A 67, 062104 (2003).

24. Brandao, F. G., Horodecki, M., Oppenheim, J., Renes, J. M. &
Spekkens, R. W. Resource theory of quantum states out of thermal
equilibrium. Phys. Rev. Lett. 111, 250404 (2013).

25. Horodecki, M. & Oppenheim, J. Fundamental limitations for
quantum and nanoscale thermodynamics. Nat. Commun. 4,
2059 (2013).

26. Brandao, F., Horodecki, M., Ng, N., Oppenheim, J. &Wehner, S. The
second laws of quantum thermodynamics. Proc. Natl Acad. Sci.
USA 112, 3275–3279 (2015).

27. Brandão, F. G. S. L. & Gour, G. Reversible framework for quantum
resource theories. Phys. Rev. Lett. 115, 070503 (2015).

28. Faist, P., Oppenheim, J. & Renner, R. Gibbs-preserving maps out-
perform thermal operations in the quantum regime. N. J. Phys. 17,
043003 (2015).

29. Gour, G., Müller, M. P., Narasimhachar, V., Spekkens, R. W. & Hal-
pern, N. Y. The resource theory of informational nonequilibrium in
thermodynamics. Phys. Rep. 583, 1–58 (2015).

30. Gour, G., Jennings, D., Buscemi, F., Duan, R. & Marvian, I. Quantum
majorization and a complete set of entropic conditions for quantum
thermodynamics. Nat. Commun. 9, 1–9 (2018).

31. Faist, P., Dupuis, F., Oppenheim, J. & Renner, R. The minimal work
cost of information processing. Nat. Commun. 6, 7669 (2015).

32. Faist, P. &Renner, R. Fundamentalwork cost of quantumprocesses.
Phys. Rev. X 8, 021011 (2018).

33. Del Rio, L., Åberg, J., Renner, R., Dahlsten, O. & Vedral, V. The
thermodynamicmeaningof negative entropy.Nature474, 61 (2011).

34. Åberg, J. Truly work-like work extraction via a single-shot analysis.
Nat. Commun. 4, 1–5 (2013).

35. Skrzypczyk, P., Short, A. J. & Popescu, S. Work extraction and
thermodynamics for individual quantum systems.Nat. Commun. 5,
1–8 (2014).

36. Seifert, U. Stochastic thermodynamics: from principles to the cost
of precision. Phys. A: Stat. Mech. Appl. 504, 176–191 (2018).

37. Barato, A. C. & Seifert, U. Thermodynamic uncertainty relation for
biomolecular processes. Phys. Rev. Lett. 114, 158101 (2015).

38. Gingrich, T. R., Horowitz, J. M., Perunov, N. & England, J. L. Dis-
sipation bounds all steady-state current fluctuations. Phys. Rev.
Lett. 116, 120601 (2016).

39. Barato, A. C. & Seifert, U. Cost and precision of brownian clocks.
Phys. Rev. X 6, 041053 (2016).

40. Horowitz, J. M. & Gingrich, T. R. Thermodynamic uncertainty rela-
tions constrain non-equilibrium fluctuations. Nat. Phys. 16,
15–20 (2020).

41. Crooks, G. E. Quantum operation time reversal. Phys. Rev. A 77,
034101 (2008).

42. Chiribella, G., Aurell, E. & Życzkowski, K. Symmetries of quantum
evolutions. Phys. Rev. Res. 3, 033028 (2021).

43. Renner, R. & Wolf, S. Smooth rényi entropy and applications. Pro-
ceedings. In: International Symposiumon Information Theory, 2004.
ISIT 2004. 233 (IEEE, 2004).

44. Datta, N. & Renner, R. Smooth entropies and the quantum infor-
mation spectrum. IEEE Trans. Inf. Theory 55, 2807–2815 (2009).

45. König, R., Renner, R. & Schaffner, C. The operational meaning of
min-andmax-entropy. IEEE Trans. Inf. theory 55, 4337–4347 (2009).

46. Rényi, A. On measures of entropy and information. In: Proceedings
of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Contributions to the Theory of Statistics (The
Regents of the University of California, 1961).

47. Bužek, V., Hillery, M. & Werner, F. Universal-not gate. J. Mod. Opt.
47, 211–232 (2000).

48. Horodecki, P. From limits of quantum operations to multicopy
entanglement witnesses and state-spectrum estimation. Phys. Rev.
A 68, 052101 (2003).

49. Buscemi, F., D’Ariano, G., Perinotti, P. & Sacchi, M. Optimal reali-
zation of the transposition maps. Phys. Lett. A 314, 374–379 (2003).

50. Ricci, M., Sciarrino, F., Sias, C. &DeMartini, F. Teleportation scheme
implementing the universal optimal quantum cloning machine and
the universal not gate. Phys. Rev. Lett. 92, 047901 (2004).

51. De Martini, F., Pelliccia, D. & Sciarrino, F. Contextual, optimal, and
universal realization of the quantumcloningmachine and of the not
gate. Phys. Rev. Lett. 92, 067901 (2004).

52. Lim, H.-T., Kim, Y.-S., Ra, Y.-S., Bae, J. & Kim, Y.-H. Experimental
realization of an approximate partial transpose for photonic two-
qubit systems. Phys. Rev. Lett. 107, 160401 (2011).

53. Birkhoff, G. Tres observaciones sobre el algebra lineal. Univ. Nac.
Tucuman Ser. A 5, 147–154 (1946).

54. Landauer, R. Information is physical. Phys. Today 44, 23–29 (1991).
55. Bennett, C. H. Notes on Landauer’s principle, reversible computa-

tion, and maxwell’s demon. Stud. Hist. Philos. Sci. Part B Stud. Hist.
Philos. Mod. Phys. 34, 501–510 (2003).

56. Scarani, V., Iblisdir, S., Gisin, N. & Acin, A. Quantum cloning. Rev.
Mod. Phys. 77, 1225 (2005).

57. Gisin, N. Quantum cloning without signaling. Phys. Lett. A 242,
1–3 (1998).

58. Chiribella, G., Yang, Y. & Yao, A. C.-C. Quantum replication at the
heisenberg limit. Nat. Commun. 4, 1–8 (2013).

59. Fan, H. et al. Quantumcloningmachines and the applications.Phys.
Rep. 544, 241–322 (2014).

60. Hillery, M. & Bužek, V. Quantum copying: fundamental inequalities.
Phys. Rev. A 56, 1212 (1997).

61. Gisin, N. & Massar, S. Optimal quantum cloning machines. Phys.
Rev. Lett. 79, 2153 (1997).

62. Werner, R. F. Optimal cloning of pure states. Phys. Rev. A 58,
1827 (1998).

63. Horodecki, M., Shor, P. W. & Ruskai, M. B. Entanglement breaking
channels. Rev. Math. Phys. 15, 629–641 (2003).

64. Horodecki, P., Horodecki, M. & Horodecki, R. Binding entanglement
channels. J. Mod. Opt. 47, 347–354 (2000).

65. Peres, A. Separability criterion for density matrices. Phys. Rev. Lett.
77, 1413 (1996).

66. Horodecki, P. Separability criterion and inseparable mixed states
with positive partial transposition. Phys. Lett. A 232, 333–339
(1997).

Article https://doi.org/10.1038/s41467-022-34541-w

Nature Communications |         (2022) 13:7155 9



67. Bruss, D., Ekert, A. & Macchiavello, C. Optimal universal quantum
cloning and state estimation. Phys. Rev. Lett. 81, 2598 (1998).

68. Bae, J. & Acín, A. Asymptotic quantum cloning is state estimation.
Phys. Rev. Lett. 97, 030402 (2006).

69. Chiribella, G. & D’Ariano, G. M. Quantum information becomes
classical when distributed to many users. Phys. Rev. Lett. 97,
250503 (2006).

70. Chiribella, G. On quantum estimation, quantum cloning and finite
quantum de finetti theorems. In: Conference on Quantum Compu-
tation, Communication, and Cryptography. 9–25 (Springer, 2010).

71. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S.
Experimental realization of teleporting an unknown pure quantum
state via dual classical and einstein-podolsky-rosen channels. Phys.
Rev. Lett. 80, 1121 (1998).

72. Braunstein, S. L. & Kimble, H. J. Teleportation of continuous quan-
tum variables. Phys. Rev. Lett. 80, 869 (1998).

73. Hammerer, K., Wolf, M. M., Polzik, E. S. & Cirac, J. I. Quantum
benchmark for storage and transmission of coherent states. Phys.
Rev. Lett. 94, 150503 (2005).

74. Massar, S. & Popescu, S. Optimal extraction of information from
finite quantum ensembles. In: Asymptotic Theory Of Quantum
Statistical Inference: Selected Papers. 356–364 (World Scien-
tific, 2005).

75. Li, B. et al. Quantum state transfer over 1200 km assisted by prior
distributed entanglement. Phys. Rev. Lett. 128, 170501 (2022).

76. Zhong, Y. et al. Deterministic multi-qubit entanglement in a quan-
tum network. Nature 590, 571–575 (2021).

77. Kurpiers, P. et al. Deterministic quantum state transfer and remote
entanglement using microwave photons. Nature 558,
264–267 (2018).

78. Datta, N. Min-and max-relative entropies and a new entanglement
monotone. IEEE Trans. Inf. Theory 55, 2816–2826 (2009).

79. Faist, P., Berta, M. & Brandão, F. Thermodynamic capacity of
quantum processes. Phys. Rev. Lett. 122, 200601 (2019).

80. Yang, Y., Chiribella, G. & Adesso, G. Certifying quantumness:
Benchmarks for the optimal processing of generalized coherent
and squeezed states. Phys. Rev. A 90, 042319 (2014).

81. Bai, G. & Chiribella, G. Test one to test many: a unified approach to
quantum benchmarks. Phys. Rev. Lett. 120, 150502 (2018).

82. Choi, M.-D. Completely positive linear maps on complex matrices.
Linear Algebra Appl. 10, 285–290 (1975).

83. Watrous, J. The Theory of Quantum Information (Cambridge Uni-
versity Press, 2018).

Acknowledgements
G.C. acknowledges a helpful discussion with Nilanjiana Datta on the
quantum extensions of Rényi relative entropies. F.M. acknowledges
Yuxiang Yang, Mile Gu, and Oscar Dahlsten for helpful comments that
helped improving the presentation. This work was supported by the
Hong Kong Research Grant Council through grants 17326616 (G.C.)
and 17300918 (G.C.), and through the Senior Research Fellowship
Scheme via SRFS2021-7S02 (G.C.), by the Swiss National Science
Foundation via grant 200021_188541 (R.R.), by the National Natural
Science Foundation of China through grants 11675136 (G.C.), 11875160
(M.Y.) and U1801661 (M.Y.), by the Key R&D Programme of Guangdong
province through grant 2018B030326001 (M.Y.), by the Guangdong

Provincial Key Laboratory through grant c1933200003 (M.Y.), the
Guangdong Innovative and Entrepreneurial Research Team Pro-
gramme via grant 2016ZT06D348 (M.Y.), the Science, Technology and
Innovation Commission of Shenzhen Municipality through grant
KYTDPT20181011104202253 (M.Y.). Research at the Perimeter Institute
is supported by the Government of Canada through the Department of
Innovation, Science and Economic Development Canada and by the
Province of Ontario through the Ministry of Research, Innovation and
Science.

Author contributions
G.C. and M.Y. proposed the initial idea. G.C. introduced the notion of
reverse entropy and proved the bound on the nonequilibrium cost. F.M.
derived the achievability condition and computed the nonequilibrium
cost of quantum cloning. R.R. and G.C. devised the notion of smoothing
for the reverse entropy, and developed the connections with informa-
tion erasure, work cost, and work extraction. All authors contributed
substantially to the development of the preparation of the paper. G.C.
and F.M. contributed equally.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-34541-w.

Correspondence and requests for materials should be addressed to
Giulio Chiribella.

Peer review information Nature Communications thanks the anon-
ymous, reviewer(s) for their contribution to the peer review of this
work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-34541-w

Nature Communications |         (2022) 13:7155 10

https://doi.org/10.1038/s41467-022-34541-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The nonequilibrium cost of accurate information�processing
	Results
	The nonequilibrium cost of accuracy
	Time-reversed tasks and reverse entropy
	Condition for achieving the limit
	Nonequilibrium cost of classical cloning
	Nonequilibrium cost of quantum cloning
	Limit on the accuracy of classical machines
	Quantum advantage in cloning
	Thermodynamic benchmark for quantum memories and quantum communication

	Discussion
	Methods
	General performance tests
	Exact expression for the nonequilibrium cost
	Time-reversed tasks and reverse entropy
	Bounds on the reverse entropy
	Smooth reverse entropy
	Limit for entanglement binding channels

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




