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Multi-kingdom gut microbiota analyses
define COVID-19 severity and post-acute
COVID-19 syndrome

Qin Liu 1,2,3,4,8, Qi Su 1,2,3,4,8, Fen Zhang 1,2,3,4, Hein M. Tun1,3,5,
Joyce Wing Yan Mak1,2,3,4, Grace Chung-Yan Lui 2,6, Susanna So Shan Ng2,
Jessica Y. L. Ching1,2,3,4, Amy Li2,3,4, Wenqi Lu1,2,3,4, Chenyu Liu1,2,3,4,
Chun Pan Cheung1,2,3,4, David S. C. Hui 2,6, Paul K. S. Chan 4,7,
Francis Ka Leung Chan1,2,3,4 & Siew C. Ng 1,2,3,4

Our knowledge of the role of the gutmicrobiome in acute coronavirus disease
2019 (COVID-19) and post-acute COVID-19 is rapidly increasing, whereas little
is known regarding the contribution of multi-kingdom microbiota and host-
microbial interactions to COVID-19 severity and consequences. Herein, we
perform an integrated analysis using 296 fecal metagenomes, 79 fecal meta-
bolomics, viral load in 1378 respiratory tract samples, and clinical features of
133 COVID-19 patients prospectively followed for up to 6 months.
Metagenomic-based clustering identifies two robust ecological clusters
(hereafter referred to as Clusters 1 and 2), of which Cluster 1 is significantly
associated with severe COVID-19 and the development of post-acute COVID-
19 syndrome. Significant differences between clusters could be explained by
both multi-kingdom ecological drivers (bacteria, fungi, and viruses) and host
factorswith a goodpredictive value and an area under the curve (AUC) of 0.98.
A model combining host and microbial factors could predict the duration of
respiratory viral shedding with 82.1% accuracy (error ± 3 days). These results
highlight the potential utility of host phenotype and multi-kingdom micro-
biota profiling as a prognostic tool for patients with COVID-19.

The coronavirus disease-2019 (COVID-19) pandemic has affected over
500 million people and killed 6 million people worldwide. Identifying
predictors of disease severity and deterioration is a priority to guide
clinicians and policymakers for better clinical management, resource
allocation, and long-term management of COVID-19 patients. Several
lines of evidence, such as replication of severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) in human enterocytes1–3,
detection of viruses in fecal samples4,5, and altered gut microbiota
composition, including the increased abundance of opportunistic
pathogens and reduced abundance of beneficial symbionts in the gut
of patients with COVID-19 suggest involvements of the gastrointestinal
(GI) tract6–9.
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Recent studies have shown that gut dysbiosis is linked to the
severity of COVID-19 and persistent complications months after dis-
ease resolution7,8,10. Patients with severe disease exhibit elevated
plasma concentrations of inflammatory cytokines and markers,
including interleukin-6 (IL-6), IL-8, and IL-10, lactate dehydrogenase
(LDH), and C-reactive protein (CRP), reflecting immune responses and
tissue damages after SARS-CoV-2 infection11,12. Among hospitalized
COVID-19 patients, gut microbiota composition is also associated with
blood inflammatory markers7, and the lack of short-chain fatty acids
and L-isoleucine biosynthesis in the gut microbiome are correlated
with disease severity13.

In addition to bacteria, the humangut is home to a vast number of
viruses and fungi that regulate host homeostasis, physiological pro-
cesses, and the assembly of co-residing gut bacteria, which could
potentially play an important role in the pathophysiological mechan-
isms that determine COVID-19 outcomes. Since the therapeutic
potential for COVID-19 patients includes approaches to inhibit, acti-
vate, or modulate immune function, it is essential to define these
characteristics related to clinical features in a well-defined patient
cohort. We hypothesized that microbial interaction networks may
improve our understanding of the pathophysiology and long-term
consequences of COVID-19. Here, using an unsupervised classification
approach based on fecal metagenomic profiling and blood inflamma-
tory markers, we demonstrated that integrative microbiomes from a
multi-kingdom network provide a novel framework for understanding
disease complications and have potential applications in risk stratifi-
cation and prognostication of COVID-19 cases.

Results
Multi-omics analysis reflects disease severity and clinical
symptoms in COVID-19 patients
We included 133 hospitalized patients with COVID-19 in three hos-
pitals in Hong Kong between 13 March 2020 and 27 January 2021. We
assessed viral RNA levels in nasopharyngeal swabs and fecal samples
using reverse transcription quantitative real-time PCR (RT-qPCR). We
also assessed plasma cytokine and chemokine levels and leukocyte
profiles in freshly isolated peripheral blood mononuclear cells
(PBMCs). We also analyzed the gut microbiome composition (bac-
teria, viruses, and fungi) in 296 serial fecal samples collected at up to
three longitudinal time-points from admission to six months after
virus clearance using shotgun metagenomic sequencing and asses-
sed the metabolomics of 79 fecal samples at admission (Figs. 1, 2A).
In total, 296 stool samples were sequenced, generating an average of
6.9Gbp per sample.

The gut multi-biome (bacteria, fungi, and viruses) profile at
admission was integrated using an unsupervised weighted similarity
network fusion (WSNF) approach14. Weighting was assigned according
to the total number of observed taxa present in a particular biome,
with filtering based on a prevalence of at least 5% across the patient
cohort14; virome (732 species) > bacteriome (242 species) > myco-
biome (12 species) observed across 133 patients. By subjecting multi-
biome data to this non-supervised similarity network fusion approach,
fecal samples were divided into two distinct patient clusters based on
the microbiota matrix: 47.4% of patients in WSNF-Cluster 1 (n = 63),
and 52.6% (n = 70) in WSNF-Cluster 2 (Fig. 2B).

We next compared microbial profiles between clusters (adjusted
for age, gender and comorbidity). The multi-biome composition of
patients in Cluster 1 was characterized by a predominance of bacteria
(Ruminococcus gnavus, Klebsiella quasipneumoniae), fungi (Aspergillus
flavus, Candida glabrata, Candida albicans), and viruses (Mycobacter-
ium phage MyraDee, Pseudomonas virus Pf1) (Fig. 2C, MaAsLin2, q <0.1,
Supplementary Data 1). They also exhibited significantly lower multi-
biome diversity (Wilcoxon test, p=0.029, Supplementary Fig. 1A) than
those inCluster 2. Principal CoordinatesAnalysis (PCoA) ofmulti-biome
composition revealed a significant difference between the two clusters
using permutational multivariate analysis of variance (PERMANOVA)
(p <0.001, Supplementary Fig. 1B and Supplementary Data 2).

We found that patients belonging to Cluster 1 exhibited more
symptoms such as diarrhea and chills (twofold increased risk), fever,
and cough (1.3-fold increased risk; Chi-square, p value < 0.001, q <0.1)
than those in Cluster 2 at admission (Fig. 2D). They were also char-
acterized by a higher viral load (Fig. 2E), greater disease severity
(Fig. 2F), increased CRP levels (Fig. 2G), elevated C–X–C motif che-
mokine 10 (CXCL10) (Fig. 2H), longer duration of viral positivity in
upper respiratory tract samples (Supplementary Fig. 2A) and a higher
rate of viral positivity in fecal samples (Supplementary Fig. 2B) than
those in Cluster 2. We also tested the viral load in fecal samples and
found no significant differences between the two clusters (Supple-
mentary Fig. 2C). Demographics and comorbidities were comparable
between Cluster 1 and Cluster 2, except that patients within Cluster 1
were 9.2 years older than those inCluster 2 (Table 1). Patients inCluster
1 primarily comprised subjects with severe COVID-19 who exhibited
more clinical signs (Fig. 2F, D) and these subjects presented with
higher plasma CRP and chemokine levels, including CXCL10, which is
known to be involved in leukocyte trafficking15,16. These observations
indicate that gut multi-biome profiles of COVID-19 patients at admis-
sion are associated with disease severity, and Cluster 1 was defined as
representing patients with more severe disease.

Fig. 1 | Schematic diagram of study design. An integrated approach to investigate the prognostic roles of multi-kingdommicrobiome, host parameters, and virological
factors in COVID-19 outcomes and consequences.
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We explored the functional profiling of microbiome signatures in
the two clusters and identified cluster-specific functional signatures
(Supplementary Fig. 1C and Supplementary Data 3). For functional
annotation,weused theHumanMicrobiomeProjectUnifiedMetabolic
Analysis Network 3 (HUMAnN3) pipeline, which maps reads to func-
tionally annotated organism genomes and uses a translated search to
align unmapped reads to UniRef90 protein clusters17. Amongst all
microbiome functionalities, urea cycle, L-isoleucine degradation I, and

L-arginine degradation II were enriched in Cluster 1 (Supplementary
Fig. 1C, q < 0.1, fold change >2). Elevated blood urea nitrogen (BUN)
levels have been reported to be associated with critical illness and
mortality in COVID-19 patients and are predictive of poor clinical
outcomes15,18. We found that blood urea levels were strongly asso-
ciated with the microbiome urea cycle pathway and were higher in
COVID-19 patients with severe disease (Supplementary Figs. 1D, E, 3A).
Next, we investigated how specific microbiome species were
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associated with elevated BUN levels in patients with severe COVID-19.
The relative abundances of the urea cycle pathway and K01940 in the
urea cyclewere significantly higher inCluster 1. Furthermore,we found
a marked increase in K01940 (argininosuccinate synthase, the key
enzyme in the urea cycle pathway, Supplementary Fig. 3B) in the
severe cluster (Supplementary Fig. 3C), which was predominantly
driven by Klebsiella species such as Klebsiella quasipneumonia, Kleb-
siella pneumoniae, and Klebsiella variicola (Supplementary Fig. 3D), by
comparing subclass pathways andmicrobial contributors (quantifying
gene presence and abundance in a species-stratified manner). High
urea level is commonly an indication of kidney dysfunction. However,
in our cohort, there was no significant difference in other blood mar-
kers of liver and kidney functions (total protein, alkaline phosphatase
(ALP), alanine transaminase (ALT), creatinine, Supplementary Data 4,
5), except blood urea. Given the signatures that correlate with disease
deterioration, gut-derived uremic toxins in the systemic circulation
might be one of the explanations for the marked increase in urea in
severe COVID-19 patients. Enriched L-isoleucine degradation I and L-
arginine degradation II, and decreased L-isoleucine biosynthesis IV, as
well as pyruvate fermentation to acetate and lactate II, were further
verified by metabolomics sequencing and correlation analysis (Sup-
plementary Fig. 4).

Integrative microbiome signatures and post-acute COVID-
19 syndrome (PACS)
An exaggerated immune system response, cell damage, or physiolo-
gical consequences of COVID-19 may contribute to the persistent and
prolonged effects after acute COVID-19, known as post-acute COVID-

19 syndrome (PACS). The exact pathophysiological mechanisms
underlying PACS remain unclear10,19,20. By following the gut micro-
biome dynamics of patients with COVID-19 from admission until six
months after viral clearance, we explored microbiome composition
(bacteria, viruses, and fungi) at admission and the association with the
development of PACS. Although older age was recognized in Cluster 1,
there were no significant differences in the age of patients with PACS
after sixmonths between the two clusters. Forα-diversity based on the
Shannon index, we found higher values at 3 months than in baseline
samples, but there was no significant increase in the diversity of the
microbiota at 6 months (Supplementary Fig. 5A, B). Within Cluster 1
and Cluster 2, there was no significant difference in the gut micro-
biome composition at admission and follow-up samples at 3 and
6 months (Supplementary Fig. 5C, D, p >0.05) within each cluster,
suggesting that the gut microbiome profile was stable over time. We
further assessed whether there were temporal changes in patients
without PACS in Cluster 2. The multi-microbiome exhibited stable
microbiome profiles from baseline to as long as 6months of follow-up
(Supplementary Fig. 5E, 5F), indicating the persistent impact of SARS-
COV-2 infection on the gut microbiome. After 6 months, patients in
Cluster 1 exhibited significantly different gutmicrobiota compositions
than those in Cluster 2 (Fig. 3A). The bacteria diversity in Cluster 1 was
significantly lower than that in Cluster 2 (Fig. 3A, p =0.0061). Cluster 1
was characterized by an increase in opportunistic pathogenic bacterial
species, including Erysipelatoclostridium ramosum21,22, Clostridium
bolteae23, and Clostridium innocuum24 at 6 months (adjusted for age,
gender, and comorbidities, Fig. 3B). Significantly more patients within
Cluster 1 (84 vs. 44%; FDR <0.1, Chi-square test) developed symptoms
of PACS, including insomnia (23 vs. 2%; FDR <0.1), anxiety (28 vs. 7%;
FDR <0.1) and poor memory (37% vs. 5%; FDR <0.1), compared with
those in Cluster 2 (Fig. 3C).

Host-microbial factors predict the duration of respiratory viral
shedding in COVID-19
We next incorporated host parameters (patient demographics, blood
parameters, and cytokine levels) with the microbiome analysis of
baseline samples. Using random forest modeling of both host factors
and microbiome signatures and a stratified ten-fold cross-validation
(Fig. 4A), this model could differentiate Cluster 1 and Cluster 2 with an
area-under receiver operator curve (AUROC) of 0.94 (Fig. 4B and
Supplementary Data 6). In contrast, a model that incorporated patient
demographics (i.e., age, gender, and comorbidities), bloodparameters
(CRP and LDH), cytokines (i.e., CXCL10, IL-1b, and IL-10), and micro-
biome analysis alone achieved an AUC of 0.53, 0.60, 0.61, and 0.84,
respectively, in differentiating the two clusters (Supplementary
Data 6). Patients inCluster 1were characterizedbymore advanced age,
higher LDH levels, a greater relative abundance of Candida albicans
and Pseudomonas virus Pf1, and lower relative abundance of Bifido-
bacterium adolescentis and Faecalibacterium prausnitzii (Fig. 4C–G).
We next evaluated the sub-model performance from the top five to the
top 20 and found that using the top 11 achieved the best performance
basedon thismodel.With further limitation to the top 11 factors on the
random forest, our model achieved an AUC of 0.98, differentiating
between the two clusters. These 11 factors included host factors (age,
viral load, blood LDH, CRP, and CXCL10 levels), bacteria

Fig. 2 | Integration of gut multi-biome data through weighted similarity net-
work fusion (WSNF) approach. A Schematic overview of the study design,
depicting the total number of samples and participants from whom data were
available. B Heatmap illustrating pairwise patient WSNF similarity scores stratified
by spectral clustering (Cluster 1, n = 63; Cluster 2, n = 70) according to integrated
multi-biome profiles, derived from n = 133 biologically independent samples.
C MaAslin2 analysis of observed clusters illustrating discriminant taxa at baseline
(FDR-adjusted q <0.1). D Symptoms of COVID-19 patients between two identified
patient clusters. The proportion of diarrhea, chills, headache, fever, and cough in

Cluster 1 were significantly higher than in Cluster 2 (Cluster 1, n = 63; Cluster 2,
n = 70) (Chi-square test with one degree of freedom, Benjamini–Hochberg cor-
rection, p <0.05; q <0.1). E Comparison of viral load (copies/mL). F Severity of
disease. G C-reactive protein (CRP) concentration. H CXCL levels in two identified
patient clusters. In E–H, the two-sided Wilcoxon rank-sum test was used to check
the differences between the two clusters. Boxplot lower and upper hinges corre-
spond to the first and third quartiles, upper and lower whiskers represent the
highest and lowest values within 1.5 times the interquartile range, and the hor-
izontal line represents the median.

Table 1 | Comparison of clinical characteristics in COVID-19
patients stratified by the integrative multi-kingdom
microbiome

Overall Cluster 1 Cluster 2 p

Patients, n 133 63 70

Female, n (%) 59 (44.4%) 30 (47.6%) 29 (41.4%) 0.207

Age, years (IQR) 42.2 (26–59) 47.1
(28.5–63)

37.9
(20.5–55)

0.005

Non-smokers, n (%) 72 (54.1%) 34 (53.9%) 38 (54.3%) 0.402

Presence of any comor-
bidities, n (%)

52 (39.1%) 25 (39.7%) 27 (38.6%) 0.393

Hypertension 28 (21.1%) 11 (17.5%) 18 (25.7%) 0.099

Hyperlipidaemia 25 (18.8%) 11 (17.5%) 14 (20.0%) 0.335

Diabetes mellitus 10 (7.5%) 4 (6.3%) 6 (8.6%) 0.287

Length of stay in the hos-
pital, days (IQR)

21.4 (13–28) 23.8
(15.5–29)

19.22
(10–23.75)

0.025

Severity of COVID-19,
n (%)

0.010

Asymptomatic 7 (5.3%) 2 (3.2%) 5 (7.1%) 0.153

Mild 52 (39.1%) 19 (30.2%) 33 (47.1%) 0.007

Moderate 47 (35.3%) 25 (39.7%) 22 (31.4%) 0.114

Severe 15 (11.3%) 9 (14.3%) 6 (8.6%) 0.080

Critical 12 (9.0%) 8 (12.7%) 4 (5.7%) 0.016
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(Bifidobacterium adolescentis, Faecalibacterium prausnitzii, and Blau-
tia wexlerae), fungi (Candida albicans and Aspergillus niger) and virus
(Pseudomonas virus Pf1) composition (Supplementary Data 7). These
data suggest that a combinationof host andmicrobial factors provides
the most accurate discrimination ability for defining subjects with
severe COVID-19.

To explore whether the integration of clinical data with deep
microbiome profiling could predict the duration of viral shedding
in COVID-19 patients, we tested 1,378 samples from the upper
respiratory tract (sputum and nasopharyngeal samples) for the
presence of SARS-CoV-2 virus using RT-qPCR every two days for
each patient. The median duration of viral shedding (based on
positive RT-qPCR) was 21.1 days (IQR 14.5–24.5, range 4-56) after
the onset of initial symptoms. We used a random forest analysis of
ensembled datasets (demographics, blood tests, cytokines, and
multi-biome) to predict the duration of viral shedding in an indi-
vidual patient. Using a discovery cohort of 93 patients with COVID-
19 followed by a test cohort of 40 patients, our predictive model
produced an accuracy of 82.06% with an error of ±3 days in pre-
dicting the duration of viral shedding (Fig. 4H). A sparse model
consisting of the top ten features was then validated using the
validation set (30%, n = 40). The accuracy of using the top ten
features was lower than that of using all features for viral shedding
duration. The microbiome taxa that contributed the most to the
model to determine the duration of viral shedding were from the
three kingdom classes: Adlercreutzia equolifaciens, Asacchar-
obacter celatus, Candida dubliniensis, Klebsiella phage vB KpnP
SU50, and Rhizobium phage vB RglS P106B (Supplementary Fig. 6).

Network analysis of the interactome of COVID-19 patients
We performed a network analysis of the interactions involving bac-
teriome, mycobiome, and virome to investigate the co-occurrence of
multi-biome signatures in patients from the two clusters: Cluster 1
(severe) and Cluster 2 (non-severe). We first conducted a co-

occurrence analysis by assessing the sparse compositional matrices
approach to generate association networks. Taxa with close evolu-
tionary relationships tended to bepositively correlated,while distantly
related microorganisms with functional similarities tended to be
compete25. Herein, a positive interaction of microorganisms was
defined by a correlative score representing the co-occurrence of
microbes, while a negative value indicates co-exclusion (Sparcc |R|
>0.1; p < 0.05). We found that patients in the non-severe cluster had a
higher total number of bacteria and a lower number of viruses in the
multi-interactome (Supplementary Fig. 7A). Intriguingly, we found an
increased number of negative associations among bacteria, viruses,
and fungi in the microbiome of a severe cluster (Supplementary
Fig. 7A), suggesting a stronger co-occurrence of trans-kingdom pat-
terns in patients with severe disease. We examined the network
metrics of node degree, stress centrality, and betweenness centrality
(of the nodes) to depict the impact of microbes on network integrity.
The top representative taxa were not shared in the non-severe cluster.
This observation suggests that the interactome of a microbe, rather
than the microbe itself, dictates clinical status, such as the severity of
COVID-19. We found more interactions involving bacteria-viruses and
fungi-viruses in patients in the severe Cluster 1, including the invasive
gut opportunistic pathogen Ruminococcus gnavus26, fungi hubs of
Candida albicans27 and Wickerhamomyces ciferrii (reclassified and
renamed Pichia ciferrii) (Supplementary Fig. 7C–E). In contrast, the
core network in the non-severe cluster included more viruses,
including Bifidobacterium phage BigBern1, Streptococcus satellite
phage Javan415, and Roseobacter phage DSS3P8 (Supplementary
Fig. 7E). The results indicated clear segregation in termsof the patterns
of nodes between the severe and non-severe cluster. Taking R. gnavus
as an example, it was positively correlated with other constituent
microbes in the severe cluster but negatively correlated in the non-
severe cluster (Supplementary Fig. 7F). These findings highlight a
preferential mechanism for the loss of inhibitory effect of pathogenic
microbes in the severe cluster.
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Fig. 3 | Prognostic roles of gut integrative microbiomes for post-acute COVID-
19 syndrome. A Comparison of α-diversity (Shannon diversity index, two-sided
Wilcoxon rank-sum test, p =0.029) of patients at 6 months after viral clearance
between two identified patient clusters (Cluster 1 at 6 months, n = 42; Cluster 2 at
6 months, n = 36) and principal coordinate analysis (PCoA) of gut multi-biome of
patients at 6 months after virus clearance based on Bray–Curtis dissimilarity illus-
trates two patient clusters (PERMANOVA: Adonis test). The line in the boxplot

indicates the median value. Box plots lower and upper hinges correspond to the
first and third quartiles and upper and lower whiskers represent the highest and
lowest values within 1.5 times the interquartile range. B MaAslin analysis of
observed clusters illustrating discriminant taxa at 6 months after virus clearance.
C Comparison of post-acute symptoms of COVID-19 patients in two clusters (Chi-
square test with one degree of freedom, Benjamini–Hochberg correction,
p <0.05; q <0.1).
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Discussion
Our cross-sectional and prospective multi-omics analyses reveal sev-
eral new insights into the role of host and microbial factors in COVID-
19 severity and long-term complications. First, we identified two

robust ecological clusters that defined severeCOVID-19 andpost-acute
COVID-19. Second, these clusters, defined by altered multi-biome
composition and impaired microbiome functionalities, were asso-
ciated with PACS. Lastly, host and microbial factors can predict the
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duration of respiratory viral shedding. Six host factors and five
microbial candidates provided high accuracy, suggesting the prog-
nostic potential of microbial markers for determining COVID-19 out-
comes and consequences.

Several studies have demonstrated that the gut microbiota com-
position correlates with the severity of COVID-19 infection and per-
sisted months after disease resolution7. The gut bacteriome has led to
many discoveries of microbiota linked to disease progression in
COVID-198, yet there is considerable untapped potential for non-
bacterial microorganisms. Among the 133 patients, 110 were from the
Prince of Wales Hospital, 17 from the United Christian Hospital, and 6
from Yan Chai Hospital. Since most (110/130) of the patients were
assigned to the same hospital, which is nearest to their geographic
location in Hong Kong, bias based on the geographic origins of
patients should be limited in this study. There is considerable disease
heterogeneity in COVID-19, given the variability in clinical, immuno-
logical inflammatory, and human fecal microbiome phenotypes. With
the aid of data integration with a similarity network fusion approach
for the multi-kingdom microbiome, we identified specific gut micro-
biome features that were linked to the severity, viral shedding dura-
tion, and post-acute complications of COVID-19. Evaluation of our
model revealed that a combination of clinical information and gut
microbiome data can substantially improve the differentiation capa-
cities of the COVID-19 cohort. Among the microbiome and clinical
variables, we found 11 factors, including bacteria, fungi, and viruses,
which were significantly associated with cluster patterns and severe
status. Using random forest modeling, we observed relationships
between the features of the different multi-kingdom ecological con-
stituents and the clinical features of patients with COVID-19. This
embedding approach allowed us to connect these integrated multi-
kingdom microbiome signatures to the specific clinically measurable
features of the disease.

Multi-kingdom microbiota analyses provide new and previously
unrecognized targets that could be considered as alternatives to, or
used in combination with, established regimens for the prognosis of
COVID-19. Particularly in the severe cluster, relationships with other
kingdoms, such as fungi (Candida glabrata, Candida albicans) and
viruses, are novel and previously unrecognized in COVID-19. The
uncovered co-exclusion relationship between opportunistic patho-
genic microorganisms and other species is particularly interesting,
given the association between disease severity and long-term com-
plications. The assessment of key influential taxa ofmicroorganisms in
different clusters highlights the relevanceof integrativemicrobiome in
the precision microbiome. The more severe cluster was associated
with higher levels of Candida albicans and Pseudomonas phages Pf1
and a lower abundance of Bifidobacterium adolescentis. The benefits of
targeting influential microbes in an interactome, however, remain
unknown and unaddressed in this work, and should be the focus of
future studies.

Previous studies have reported that blood urea levels, an indica-
tion of kidney dysfunction, increase throughout infection28. Similarly,
we found higher levels of urea in patients in the severe cluster than in
those in the non-severe cluster. Moreover, functional microbiome
analysis revealed that elevated urea might be explained by gut
microbiome–mediated urea nitrogen recycling driven by Klebsiella
species such as K. pneumoniae and K. variicola. Patients with severe
COVID-19 exhibit abnormal bursts of the urea cycle in gut microbiome
communities. We found that the involvement of gut microbes may
hasten the accumulation of blood urea in COVID-19 patients.Klebsiella
spp. are considered urease-producing and urea-hydrolyzing bacteria,
which indicates that Klebsiella spp. can produce urease, an enzyme
that catalyzes the hydrolysis of urea, to form ammonia and carbon
dioxide29.Meanwhile, the enhancement of nitro-recyclingmay, in turn,
cause an increase in serum urea, but the presence of impaired kidney
function in COVID-19 patients may also need to be considered.

Eliminating pathogens to treat uremic toxins is a novel concept;
however, if proven effective, it may have a significant impact on the
management of patients with COVID-19.

Our study demonstrates an integrative microbiome approach;
however, it has some limitations. First, the sample size was small, and
our findings should be confirmed in larger cohorts across different
populations. Besides, despite timely hospital admission and sample
collection, there is also the possibility that patients were admitted at
different stages of infection,whichmight be reflected in their viral load
and gut microbiome composition. Despite the accelerated pace of
advances in DNA sequencing and computational tools, bioinformatic
techniques available for bacteriophage and phage crAss-like phages
metagenomic libraries still have several inherent limitations. Recon-
stitution of the entire viral genome in the gut remains challenging.
Future work and alternative approaches to the assessment of viromes,
such as RNA sequencing, may yield different results and be more
comprehensive, thereby enabling greater weighting of the vital con-
tribution to the overall integrated microbiome, an important area of
future exploration given the relatively poorly defined role of gut
viruses in COVID-19. Bacteria, fungi, and viruses have been investi-
gated; however, other types of microorganisms, such as archaea and
protists, may also have important regulatory roles and require further
exploration. Furthermore, although networks wereweighted based on
species richness and abundance, their true influence on the gut
microbiome is not necessarily captured by richness and abundance
alone, but rather by a function of functional genes, competition, sub-
strate utilization, and energy flux through the ecosystem traits that
cannot be comprehensively assessed by metagenomic sequencing
alone. It is also important to test the robustness of the findings using
publicly available subsets. An integrated modeling approach could be
improved in the future with additional data concerning other immune
markers, metabolomic data, and blood biomarkers.

Many emerging variants of COVID-19 continue to impose a global
burden on healthcare systems. Ascertaining factors underlying differ-
ential susceptibility and poor outcomes following viral exposure is
critical in improving public health responses and resource allocation
via identification of those at high risk for severe disease and post-acute
COVID-19 and their coordinated management through dedicated
COVID-19 clinics. This study provides a compendium of gut multi-
biome, immune response data, and an integrated framework to link
gut microbiota to disease outcomes. By integrating patient micro-
biomes into either of the gut microbiome cluster identified in this
study, we can begin to infer risk stratification and personalized man-
agement, and howmicrobiome therapeutic interventionsmaybemost
useful in specific patients. Our findings provoke the idea of future gut
microbiome-based diagnostics and therapeutics based on an indivi-
dual’s multi-biome signature and propose applications of multi-omics
technologies that could lead to an improved mechanistic under-
standing of microorganism–host interactions.

Methods
Study participants
Participants were recruited and consented under Research Ethics
Committee (REC) no.

2020.076 and all subjects provided informed consent. This is a
cross-sectional and prospective cohort study involving 133 patients
with a confirmed diagnosis of COVID-19 (defined as a positive RT-PCR
test for SARS-CoV-2 in the nasopharyngeal swab, deep throat saliva,
sputum, or tracheal aspirate) hospitalized at three regional hospitals
(110 from the Prince of Wales Hospital, 9 from the United Christian
Hospital and 6 patients from Yan Chai Hospital) in Hong Kong, China
between 13 March 2020 and 27 Jan 2021, followed-up to 6 months.
Disease severity at admission was defined based on a clinical score of 1
to 5: (1) asymptomatic, individuals who tested positive for SARS-CoV-2
but who had no symptoms consistent with COVID-19. (2) mild,
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individuals who had any signs of COVID-19 (e.g., fever, cough, sore
throat, malaise, headache, and muscle pain) but no radiographic evi-
dence of pneumonia; (3) moderate, if pneumonia was present along
with fever and respiratory tract symptoms; (4) severe, if respiratory
rate ≥30/min, oxygen saturation ≤93% when breathing ambient air, or
PaO2/FiO2 ≤ 300mm Hg (1mm Hg=0.133 kPa); or (5) critical, if there
was respiratory failure requiring mechanical ventilation, shock, or
organ failure requiring intensive care.30 We defined post-acute COVID-
19 syndrome (PACS) as at least one persistent symptom or long-term
complication of SARS-CoV-2 infection beyond 4 weeks from the onset
of symptomswhich couldnot be explained by an alternative diagnosis.
We assessed the persistence of the 30 most commonly reported post-
COVID symptoms at 3 and 6 months after illness onset (Supplemen-
tary Data 8).

Patients who fulfilled the following criteria were eligible for ana-
lyses: (i) 18–70 years of age, (ii) no antibiotic therapy before at least
6 months, during, and 6 months after acute infection of SARS-CoV-2,
(iii) no gastrointestinal symptoms during acute infection. Written
informed consent was obtained from all patients. Dietary data were
documented for all COVID-19 patients during the time of hospitaliza-
tion (whereby standardized meals were provided by the hospital
catering service of each hospital), and individuals with special eating
habits, such as vegetarians, were excluded. After discharge, patients
with COVID-19 were advised to continue a diverse and standard Chi-
nese diet that was consistent with habitual daily diets consumed by
Hong Kong Chinese. Data on the medical history, including age, gen-
der, smoking status, and comorbidities (i.e., hypertension, diabetes
mellitus, and hyperlipidemia), were recorded. Laboratory results
include liver function tests (total bilirubin, creatine kinase, and LDH),
renal function (urea and creatinine), complete blood count (i.e.,
hemoglobin, red blood cell, lymphocyte, monocyte, platelet, and
polynuclear neutrophil), and CRP were collected.

Stool samples
Stool samples were collected at admission from 133 patients and at
3months and6months after discharge (average of three stool samples
per subject). Stool samples from in-hospital patients were collected by
hospital staff while discharged patients provided stools on the day of
follow-up at 3 months and 6months after discharge or self-sampled at
home and had samples couriered to the hospital within 24 h of col-
lection. Baseline (stools collected at admission) samples were the first
sample after hospital admission and collected before antibiotic treat-
ment. All samples were collected in tubes containing preservative
media (cat. 63700, Norgen Biotek Corp, Ontario, Canada) and stored
immediately at−80 °Cuntil processing.Wehavepreviously shown that
data on gut microbiota composition generated from stools collected
using this preservative medium is comparable to data obtained from
samples that are immediately stored at −80 °C31. The full sample list is
summarized in Supplementary Data 9.

Respiratory tract and stool SAR-CoV-2 viral load
Upper respiratory tract samples (pooled nasopharyngeal and throat
swabs), lower respiratory tract samples (sputumand tracheal aspirate),
and stool samples from 94 participants were collected at admission.
We determined SARS-CoV-2 viral loads in these samples, using real-
time reverse-transcriptase-polymerase chain-reaction (RT-PCR) assay
with primers and probe targeting the N gene of SARS-CoV-2 designed
by the US Centers for Disease Control and Prevention32.

Plasma cytokine measurements
Whole blood samples collected in anticoagulant-treated tubes were
centrifuged at 2000×g for 10min and the supernatant was collected.
Concentrations of cytokines and chemokinesweremeasured using the
MILLIPLEX MAP Human Cytokine/Chemokine Magnetic Bead Panel—
Immunology Multiplex Assay (Merck Millipore, Massachusetts, USA)

on a Bio-Plex 200 System (Bio-Rad Laboratories, California, USA). The
concentration of N-terminal-pro-brain natriuretic peptide (NT-
proBNP) was measured using Human NT-proBNP ELISA kits (Abcam,
Cambridge, UK). Laboratory results at admission, including blood
count test (platelet count, white blood cell count, neutrophil count)
and the plasma concentrations of lactate dehydrogenase (LDH),
C-reactive protein (CRP), albumin, hemoglobin, alkaline phosphatase,
and aspartate aminotransferase, alanine aminotransferase, total bilir-
ubin, and creatinine, were extracted from the electronic medical
records in the Hong Kong Hospital Authority clinical management
system.

Quantification of fecal metabolites
The quantification of fecal metabolites from 79 fecal samples at
admission was performed by Metware Biotechnology Co., Ltd.
(Wuhan, China). Acetic was detected by GC-MS/MS analysis. Agilent
7890B gas chromatography coupled to a 7000D mass spectrometer
with a DB-5MS column (30m length ×0.25mm i.d. × 0.25μm film
thickness, J&W Scientific, USA) was used. Helium was used as a carrier
gas, at a flow rate of 1.2mL/min. Injections were made in the splitless
mode and the injection volume was 2μL. The oven temperature was
held at 90 °C for 1min, raised to 100 °C at a rate of 25 °C/min, raised to
150 °C at a rate of 20 °C/min, and held at 150 °C for 0.6min, further
raised to 200 °C at a rate of 25 °C/min, held at 200 °C 0.5min. After
running for 3min, all samples were analyzed in multiple reaction
monitoring modes. The temperature of the injector inlet and transfer
line were held at 200 and 230 °C, respectively. L-isoleucine and L-
arginine were detected by LC-MS analysis. LC-ESI-MS/MS system
(UPLC, ExionLCAD, https://sciex.com.cn/;MS,QTRAP® 6500+ System,
https://sciex.com/) was used for analysis. The analytical conditions
were as follows, HPLC: column, Waters ACQUITY UPLC HSS T3 C18
(100mm×2.1mm i.d.,1.8μm); solvent system, water with 0.05% for-
mic acid (A), acetonitrile with 0.05% formic acid (B). The gradient was
started at 5%B (0–10min), increased to 95%B (10–11min), and ramped
back to 5% B (11–14min); flow rate, 0.35mL/min; temperature, 40 °C;
injection volume: 2μL. The ESI source operation parameters were as
follows: an ion source, turbo spray; source temperature 550 °C; ion
spray voltage (IS) 5500V (Positive), −4500V (Negative); DP and CE for
individual MRM transitions were done with further DP and CE
optimization.

Stool DNA extraction and sequencing. Detailed methods for
extracting bacterial and fungal DNA are described in ref. 8. Briefly, the
fecal pellet was added to 1mL of CTAB buffer and vortexed for
30 seconds, then the sample was heated at 95 °C for 5min. After that,
the samples were vortexed thoroughly with beads at maximum speed
for 15min. Then, 40μL of proteinase K and 20μL of RNase A were
added to the sample and the mixture was incubated at 70 °C for
10min. The supernatant was then obtained by centrifuging at
13,000×g for 5min and was added to the automated Maxwell RSC
machine (Promega,Wisconsin, USA) for DNA extraction. The total viral
DNA was extracted from each fecal sample, using TaKaRa MiniBEST
Viral RNA/DNA Extraction Kit (Takara, Japan) following the manu-
facturer’s instructions. Extracted total viral DNA was then purified by
the DNA Clean & Concentrator Kits (Zymo Research, CA, USA). After
the quality control procedures by Qubit 2.0, agarose gel electrophor-
esis, and Agilent 2100, extracted DNA was subject to DNA libraries
construction, completed through the processes of end repairing,
adding A to tails, purification, and PCR amplification, using Nextera
DNA Flex Library Preparation kit (Illumina, San Diego, CA). Libraries
were subsequently sequenced on our in-house sequencer Illumina
NextSeq 550 (150 base pairs paired-end) at the Center for Microbiota
Research, The Chinese University of Hong Kong. Raw sequence data
generated for this study are available in the Sequence Read Archive
under BioProject accession: PRJNA714459.
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Bioinformatics. Raw sequence data were quality filtered using Trim-
momatic V.39 to remove the adapter, low-quality sequences (quality
score <20), and reads shorter than 50 base pairs. Contaminating
human reads were filtering using Kneaddata (V.0.7.2 https://bitbucket.
org/biobakery/kneaddata/wiki/Home, Reference database: GRCh38
p12) with default parameters. Following this, microbiota composition
profiles (bacteria and fungi) were inferred from quality-filtered for-
ward reads using MetaPhlAn3 version 3.0.533 and MiCoP34. Micop has
been proven to be more effective for eukaryotes identification in
humanmicrobiome data34. GNUparallel35 was used for parallel analysis
jobs to accelerate data processing.

Viral profiling of metagenomics data. Identification of viral sequen-
ces in the process of viral metagenomic analysis is notoriously chal-
lenging due to the lack of a universal viral marker as opposed to
bacterial 16 S rRNA, for example. Thus, reference-based readmapping
is limited by a scarcity of annotated viral genomes. We used an opti-
mized pipeline, capable of de novo extraction and retrieval of viral
contigs from shotgun sequencing reads. Raw sequence quality was
assessed using FASTQC and filtered utilizing Trimmomatic using the
following parameters; SLIDINGWINDOW: 4:20, MINLEN: 60 HEAD-
CROP 15; CROP 225. Contaminating human reads were filtering using
Kneaddata (Referencedatabase: GRCh38p12)with default parameters.
Megahit36, with default parameters, was chosen to assemble the reads
into contigs per sample. Assemblies were subsequently pooled and
retained if longer than 1 kb. Bacterial contamination was removed by
using an extensive set of inclusion criteria to select viral sequences
only. Briefly, contigs were required to fulfill one of the following cri-
teria; 1) Categories 1–6 from VirSorter when run with default para-
meters and Refseqdb (–db) (1)37 positive, (2) circular, (3) greater than
3 kb with no BLASTn alignments to the NT database (January ‘19) (e-
value threshold: 1e-10), (4) a minimum of 2 pVogs with at least 3 per
1 kb38, (5) BLASTn alignments to viral RefSeq database (v.89) (e-value
threshold: 1e-10), and (6) less than three ribosomal proteins as pre-
dicted using the COG database39. HMMscan was used to search the
pVOGs hmm profile database using predicted protein sequences on
VLS with an e-value filter of 1e-5, retaining the top hit in each case.
Afterward, a fasta file combining viral contigs was compiled. The
redundant sequences were eliminated by CD-HIT-EST provided from
CD-HIT 4.8.1. This viral database includes the viral contigs recovered
by the screening criteria from the bulkmetagenomic assemblies. Then
the paired reads were mapped to the viral contig database with BWA,
using default parameters. The viral operational taxonomic unit (OTU)
table of viral abundance was pulled from BWA sam output files by
script, and normalized by the number of metagenomic reads and the
OUT sequence length. The contigs were analyzed according to their
open reading frames (ORFs). The ORFs on the contigs were predicted
using MetaProdigal (Hyatt et al., 2012) (v2.6.3) with the metagenomics
procedure (-p meta). To annotate the predicted ORFs, the amino acid
sequences of the ORFs were queried by Diamond40 against the viral
RefSeq protein (v84) with an E-value <10−5 and a bitscore >50. The viral
Refseq proteins with the top closest homologies (E-value <10−5 and
bitscore >50) were considered for eachORF, analogous to a previously
reported method41.

Integration and clustering analysis of multi-biome data
For each biome dataset, microbes prevalent in at least 5% of patients
(that is, n ≥ 7) with an average abundance of 1% were kept for analysis
(Detected 737, Kept 242, Removed 495). Integration of bacterial, fun-
gal, and viral community datawas performed byweighted SNF (WSNF)
using an online tool (https://integrative-microbiomics.ntu.edu.sg)14.
Briefly, the respectiveweights of each biomeare assignedbased on the
richness of the data, as demonstrated by the number of species pre-
sent in each biome. Using the merged dataset (bacteria, fungi, and
viruses), the tool generates a corresponding patient similarity network

using a spectral clustering algorithm with the default settings
(Bray–Curtis), outputting the cluster assignments for eachpatient. The
optimal number of clusters (n = 2) was determined by WSNF using the
eigengap method and the value of K nearest neighbors, which was set
based on the optimal silhouette width14.

Random Forest stratification. R package random Forest v4.6–14 was
used to develop a stratification model of patients in different clusters.
Four datasets from 133 patients, including demographic, blood tests,
cytokines, and multibiome were used separately or in combination
(ensemble) to train the model for cluster stratification. Machine
learningmodels were first trained on the training set (70%, n = 93) with
fivefold cross-validation, and then were applied to the test set (30%,
n = 40) for validation. Each time a new featurewas added to themodel,
the performance of the model was re-evaluated using the above
training and validation set. This process was repeated ten times to
obtain a distribution of random forest prediction evaluations. The
training dataset (70%) was used for feature selection. A trained forest
produces a variable importance list based on a mean decrease in the
Gini index. The feature importance vector (mean decrease Gini index),
including weights for every species, demographic, blood test, or
cytokines predictive capacity was collected. The final model for stra-
tification was chosen when the best overall AUC value was achieved.
For the construction of an optimal predictionmodel in the ensembled
dataset, the importance value of each feature to the stratification
model was evaluated by recursive feature elimination first, and then
the selected features are added to the model one by one according to
the descending importance value. The hyperparameters for the ran-
dom forest model were ntree = 10,000, Gini index as impurity criter-
ion, and the default square root of the number of features (species in
this case) to use for each split in the decision tree.

RandomForest regression analysis for positive time prediction. The
random forest regression model was used to regress features from
ensembled dataset (demographic, blood test, cytokines, and multi-
biome) in the time-series profiling of COVID-19 patients against their
SARS-CoV-2019 positive time (Upper respiratory tract) using default
parameters of R package randomForest v4.6–14 (ntree = 10,000, using
default mtry). The dataset was divided into 70% training and 30%
testing set. The RF algorithm, due to its non-parametric assumptions,
was applied and used to detect both linear and nonlinear relationships
between multiple types of features and positive time42, thereby iden-
tifying features that discriminate different viral persistent duration in
COVID-19 patients. The top-ranking important positive duration-
discriminatory features required for prediction were identified based
on “rfcv” function in the randomForest package. Ranked lists of
important features in order of reported feature importance were
determined over ten times fivefold of the algorithm on the training set
(70%, n = 93). Using the profiles of a multi-microbiome, demographic,
blood test, and cytokines, the performance of models was further
evaluated with a fivefold cross-validation and repeated ten times to
obtain a distribution of random forests prediction evaluations. The
final model for regression was chosen when the best overall accuracy
was achieved. The predicted positive time was paired with the real
positive time for accuracy evaluation, and the accuracy was calculated
at different error levels from ±0 to ±5 days.

Co-occurrence analysis ofmicrobial interactionwithinCOVID-19
patient clusters
SparCC43 was used to identify co-occurrence correlations among
bacteria, fungi, and virus from the R package “SpiecEasi v1.1.1” with 20
iterations in the outer loop and 10 iterations in the inner loop44. The
correlation strength exclusion threshold was 0.1 using the SparCC
default setting. Absolute values of correlations below 0.1 are con-
sidered zero by the inner SparCC loop, and p value below 0.05 was
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considered significant. The resulting network was characterized and
visualized via Cytoscape (v3.9.1).

Statistical analysis and inferring gut microbiota composition. Con-
tinuous variables of demographic features were expressed in the
median (interquartile range), whereas categorical variables (disease
severity, five-point scale of severity) were presented as numbers.
Qualitative and quantitative differences between subgroups were
analyzed using chi‐squared or Fisher’s exact tests for categorical
parameters and the Wilcoxon test for continuous parameters, as
appropriate. The odds ratio and adjusted odds ratio (aOR) with a 95%
confidence interval (CI) were estimated using logistic regression to
examine clinical parameters associatedwith the development of PACS.
The site-by-species counts and relative abundance tables were input
into R V.3.5.1 for statistical analysis. Principal Coordinates Analysis
(PCoA) was used to visualize the clustering of samples based on their
species-level compositional profiles. Associations between gut com-
munity composition and patients’ parameters were assessed using
permutational multivariate analysis of variance (PERMANOVA). Asso-
ciations of specific microbial species with patient parameters were
identified using the linear discriminant analysis effect size (LEfSe) and
the multivariate analysis by linear models (MaAsLin2) statistical fra-
meworks implemented in the Huttenhower Lab Galaxy instance
(http://huttenhower.sph.harvard.edu/galaxy/). PCoA, PERMANOVA,
and Procrustes analysis are implemented in the vegan R pack-
age V.2.5–7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw sequences generated in this study have been deposited in the
NCBI Sequence Read Archive (SRA) database under accession
PRJNA876804. MS metabolomics data have been deposited in the
EMBL-EBI MetaboLights database with the identifier
MTBLS6317. Source data are provided with this paper.

Code availability
All bioinformatic and machine learning model scripts are available on
Github [https://github.com/g-micro/multi-omics]45.

References
1. Vabret, N. et al. Immunology of COVID-19: current state of the sci-

ence. Immunity 52, 910–941 (2020).
2. Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and

TMPRSS2 and is blocked by a clinically proven protease inhibitor.
Cell 181, 271–280.e278 (2020).

3. Lamers, M. M. et al. SARS-CoV-2 productively infects human gut
enterocytes. Science 369, 50–54 (2020).

4. Wang, W. et al. Detection of SARS-CoV-2 in different types of clin-
ical specimens. JAMA 323, 1843–1844 (2020).

5. Wölfel, R. et al. Virological assessment of hospitalized patients with
COVID-2019. Nature 581, 465–469 (2020).

6. Neurath, M. F., Überla, K. & Ng, S. C. Gut as viral reservoir: lessons
from gut viromes, HIV and COVID-19. Gut 70, 1605–1608 (2021).

7. Yeoh, Y. K. et al. Gut microbiota composition reflects disease
severity and dysfunctional immune responses in patients with
COVID-19. Gut 70, 698–706 (2021).

8. Zuo, T. et al. Alterations in gutmicrobiota of patients with COVID-19
during time of hospitalization. Gastroenterology 159,
944–955.e948 (2020).

9. Ng, S. C. & Tilg, H. COVID-19 and the gastrointestinal tract: more
than meets the eye. Gut 69, 973–974 (2020).

10. Liu, Q. et al. Gut microbiota dynamics in a prospective cohort of
patients with post-acute COVID-19 syndrome. Gut 71,
544–552 (2022).

11. Tay, M. Z., Poh, C.M., Rénia, L., MacAry, P. A. &Ng, L. F. The trinity of
COVID-19: immunity, inflammation and intervention. Nat. Rev.
Immunol. 20, 363–374 (2020).

12. Zhou, F. et al. Clinical course and risk factors for mortality of adult
inpatients with COVID-19 in Wuhan, China: a retrospective cohort
study. Lancet 395, 1054–1062 (2020).

13. Zhang, F. et al. Prolonged impairment of short-chain fatty acid and
L-isoleucinebiosynthesis in gutmicrobiome inpatientswithCOVID-
19. Gastroenterology 162, 548–561.e544 (2022).

14. Mac Aogáin, M. et al. Integrative microbiomics in bronchiectasis
exacerbations. Nat. Med. 27, 688–699 (2021).

15. Cheng, A. et al. Diagnostic performance of initial blood urea nitro-
gen combined with D-dimer levels for predicting in-hospital mor-
tality in COVID-19 patients. Int. J. Antimicrob. Agents 56,
106110 (2020).

16. Coperchini, F., Chiovato, L. & Rotondi, M. Interleukin-6, CXCL10 and
infiltrating macrophages in COVID-19-related cytokine storm: not
one for all but all for one! Front. Immunol. 12, 668507 (2021).

17. Suzek, B. E., Huang, H., McGarvey, P., Mazumder, R. & Wu, C. H.
UniRef: comprehensive and non-redundant UniProt reference
clusters. Bioinformatics 23, 1282–1288 (2007).

18. Huang, D. et al. Blood urea nitrogen to serum albumin ratio (BAR)
predicts critical illness in patients with Coronavirus disease 2019
(COVID-19). Int. J. Gen. Med. 14, 4711 (2021).

19. Huang, C. et al. 6-month consequences of COVID-19 in patients
discharged from hospital: a cohort study. Lancet 397,
220–232 (2021).

20. Nalbandian, A. et al. Post-acute COVID-19 syndrome. Nat. Med. 27,
601–615 (2021).

21. Forrester, J. D. & Spain, D. A. Clostridium ramosum bacteremia:
case report and literature review. Surg. Infect. 15, 343–346 (2014).

22. Kosowska, K. et al. The Clostridium ramosum IgA proteinase
represents a novel type of metalloendopeptidase. J. Biol. Chem.
277, 11987–11994 (2002).

23. Pequegnat, B. & Monteiro, M. A. Carbohydrate scaffolds for the
study of the autism-associated bacterium, Clostridium bolteae.
Curr. Med. Chem. 26, 6341–6348 (2019).

24. Cherny, K. E.,Muscat, E. B., Reyna,M. E. &Kociolek, L. K.Clostridium
innocuum: microbiological and clinical characteristics of a poten-
tial emerging pathogen. Anaerobe 71, 102418 (2021).

25. Faust, K. et al. Microbial co-occurrence relationships in the human
microbiome. PLoS Comput. Biol. 8, e1002606 (2012).

26. Henke, M. T. et al. Ruminococcus gnavus, a member of the human
gut microbiome associated with Crohn’s disease, produces an
inflammatory polysaccharide. Proc. Natl Acad. Sci. USA 116,
12672–12677 (2019).

27. Mayer, F. L., Wilson, D. & Hube, B. Candida albicans pathogenicity
mechanisms. Virulence 4, 119–128 (2013).

28. Diao, B. et al. Human kidney is a target for novel severe acute
respiratory syndrome coronavirus 2 infection. Nat. Commun. 12,
1–9 (2021).

29. Konieczna, I. et al. Bacterial urease and its role in long-lasting
human diseases. Curr. Protein Pept. Sci. 13, 789–806 (2012).

30. Wu, J. et al. Clinical characteristics of imported cases of coronavirus
disease 2019 (COVID-19) in Jiangsu Province: a multicenter
descriptive study. Clin. Infect. Dis. 71, 706–712 (2020).

31. Chen, Z. et al. Impact of preservation method and 16S rRNA
hypervariable region on gut microbiota profiling.Msystems 4,
e00271–00218 (2019).

32. US Centers for Disease Control and Prevention. 2019-Novel cor-
onavirus (2019-nCoV) real-time rRT-PCR panel primers and probes.

Article https://doi.org/10.1038/s41467-022-34535-8

Nature Communications |         (2022) 13:6806 10

http://huttenhower.sph.harvard.edu/galaxy/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA876804/
https://github.com/g-micro/multi-omics


https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-
panel-primer-probes.pdf (2021).

33. Beghini, F. et al. Integrating taxonomic, functional, and strain-level
profiling of diverse microbial communities with bioBakery 3. Elife
10, e65088 (2021).

34. LaPierre, N. et al. MiCoP: microbial community profilingmethod for
detecting viral and fungal organisms in metagenomic samples.
BMC Genomics 20, 1–10 (2019).

35. Tange, O. Gnu Parallel. 10.5281/zenodo 1146014 (2018).
36. Li, D. et al. MEGAHIT v1. 0: A fast and scalable metagenome

assembler driven by advanced methodologies and community
practices. Methods 102, 3–11 (2016).

37. Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter
and virus–host interactions resolved from publicly available
microbial genomes. elife 4, e08490 (2015).

38. Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic virus
orthologous groups (pVOGs): a resource for comparative genomics
and protein family annotation. Nucleic Acids Res. 45, D491–D498
(2016).

39. Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG
database: a tool for genome-scale analysis of protein functions and
evolution. Nucleic Acids Res. 28, 33–36 (2000).

40. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein
alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

41. Kang, D.-W. et al. Microbiota transfer therapy alters gut ecosystem
and improves gastrointestinal and autism symptoms: an open-label
study. Microbiome 5, 10 (2017).

42. Teng, F. et al. Prediction of early childhood caries via spatial-
temporal variations of oral microbiota. Cell Host Microbe 18,
296–306 (2015).

43. Friedman, J. & Alm, E. J. Inferring correlation networks from geno-
mic survey data. PLos Comput. Biol. 8, e1002687 (2012).

44. Kurtz, Z. D. et al. Sparse and compositionally robust inference of
microbial ecological networks. PLoS Comput. Biol. 11,
e1004226 (2015).

45. Liu, Q. et al. g-micro/multi-omics: multi-kingdom gut microbiota
analyses define COVID-19 severity and post-acute COVID-19 syn-
drome. Zenodo (2022).

Acknowledgements
This work was supported by InnoHK, The Government of Hong Kong,
Special Administrative Region of the People’s Republic of China. We
would like to thank all healthcare workers working in isolation wards of
the Prince of Wales Hospital, United Christian Hospital, and Yan Chai
Hospital, Hong Kong SAR, China. We thank Joey Chan, Dai Min, Lok
Cheung Chu, and other staff/students for their technical contribution to
this study, including sample collection, inventory, and processing, and
Hui Zhan for assistance with DNA extraction and sequencing. Thanks to
Gabriel Lee for proofreading the article.

Author contributions
Q.L. and Q.S. conceived the study, developed algorithms, ran analyses,
and took responsibility for the integrity of the data andpreparationof the
manuscript. F.Z. contributed to part of the metabolites analysis. H.M.T.
provided critical comments on the manuscript. J.W.Y.M., G.C.-Y.L.,

S.S.S.N., J.YL.C., A.L., and C.P.C. contributed to participant recruitment,
sample collection, and biobankmanagement. C.L. andW.L. contributed
to metagenomic sequencing. D.SC.H., P.KS.C., and F.K.L.C. contributed
to the study design and data interpretation. SCN contributed to the
study design, data analysis, and manuscript writing. All authors gave
final approval for the version to be published. All authors agree to be
accountable for all aspects of thework in ensuring that questions related
to the accuracy or integrity of any part of the work are appropriately
investigated and resolved.

Competing interests
F.K.L.C. and S.C.N. are the scientific co-founders and sit on the board of
Directors of GenieBiome Ltd. S.C.N. has served as an advisory board
member for Pfizer, Ferring, Janssen, and Abbvie and is a speaker for
Ferring, Tillotts, Menarini, Janssen, Abbvie, and Takeda. She has received
research grants from Olympus, Ferring, and Abbvie. F.K.L.C. has served
as an advisor and lecture speaker for Eisai Co. Ltd., AstraZeneca, Pfizer
Inc., Takeda Pharmaceutical Co., and Takeda (China) Holdings Co. Ltd.
S.C.N., K.L.F.C., and Q.L. are inventors of a patent application (US pro-
visional patent application no. 63/355,443) in connection with this work.
The remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-34535-8.

Correspondence and requests for materials should be addressed to
Siew C. Ng.

Peer review information Nature Communications thanks Paul Wilmes,
and the other, anonymous, reviewer for their contribution to the peer
review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-34535-8

Nature Communications |         (2022) 13:6806 11

https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-primer-probes.pdf
https://www.cdc.gov/coronavirus/2019-ncov/downloads/rt-pcr-panel-primer-probes.pdf
https://doi.org/10.1038/s41467-022-34535-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Multi-kingdom gut microbiota analyses define COVID-19 severity and post-acute COVID-19�syndrome
	Results
	Multi-omics analysis reflects disease severity and clinical symptoms in COVID-19 patients
	Integrative microbiome signatures and post-acute COVID-19�syndrome (PACS)
	Host-microbial factors predict the duration of respiratory viral shedding in COVID-19
	Network analysis of the interactome of COVID-19 patients

	Discussion
	Methods
	Study participants
	Stool samples
	Respiratory tract and stool SAR-CoV-2 viral load
	Plasma cytokine measurements
	Quantification of fecal metabolites
	Stool DNA extraction and sequencing
	Bioinformatics
	Viral profiling of metagenomics data
	Integration and clustering analysis of multi-biome data
	Random Forest stratification
	Random Forest regression analysis for positive time prediction
	Co-occurrence analysis of microbial interaction within COVID-19 patient clusters
	Statistical analysis and inferring gut microbiota composition
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




