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Reward expectation extinction restructures
and degrades CA1 spatial maps through loss
of a dopaminergic reward proximity signal

Seetha Krishnan 1,2, Chad Heer 1,2, Chery Cherian1 & Mark E. J. Sheffield 1

Hippocampal place cells support reward-related spatial memories by forming
a cognitive map that over-represents reward locations. The strength of these
memories is modulated by the extent of reward expectation during encoding.
However, the circuitmechanismsunderlying thismodulation are unclear. Here
we find that when reward expectation is extinguished in mice, they remain
engaged with their environment, yet place cell over-representation of rewards
vanishes, place field remapping throughout the environment increases, and
place field trial-to-trial reliability decreases. Interestingly, Ventral Tegmental
Area (VTA) dopaminergic axons in CA1 exhibit a ramping reward-proximity
signal that depends on reward expectation and inhibiting VTA dopaminergic
neurons largely replicates the effects of extinguishing reward expectation. We
conclude that changing reward expectation restructures CA1 cognitive maps
and determines map reliability by modulating the dopaminergic VTA-CA1
reward-proximity signal. Thus, internal states of high reward expectation
enhance encoding of spatial memories by reinforcing hippocampal cognitive
maps associated with reward.

Individual pyramidal cells in the hippocampus fire action potentials in
specific regions of an environment, known as their placefield1. Specific
populations of place cells represent cognitive maps of specific
environments2,3. As animals become familiar with an environment,
hippocampal place fields become more stable and many of them are
reinstated whenever the animal navigates the environment4–6. When
environmental cues change, hippocampal place cells “remap” through
changes in firing rate and place field locations, thought to be an inte-
gral part of navigational andmemory processes2,3,5,7. Place cells and the
maps they comprise allow animals to acquire, store, code, and recall
environments8,9. In addition, place cells are modulated by external
context variables that include odors and colors10 but also include
internal context variables such as attention11,12, decisions of future
trajectories13–15 and fear16,17. Reward expectation (or reward prediction)
is another internal context variable that could modulate cognitive
maps as it has a powerful influence on hippocampal-dependent
memories18–20. However, the influence of reward expectation on

cognitivemaps remains unclear and some evidence suggests cognitive
maps may be independent from reward expectation21–23.

Rewards themselves are represented through a distinct popula-
tion of reward cells24 and an over-representation of place cells tuned to
rewarded locations in CA125–29. The over-representation of reward
locations by place cells requires learning27 and is dependent on the
probability a reward will be delivered at those locations28. This sug-
gests that it is reward expectation that determines over-representation
of reward locations rather than the attainment of the reward itself,
although this remains to be determined. Furthermore, cues distant
from reward locations can predict the attainment of future reward, i.e.,
lead to them30. Therefore, over-representation of reward locations by
place cells does not explain how reward expectation might influence
the encoding of locations that are distant from, but lead to, rewards.
What is also unclear is how changes in reward expectation within an
environment might influence the place cell code in the hippocampus,
or the time course over which such changes may occur.
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The learned associations between isolated cues and future
rewards involves dopaminergic circuits that respond to reward pre-
dicting cues and act as a learning signal31. Dopaminergic circuits that
encode reward expectation project to the hippocampus from the
ventral tegmental area (VTA)32 and influence hippocampal function,
synaptic plasticity, and synaptic transmission29,33,34. Recent work has
begun to elucidate the role of reward expectation and dopamine cir-
cuits during spatial navigation and has uncovered a spatial proximity
to reward signal emanating from the VTA that ramps up in activity as
animals approach an expected reward location30,35–38. Like the classic
studies of reward learning, spatial locations during navigation that
predict future reward trigger increases in dopamine release. As the
animal approaches the reward, dopamine levels ramp up as locations
closer to reward are better predictors of the reward, i.e., they increase
reward expectation. This suggests that reward expectation may influ-
ence the encoding of space during navigation through the effects of
dopamine modulation, possibly through ramping dopamine signals37,
but whether these signals exist in the hippocampus has yet to be
demonstrated experimentally, as is their influence on cognitive maps.

Spatial memories encoded in the hippocampus are represented
by populations of place cells that create a cognitive map, and reward
expectation influences these memories through dopaminergic
circuits18–20,23,33,34. We therefore hypothesized that changing reward
expectation would modulate place cell properties and transform the
structure of the cognitive map (remapping) driven by dopaminergic
signals from the VTA. However, testing this hypothesis is challenging
as manipulating rewards to change reward expectation alters naviga-
tion behaviors that affects place cells39. We therefore developed a
paradigm that changes reward expectation in head-restrained mice
repeatedly traversing an unchanging virtual linear track. Importantly,
mice in this setup showed matched navigation behaviors and
engagement with their environment acrossmany trials during changes
in reward expectation, allowing us to isolate the influence of reward
expectation on place cells. This head-restrained setup allowed for
continuous 2-photon calcium imaging of large populations of place
cells in CA1 as well as direct calcium imaging of dopaminergic axons
from VTA in CA1 during changes in reward expectation. We also
inhibited dopaminergic neurons in the VTA to further test our
hypothesis.

Results
Lowering reward expectation changes spatial encoding of an
unchanging spatial environment in CA1
Mice were trained to run on a treadmill along a 2m virtual linear track
for water rewards (rewarded condition: R) delivered at the track end
(Fig. 1a, b), after which they were teleported back to the start of the
track. Well-trained mice learned the location of the reward and pre-
emptively licked before the reward location (pre-licking), providing a
lap-wise behavioral signal of reward expectation (Supplementary
Fig. 1). On experimental day (Fig. 1b), mice ran in R for 10min before
water rewardwas unexpectedly removed (unrewarded condition: UR).
Interestingly,mice continuedpre-licking for a few laps inUR, as though
still expecting a reward (see “Licking behavior” section in “Methods”;
Fig. 1ciii and Supplementary Fig. 1). Aftermice traversed UR for 10min,
reward was reintroduced (re-rewarded condition: RR).

Additionally, using 2-photon calcium imaging of dorsal CA1 pyr-
amidal neurons expressing the genetically encoded calcium indicator
GCaMP6f40 (Fig. 1a), we measured population activity while mice were
switched across conditions: R-UR-RR (Fig. 1b, c). Behavior and activity
in an example mouse are shown in Fig. 1c. We found that removing
reward caused a dramatic change in population activity (Fig. 1ci,
population activity is represented as a raster plot where cells with
correlated activity are arranged next to each other, seeMethods). This
was not a consequence of time or running behavior (Supplementary
Figs. 2 and3) and like changes inpre-licking, didnot occur immediately

after reward removal (Fig. 1c). To quantify this, we trained a naive
Bayesian classifier with all the extracted cells on the initial laps in R and
used the trained classifier to predict track position on thefinal laps of R
and all laps in UR and RR (Methods). We found that the decoder was
able to accurately predict position on the final laps in R and initial laps
in UR before abruptly underperforming (Fig. 1d). Because mice pre-
licked for a few laps in UR, we asked if decoder underperformancewas
associated with reduced reward expectation. In all mice (n = 12), we
quantified the average pre-licking and decoder fit on each lap after
reward removal by running a rolling average (Fig. 1e, see “Methods”).
On average, pre-licking continued for a few laps before rapidly drop-
ping, and interestingly, decoder performance sharply dropped around
the same lap when pre-licking reached zero. This decreased decoder
accuracywith decreased pre-licking indicates that hippocampal spatial
encoding remains unchanged following reward removal, until reward
expectation diminishes, at which point the spatial code abruptly
transforms.

To further quantify this, we identified the lap on which pre-licking
stopped in eachmouse (Methods). For clarity, we labeled the laps with
pre-licking as having high reward expectation (REhigh) and the laps
after pre-licking stopped as having low reward expectation (RElow).
Indeed, decoder accuracy in REhigh laps was similar to R and was sig-
nificantly lower in RElow laps (Fig. 1f, mean decoder R2 [95% confidence
intervals (CIs)]: R = 0.95 [0.93 0.97], REhigh = 0.90 [0.87 0.93], RElow =
0.65 [0.540.75]). This held true independent of our definition of when
licking stopped (Supplementary Fig. 4). The decoder accuracy some-
what recovered following reward re-introduction in RR laps, although
it remained lower than in R (RR =0.82 [0.77 0.87]). Reduced decoder
performance during RElow was not explained by differences in time or
running velocity (Supplementary Figs. 2 and 5).

To quantify these changes further, we analyzed decoder error
across the track by measuring the absolute distance between the true
position from the position predicted by the decoder at each point on
the track. Interestingly, in RElow, decoder error had increased at all
locations across the track (Fig. 1g), and not just around the reward site,
as may have been predicted25–29. As observed before, in RR, decoder
error decreased across the track but remained lower than in R (Fig. 1g).
These data provide evidence against spatial encoding being indepen-
dent fromrewardexpectation21 anddemonstrate that changing reward
expectation drastically alters spatial encoding at all locations within an
unchanging spatial environment.

Changes in spatial encoding associated with diminished
reward expectation are not due to disengagement with
the environment
Next, we tested an alternate explanation; that disengagement with the
environment in RElow laps was responsible for the changes in spatial
encoding11,12,41. We noticed that mice in R slowed down as they
approached the reward site, exhibiting engagement with the VR
environment24 (Supplementary Figs. 6 and 7). To confirm this, we
exposed mice to a dark environment without any virtual cues and
indeed found an absence of this approach behavior (n = 6, Supple-
mentary Fig. 6A). We therefore interpret approach behavior on each
lapas a behavioral readout of engagementwith the environment. InUR
we observed changes in velocity throughout the track, but approach
behavior remained intact on most laps in UR (n = 12, 170/244 laps,
70%). This was true even after mice stopped licking (RElow: Engaged;
Supplementary Figs. 6 and 7). In contrast, laps displaying disengage-
ment with VR were less frequent (RElow: Disengaged, 74/244, 30%,
Supplementary Figs. 6 and 7). Importantly, we found a similar reduc-
tion in decoder performance inURwhenusing only RElow engaged laps
(Supplementary Fig. 6B, Mean decoder R2 [95% CI]: R = 0.95 [0.93
0.97], REhigh = 0.90 [0.87 0.93], RElow: Engaged = 0.65 [0.49 0.81]),
although disengaged laps did further reduce decoder performance
(RElow: Disengaged = 0.31 [0.06 0.5]). The disengaged laps were
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uniformly distributed throughout RElow (see example laps in Supple-
mentary Fig. 7). The proportion of disengaged laps also did not pro-
gressively increase with time, as was observed in Petit et al.41. The
probability of disengaged laps in the first half of RElow was similar to
the second half (P =0.14). Furthermore, the distribution of disengaged
laps throughout the session did not differ from a uniform distribution
(P = 0.7). The influence of disengagement on CA1 spatial representa-
tions is in agreement with a recent paper41, but is not themain focus of
this paper.

Using an alternate method to measure engagement with the VR
environment, we quantified pupil area during running in R and UR
conditions as pupil diameter has been shown to be a measure of
attentional/arousal state (n = 5, Supplementary Fig. 6C–F)42,43. We
observed a distinct pattern of pupil area changes during laps in R
which included an increase in pupil area near the end of the track. To
quantify if within lap pupil area dynamicswere altered inUR compared
to R, we calculated the Pearson’s correlation coefficient of each lap’s
pupil area dynamics to themean pupil area dynamics fromall laps inR.

Fig. 1 | Diminished reward expectation restructures spatial encoding in the
hippocampus. a Experimental setup (left), created with BioRender.com. A typical
field of view in CA1 (right, top). Extracted regions of interest, randomly colored
(right, bottom). b Experimental protocol. Image of virtual track (top). Changing
reward contingencies (bottom, Rewarded (R), Unrewarded (UR), Re-Rewarded
(RR)), created with BioRender.com. c i: Rasterplot representing fluorescence
changes (ΔF/F) of cells in A across time. Cells (y-axis) are arranged with the most
correlated cells next to each other. ii: Mean ΔF/F of the cells in (i). iii: Mouse licking
behavior. iv: Mouse track position. v:ΔF/F from an example cell. Laps before animal
stops consistently licking in URwere considered laps with high reward expectation
(REhigh, orange laps) and after licking stops are laps with low reward expectation
(RElow, red laps, see Methods). d A Bayesian decoder was trained on CA1 activity
from initial laps in R and tested on remaining laps. (Top) Coefficient of determi-
nation (R2) between true and predicted position of tested laps, (bottom right)
zoomed in. (Bottom left) An example fit. Gray lines indicate laps with licks. a–d are

from the same animal. eMean decoder R2
fitted with a reverse Boltzmann Sigmoid

(r =0.94; magenta), mean lick frequency normalized to maximum licks (black) for
each lap in unrewarded condition. Error bars indicate s.e.m. The point ofmaximum
change in R2 as calculated from the fit is indicated by the dashed line. f (Top)
Boxplots (see methods for definition) show distribution of mean decoder R2 in the
different conditions. Circles represent individual animals. P values were obtained
using a two-sided Paired t test. (Bottom) Bootstrapped mean differences (Δ) with
95% Confidence Intervals (CI) (error bar). X-axis indicates the comparisons made.
g (Left) Mean decoder error by track position. Shading indicates s.e.m. (Right)
Mean decoder error binned by track position as indicated by gray bars in the left
panel. Error bars indicate 95%CI. S: Start of the track, M: Middle of the track, E: End
of the track. Asterisk (*) indicates significant p values (P <0.01, two-sided paired t
test) obtained by comparing R with other conditions at each position. n = 12 mice
used for f, g.
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We first ensured that any changes in pupil area correlation in UR were
not due to changes in animal behavior in UR (Supplementary Fig. 8).
Engaged laps in UR in each animal were then defined as laps where the
correlation coefficient was greater than or equal to the mean correla-
tion coefficient of laps in R (the remaining laps were defined as dis-
engaged laps). 71% of these engaged laps were also classified as
engaged laps using the approach behavior described above (57/80
laps; chance levels = 37%). We again found that animals were engaged
on most laps in UR (n = 5, 80/106, 75%) after licking stopped (RElow:
Engaged, Supplementary Fig. 6E) and found a similar reduction in
decoder performance when using only these laps (Supplementary
Fig. 6F, mean decoder R2 [95% CI]: R = 0.91 [0.81 1.00], REhigh = 0.83
[0.71 0.94], RElow: Engaged = 0.57 [0.34 0.79], RElow: Disengaged = 0.43
[0.13 0.74]). Therefore, using two distinct measures of engagement
with the VR environment, approach behavior and pupil area, we con-
clude that changes in spatial encoding in UR are not due to disen-
gagement with the VR environment but instead are due to lowered
reward expectation. However, because disengagement further influ-
ences spatial encoding, we focused further analysis on engaged laps
(laps with approach behavior) during RElow to isolate the effects of
RElow without confounds introduced by disengagement with the VR
environment41.

Lowering reward expectation induces place cell remapping
The changes in spatial encoding in UR suggests changes in activity
patterns of place cells (remapping). Place cell (PC) remapping is linked
to encoding changes within environments or distinct environments as
well as separated exposures to the same environment across
days2,4,5,7,44. We explored if changes in reward expectation may induce
remapping in an unchanging spatial environment within a single ses-
sion. We first defined PCs in R and constructed a population firing
vector using these cells for each lap in R-UR-RR and correlated these
vectors across the session using only those laps in UR that showed
engagement with the VR (only RElow: Engaged laps, Fig. 2a). Correla-
tions showedpronounced transitions inpopulationactivity around the
lap when licking stops (REhigh to RElow) and again following reward re-
introduction (RElow to RR). To adequately quantify these transitions,
we clustered the lap-by-lap PV correlations and calculated the prob-
ability of laps being part of the cluster to which R laps belong (see
“Methods”). The lap-wise cluster probability traces revealed dips in
probability when transitioning from REhigh to RElow and not between R
and REhigh (Fig. 2a bottom; mouse 3 correlation drops a lap before our
definition of low reward expectation) confirming changes in place cell
activity occurring as animals stop licking and not immediately fol-
lowing reward removal. Moreover, the probability increased to a cer-
tain extent in RR laps. This ismost apparent inmouse 1which comes all
the way back to R levels. However, mice 2 and 3 did not show a similar
reinstatement nor was there an immediate transition in cluster prob-
ability following reward reintroduction.

We next analyzed the RElow period in UR in these 3 mice as they
had sufficient numbers of engaged laps in all conditions (R-UR-RR) to
define place fields using only the engaged laps and removing disen-
gaged laps (see Supplementary Fig. 9 for analysis on all mice using
both engaged and disengaged laps). We found RElow caused partial
remapping as shown by a drop in the spatial correlation of place fields
between R and UR conditions (using only RElow: Engaged laps;
Fig. 2b–d). Interestingly, partial remapping caused by RElow occurred
at all locations throughout the environment, and not just at locations
near the reward site (Fig. 2d). As observed with the population firing
vector correlations, the extent of remapping was reduced in RR—i.e.,
the R map seemed to somewhat return in RR (Fig. 2b–d).

To further analyze placefielddynamics, wedetermined the fate of
individual place fields throughout R-UR (RElow: Engaged laps only)-RR.
We found 27.9%of placefields found inR (605 PFs in R, n = 3) remained
stable throughout R-RElow-RR (169/605; Fig. 2e blue throughout). In

RElow, R place fields either remained stable (222/605, 36.7%; Fig. 2e
blue, middle column), disappeared (249/605, 41.2%; Fig. 2e black,
middle column), or remapped (134/605, 22.1%; Fig. 2e cyan, middle
column). In addition, new place fields formed in RElow (296/663 of all
place fields found in RElow, 44.6%; Fig. 2e red, middle column). More
R-place fields retained their fields in RR (311/605, 51.4%; Fig. 2e blue,
right column), but other R-place fields remapped in RR (89/605, 14.7%;
Fig. 2e cyan, right column). Furthermore, of the place fields that dis-
appeared in RElow some reappeared in RR (126/249; 50.6%; Fig. 2e blue
adjacent to black, right column). Only a small proportion of those that
were newly formed in RElow remained stable in RR (64/296 new PFs in
RElow; 21.6%; Fig. 2e red, right column) and a larger percentage dis-
appeared in RR (204/296; 68.9%; Fig. 2e black adjacent to red, right
column). Finally, of the 674 place fields found in RR, 140 were newly
formed (20.8%; Fig. 2e green, right column). These place field
dynamics were also observed when place fields from all mice were
analyzed that included engaged and disengaged laps (Supplementary
Fig. 9) and were not observed in control mice that stayed in R for a
matched number of laps (Supplementary Fig. 10). Example of the lap-
by-lap dynamics of individual place cells throughout R-UR-RR are
shown in Fig. 2f. In summary, transitioning to RElow restructures the
CA1 place code at all locations within an unchanging spatial environ-
ment through the disappearance, emergence, and remapping of place
fields. Although a component of the structure returns when transi-
tioning back toRR, the original structure remains changed, and further
restructuring takes place. This suggests that the CA1 spatial code of an
environment is dependent on reward expectation and the history of
reward expectation. This supports the idea that CA1 performs context
discrimination in an unchanging spatial environment.

Place fields show diminished reliability and increased
out-of-field firing following lowered reward expectation
The quality of hippocampal spatial encoding is related to memory
performance11,45. Qualitatively, increased reliability of firing across
multiple traversals through the same location, low out-of-field firing,
and decreased place field width are general indicators of better spatial
encoding accuracy. Measuring these properties, we asked whether
place fields in RElow were of the same or reduced quality compared to
place fields in R. Plotting place fields defined in each condition, we
found a total number of place fields that tiled the track to be similar in
R, RElow (using only Engaged laps), and RR (n = 3, Fig. 3a, findings from
all animals using both engaged and disengaged laps are shown in
Supplementary Fig. 11). We quantified place cell properties and found
that the place fields in RElow had degraded on everymeasure of spatial
encoding we used (see Methods): place field trial-to-trial reliability23

(Rewarded =0.47 [0.38 0.57], RElow: Engaged = 0.32 [0.15 0.48]), out/in
place field firing ratio (Rewarded = 0.10 [0.07 0.13]; RElow: Engaged =
0.16 [0.12 0.20]) and place fieldwidth (Rewarded = 53.34 [43.87 62.81];
RElow: Engaged = 60.56 [48.07 73.06]), across all locations (Fig. 3b).
There was also a small decrease observed in firing intensity (Rewar-
ded =0.36 [0.31 0.40]; RElow: Engaged = 0.31 [0.23 0.40]). These place
field properties returned to or approached R levels in RR, except firing
intensity which remained low in RR (Fig. 3b, Reliability 0.41 [0.31 0.51];
Out/In Field Firing 0.12 [0.08 0.15]; Place field width (cm) 54.08 [46.86
61.31]; Firing Intensity 0.29 [0.240.34]). Thedegradationof placefields
in RElow and return in RRwas also observedwhenwe included engaged
and disengaged laps together (Supplementary Fig. 11) and was not due
to time (Supplementary Fig. 12). This demonstrates that diminished
reward expectation leads to a spatial code in CA1with lowquality place
fields at all locations, suggesting a weakened spatial memory repre-
sentation of the environment11,45.

Finally, we compared the degradation of place cells following
reward expectation extinction to a novel never-reinforced environment
(Supplementary Fig. 13). We found that the spatial decoding and place
cell parameters were poor in the initial laps of the novel environment,
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however, with time, as the animal learned the environment and
developed reward expectation (Supplementary Fig. 13B), these prop-
erties became better and comparable to properties in R and RR (Sup-
plementary Fig. 13C–E). Both reliability and out/in field firing ratio in

RElow matched the levels of the initial trials in the novel environment
and remained so throughout the session until reward expectation was
reinstated in RR (Supplementary Fig. 13C–E). This further demonstrates
that reward expectation enhances the spatial code in CA1.
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Lowering reward expectation eradicates the over-representation
of reward location and disrupts reward cell firing
One of the striking features of CA1 place cells is the accumulation of
place fields near learned rewarded locations25–29. We similarly found an
over-representation of place fields near the reward site in R (Fig. 3d–f
left, I; Supplementary Fig. 11C–E). Interestingly, this over-
representation disappeared once reward expectation diminished
(Fig. 3d, e middle, f; Supplementary Fig. 11C–E). Of the place cells in R
that disappeared in RElow, 41.8% (104/249, n = 3) were at the end of the

track (150–200 cm). Furthermore, the new place cells that appeared in
RElow, were equally distributed on the track length (0–50 cm: 77/296
(26%), 50–100 cm: 83/296 (28%), 100–150 cm: 62/296 (21%),
150–200 cm: 74/296 (25%)). When reward was reinstated in RR, the
over-representation of the reward site reappeared (Fig. 3d, e right, f;
Supplementary Fig. 11C–E). However, not all the place fields that dis-
appeared around the reward zone in RElow reappeared in RR (61/104,
58.6% reappeared), instead, the increased density around the reward
site was also derived from the new place cells that formed fields in RR
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(0–50 cm: 31/140 (22%), 50–100 cm: 24/140 (17%), 100–150 cm: 18/140
(13%), 150–200 cm: 67/140 (48%)). Thus, place fields near reward sites
act like typical place fields, i.e., they are largely context-specific. Such
changes were not observed in control mice (Supplementary Fig. 12).
This demonstrates that transitioning from REhigh to RElow abolishes
place field over-representation of the previously rewarded site. Rein-
statement of reward expectation (as in RR) restores over-
representation of the reward site with an overlapping yet distinct
ensemble of place cells.

It was recently shown that a small fraction of cells distinct from
place cells exist in the CA1 that encode reward regardless of position
or environment24. We looked for these “reward cells” and defined
them based on their reward activity in 2 distinct VR environments
(Supplementary Fig. 14). We found that these reward cells did not
account for the over-representation of the reward site by place cells
in R (Supplementary Fig. 14B). We also found that the correlation of
reward cell activity between R and RElow was significantly less than
within R or between R and RR (Supplementary Fig. 14C, D). Impor-
tantly, reduced correlation in reward cell activity was only observed
in RElow and not in REhigh laps in UR (see example cells in Supple-
mentary Fig. 14D). These findings show that transitioning from REhigh
to RElow disrupts the additional coding of specific reward sites by
place and reward cells.

Bilateral VTA inhibition largely replicates lowering reward
expectation
Ventral Tegmental Area (VTA) dopaminergic inputs to the hippo-
campus have been implicated in shaping and stabilizing spatial
representations34,37 and VTA/dopamine encode changes in reward
expectation46. We therefore hypothesized that inhibiting VTA dopa-
minergic neurons would mimic the effects of lowering reward expec-
tation. To do this, we bilaterally injected Cre-dependent AAV
expressing the inhibitory DREADD receptor hM4D(Gi)47 and mCherry
in VTA of DAT-Cre mice and imaged from dorsal CA1 cells expressing
GCaMP6f (Fig. 4a, b). On experimental day, mice ran in R for 10min
before being removed and injected intraperitoneally either with saline
(control) or one of two different ligands for the hM4D(Gi) receptor—
Descholoroclozapine (DCZ)48 or Clozapine-N-oxide (CNO)47. Due to
the slower kinetics and known off-target actions of CNO, DCZ was also
used to inactivate VTA DA neurons. After the injections (45mins after
CNO injections and 10mins after DCZ injections due to the faster
metabolism of DCZ), mice were placed back in R for 10–20min. Each
mouse after training went through 4 days with imaging: Day1: R-UR-RR
switch; Day2: Saline session, Day3: CNO, Day4: DCZ session (Fig. 4c).
The same FOV was imaged throughout all days of imaging and place
cells were extracted from each imaging session (see “Methods”). This
protocol allowed us to compare the effect of lowering reward expec-
tation and VTA inhibition on hippocampal neural activity in the
same mice.

We found that inactivation by both DCZ and CNO yielded similar
results (Fig. 4 and Supplementary Fig. 17), demonstrating a shared
mechanism of action and the timing differences following CNO and

DCZ injections and exposure to R, 45mins versus 10mins, respec-
tively, does not affect the results. DCZ and CNO administration caused
a decrease in lap running speed in R (Supplementary Fig. 16, Mean
speed (m/s) [95% CI]: Before Saline 42.74 [41.12 44.36], After Saline
42.75 [41.34 44.17], Before DCZ 41.99 [40.26 43.73], After DCZ 25.96
[24.30 27.62], Before CNO 43.18 [41.26 45.10], After CNO 25.71 [24.03
27.39]) but approach behavior (demonstrating engagement) and
anticipatory licking remained (Supplementary Fig. 16). We then mea-
sured spatial correlation of place fields before and after DCZ/CNO
administration and found a reduction at all locations across the track,
similar to the effects in RElow (Fig. 4d–g and Supplementary
Fig. 17A–C). This decrease was not observed in the saline control
(Fig. 4d–g). To test whether these changes might be due to decreased
lap speed after DCZ/CNO administration, we split our saline control
data into fast velocity and slow velocity laps (Supplementary Fig. 18A).
We found a small reduction in spatial correlation on the slow velocity
laps compared to the fast laps (Supplementary Fig. 18B, C), but thiswas
much smaller than the effects induced byDCZ andCNO (Fig. 4d–g and
Supplementary Fig. 17A–C).

Interestingly, we found a decrease in lap velocity in control mice
following injections (CNO injected in mice with no DREADD expres-
sion; Supplementary Fig. 15C, P <0.001). However, this decreased lap
speed did not lead to the same changes in place cells we observed in
our experimental groups (Supplementary Fig. 15D, E), further indicat-
ing that decreased running speed is not the cause of place cell changes
we report in our experimental groups injected with CNO/DCZ with
DREADD expression in VTA DA neurons (Fig. 4d–g; Supplementary
Fig. 17A–C).

We next measured the lap-by-lap reliability of place fields and
the out of field firing ratio, two properties most affected by RElow.
We found a similar decrease in place field reliability and increase in
out-of-field firing in DCZ and CNO as in RElow (Fig. 4h, j, Supple-
mentary Fig. 17D, Mean [95%CI]: Reliability: Rewarded = 0.41 [0.31
0.52], RElow = 0.29 [0.17 0.40], Before DCZ = 0.48 [0.38 0.58], After
DCZ = 0.41 [0.31 0.51], Before CNO = 0.42 [0.31 0.52], After CNO =
0.35 [0.24 0.47]. Out/In Field Firing: Rewarded = 0.10 [0.06 0.13],
RElow = 0.17 [0.06 0.29], Before DCZ = 0.10 [0.05 0.14], After
DCZ = 0.12 [0.08 0.16], Before CNO = 0.10 [0.05 0.15], After
CNO = 0.12 [0.07 0.17]). This was not the case in the saline controls
(Fig. 4i, Mean [95%CI]: Reliability: Before Saline = 0.45 [0.34 0.55],
After Saline = 0.46 [0.39 0.54], Out/In Field Firing: Before Saline =
0.09 [0.04 0.14], After Saline = 0.09 [0.04 0.14]), even in the slow
velocity saline control laps (Supplementary Fig. 18D, Mean [95%
CI]: Reliability: Before Saline_fast velocity = 0.51 [0.46 0.57], After
Saline_slow velocity = 0.45 [0.32 0.58], Out/In Field Firing: Before
Saline_fast velocity = 0.09 [0.04 0.13], After Saline slow velocity =
0.09 [0.04 0.14]). Lastly, we found DCZ and CNO tended to induce
a reduction in place field over-representation of the reward site
compared to saline controls, but this did not reach significance
(Fig. 4m; P = 0.06) and the effect size was less than RElow
(Fig. 4k–m and Supplementary Fig. 17E), suggesting other neuro-
modulators might be involved in over-representation.

Fig. 3 | Diminished reward expectation leads to inferior spatial encoding by
unreliable place cells across the entire environment. a Place fields defined and
sorted in each condition pooled from all mice (n = 3 mice). Each cell’s activity
normalized to its peak and cells are sorted by their center of mass along the track.
b Place cell parameters calculated independently from each condition are dis-
played as a boxplot of average per animal (left), cumulative histogram (right). P
values were calculated using a two-sided t test. c (left) Mean place cell parameters
across track location. Shading indicates s.e.m. (right)Average correlation binnedby
track position indicated by gray lines in the left panel. S: Start of the track, M:
Middle of the track, E: End of the track. Asterisk (*) indicates significant P values
(two tailed KS-test, P <0.01) obtained by comparing R (blue) with other tasks at

each position. d Distribution of place field center of mass (COM) locations in each
condition pooled from all mice (n = 3 mice). Plots show observed density (gray
line), uniform distribution (gray shade) and Gaussian distribution of place field
density (color). P values (two-sided t test) were obtained by calculating the place
field distribution with the uniform distribution. e Percentage of place fields in the
middle of the track versus end of the track in each animal (circles). f Difference
between end of track and middle of track place field percentages in each animal
(circles, n = 3 mice). Dashed line in e, f indicates the percentage expected from a
uniform distribution across the track. All place field calculations in RElow condition
were done on Engaged laps (RElow: Engaged). Number of cells in b–d; R: 605, RElow
Engaged: 663, RR: 674.
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Additionally, both the reduction in over-representation and the
changes in reliability and out-of-field-firing ratio were not
observed in control animals expressing tdTomato in VTA DA
neurons instead of DREADDs and injected with CNO and DCZ
(Supplementary Fig. 15). Together, these data indicate that the
effects on CA1 spatial encoding with changing reward expectation
are largely driven by VTA dopaminergic inputs.

VTA inputs to CA1 encode reward expectation through a
proximity to reward signal
To further investigate how the VTA regulates CA1 encoding, we
recorded from VTA dopaminergic (DA) axons directly in CA1 using
2-photon imaging of axon-GCaMP7b specifically expressed in VTA DA
axons of DAT-Cre mice (Fig. 5a). We found that individual DA axons
ramped up in activity as mice moved closer to the reward site on each
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traversal of the environment in R (Fig. 5b–d; n = 7 axons from 6 mice).
The activity of these rampingDA axons peaked right before the reward
site and then rapidly returned to baseline levels after reward was
received (Fig. 5c, d). DA-axon-ramps decayed in slope and amplitude
when mice were switched to UR and disappeared in RElow (Fig. 5b–d).
DA-axon-ramps started to return early in RR andwere almost back to R
levels late in RR (Fig. 5e, h). To further quantify DA-axon-ramp
dynamics, we measured the slope and max peak of the ramps on each
lap throughout R-UR-RR from 5 axons that were imaged throughout all
conditions (Fig. 5i–l and Supplementary Fig. 19). We found DA-axon-
ramps were consistent in R but decayed abruptly after a few laps in UR
(Fig. 5j and Supplementary Fig 19). Similarly, average pre-licking con-
tinued for a few laps before rapidly dropping, indicating DA axon-
ramps are impacted by reward expectation. DA-axon-ramps were on
average smaller in UR compared to R during REHigh laps but dis-
appeared in RElow laps (Fig. 5k; n = 7, Mean [95%CI]: Slope*max:
R = 1.00 [1.00, 1.00], REHigh = 0.57 [0.40, 0.74], RElow = 0.24 [0.03,
0.45]). DA-axon-ramps were not different in R versus RR (Fig. 5k; n = 5,
Mean [95%CI]: Slope*max: R = 1.00 [1.00, 1.00], RR = 1.23 [−0.28, 2.74]).
These data demonstrate that VTADA axons inCA1 encode the animal’s
proximity to reward and disappear when rewards are no longer
expected.

To investigate the emergence of DA-axon-rampswith learning, we
switched a subset of mice to a novel (N) VR environment while con-
tinuously imaging VTA DA axons (n = 5 axons from 5 mice; Supple-
mentary Fig. 20). We found DA axon activity had much lower peaks in
N and were muchmore locked to reward delivery rather than ramping
with proximity to reward (Supplementary Fig. 20B, C). However,
activity peaks increased with experience in N and DA-axon-ramps
started to develop towards the end of the session (Supplementary
Fig. 20D), revealing DA-axon-ramps are a learned signal requiring
repeated environment-reward associations.

We found two axons with distinct types of signals that did
not ramp to reward (Supplementary Fig. 21). One of these enco-
ded the animal’s velocity and was not sensitive to the R-UR
transition (Supplementary Fig. 21A–C). The other responded to
being in VR environments by decreasing activity relative to being
in a dark environment (Supplementary Fig. 21D). These findings
show that VTA DA axons in CA1 predominantly encode the ani-
mal’s proximity to reward, but there exists heterogeneity across
the population of DA axons with some axons encoding other
features of experience35.

Discussion
During wakeful exploration animals continuously experience external
events, some of which are robustly encoded into memory for future
recall. A key aspect of whether external events become encoded into
memory depends on the internal state of the animal during
encoding11,49. Herewe found that changes in reward expectationwithin

unchanging spatial environments alters the structure and trial-to-trial
dynamics of place codes in CA1 likely through the modulation of a
ramping to reward signal in dopaminergic inputs from VTA to CA1.
This is supported by several observations: 1, reward removal led to
diminished reward expectation which caused an abrupt restructuring
of the place code that included place cell remapping, the loss of some
placefields, and the formation of newplacefields at all locationswithin
the environment, plus a loss of place field over-representation of the
reward zone. 2, place code restructuring only occurred after the
reward expectation diminished and not following reward removal 3,
place cells encoding the environment during low reward expectation
were degraded in quality exhibiting low trial-to-trial reliability and high
out-of-field firing at all locations 4, bilateral inhibition of dopaminergic
neurons in the VTA during high reward expectation largely mimicked
the effects of lowering reward expectation 5, dopaminergic axons
from the VTA to CA1 encoded a ramping to reward signal during high
reward expectation that disappeared after lowering reward expecta-
tion. These results provide evidence that the structure and robustness
of spatial memory encoding in the hippocampus is determined by
dopaminergic inputs from the VTA that is dependent on the animal’s
internal state of reward expectation during navigation.

Reward contingencies in navigation tasks have been shown to
modulate place cells23,24,26,33,50. Most studies in this area either alter
rewardmagnitudes ormove reward locations, andmany times include
a decision-making component in their behavioral task. These factors
allmodulate place cells in someway, depending on the specifics of the
experiment. What has been difficult to achieve in this research area is a
complete removal of rewards for long enough to alter, and measure,
reward expectation yet maintain matched navigation behavior. This is
a necessary step to assess the influence of changing reward expecta-
tions on place cells without confounds caused by changes in naviga-
tion behavior39. Our behavioral set-up allowed us to match navigation
behaviors, even when reward was not expected. Specifically, head
direction, location occupancy, location sequences leading to reward,
running speed, and pupil area were the same in rewarded and unre-
warded conditions for many trials. A number of factors led to this
matched behavior: (1) Mice were head-fixed; (2) The behavior was
simple and stereotyped (mice run on a linear treadmill along a linear
track); (3)Micewere first trained to run to a very high level with reward
to establish high reward expectation before reward was removed; (4)
Many traversals of the environment could be achieved in short suc-
cession (~5 traversals/min). In conjunction with our ability to measure
reward expectation on a trial-by-trial basis, this matched behavior
allowed us to specifically connect the influence of reward expectation
on place cells in real-time.

Interestingly, our data show that the presence (or consumption)
and subsequent absence of reward itself has little influence on spatial
encoding in CA1 as shown by very little difference in the spatial code
between R and UR when RE is high on the first few laps. Sharp wave

Fig. 4 | Bilateral inhibition of VTA dopaminergic neurons largely replicates the
effects of low reward expectation on place cells. a Schematic representation of
procedure, created with BioRender.com. b i, ii: Representative coronal brain sec-
tion from 1of 6mousebrains expressinghm4D(Gi)-mCherry (red) in VTA,GCaMP6f
in dorsal CA1(green), and immunostained for Tyrosine Hydroxolase (TH- green). iii:
hm4D(Gi)-mCherry expression (left), TH expression (middle) and overlapping
expression (right) in example VTA neurons. c Experimental protocol. d, e Place
fields defined in the Before Saline/Before deschloroclozapine (DCZ) condition and
plotted across After Saline/After DCZ administration. Activity of each place cell was
normalized to peak in the Before conditions and sorted by their center of mass.
f (Top) Boxplots show distribution of place field spatial correlation (circles) in R/
RElow (left, n = 6 mice), Before Saline/After Saline (middle, n = 5 mice) and Before
DCZ/After DCZ (right, n = 6mice). Place cells were defined in the former condition.
P values were obtained using two tailed KS-test. (Bottom) Bootstrapped mean
differences (Δ) with 95% CI (error bar). g (top) Same data, averaged by track

position. Shading indicates s.e.m. (bottom) Average correlation binned by track
position indicated by gray lines in the top panel. S: Start of the track, M: Middle of
the track, E: Endof the track. Asterisk (*) indicates significant P values (two tailedKS-
test, P <0.01) obtained by comparing UR (red) with other tasks at each position.
h–j Place cell parameters in each condition are displayed as boxplot of average per
animal (left) and cumulative histogram (right, P values, two-sided paired t test).
k–m (left) Distribution of place field center of mass (COM) locations in each con-
dition pooled from all mice. Plots show observed density (gray line), uniform dis-
tribution (gray shade) and Gaussian distribution of place field density (color). P
values (two-sided t test) were obtained by calculating the place field distribution
with the uniformdistribution. (right)Differencebetweenendof track andmiddle of
track place field percentages in each animal (circles). Dashed line indicates the
difference expected from a uniform distribution across the track (P values, two-
sided paired t test). Number of cells in f–g and k–m; R/RElow: 928, Before Saline/
After Saline: 1139, Before DCZ/After DCZ: 1629.
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Fig. 5 | Activity of dopaminergic VTA axons in CA1 ramp up to reward.
a Schematic representation of injection procedure created with BioRender.com
(left). Example CA1 field of view of VTA axons (right, top). Extracted region of
interest (right, bottom). b Example mouse. i: Mouse licking behavior. ii: Mouse
track position. iii: ΔF/F from an example ROI. c Fluorescent activity of axons
(7 axons in 6 mice) in R (blue), REhigh (orange-RE arrow), and RElow (red-RE arrow)
experimental conditions averagedby time to reward. Shaded areas represent s.e.m.
d Same data, averaged by position (left). Mean with 95% CI (error bar) of starting
50 cm (S), middle 100 cm (M), and end 50 cm (E)(right). Asterisk (*) indicates sig-
nificant p-values (two-sided paired t test, P <0.01) obtained by comparing R (blue)
with other tasks at each position. eNormalized fluorescence of an example axon in
the different conditions binned by time to reward. White lines divide each
condition, and the dashed line represents time of reward delivery. f Fluorescent

activity of VTA axons (5 axons in 5mice) inR(blue) andRR (green) averaged by time
to reward. Shaded areas represent s.e.m. g Same data averaged by position. h RR
time binned fluorescent activity divided into early (light green) and late laps (dark
green) and averaged by time to reward. i Example showing how the max and slope
of time binned fluorescence data was determined in an R (blue) and RElow (red) lap.
j Mean slope*max for laps in the R and Unrewarded (black, n = 7) and mean lick
frequency normalized to maximum licks (gray), error bars represent s.e.m.
k, l Boxplot shows distribution of mean slope*max of axons (circles) within R,
REhigh, and RElow (k; n = 7 axons) and within R and RR (l; n = 5 axons). P values were
obtained using a two-sided paired t test. (Bottom) Bootstrapped mean differences
(Δ) with 95% CI (error bar) are shown at the bottom. X-axis indicates the
comparisons made.
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ripples and place cell replay events occur more frequently during
reward consumption which might reflect a reward-related feedback
signal that could influence the place code for the environment, but this
does not seem tobe the case51,52. Instead, it is only after animals learn to
associate or disassociate reward from the environment and change
their reward expectation that we observe changes in the place cell
code. The structure of the map, place cell over-representation of the
reward location, and trial-by-trial reliability/out-of-field firing were all
modulated only when reward expectation changed, not when reward
was removed/added. This demonstrates that the act of reward attain-
ment does not in itselfmodulate place cells in the hippocampus, which
may have been the case through a reward-related feedback signal.
Instead, the animal’s internal state of reward expectation is a stronger
driver of place cell encoding than the external reward. Reward cells in
this region have recently been described that encode reward inde-
pendently of space24. We did identify these cells, and found that they
too were modulated by reward expectation rather than reward per se.
Therefore, our data suggests internal states of reward expectation
rather than reward attainment modulate hippocampal spatial encod-
ing of locations within environments.

Such changes in the place code in an unchanging spatial envir-
onment could reflect the animal’s attempts to infer whether they are in
a different “state” of the world53, something that has been observed in
the prefrontal cortex54,55. The sensory cues remained constant but
internal expectation of reward did not, and this was sufficient to
induce partial remapping along with other changes in the place code.
From the perception of themice, the state of the world changed as the
locations within the environment became devalued by lowering
reward expectation and no longer predicted the presence of a reward.
The value of the sensory experience thus alters the CA1 place code,
suggesting that the hippocampus does not simply represent spatial
information, but flexibly encodes the value of space and is able to
discriminate contexts within an unchanging spatial environment53.
This could be due tomice disengaging from their environment once it
is no longer valued. A recent paper showed that when mice disengage
with their environment CA1 place codes degrade41. However, we
measured two distinct features—approach behavior and pupil area—as
a readout of engagement and found mice in our experiments remain
engaged on many trials even when reward expectation is low. For
instance, mice decelerated as they approached the end of the track on
many trials even when reward expectation had diminished. This
approach behavior was likely due to mice anticipating hitting the VR
wall at the end of the track which triggers a 2 s delay before tele-
portation to the start of the track. This was not due to stereotyped
behavior as switchingmice to a dark environment with no spatial cues
eradicated approach behavior. Therefore, mice in our set up were
engaged with their spatial environment following lowered reward
expectation on many trials. The changes in the place code we observe
are therefore unlikely due todisengagementwith the environment and
are instead most likely due to reduced reward expectation. Although
our mice show signs of engagement, we cannot rule out that they are
less engaged than during high reward expectation and our engage-
ment measures are not sensitive enough to capture more subtle
changes. Reduced engagement could therefore contribute to the place
cell changeswe report here. In agreementwith Pettit et al.41, wedidfind
obvious disengaged trials during low reward expectation and these
trials show further place code changes beyond those caused by
reduced reward expectation. We therefore add to the Pettit et al.41

findings by demonstrating extensive changes in CA1 place coding
caused by lowered reward expectation during engagement (or mini-
mally lowered engagement) with the environment. This implicates
additional internal states in modulating place coding beyond envir-
onment engagement-disengagement.

The process of switching reward expectation from high-low-high
led to a greater distinction between representations in the two high

reward expectation conditions thanwhen rewardexpectationwas held
high throughout the session (as was the case in control animals that
maintained high reward expectation throughout a time-matched ses-
sion). This suggests the CA1 chunks external events into distinct epi-
sodes based on changes in internal state, even when external events
remain the same. In other words, when internal expectations are
constant, unchanging external events are encoded as a single con-
textual episode.When internal expectations change and then return to
original levels, unchanging external events are encoded as distinct
contextual episodes. This encoding of episodic information within the
CA1 network is consistent with its proposed role in capturing temporal
and contextual episodes56.

DA activity in CA1 is known to play an important role in
hippocampal-dependent reward learning57 and DA VTA inputs to CA1
have been shown to modulate reward learning34. Optogenetic activa-
tion of VTA axons during learning of new goal locations enhances the
subsequent reinstatement of spatial representations and stabilizes
memory performance34. The stability of CA1 spatial representations is
reduced by inactivation of VTA neurons33 or CA1 DA receptor
antagonism58. Here, we also find that spatial representations are more
stable when VTA DA neurons are active (during high reward expecta-
tion) and destabilize when VTA DA activity is reduced (during lowered
reward expectation and during VTA DA inhibition). What is missing
from previous studies is a direct connection between the animal’s
internal state of reward expectation and how changing reward
expectation changes spatial representations and VTA DA activity. Our
findings fill this gap and we additionally reveal that bilateral inhibition
of VTA DA neurons: 1, decreases the trial-to-trial reliability and
increases the out-of-field firing of place fields. 2, reduces reward site
over-representation by place fields. 3, largely replicates the effects of
lowering reward expectation. We also reveal the natural VTA DA
dynamics in CA1 and their response to changes in reward expectation
(further discussion below), which, as far as we know, has never been
measured. Our findings therefore replicate previous work on VTA DA
influences on spatial representations andmemory but add to this area
by showing the natural dynamics of VTA DA inputs to CA1 and their
influence on spatial representations in real-time during changes in
reward expectation. We also show the “fate” of individual place cells
through changes in reward expectation, revealing heterogeneity of
responses at the single cell level (some place fields disappear when
reward expectation is lowered, some remap, some cells form new
place fields, and some maintain their place fields). One caveat is that
VTA inhibition did cause lap velocity to reduce - a known role of VTA
dopaminergic neurons58—which itself could cause changes to place
coding39.We addressed this by comparing slow and fast velocity laps in
saline controls to see if place cell differences could be observed, and
we did find small differences. Therefore, reduced velocity likely con-
tributes to the observations we made during VTA inhibition but given
the small effect size of velocity it is unlikely to explain all the changes.
Our findings instead support a frameworkwhereby diminished reward
expectation causes diminished DA release fromVTA in CA1, leading to
an abrupt restructuring of place coding that includes a loss of over-
representation of rewards sites, plus a degradation in the quality of
place coding.

In support of this idea, we show that VTA DA neurons in the hip-
pocampus exhibit ramping to rewardactivity that diminishes following
the removal of rewards. Similar activity has been observed in VTA DA
neurons and their projections to several brain areas using various
techniques30,36,38,59. It is not entirely clear whether this ramping activity
signals reward prediction error (RPE)36 or value30,59. However, our
findings that VTA axon activity peaks prior to expected reward loca-
tions in familiar environments but peaks at the location of unexpected
rewards in novel environments supports the established idea that VTA
DA neurons signal RPE. Importantly, this ramping activity diminished
over the course of several trials following reward removal, was
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completely absent in RElow, and rapidly re-established in RRmimicking
the timing of changes to reward expectation and hippocampal place
cell codes we observed. Thus, we hypothesize that this ramping
activity provides reward expectation information to the hippocampus
through DA release that is required to maintain specific excitatory
drive to place cells or postsynaptic responses within place fields.
However, we did not specifically manipulate this input in our DREADD
experiment, which targeted all DA VTA neurons and not just DA inputs
to CA1. Future experiments should be designed to specifically manip-
ulate the VTA-CA1 DA input to further test our hypothesis.

Interestingly, we found that although our CNO/DCZ inhibition
experiments largely replicated the results of lowering reward expec-
tation, it did not cause a corresponding inhibition of pre-licking. This
suggests a distinct brain region might encode reward expectation and
send parallel signals to both VTA, to drive DA ramps, and to a lower-
order center that drives pre-licking. In our CNO/DCZ experiment we
inhibited the VTA component of this circuit which appears to leave
intact the parallel circuit to licking centers. Indeed, there is evidence
for such a reward expectancy center in PFC60.

Although VTA DA inputs to CA1 are sparse, manipulation of this
pathway has large effects on spatial memory34,61,62 and many subtypes
of DA receptors are expressed throughout CA1 on pyramidal cells,
Interneurons, and astrocytes63,64. The influence of this sparse input
could be amplified by the types of connections VTADA inputsmake. A
recent paper showed that VTA DA inputs to Nucleus Accumbensmake
“spinule” connections that increase the surface area between DA
inputs and their postsynaptic targets, potentially amplifying their
influence65. Volume transmission is another potential mechanism that
could amplify DA’s influence on the hippocampus63. Local inter-
neurons and/or astrocytes expressing DA receptors could further
amplify DA’s influence in CA1 through their many connections with
pyramidal cells. While we did not measure DA release in the hippo-
campus and cannot directly attribute the effects of bilateral VTA DA
neuron inhibition to DA activity, studies have demonstrated that these
neurons can impact hippocampal place cell stability through DA
receptor dependent mechanisms34. DA regulates synaptic transmis-
sion and dendritic excitability66 and high dendritic excitability of CA1
basal dendrites has been linked to place field emergence, precision,
and long term stability44,67. Interestingly, VTA DA inputs are located in
the Stratum Oriens of CA1 where basal dendrites of pyramidal cells
reside and express D5 receptors68. We hypothesize that DA increases
dendritic excitability to increase dendritic branch spike prevalence
across basal dendrites when reward expectation is high. High dendritic
branch spike prevalence stabilizes place fields and increases their
precision and reliability44,67. Following diminished reward expectation,
loss of DA reduces branch spike prevalence, destabilizing place fields
(restructuring the place code at the population level) and reducing
their trial-to-trial precision and reliability. This hypothesis remains to
be tested.

Although the presence of DA-ramps in CA1 means the level of DA
release is not equal across the track, attractor-like dynamics could
ensure DA influences place cells at all locations. For instance, place
cells with place fields closer to the end of the track receive greater
levels of DA release, but are part of a larger place cell sequence (pos-
sible attractor network) with cells that have place fields at the begin-
ning of the track that receive lower levels of DA. Based on the known
connectivity of CA1 neurons, thismay arise from local inhibitionwithin
CA1 or driven by input from CA3, which does have recurrent con-
nectivity to support attractor dynamics and also receives dopaminer-
gic input32,57,69. Furthermore, place cells sequences are replayed during
immobility and reward enhances the fidelity and increases the fre-
quency of replays which could further stabilize place cell sequences
associated with high reward expectation that include place fields
throughout the entire track and not just ones close to the reward
site52,70,71. A hypothesis generated from this framework would be that

DA ramps increase replay fidelity and/or frequency. Indeed, optoge-
netic stimulation of DA neurons in VTA enhances replay events in CA1,
suggesting the DA ramps we observed may be the natural brain signal
that leads to a similar enhancement of CA1 replay events.

An alternative source of dopamine in CA1 could be coming from
locus coeruleus (LC) fibers which impact hippocampal learning and
memory in a DA dependent manner72. LC has been shown to encode
reward expectation73 and a recent study found optogenetic stimula-
tion of LC-CA1 inputs at a goal induced a shift in place fields towards
the goal, whereas inhibition decreased overrepresentations of new
goal locations suggesting these inputs help establish over-
representation of reward locations27. However, these inputs only
showed activity locked to new goal locations but not familiar locations
and have not been shown to influence pre-existing overrepresentation
of goal locations or place fields throughout an environment. There-
fore, it is unlikely that these inputs are themain driver for restructuring
of the place code observed during diminished reward expectation. It is
possible LC inputs do have some influence, though, as inhibition of
VTA by DCZ or CNO did not induce the same effect size as lowering
reward expectation, implicating other neuromodulatory systems
beyond VTA. Serotonergic inputs to the hippocampus from the Raphe
Nuclei also encode reward related information, so could further
modulate CA1 place codes during changes in reward expectation74.
Given the importanceof strongly encoding reward-relatedmemories it
is not surprising that reward-related information is distributed across
multiple neuromodulatory systems that project to the hippocampus.
However, our findings suggest VTA DA is the main system in mod-
ulating dorsal CA1 during changes in reward expectation during spatial
navigation.

An outstanding question is what drives the DA ramps in VTA.
Ramps seem to require animals to know where they are and how far
they are froma reward. This implicates the hippocampus and the place
codes represented there in providing spatial information to the VTA38.
It has been proposed that a loop may exist between the hippocampus
and VTA whereby the hippocampus sends information through the
subiculum, accumbens, and ventral pallidum to the VTA57. This path-
way could inform DA neurons in VTA of the animal’s position relative
to reward. These neurons could then rampup their firing as the animal
approaches expected reward locations, modulating the value of loca-
tions based on their distance from reward locations. The DA released
in the hippocampus thus serves to stabilize the structure of place
codes and maintain reliable place fields along trajectories that lead to
expected rewards38.

Methods
Subjects
All experimental and surgical procedures were in accordance with the
University of Chicago Animal Care and Use Committee guidelines. For
this study, we used 10–12-week-old male C57BL/6J wildtype (WT) mice
and Slc6a3Cre/+ (DAT-Cre+/−) mice (23–33g). Male mice were used over
female mice due to the size and weight of the headplates (9.1mm×
31.7mm, ~2 g) which were difficult to firmly attach on smaller female
skulls. Mice were individually housed in a reverse 12 h light/dark cycle
at 72 °F and 47% humidity, and behavioral experiments were con-
ducted during the animal’s dark cycle.

Mouse surgery and viral injections
Mice were anesthetized (~1–2% isoflurane) and injected with 0.5ml of
saline (intraperitoneal injection) and 0.5ml of Meloxicam (1–2mg/kg,
subcutaneous injection) before being weighed and mounted onto a
stereotaxic surgical station (David Kopf Instruments). A small cra-
niotomy (1–1.5mm diameter) was made over the hippocampus (1.7mm
lateral, −2.3mm caudal of Bregma). For population imaging, a
genetically-encoded calcium indicator, AAV1-CamKII-GCaMP6f (pEN-
N.AAV.CamKII.GCaMP6f.WPRE.SV40 was a gift from James M. Wilson –
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Addgene viral prep #100834-AAV1; https://www.addgene.org/100834/;
RRID:Addgene_100834) was injected (~50nL at a depth of 1.25mm
below the surface of the dura) using a beveled glass micropipette
leading to GCaMP6f expression in a large population of CA1 pyramidal
cells. For DREADD experiments, craniotomies were made over the hip-
pocampus and bilaterally over the ventral tegmental area (VTA)
(±0.5mm lateral, 3.1mm caudal of Bregma) of DAT-Cre+/– mice. A
genetically encoded DREADD receptor (pAAV-hSyn-DIO-hM4D(Gi)-
mCherry was a gift from Bryan Roth (Addgene viral prep # 44362-AAV1;
http://n2t.net/addgene:44362; RRID: Addgene_44362) or tdTomato
(pAAV-FLEX-tdTomato was a gift from Edward Boyden (Addgene viral
prep # 28306-AAV1; http://n2t.net/addgene:28306; RRID:
Addgene_28306) was injected (~200 nL at a depth of 4.4mm below the
surface of the dura). For axon imaging, a small craniotomy was made
over the ventral tegmental area (VTA) (0.5mm lateral, −3.1mmcaudal of
Bregma) of DAT-Cre+/− mice. A genetically-encoded calcium indicator,
pAAV-Ef1a-Flex-Axon-GCaMP7b (pAAV-Ef1a-Flex-Axon-GCaMP7b was a
gift from Rylan Larsen - Addgene plasmid # 135419; http://n2t.net/
addgene:135419; RRID: Addgene_135419) was packaged into AAV1 and
injected (~200 nL at a depth of 4.4mm below the surface of the dura)
leading to axon-GCaMP7b expression in dopaminergic VTA neurons.
Afterwards, the site was covered up using dental cement (Metabond,
Parkell Corporation) and a metal head-plate (9.1mm×31.7mm, Atlas
Tool and Die Works) was also attached to the skull with the cement.
Mice were separated into individual cages and water restriction began
the following day (0.8–1.0ml per day). For axon imaging, mice were put
on water restriction 3 weeks after viral injection to provide time for
increased expression of axon-GCaMP7b. On the 7th day of water
restriction, mice underwent another surgery to implant a hippocampal
window as previously described75. Following implantation, the head-
plate was reattached with the addition of a head-ring cemented on top
of the head-platewhichwas used to house themicroscopeobjective and
block out ambient light. Post-surgery mice were given 2–3ml of water/
day for 3 days to enhance recovery before returning to the reduced
water schedule (0.8–1.0ml/day). Expression of GCaMP6f reached a
somewhat steady state ~20 days after the virus was injected.

Behavior and virtual reality
Our virtual reality (VR) and treadmill setup was designed similar to
previously described setups44,76. The virtual environments that the
mice navigated throughwere created using VIRMEn77. 2m linear tracks
rich in visual cues were created that evoked numerous place fields in
mice as theymoved along the track at all locations (Fig. 1a)78.Micewere
head restrained with their limbs comfortably resting on a freely
rotating styrofoam wheel (‘treadmill’). Movement of the wheel caused
movement in VR by using a rotatory encoder to detect treadmill
rotations and feed this information into our VR computer, as in refs.
46, 77. Mice received a water reward (4 µL) through a waterspout upon
completing each traversal of the track (a lap), which was associated
with a clicking sound from the solenoid. Licking was monitored by a
capacitive sensor attached to the waterspout. Upon receiving the
water reward, a short VR pause of 1.5 s was implemented to allow for
water consumption and to help distinguish laps from one another
rather than them being continuous. Mice were then virtually tele-
ported back to the beginning of the track and could begin a new tra-
versal. Mouse behavior (running velocity, track position, reward
delivery, and licking) was collected using a PicoScope Oscilloscope
(PICO4824, PicoTechnology, v6.13.2). Pupil trackingwasdone through
the imaging software (Scanbox v4.1, Neurolabware) at 15 frames
per sec, using Allied VisionMakoU-130b camerawith a 25mm lens and
a 750 nm longpass IR filter. IR illumination from the objective was used
to illuminate the pupil for tracking. Behavioral training to navigate the
virtual environment began 4–7 days after window implantation
(~30min per day) and continued until mice reached >4 laps per min-
ute, which took 10–14 days (although some mice never reached this

level). This high level of training was necessary to ensure mice con-
tinued to traverse the track similarly after reward was removed from
the environment. Initial experiments showed that mice that failed to
reach this criterion typically did not traverse the track as consistently
without reward. Such mice were not used for imaging. The rate of
success in training mice to reach this criterion was ~60%. In mice that
reached criteria, imaging commenced the following day. Additionally,
since we are testing changes in reward expectation, only animals that
displayed pre-licking in the familiar environment before reward
delivery were used for imaging.

Two-photon imaging
Imaging was done using a laser scanning two-photon microscope
(Neurolabware). Using a 8 kHz resonant scanner, images were col-
lected at a frame rate of 30Hz with bidirectional scanning through a
16x/0.8 NA/3mmWD water immersion objective (MRP07220, Nikon).
GCaMP6f and GCaMP7b were excited at 920 nm with a femtosecond-
pulsed two photon laser (Insight DS +Dual, Spectra-Physics) and
emitted fluorescence was collected using a GaAsP PMT (H11706,
Hamamatsu). The average power of the lasermeasured at the objective
ranged between 50–70mW. A single imaging field of view (FOV)
between 400–700 µm equally in the x/y direction was positioned to
collect data from as many CA1 pyramidal cells or dopaminergic axons
as possible. Time-series images were collected through Scanbox (v4.1,
Neurolabware) and the PicoScope Oscilloscope (PICO4824, Pico
Technology, v6.13.2) was used to synchronize frame acquisition timing
with behavior.

Imaging sessions
The familiar environment was the same environment that the animals
trained in. The experiment protocol for single day imaging sessions is
shown in Fig. 1a. Each trial lasted ~8–12min and was always presented
in the same order. 6 mice were exposed to Rewarded (R), Unrewarded
(UR) and Re-Rewarded environments (RR), in that order. An additional
6 mice were exposed to only R and UR. Mice on average ran 34 ± 2
(mean± 95%CI) laps in theRewarded condition, atwhich point, reward
was turnedoff and imaging in theUnrewarded environment continued
(28 ± 4 laps). In the Unrewarded condition, both reward and auditory
cue associated with the reward (solenoid click) were disabled. In n = 6
animals, reward was then turned on again (Re-rewarded) andmice ran
27 ± 3 laps. To identify rewardcells, the 6mice thatwent throughR-UR-
RR were also introduced to a Novel-rewarded environment (NR; 31 ± 5
laps). The Novel-rewarded environment (N) had distinct visual cues,
colors and visual textures, but the same dimensions (2m linear track)
and reward location (end of the track) as the familiar environment.
Furthermore, to rule out the possibility that observed changes in
population activity were due to time, mice were exposed to only the
familiar Rewarded environment for 20min (control, n = 6).

DREADD experimental protocol
To activate hM4D(Gi) receptor and silence VTA dopaminergic neu-
rons, two ligands were used - Deschloroclozapine dihydrochloride
(DCZ, MedChemExpress)48 and Clozapine N-Oxide (CNO, Enzo Life
Sciences, Inc)47. Due to the slow kinetics and known off-target effects
of CNO, DCZ was used as an additional method for inactivation48.

CNO was dissolved in DMSO at a 5mg/mL concentration and
stored at −80 °C. On experiment day, CNO solutions were thawed at
room temperature and diluted to 0.6mg/mL with saline (details on
saline). DCZ was dissolved in DMSO at 5mg/mL concentration and
stored at −80 °C. On experiment day, DCZ solutions were thawed at
room temperature and diluted to 0.02mg/mL with saline.

Once DREADD or tdTomato (control) injected DAT-Cre mice met
training criteria, they were habituated to the injection process. They
were exposed to the familiar rewarded environment for ~10min.
Afterwards, they were removed from the VR set up, placed in the
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holding room, and injectedwith ~150 µLof a 12%DMSO/Saline solution.
After ~30–45min, they were placed back in the VR setup and exposed
to the familiar rewarded environment for an additional 10min. This
was repeated for 3–5 days to acclimate mice to the injection
procedure.

The experimental protocol for the first day of DREADD experi-
ments was identical to the reward manipulation experiments descri-
bed above. At the end of the imaging session, a 1minute time-series
moviewas collected at a highermagnification and then averaged to aid
as a reference frame in finding the same imaging plane on subsequent
days. On Experiment Day 2, mice were first exposed to R for 8–12min.
The mice were removed from the VR set up and placed in a holding
room where they were immediately injected with ~150 µL of a 12%
DMSO/ Saline solution. ~35min after injection mice were placed back
on the VR setup and the same imaging plane was found. At the 45min
post injection mark, mice were again exposed to R for 15–20min. The
procedure for Experiment Day 3 was identical to Day 2 except mice
were injectedwith 5mg/kg CNO in a 0.6mg/mL solution instead of the
DMSO/Saline solution or with 0.1mg/kg DCZ of a 0.02mg/mL solu-
tion. Due to the faster kinetics ofDCZ,micewere placed back inR after
10min post injection.

Histology and brain slices imaging
We checked the VTA expression of hm4D(Gi)-mCherry to confirm
adequate coverage of dopaminergic VTA neurons. Mice were anes-
thetized with isoflurane and perfused with ~10ml phosphate-buffered
saline (PBS) followed by ~20mL 4% paraformaldehyde in PBS. The
brains were removed and immersed in 30% sucrose solution overnight
before being sectioned at 30 µm-thickness on a cryostat. Brain slices
were collected into well plates containing PBS. Slices were washed 5
times with PBS for 5min then were blocked in 1% Bovine Serum
Albumin, 10% Normal goat serum, 0.1% Triton X-100 for 2 h. Brain
slices were then incubated with 1:500 rabbit-α-TH (MAB318, Sigma
Aldrich) in blocking solution at 4 °C. After 48 h, the slices were incu-
bated with 1:1000 goat-α-rabbit Alexa Fluor 488 secondary antibody
(A32731, ThermoFisher) for 2 h. Brain slices were then collected on
glass slides and mounted with a mounting media with DAPI (South-
ernBiotech DAPI-Fluoromount-GClearMountingMedia, 010020). The
whole-brain slices were imaged under ×10 and x40 with a Caliber I.D.
RS-G4 Large Format Laser Scanning Confocal microscope from the
Integrated Light Microscopy Core at the University of Chicago.

Image processing and ROI selection
Time-series images were preprocessed using Suite2p (v0.10.1)79.
Movement artifacts were removed using rigid and non-rigid transfor-
mations and assessed to ensure absence of drifts in the z-direction.
Datasets with visible z-drifts were discarded (n = 2). For multi-day
datasets (DREADD Experiments), imaging planes acquired from each
day were first motion corrected separately. ImageJ (v1.53, NIH) was
then used to align the motion corrected images relative to each other
by correcting for any rotational displacements. The images across all
days were then stitched together and motion corrected again as a
single movie. For population imaging, regions of interest (ROIs) were
also defined using Suite2p (Fig. 1a) and manually inspected for accu-
racy. Baseline corrected ΔF/F traces across time were then generated
for each ROI and filtered for significant calcium transients, as pre-
viously described44,67,75. Finally, we used raster plots80 to visualize the
ΔF/F population activity of neurons across time and across all condi-
tions (Fig. 1c and Supplementary Figs. 2 and 3). In these raster plots,
neurons were clustered and sorted such that neurons with correlated
activity were next to each other on the vertical axis (https://github.
com/MouseLand/rastermap). For visual clarity, only neurons with at
least 2 transients above 10%ΔF/F over the time of the experiment were
included in the raster plot and the 2-D plots were interpolated using a
hanning filter.

For axon imaging, ROIs were first defined using Suite2p and
manually inspected for accuracy. ROIs were then hand drawn over all
segments of Suite2p defined active axons using ImageJ to ensure all
axon segmentswere included for analysis. Fluorescent activity for each
ROI was extracted and highly correlated ROIs (Pearson correlation
coefficient ≥ 0.7) were combined and fluorescent activity for the
combined ROI was extracted. Baseline corrected ΔF/F traces across
timewere then generated for eachROI using a larger slidingwindowof
2000 frames.

Licking behavior
Licking datawas collected using a capacitive sensor on thewaterspout.
Well trained mice showed a higher proportion of licks (pre-licking) in
the region immediately preceding the reward in R (Supplementary
Fig. 1). This anticipatory licking behavior continued for a few laps inUR
(5 ± 1 lap) and decayed exponentially (Fig. 1e) except for some animals
(4/12) that randomly licked in later laps. To calculate anticipatory
licking inUR,wedefined a reward zonewhich started from the average
track position at which the animal started pre-licking in R and ended
after teleportation. We calculated the presence of any licks within this
zone to quantify anticipatory licking in UR in the absence of a reward.
The lap where pre-licking stops in UR was then defined as the lap
following 2 consecutive laps with an absence of these licks.

Position decoding
We trained a naive Bayes decoder (scikit-learn, v1.0.2, Python81) to
predict the spatial location of the animal on the linear track from
population activitywithin eachmouse. Population activity consisted of
ΔF/F traces from all identified cells organized as NxT, where N is
number of cells and T is the total number of frames from an imaging
session. Each lap traversal on the 2m track was discretized into
40 spatial bins (each 5 cm wide). Time periods where the animal was
stationary were filtered out (speed <1 cm/s) and the decoder was only
trained on frames belonging to running periods >1 cm/s. Running
behavior and population activity before and after filtering is shown in
Supplementary Fig. 3 and Fig. 1c, respectively. To ensure decoder
performance was not confounded by teleportation, we considered the
end of the track as continuous with the beginning of the track so that
the topology of the track was treated as a circle.

To assess how well a decoder trained in R was able to decode the
animal’s spatial location in other conditions (Fig. 1d–g), the decoder
was trained on the first 60% of laps in R. The resulting model was
evaluated on the remaining laps in R and on all laps in UR and RR
(Fig. 1d). Quality of fit was assessed by calculating the coefficient of
determination (R2) between the actual location of the animal and the
location predicted by the decoder. Decoder error was quantified as
difference in actual and decoded position in cm (Fig. 1g). We also
trained and tested decoders within each condition in each mouse
(Supplementary Fig. 13). Here, to assess decoder performance and to
account for population activity changes across time, we employed a
cross-validation approach by sliding the tested laps (20% of laps) by
one each time and training on the remaining laps (80% of laps). Fur-
thermore, to account for different numbers of laps across conditions,
we down sampled each condition tomatch the conditionwith the least
number of laps.

Decoder performance with different behavioral parameters
Licking behavior. To analyze the relationship between decoder error
and licking, we identified the lapwhen licking had stopped inURwhen
2 consecutive laps had no licks, and then divided the data into laps
before licking stopped (REhigh, before licking stops) and laps after
licking stopped (RElow, after licking stops). We found that if we instead
used different criteria to identify when licking had stopped, i.e., the
first lap with no licks, or 4 consecutive laps with no licks, our results
were unaffected. This was also true if instead of defining when licking
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stopped in URwe simply grouped laps together based on the presence
or absence of licks (Supplementary Fig. 4). However, with 6 con-
secutive laps with no licks, our results differed (Supplementary Fig. 4).
We obtained the lap wise decoder fit (R2) and lick frequency in UR in
each animal and ran a rolling average with a sliding window of 3 laps
(Fig. 1e). The average decoder fit across laps formed anS-shaped curve.
We fit this mean R2 to a reverse Boltzmann Sigmoid curve (scipy.-
curve_fit, v1.7.3, Python, Fig. 1e, coefficient of determinationof curvefit
with mean decoder = 0.94). To calculate the inflection point at which
the rate of decrease in R2 reaches themaximum,we calculated the first
point where the second derivative of the fit reached 0 (lap 10, Fig. 1e).

Time taken to complete a lap. This was calculated as the total time (in
seconds) taken by the animal to run from 0 to 200 cm. We assessed if
there was any correlation between the decoder fit and the time the
animal took to complete a lap. To do so, we created a histogram of the
distribution of time taken to complete a lap in R and UR (Supple-
mentary Fig. 5). For each animal, we divided the laps in UR into those
that overlapped with the histogram in R (Matched velocity laps) and
those that did not (Slower velocity laps). The average time taken to
complete a lap in the matched laps was 7.34 ± 0.46 s in R and
7.41 ± 0.40 s in UR. The slower speed laps took 19.99 ± 1.85 s. Most of
the laps belonged to the Matched speed laps and consisted of 70% of
the total laps run by all animals in UR. Results are shown in Supple-
mentary Fig. 5.

Engagement with VR—approach behavior. In R, mice slowed down
as they approached the end of the track. We postulated that if mice
were continuing to pay attention to where they were in VR when
reward was removed, they would display a similar approach behavior.
As a control, we first recorded running behavior of trained animals in
the dark (n = 6), without any visual cues, to ensure that well trained
mice were not displaying a stereotypical behavior independent from
VR. To assess approach behavior, instantaneous velocity was calcu-
lated at each point along the 2m track. This velocity trace was then
smoothed by averaging it over 5 cm bins. In the dark, there were no
signs of stereotyped behavior that looked like approach behavior
(Supplementary Fig. 6A). The degree of this approach behavior at the
end of the track was calculated as the ratio between lap velocity in the
middle (100–150 cm) and end (175–200 cm) of the track as indicated
above the traces in each condition. On average (mean± 95% CI), this
ratio was 1.01 ± 0.03 in the Dark, 1.3 ± 0.02 in the Rewarded condition
and 1.22 ± 0.02 in the Unrewarded condition. Engaged laps in
each animal after licking stops (RElow) were then defined as laps
where the approach ratio was greater than or equal to mean ±
1.5 * standard deviation of the ratio in the Rewarded Condition (rest
were defined as disengaged laps). In total, number of laps in
each condition were obtained as follows: REhigh:Engaged = 90,
RElow:Engaged = 170, RElow:Disengaged = 74. Mean ± 95% CI approach
ratio in each condition: REhigh:Engaged = 1.26 ±0.04, RElow:Engaged =
1.3 ± 0.02, RElow:Disengaged 1.02 ±0.03. To ensure matched behavior
in Rewarded and RElow conditions and that the disengaged laps do not
skew our results, only engaged laps were extracted from animals for
further analysis. Only one animal continued to randomly pre-lick at
laps after our definition of lick stop. Of those laps (n = 10 laps), 5 were
classified as engaged and 5 as disengaged. Reanalyzing the data
excluding these laps did not change the decoder error. N = 3/6 animals
that went through the R-UR-RR paradigm had enough engaged laps
(>12) to define place fields and their results are displayed in Figs. 2
and 3. (see Supplementary Figs. 9 and 11 for all animals).

Engagement with VR—pupil measures. To obtain images with dark
pupils andhigh contrast around theborders of thepupils, pupil images
were inverted, and their brightness/contrast was adjusted. Pupil area,
pupil center of mass (COM), and blinking area were obtained using

FaceMap (v0.2.0, Stringer et al.80 2019). Pupil data during blinking
periods (frames where blinking area <mean – twice the standard
deviation of the blinking area) was removed and the pupil data was
interpolated to match the 2-photon imaging frame rate (30 fps). The
pupil data was filtered to exclude time periods where the animal was
immobile (speed <1 cm/s).

Pupil area correlation. To obtain a pupil area trace for each lap, we
binned the track into 40 bins (5 cm wide) and calculated the mean
pupil area of each bin. For each mouse, the average pupil area of
each bin across all laps in the familiar rewarded condition was cal-
culated and served as a template pupil area trace. The pupil area
correlation was then measured as the Pearson correlation coeffi-
cient between the template pupil area trace and the lap’s pupil area
trace. High pupil area correlation laps were defined as laps whose
pupil area correlation >= mean − 1.5 * std of the pupil area correla-
tion for rewarded laps.

Mean eye movement. Eye movement for each frame in a condition
was calculated as the difference between the pupil’s center position
and the mean center position of the pupil during the condition. The
mean eye movement for each lap was then calculated.

Blinking ratio. Defined as the number of frames defined as blinking
periods divided by the total number of frames in each lap.

Freezing ratio. Defined as the number of frames where the animal was
immobile (speed < 1 cm/s) divided by the total number of frames in
each lap.

Defining place fields
Place fields were identified as described in previous studies44,67,75

with a few key differences. The 2m track was divided into 40 posi-
tion bins (each 5 cm wide). The running behavior of the animal was
filtered to exclude time periods where the animal was immobile
(speed < 1 cm/s). Filtering was done to ensure that place cells were
defined only during active exploration. In UR, only RElow frames
after the licking stopped (see section on “Licking behavior”) were
included for place cell analysis. Separately, RElow:Engaged laps only
were included for place cell analysis (Figs. 2 and 3, see “Animal
engagement with VR” section). Place fields across the entire track
were extracted if they began firing on the track (see clipped cells at
the end of the track in Fig. 2b). Cells that began firing at or after
reward delivery and during teleportation were excluded from this
analysis (although see Reward cells below). Extracted place fields
satisfied the following criteria and the same criteria was used for all
conditions and all mice: 1. Their width was > 10 cm (except for fields
that are clipped at the end of the track). 2. The average ΔF/F was
greater than 10% above the baseline. 3. The average ΔF/F within the
field was >4 times the mean ΔF/F outside the field. 4. The cell dis-
played calcium transients in the field on >30% of laps. 5. The rising
phase of the mean transient was located on the track. 6. Their
p-value from bootstrapping was <0.0575. Multiple place fields within
the same cell were treated independently.

Place field parameters
To calculate the various place field parameters, we binned the track
into 40 bins (5 cmwide) andmeasured themean ΔF/F of each bin. The
data of eachplacefieldwas a Lx40matrixwhere L is the number of laps
traversed by the animal. For all measures other than out-of-field firing
and spatial correlation, transients outside the defined place field
region were removed.

Center of mass (COM). The COM from all traversals L was calculated
as described in ref. 68. Briefly, COM for each traversal was
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calculated as,

COML =
P

iFixiP
iFi

where F is the ΔF/F in each bin i and xi is the distance of bin i from the
start of the track.

Reliability. Reliability of a place cell is the consistency with which it
fires at the same location across multiple lap traversals. To calculate
this, we computed the Pearson correlation between each lap traversal
to obtain an L × Lmatrix. To obtain the reliability index, the average of
this correlation matrix was multiplied by the ratio of number of laps
with a significant calcium transient within the field and the total
number of laps. The reliability index is 1.0 if the cell fires at the same
location in each lap and 0.5 if it fires at the same position but only in
half the laps, and so on.

Out/in placefieldfiring ratio. Thiswas computed as the ratiobetween
themeanΔF/F in bins outside the placefield and themeanfiring in bins
within the place field.

Width. Width of the place field was computed as the distance between
the spatial bin at which the mean place field rose above 0 and the
spatial bin when it decayed back to 0. For place fields at the end of the
track thatwere clipped the end of the place fieldwas considered as the
end of the track.

Firing intensity. Firing intensity of the place field was calculated as the
peak ΔF/F of the mean place field.

Population vector correlation. To determine level of similarity in
spatial representations from lap-to-lap in the different conditions,
population vector (PV) correlations were calculated. For each of
the 40 spatial bins, population vectors were defined as the mean
rate of firing for each place cell in that bin. The correlation between
the population vector in one lap versus another lap was then cal-
culated and the correlations were averaged over all posi-
tions (Fig. 2a).

K-means clustering. K-means clustering was performed on the cal-
culated lap-wise population vectors. The elbow method was used to
determine the optimal number of clusters. For all animals, themethod
determined this to be 3. K-means clustering was performed 1000
times. Each time, the Rewarded cluster was determined as the cluster
ID towhichmost rewarded laps belong to. Theprobability of all laps (in
R, UR and RR) belonging to the Rewarded cluster was then calculated
over the iterations (Fig. 2a).

Spatial correlation with Rewarded condition. To calculate the
consistency of firing of the place cells defined in R across different
conditions, we calculated the Pearson correlation coefficient
between mean place cell activity defined in R and the mean of the
L × 40 matrix of the same cells in other conditions. The within-
session correlation was calculated from control animals (n = 6
mice). The control rewarded condition (the duration control mice
were in this condition matched experimental mice that experi-
enced R-UR-RR) was divided into two halves and the correlation
coefficient was calculated between the mean place cell firing in the
two halves.

Place field parameters in DREADD experiments. All place cells and
associated parameters were calculated and quantified as described
above for R-UR-RR experiments.

Reward over-representation
To compute the density of place cells along the track, the COM of all
place fields in all animals were fitted to a gaussian distribution
(mean± standard deviation of the gaussian distribution in cm in dif-
ferent conditions, R: 114 ± 55, UR: 102 ± 54, RR: 112 ± 58, N: 108 ± 53,
DREADD Experiments: R: 110 ± 55, UR: 103 ± 54, Before Saline: 113 ± 55,
After Saline: 114 ± 54, Before CNO: 113 ± 57, After CNO: 109 ± 56, Before
DCZ: 113 ± 56, After DCZ: 106 ± 55) and a uniform distribution to
extract regions of place cell overrepresentation (Figs. 3d–f and 4k–m
and Supplementary Figs. 11C, 15G, 17E, 18E). To compare changes in
place field density across conditions between the middle of the track
(50–150 cm) and endof the track (150–200 cm),wedivided themiddle
of the track into 50 cm bins and averaged place cell density across
the bins.

Reward cells
Reward cells were defined as described in24. Briefly, a cell was defined
as a reward cell if it fired at the reward zone on the track (40 cmbefore
reward) and around reward delivery (2 seconds before and after
reward delivery) in both R and NR. The reward zone on the track was
chosen based on the area of high place field density before the reward
in R and N (Supplementary Fig. 14A). In total, we found 43 such cells
from 6 animals, both on track and around reward delivery (Supple-
mentary Fig. 14A). These cells constituted 0.9% of all active cells
recorded. To compare reward cell firing across all conditions, we
computed the lap wise firing of these cells in time around reward
delivery (Supplementary Fig. 14). Their COM in time around reward
delivery, reliability and correlation with R was then calculated similar
to place cells.

Axon imaging analysis
To characterize the activity of VTA axons, their activity was divided
into time and positional bins. For positional bins, the 2m track was
divided into 40 position bins (each 5 cm wide) and the mean fluor-
escent activity in each bin for every lap was calculated. For time bins,
we aligned each lap with the reward delivery and divided the lap into
40 time bins. The average time to reward was 11.9 s (±0.25 s, SEM) and
the time after reward was 2 s. Therefore, to align each laps reward
delivery andmaintain roughly equal time bins, the time before reward
was divided into 34 time bins and the time after reward was divided
into 6 time bins. To account for potential shifts in baseline fluores-
cence in both position and time binned data, the binned fluorescence
data was subtracted by the minimum bin fluorescence for each lap.
The binned data was then normalized by dividing by themaximumbin
fluorescence for each mouse and pooled across mice. Finally, the
average binned fluorescence was calculated for each task condition.

DA ramp slope and max. To characterize the ramping activity
observed in VTA axons, the maximum and slope of the time binned
fluorescence data were calculated for each lap. The maximum was
defined as the maximum bin value of the time binned fluorescence
data for each lap. The maximum values for each lap were then nor-
malized by dividing by the average maximum value in the Rewarded
condition for each mouse. To calculate the slope of the curve in the
Rewarded condition, the maximum value near the end of the track
(within 15 bins of lap end) and the minimum value near the beginning
of the track (within 25 bins of lap start) were determined for each lap.
In all other experiment conditions, the range of bins used to find the
maximum and minimum values were restricted to the nearest and
furthest bins where the maximum and minimum were found in the
Rewarded condition for each mouse. A line was then fit to the data
points between the defined maximum and minimum values using the
matlab fitlm function. The slope of this line was found and normalized
by dividing by the average slope in the Rewarded condition for each
lap. The slope*max was calculated as the product of the slope and
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maximum values for each lap and was normalized by dividing the
average slope*max in the Rewarded condition for each mouse. The
average maximum, slope and slope*max in each experimental condi-
tion were calculated for each mouse.

Velocity encoding. To investigate velocity encoding in a VTA axon,
we aligned the activity of the axon to motion initiation. Motion
epochswere identifiedasperiodswhere the animal’s velocity≥1 cm/
s for at least 1 s. Motion epochs were aligned tomotion initiation, or
the first framewhere velocity ≥1 cm/s. TheΔF/F data and velocity 2 s
prior to motion initiation and 8 s after motion initiation were col-
lected for each motion epoch. Velocity was normalized by dividing
by the maximum velocity of each motion epoch. The average ΔF/F
andvelocityofallmotionepochswascalculatedforeachexperiment
condition.

Statistics
For data distributions, a Shapiro–Wilk test was performed to verify if
the data was normally distributed. If normality were true, where
applicable, a paired or unpaired Student’s t test was used. For non-
normal distributions, a paired Wilcoxon signed rank test or an
unpaired Mann–Whitney U-test was used. To compare between dis-
tributions, a two-tailed Kolmogorov–Smirnov (KS) test was used. For
samples with five data points or less, only a non-parametric test was
used. Multiple comparisons were corrected with Bonferroni post hoc.
Throughout the manuscript, boxplots are plotted to display the full
distribution of the data. The box in the boxplot ranges from the first
quartile (25th percentile) to the third quartile (75th percentile) and the
box shows the interquartile range (IQR). The line across the box
represents the median (50th percentile). The whiskers extend to
1.5*IQR on either sides of the box and anything above this range is
defined as an outlier. Significance tests were performed with and
without outliers. P-values calculated without outliers have been dis-
played in thefigurepanels. Tomodel the probability distribution in the
datasets and get an accurate idea of the data shape, a kernel density
estimate was fitted to the data distribution and is shown alongside
histograms. Cumulative probability distribution functions were com-
pared using a KS test. We employed estimation statistics to ascertain
the level of difference between distributions by using the DABEST
(v0.3.1, Data Analysis with Bootstrap-coupled Estimation) package82.
Estimation plots display the median difference between two condi-
tions against zero difference, with error bars displaying 95% con-
fidence intervals of a bootstrap generated difference (5000
resamples). A kernel density fit (shaded curve) on the resampled dif-
ference is also displayed alongside. This difference was compared
against zero. Correlations were performed using Pearson’s correlation
coefficient. Data preprocessing and analysis was done on MATLAB
(Mathworks, Version R2018a) and Python 3.7.4 (https://www.python.
org/).

Figure graphics
All figure graphics including Figs. 1a, b, 4b, c, and 5a and Supplemen-
tary Figs. 13A and 15A were created using BioRender.com.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw imaging data are extremely large and not feasible for upload to an
online repository but are available upon request at sheffield@uchica-
go.edu. Processed source data for all figures and associated statistical
analysis are provided with the paper. Source data are provided with
this paper.

Code availability
Scripts used for data analysis are available on Github (https://github.
com/seethakris/HPCrewardpaper).
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