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Prioritizing autoimmunity risk variants
for functional analyses by fine-mapping
mutations under natural selection

Vasili Pankratov 1,5, Milyausha Yunusbaeva 2,5, Sergei Ryakhovsky 2,
Maksym Zarodniuk 3, Estonian Biobank Research Team* &
Bayazit Yunusbayev 1,2

Pathogen-driven selection shaped adaptive mutations in immunity genes,
including those contributing to inflammatory disorders. Functional char-
acterization of such adaptive variants can shed light on disease biology and
past adaptations. This popular idea, however, was difficult to test due to
challenges in pinpointing adaptive mutations in selection footprints. In this
study, using a local-tree-based approach, we show that 28% of risk loci (153/
535) in 21 inflammatory disorders bear footprints of moderate and weak
selection, and part of them are population specific. Weak selection footprints
allow partial fine-mapping, and we show that in 19% (29/153) of the risk loci
under selection, candidate disease variants are hitchhikers, and only in 39% of
cases they are likely selection targets.We predict function for a subset of these
selected SNPs and highlight examples of antagonistic pleiotropy.We conclude
by offering disease variants under selection that can be tested functionally
using infectious agents and other stressors to decipher the poorly understood
link between environmental stressors and genetic risk in inflammatory
conditions.

Pathogens exerted strong selective pressure on human immune traits1,2.
Detecting the genetic footprints of these selection events can help us
identify genotypes that were important for survival earlier in life and
understand their later-life adverse consequences for immune-related
diseases. This is a half-century-old idea of antagonistic pleiotropy. It was
initially proposed to explain ageing3,4 but later was invoked to explain
autoimmunity5,6 and other human traits7. Indeed, genomic evidence
suggests that immune-related genes were targets of natural selection8–12.
Accordingly, genetic risk loci for autoimmune diseases also bear signals
of natural selection, represented by extended haplotypes12,13. These
findings, however, can be explained by two competing models: causal
variants in these autoimmunity risk loci were driving selection signals, or
they were in linkage disequilibriumwithmutations undergoing selective
sweep, i.e., hitchhiking5,14. If causal variants were driving selection

signals, they are expected to have a tangible effect on underlying
molecular traits and be easier to detect and study experimentally. Such
variants are promising for functional analyses to understand their role in
the pathogenesis of immune-mediated diseases13–17.

Given that some risk SNPs have adaptive history, an important
next step is to understand their function by testing various environ-
mental factors, assuming a connection between the selective agent
and disease trigger. For example, microbial exposure exerted strong
selective pressure on immunity genes both in humans1,18,19 and other
organisms20,21 and at the same time is known to trigger many auto-
immune diseases22,23. Hence, it can be a useful key for discovering risk
allele function in early pathogenic events.

Currently, there are only a few examples suggesting a potential
link between natural selection, resistance to pathogens and disease
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risk. For example, celiac disease risk SNP rs3184504 in the SH2B3 gene
and Crohn’s disease SNP rs601338 in the FUT2 gene, where we have
evidence that candidate causal variants were under selection and
modulate resistance to pathogens24–27. This hypothetical link between
natural selection and disease risk remains unexplored since fine-
mapping the adaptive mutation in the selective sweep signal is chal-
lenging. Earlier works that tested autoimmune risk loci for selection
used ad-hoc significance thresholds, chip genotyping data with low
SNP resolution (one SNP every 6–10 kb, on average)12,13, and lacked
powerful methods to localize adaptive mutations, so-called selection
targets28. That, however, has changed recently with key methodolo-
gical improvements29,30. More importantly, earlier works that focused
on autoimmune risk loci12,13 could detect only strong signals of selec-
tive sweeps, which are rare events and leave little genetic variation to
fine-map the sweep-driving mutations, the selection targets. In con-
trast, weak and moderate selective sweeps are harder to detect, but
once identified, their sweep-driving SNP is easier to locate. Therefore,
an important question is whether selection targets related to immune
phenotypes and inflammatory conditions evolved under strong,
moderate, or weak selection regimens and can be pinpointed.

In this study, we report key progress in understanding the evolu-
tionary history of the genetic component of inflammatory conditions.
We use a recently proposed Relate approach31 to build local trees for
candidate risk SNPs and then the CLUES method to evaluate evidence
for natural selection by computing the relative likelihood of selection
scenario over neutrality, coefficient of selection, and allele frequency
trajectory32. This powerful approach was applied to a large dataset of
over 2300 fully sequenced genomes of Estonian Biobank 33,34. We show
that whenever risk loci associated with inflammatory conditions show
evidence for natural selection, selective sweep intensitywas likelyweak
or moderate. This is an important finding since it facilitates fine-
mapping the selection target in the sweeping region. We fine-map
selection targets in 153 risk loci that show evidence for selection. This
allowed us to distinguish evolutionary scenarios underlying selection
sweep signals within analyzed risk loci, unlike previous haplotype-
based approaches. Namely, evolutionary scenarios, where candidate
causal SNPs likely evolved under positive selection orwerehitchhiking,
that is, in linkage disequilibrium with adaptive mutation. Thus, the key
contribution is that we identify candidate causal SNPs under selection
that are promising candidates for experimental study. In addition, we
suggest thatmicrobial exposure can be relevant context tomodel SNP
function since microbial agents are well known to trigger
autoimmunity22,23 and were likely selective agents among other stres-
sors. This is an important step to overcoming the current challenges of
finding the disease variants and relevant physiological context to study
their function in pathogenesis.

Results
Evidence for natural selection corrected for population
demography
To test whether autoimmunity-associated loci evolved under natural
selection, we started with 4331 SNPs that were reported by ref. 35 as
candidate causal SNPs in 535 unique GWAS hits (“index” SNPs) for 21
autoimmune conditions (Supplementary Fig. 1). Each candidate SNP in
Farh et al.35 was reportedwithPICS score (Probabilistic Identificationof
Causal SNPs) reflecting its probability to be causal. We included
additional 6156 SNPs fromEstonian Biobankwhole-genome sequences
if they were in high LD (linkage disequilibrium measured as r2≥0.8)
with the 4331 SNPs from ref. 35. This resulted in 10487 SNPs that we
refer to as candidate causal SNPs throughout the text (Supplementary
Data 1). For natural selection test, weused the CLUES tool version 1.032,
which assesses the goodness-of-fit between natural selection and
neutrality scenarios for the tested SNP, i.e., perform likelihood ratio
test (logLR). Specifically, CLUES can use the properties of the SNP
genealogy (local tree) to infer the allele frequency trajectory:

increasing and decreasing trajectories yield positive or negative
selection scenarios aswell as the selection coefficient (seeMethods for
the exact interpretation of s).

To minimize spurious selection signals due to genetic drift in the
history of the studied population, we simulated the demographic
history of the Estonian population and estimated the logLR cutoff
(Supplementary Fig. 2a, b). Namely, we used the 95% percentile of the
simulation-based logLR distribution (logLR ≥ 1.59) as our neutrality
rejection threshold (Supplementary Fig. 2b).

We tested evidence for natural selection for a subset of 9102
candidate SNPs (out of the 10487 candidate causal SNPs in high LD) if
they mapped on Relate-inferred local trees and passed all the filtering
criteria for CLUES. These tested SNPs represent candidate causal var-
iants for 535 risk loci that fall into 464 LD blocks (r2 ≥0.6) (Supple-
mentary Data 2). On average, each risk locus was represented by 17
tested SNPs (minimum one and maximum 158). If tested SNPs had a
median logLR above the cutoff of 1.59, we additionally required nearby
SNPs to have consistently high values to suggest a selection signal. In
this way, we identified 94 LD blocks containing 153 risk loci with SNPs
showing consistent selection signal (logLR ≥ 1.59). We, therefore, infer
that ~28% (153/535) of the risk loci for various inflammatory conditions
contain at least one or two SNPs that demonstrate consistent evidence
for natural selection.

Strength of selection and mappability of mutations driving
selection
Although traces of strong (high values of s) selective sweeps are easier
to detect at the genomic level, fine-mapping sweep-driving mutations
within such traces, i.e., sweep regions, is harder. Strong selection
quickly brings the selected haplotype with linked SNPs to high fre-
quency, thereby removing local SNP variation and leaving less time for
recombination to restore flanking SNP variation that would be infor-
mative for fine-mapping. In contrast, weaker selective sweeps allow for
more recombination and create local differences in SNP variation,
making fine-mapping feasible.We, therefore, explored the distribution
of selection coefficients (summarizes strength of selection over a time
period) among tested candidate SNPs (Fig. 1a) to learn the proportion
of risk loci where fine-mapping is feasible. When we focused on the
SNPs in the 153 risk loci that have consistent evidence for selection, we
found that tested SNPs mostly corresponded to sweep signals with
moderate selection coefficients (circles and bars in orange, Fig. 1a, b),
and only a few SNPs demonstrated strong selection sweep. Here, we
define strong, moderate, and weak selection events following the
Schrider and Kern work36. These findings suggest that our candidate
SNPs for downstream analyses changed in frequency relatively slowly,
and there was time for recombination to counteract the sweeping
effect. Our estimates, therefore, suggest that the local patterns of
logLR variation within the reported 153 risk loci can be informative in
prioritizing sweep-driving SNPs.

Fine-mapping selected SNP using local logLR variation can attain
very high resolution. This is because within a given haplotype block
under selection, local trees can be inferred for very small chunks
bounded by recombination. Consecutive local trees, while correlated
in topology and branch length, would still slightly differ from one
another due to historical recombination(s). Therefore, sweep-driving
SNPs separated from linked neutral alleles by recombination are
expected to yield higher logLR values. This principle was used in the
original study32 to fine-map the selection targets within sweep regions.

Next, we also inferred the approximate age of each tested SNP.We
show that most of the candidate SNPs, including a subset with evi-
dence for natural selection (significant at logLR≥1.59), arose before the
out-of-Africa event (Fig. 1c). As expected, strongly selected SNPs (on
the bottom right) all have relatively recent allele ages since older ones
quickly reached fixation and are absent in the analyzed polymorphic
SNP set.
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Population-specific selection in disease risk loci
Sincemost of the candidate SNPs and selection targets in the Estonian
population arose before out-of-Africa, we expect they are partly
shared with other European populations. For comparison, we con-
sidered genetically close Finns (FIN) and more distant British (GBR)
and Italians (TSI). Figure 1d shows that most candidate SNPs and top
disease candidates with PICS ≥ 0.5 have similar allele frequencies in
European populations. Next, we tested all the candidate SNPs for
selection in Finns, British and Italians using Relate/CLUES approach
and compared concordance (Fig. 1e). For most candidate SNPs that

likely evolved neutrally in Estonians (data points in black at the lower
left corner, Fig. 1e), logLR values in other populations were small and
varied randomly, and hence, we observed a low correlation. We then
focused on a subset of SNPs that showed increasing evidence for
selection in Estonians (at logLR ≥ 1.59 and logLR ≥ 3) to see if selection
signals are shared with other European populations. While there was
an increase in correlation with increasing evidence for selection at
logLR ≥ 1.59 (data points in orange, Fig. 1e) and logLR ≥ 3.0 (Supple-
mentary Fig. 3), the overall agreement between populations was low.
Low reproducibility across populations might be due to the

LogLR >= 1.59

Weak Moderate Strong

0.0013 0.013

0

10

20

−4 −3 −2 −1

Log10(s)

Lo
gL

R

Weak Moderate Strong

0.0013 0.013

0

200

400

600

−4 −3 −2 −1

N

Out of Africa

Europe−Asia split

10

100

1000

−4 −3 −2 −1

M
ut

at
io

n 
ag

e,
 k

ya

rho = 0.97
p = 0

PICS >= 0.5
rho = 0.98
p = 7.07e−63

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

DAF EST

D
A

F
 F

IN

rho = 0.97
p = 0

PICS >= 0.5
rho = 0.96
p = 3.41e−55

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

DAF EST

D
A

F
 G

B
R

rho = 0.93
p = 0

PICS >= 0.5
rho = 0.92
p = 5.80e−40

0.00

0.25

0.50

0.75

0.00 0.25 0.50 0.75 1.00

DAF EST

D
A

F
 T

S
I

rho = 0.19
p = 4.16e−71

EST logLR >= 1.59
rho = 0.3
p = 1.03e−24

0

5

10

15

20

0 5 10 15 20

LogLR EST

Lo
gL

R
 F

IN

rho = 0.17
p = 1.09e−55

EST logLR >= 1.59
rho = 0.28
p = 2.39e−21

0

5

10

15

20

0 5 10 15 20

LogLR EST

Lo
gL

R
 G

B
R

rho = 0.15
p = 1.82e−44

EST logLR >= 1.59
rho = 0.15
p = 3.05e−07

0

5

10

15

20

0 5 10 15 20

LogLR EST

Lo
gL

R
 T

S
I

a b c

d

e

Log10(s) Log10(s)

Fig. 1 | Relationship between logLR, selection coefficient, and allele age for
9102 candidate SNPs and reproducibility of selection signals between
populations. a Evidence for selection (logLR, Log-transformed likelihood ratio of
the selection scenario) versus the selection coefficient. The horizontal dashed line
in orange indicates the neutrality rejection threshold. Vertical dashed lines (in gray)
separate weak, moderate and strong selection coefficients, following the Schrider
and Kern work36. b SNP counts with weak, moderate and strong selection coeffi-
cients amongneutral and significant calls (above neutrality threshold, logLR ≥ 1.59).
cDerived allele age for tested candidate SNPs and their selection coefficients. SNPs
with evidence for selection (logLR≥ 1.59) are shown in orange. d Spearman corre-
lation (rho) of candidate SNPs’ derived allele frequencies between populations;
frequencies in Estonians are compared with Finns (FIN), British (GBR) and Italians

(TSI) from the 1000 Genomes Project. Rho and p-values (upper left corner) for the
total SNP set are in black, and for most likely causal SNPs (PICS > 0.5) are in red.
e SNP-wise logLR estimates in Estonians are compared to that in Finns (FIN), British
(GBR) and Italians (TSI). Spearman correlation (rho and p-value in orange) is
computed separately for SNPs (1105 out of 9102) with evidence for selection in
Estonians (points in range, logLR≥ 1.59) and the total set of 9102 SNPs (rho and
p-value in black). Nominal p-values are reported with no multiple testing correc-
tion. In both d and e the trend line is obtained by fitting a generalized additive
model to the corresponding data and the shaded area corresponds to its’ 95%
confidence interval. Raw data for all the figure panels are provided in
Supplementary Data 2.
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population-specificity of weak to moderate selection signals and var-
iance in logLR estimates.

Prioritizing selection targets among candidate causal variants
It was shown in the original study that the logLR could be used to fine
map the sweep-driving SNP32, and themapping accuracy is only limited
by the extent of linkage disequilibrium (See Fig. 8A in ref. 32). We
examined the logLR values for a consecutive set of candidate SNPs
within the 153 risk loci and picked the highest scores to pinpoint the
SNP(s) that likely drove the selection signal. We then asked whether
these predicted selection target SNPs matched the likely causal var-
iants within the risk locus. For that, the highest logLR values were
compared with the highest PICS (Probabilistic Identification of Causal
SNPs) scores; the latter estimates the probability of the candidate SNP
to be causal35. We identified a range of scenarios in this way (Fig. 2b),
and full results (graphs analyzed) for the 153 risk loci are available in
the Figshare repository (See Data availability statement and Supple-
mentaryData 3). For example, themost likely selection target SNPs and
their alleles matched the most likely causal variants and effect alleles
(Fig. 3a) or cases where the selection target SNP allele corresponded to
the protective allele of the top causal variant (Fig. 3b). These two
scenarios identify SNPs that are promising targets for downstream
functional analyses, and we report all such SNPs in Supplementary
Data 2 (“Promising SNPs”) and their LD blocks in Supplementary
Data 3. However, we often found that the prioritized selection targets
just happened to be nearby the top candidate variant (Fig. 3c, d). In
such cases, we looked at the haplotype phase and further defined sub-
scenarios (Fig. 3c, d). For example, in one case, the top candidate risk
allele for Multiple Sclerosis was hitchhiking with the selected allele,
and in another case (Fig. 3d), the top candidate protective allele for
Vitiligo was hitchhiking with the selected allele.

Our high-resolution analysis suggests that someof the 153 risk loci
contain multiple sweep signals that represent a composite of evolu-
tionary scenarios. Since selection signals often appear as an extended
region of depleted diversity, such complex scenarios could have been
missed by previous haplotype-based tests. For example, a causal SNP
might appear as a selection target locally, but our sequence data
combined with the Relate/CLUES approach can distinguish stronger
sweep signals nearby, attaining higher resolution (Supplementary
Fig. 4). In this case, one cannot rule out hitchhiking. We distinguish
such complex scenarios (Scenario C in Fig. 2) from clear examples of
hitchhiking (Scenario B in Fig. 2) and adaptive history for candidate
causal SNPs (Scenario A in Fig. 2). We additionally highlighted seven
risk loci, which could not be assigned to any of the A, B, and C major
scenarios since logLR estimates were missing for the top candidate
SNPs (D in Fig. 2). Figure 2 summarizes all the possible scenarios,
including complex ones and the number of times they were encoun-
tered (See Supplementary Data 3 an d Data availability statement for
the annotation graphs for the 153 risk loci used for this summary).
Thus, our high-resolution analysis shows that genomic signals of nat-
ural selection in disease risk loci stem from various evolutionary sce-
narios that could not be recognized in earlier studies.

Revisiting previous studies and the role of genetic hitchhiking
It has been long hypothesized that causal alleles for inflammatory
conditions were subject to genetic hitchhiking due to linkage dis-
equilibrium with selected SNPs. With a few empirical examples, the
role of this evolutionary scenario is poorly understood14. We analyzed
the largest collection of fine-mapped candidate SNPs for the largest
collection of inflammatory conditions. We found that in genomic risk
loci with selection, genetic hitchhiking (29/153, Fig. 2b) is quite fre-
quent and strong LD (r2 > 0.6) often complicates the identification of
selection target SNPs (57/153, see scenario C in Fig. 2b). We also
revisited earlier studies that reported positive selection for disease risk
alleles but which had limited resolution in terms of data used

(haplotype data) and methodology. For example, one of the pioneer-
ing works suggested that the celiac disease rs3184504*A variant in the
SH2B3 gene had adaptive history and possibly played a role in patho-
gen resistance27. Zhernakova et al.27 showed that this SNP variant
demonstrated strong evidence for positive selection based on the

Fig. 2 | Evolutionary scenarios for candidate causal SNPs based on logLR fine-
mapping. a Spatial organization of disease risk loci and selection test workflow.
Single disease risk loci (asthma and psoriasis) and multiple disease risk loci within LD
blocks (triangular heatmap) are shown schematically. Selection tests are performed
for each small chunk (red segments above triangular heatmap) within disease risk loci.
Nearby chunks, depending on local LD, have correlated local trees and evidence for
selection.We used this fact to additionally filter out spurious selection signals that are
not consistentwithnearby chunks. For example, a single chunkwith logLR=2.5 stands
out from adjacent chunks with logLR=0.5. b Evolutionary scenarios based on com-
paring SNPs with top logLR and PICS. The top row schematically shows three evolu-
tionary scenarios (A, B, C) discernible for the 153 disease risk loci with a consistent
signal of selection: (A) top candidate causal variant(s) (with the highest PICS value) is/
are likely sweep-driving mutation(s) (SNP(s) with the highest logLR value); (B) top
candidate causal variant(s) is/are hitchhiking; (C) complex scenario: top candidate
causal variant is either sweep-driving mutation itself or hitchhiking with a stronger
target of selection. Black arrows further classify evolutionary scenarios at the haplo-
type level (shown schematically on the bottom row) by clarifying whether selection
and hitchhiking affected the risk or protective allele. Arrows and numbers in green
summarize cases where allele information is missing. We, therefore, distinguish six
sub-categories at the haplotype level that are depicted on the bottom row. Full
annotation graphs for the 153 risk loci classified in this figure are available in the
Figshare repository (See Data availability statement). Raw data for this figure are
provided in Supplementary Data 3.
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haplotype-based iHS statistics (iHS = −2.597, p = 0.009). Monocytes
with this risk allele were demonstrated to have stronger, dose-
dependent expression of 3 inflammatory cytokines in response to
bacterial ligands27. We reanalyzed this risk locus and confirmed that
the rs3184504*A variant was under strong positive selection
(rs3184504, logLR = 16.8512) (Supplementary Fig. 5). However, in our
sequence data, we found novel variants in strong LD with the
rs3184504 SNP (r2 ≥0.9–1) that demonstrated comparable
(rs10774624, logLR = 15.28) and somewhat stronger evidence for
positive selection (rs653178, logLR = 21.97) (Supplementary Fig. 5).
Thus, with higher resolution, our analyses suggest that other SNPs in
strong LD are equally possible selection targets, and further work is
needed to verify the precise adaptive scenario for this genomic locus.

We next revisited one of the most comprehensive studies that
suggested a natural selection history for genes implicated in inflam-
matory diseases13. Raj et al.13 tested 416 risk SNPs for inflammatory
conditions using the haplotype-based iHS-score. They reported 21
SNPs with extreme iHS-scores (|iHS | ≥ 2) and suggested a positive
selection scenario for ~5% of the risk loci (21/416). We analyzed these
SNP regions and found that for most of these loci, CLUES (14 out of 21
SNPs had logLR< 1.59) yield surprisingly weak support for natural
selection, with logLR varying between 0.04–1.44. Only 7 out of the 21

previously reported SNPs showed evidence for natural selection at
logLR ≥ 1.59, and logLR estimates suggested relatively strong selection
(Supplementary Data 4). As suggested before, part of the discrepancy
might be due to the population specificity of positive selection. In
addition, picking extreme iHS scores (usually top 5%) does not guar-
antee a distinction between neutral drift and selection. Since logLR
tends to focus on smaller regions bounded by recombination and the
iHS score summarizes haplotype diversity over longer genomic
regions, we wanted to clarify the selection signal space where these
twomethods would agree. We compared iHS-scores, and logLR values
computed on the same Estonian Biobank sequence data. We found
that iHS scores did not follow increasing logLRvalues overmuchof the
logLR space (logLR between 1.59 and 10, Supplementary Fig. 6) but
agreed with logLR estimates (followed the linear fitted line) only for
the strongest selection signals (values over logLR > 12, Supplementary
Fig. 6e). which, on average, span longer genomic regions.

The positive and negative selection that we inferred represents
only two possible scenarios for the complex trait evolution. Both
theory and experimental evolution suggest that genetic loci involved
in resistance to pathogens might follow a frequency-dependent
selection37. This selection regime creates the so-called balancing hap-
lotypes. The best-known balancing haplotypes in humans (genomic
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Fig. 3 | Selection targets and hitchhikers among candidate risk SNPs.
a, b Disease risk and protective alleles are likely selection targets. c, d Disease risk
and protective alleles are hitchhikers. Graph rows represent five layers of annota-
tion, from top to down - logLR, PICS, Haplotypes, LD heatmap, and Genes. The top
row shows median logLR estimates with whiskers indicating minimum and max-
imum of three estimates. Whisker color reflects the sign and magnitude of the
selection coefficient estimated on the SNPderived allele. The dashed line separates
LogLR values (below) expected under the neutral demographic history of Esto-
nians. The values above suggest evidence for selection. The second row shows PICS
values for each candidate SNP reported in ref. 35. Candidate SNPs for multiple
diseases are shownwith different symbols. The symbol is bluewhen the risk allele is

ancestral and green when derived. The next row shows the haplotype structure in
the LD-block with respect to ancestral (blue) and derived alleles (green). Only the
two most common haplotypes (A and B) are shown with frequencies (in brackets)
estimated in 1800 Estonians. SNPs with logLR≥ 1.59 are highlighted with darker
colors, and risk alleles are indicated with solid margins. The fourth row shows a
heatmap of pairwise linkage disequilibrium between all the candidate SNPs from
ref. 35 even if they have r2 ≤0.6, which defines an LD-block region. The bottom row
depicts gene annotations from the Ensembl genome database (version 87, Human
genome build GRCh37). Raw data for all the figure panels are provided in Supple-
mentary Data 2.
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region under balancing selection) is the major histocompatibility
complex (MHC) locus38. This extended locus contains major genetic
risk factors (HLA alleles) for many autoimmune conditions39. We,
therefore, asked if any of the 9102 candidate SNPs outside the MHC
locus falls within balancing haplotypes in the human genome. We
screened haplotypes with strong evidence (top Beta scores) for bal-
ancing selection in European populations40 and found 565 candidate
SNPs (in strong LDwith eight index SNPs) that fell within the balancing
haplotypes (Supplementary Data 5). These SNPs were missed by the
logLR approach, which is not designed to detect balancing selection.
Thus, combined with the 153 loci under positive selection, eight loci
under balancing selection suggest that around ~30%of the risk loci (161
out of 535) for inflammatory conditions outside MHC contain variants
that were important for human adaptation.

Predicted function for candidate SNPs and selection targets
Most candidate SNPs for the 21 inflammatory diseases lie outside
coding genes35 and hence non-coding. Here we show that selection
targets among these candidate SNPs belong to the same non-coding
VEP categories as the rest of the candidate SNPs (Supplementary
Fig. 7a).While selection targetswere depleted in intergenic regions, we
observed no enrichment in coding region VEP categories (Supple-
mentary Fig. 7a). Similarly, no stronger conservation (Supplementary
Fig. 7b) or higher deleteriousness (Supplementary Fig. 7c) compared
to other candidate SNPs (Supplementary Data 2). Selection targets in

inflammatory disease risk loci are, therefore, more likely to affect gene
expression than amino acid sequence. To learn about the affected
genes and the cell/tissue context, we compared our 9102 candidate
SNPs with cis-acting quantitative trait loci affecting expression (from
here onwards, expression quantitative trait loci, eQTLs). Altogether,
we screened eQTLs characterized in 50 human body tissues/cells41,42

and 35 immune cell types and states (naïve, activated, and memory
cells) (Supplementary Data 6)42–46. By focusing only on statistically
significant eQTLs within each tissue and cell type (at a 10% false dis-
covery rate, FDR), we found 919 eQTL-tissue pairs for our candidate
SNPs (Supplementary Data 7). We then restricted our search to a nar-
row set of likely candidate SNPs (PICS >0.1) and summarized eQTL
matches by associated disease and tissue/cell type, where they affect
gene expression (Supplementary Fig 8a, Supplementary Data 7). It is
notable that these eQTLs belonged to a diverse set of body tissueswith
no enrichment in immune cells (fisher exact test p =0.104). Never-
theless, when we looked at the affected genes and their biological
function, most of them were enriched in immune response pathways,
such as, for example, the Th17 axis, which would be expected for
autoimmune diseases (Supplementary Fig. 8b). It should be empha-
sized, however, that most of the candidate variants tested (PICS >0.1)
cannot be explained by the eQTLs in the currently available tissues and
cell types (last column on the heatmap, Supplementary Fig. 8a).

Next, for the available top candidate variants with eQTLs, we
highlighted selection targets (logLR ≥ 1.59) and reported 17 matches

Fig. 4 | Inflammatory diseases and candidate SNPs under selection. a Heatmap
shows the number of selection targets for each disease (disease eQTLs) among
candidate SNPs annotated with eQTL. To provide background, we use ‘0’ to show
disease eQTLs that are not under selection. Tissue/cell context for each eQTL is
given in columns and highlighted schematically below the heatmap. Full

description of tissue/cell context and source studies are given in Supplementary
Data 6. Number of candidate SNPs for each disease with no eQTL in currently
published studies are summarized in the last column. b Selection target eQTLs in
blood cells and affected genes. Raw data for all the figure panels are provided in
Supplementary Data 6 and Supplementary Data 7. Created with BioRender.com.
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(Fig. 4a, Supplementary Data 6, Supplementary Data 7). These eQTL
selection targets were enriched in immune responsepathways, such as
T cell activation andpositive regulationof cytokine production (Fig. 5).
We highlighted several of these selection targets with eQTL data from
blood cells (Fig. 4b) since they would be easier to experiment using
relatively accessible blood samples. For example, the rs7528684-G risk
allele for Autoimmune thyroiditis, according to our eQTL data (Sup-
plementary Data 7), increases the expression of the FCRL3 gene in
several immune cells (Fig. 4b), which is also supported by prior evi-
dence. Namely, this rs7528684-G allele was shown to increase FCRL3
transcription by increasing the affinity of gene promoter to nuclear
factor-kB (NF-kB)47. Higher expression of the FCRL3 receptormediated
by this risk allele was implicated in many other autoimmune
conditions47, and a recent study on T regulatory cells clarified this
protein’s role inperipheral tolerance. This transmembraneproteinwas
shown to sense secretory IgA (SIgA), and this mechanism is important
to sense microbes at mucosal barriers48. Increased FCRL3 production
and interactionwith secretory IgA switch T regulatory cells towards an
inflammatory program, and these cells can no longer suppress CD4 +
and CD8+ T cell proliferation, resulting in inflammation. According to
our findings, the rs7528684-G allele, associated with this inflammatory
phenotype, was under positive selection. Hence, one can hypothesize
that this phenotype was beneficial, presumably, due to increased
sensitivity to IgA-coated microbes at mucosal barriers of the respira-
tory and gastrointestinal tracts, the two major routes of infection for
deadly pathogens49. The flip coin side is, however, the higher pro-
pensity to mount inflammatory response when T regulatory cells may
encounter IgA-coated commensals at mucosal surfaces. Indeed, IgA-
coated commensals are a common feature of dysbiotic gutmicrobiota
in many autoimmune conditions50.

Discussion
Pinpointing causal SNPs for complex diseases is challenging, and one
underutilized principle is looking for SNPs under natural selection. The
rationale is that suchvariantsmust strongly affect the trait to bepicked
by natural selection. Our work was motivated by this idea, and we
addressed several issues that hindered its application.We used a novel
methodology to show that approximately 28% (153 out of 535) of the
risk loci for various inflammatory conditions contain SNPs that were
important for adaptation. This fraction is substantially larger than

reported before (21/416 ~ 5%) for 10 inflammatory conditions13. We
attribute this to a better power of detectingweaker signals of selection
with the Relate/CLUES approach. Indeed, whenwe reproduced the iHS
selection test on Estonian dataset, focusing on the same 10 inflam-
matory conditions, we found that only ~6% of the risk loci had candi-
date SNPs under selection (29 out of 456 risk loci available in our
dataset) (Supplementary Data 2). We also show that while some
selection signals are shared across European populations, a sizable
portion detected in Estonian Biobank samples was not observed in
other tested populations. This finding may indicate region-specific
selection signals, and more populations need to be tested. Individual
selection targets, therefore, may not be transferable to other popula-
tions, even within Europe. Thus, while the principle of prioritizing
selection targets is universal, selection targets themselves need to be
established for each population separately. Population specificity of
positive selection also underscores possible regional differences in
environmental exposure and its impact on disease prevalence.

We next asked if we could fine-map selection target mutations in
these sweep regions. We showed that fine-mapping is possible by
demonstrating that most candidate SNPs within disease risk loci cor-
responded to weak and moderate sweep scenarios (selection coeffi-
cients). Only a few SNPs demonstrated signals of strong selection
(Fig. 1a). Weak and moderate selective sweeps leave more nucleotide
diversity flanking the selection target mutations. This is in contrast to
strong sweep signals that leave little information for fine-mapping and
that were reported by earlier studies12,13. The inferred weaker selection
signals for candidate SNPs also explain why previous studies found
fewer sweeps among risk loci12,13. For example, we applied the iHS
score used in previous studies and confirmed that it recovers only 4%
of the risk loci under selection in our Estonian sequencedata. Thus, the
higher gain is likely explained by better power but not by a higher
number of selection signals in the Estonian population. We also note
that our neutrality rejection approach helped us detectmore selection
signals at the cost of incurring small (5%) amounts of false rejections
that can be explained by target population demography (Supple-
mentary Fig. 2b). This is a small cost since the goal is to have more
promising risk loci with SNPs for experimenting in the future.

The selective sweep scenarios suggested by our analyses moti-
vated us to attempt to fine-map the sweep-driving SNP among the
candidate SNPs. By inspecting local logLR variation for candidate SNPs,
we show that in ~39% of the risk loci with selection signal (60/153),
candidate causal SNPs matched with the likely selection target SNPs.
Here, we note that, like in any fine-mapping effort, we prioritize, on
average,more thanone tightly linkedSNP tobea selection target,which
is inevitable, and this varies by linkage disequilibrium in the focal loci.

Interestingly, in ~19% (29/153) of the risk loci with selection signal,
most likely candidate SNPs were hitchhikers, where either risk allele or
protective allele was linkedwith the selectedmutation. Thus, based on
extensive empirical data, our study supports the idea that hitchhiking
contributes to the high frequency of inflammatory risk variants51.

In contrast to hitchhiking, the natural selection scenario that we
inferred for candidate causal SNPs in 60 risk loci can help address
some of the challenges in modern medical genomics. Namely, help to
prioritize risk loci and SNPs for functional analyses and find the phy-
siological context52. Indeed, most causal variants for chronic inflam-
matory diseases hide in the non-coding DNA, hindering their fine-
mapping within risk loci35,53, especially when the relevant physiological
context is unknown. As briefly mentioned before, the idea is that
natural selection picked adaptive variants if they had a strong effect on
the molecular traits serving better survival. In our case, we expect
thesemolecular traits to be involved primarily in immune response or
in immunometabolism, which ensures immunity at the organismal
level54. Hence, if adaptive mutations contribute to disease pathogen-
esis, the strong effect on the underlying molecular trait must be easier
to detect and study experimentally. Therefore, when considering

response to chemical
response to external stimulus

immune system process
cell surface receptor signaling pathway
cellular response to chemical stimulus

regulation of multicellular organismal process
response to organic substance

regulation of cell population proliferation
regulation of immune system process

cellular response to organic substance
positive regulation of gene expression

positive regulation of immune system process
positive regulation of multicellular organismal process

regulation of immune response
cellular response to cytokine stimulus

immune system development
regulation of cytokine production

regulation of cell activation
leukocyte activation

regulation of immune effector process
cytokine−mediated signaling pathway

positive regulation of cytokine production
T cell activation

2.5 5.0 7.5 10.012.5
Fold enrichment

B
io

lo
gi

ca
l P

ro
ce

ss

Fig. 5 | Biological pathways enriched for genes affected by disease eQTLs under
selection. Enrichment of eQTL target genes in GO Biological Process annotation
dataset (10.5281/zenodo.639996 Released 2022-03-22) is based on PANTHER
Overrepresentation Test77. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34461-9

Nature Communications |         (2022) 13:7069 7



multiple candidates across risk loci or within risk loci, variants with
adaptive history can be promising targets to prioritize for functional
study. Ourwork, thus, represents an importantmilestone in the overall
fine-mapping effort in the field.

More importantly, the adaptivemodel suggests that pathogens or
structurally similar symbiontsmay represent a relevant trigger to elicit
the regulatory function of candidate causal SNPs for inflammatory
conditions. The regulatory function of such SNPs in immune cells can
often go undetected and stay “silent“55 unless immune cells are trig-
gered by the stimulus which is specific to the disease56. In this work, we
attempted to link candidate SNPs for inflammatory conditions with a
set of predicted regulatory SNPs, the so-called eQTLs. Despite testing
eQTLs in a large number of tissues (50 body tissues) and immune cells
(35 immune cell types and states), we found only a few matches with
1902 candidate SNPs for the 21 inflammatory conditions (Supple-
mentary Fig. 8a). While alternative explanations are proposed57, we
attribute this to the lack of experiments with disease-specific tissues
and triggers among published eQTL datasets (Supplementary Data 6).
Indeed, it has been highlighted many times that external stimuli and
stimulus-specific regulatory responses are important for discovering
immune-related genetic variants in inflammatory conditions58,59. Our
findings inspired by the adaptive hypothesis offer promising candi-
dates to test the utility of the microbial exposure context in studying
causal variant function in autoimmunity.

We conclude our study by highlighting an example of a risk SNP
(rs7528684-G) that regulates the expression of a cell surface receptor
FCRL3. This receptor is important to sense invading microbes at
mucosal barriers, such as the gastrointestinal and respiratory tract.
While this sensing mechanism is important to clear pathogens at
mucosal barriers, the inflammatory response against mucosal sym-
bionts can be detrimental in the context of autoimmunity. Indeed,
when this receptor binds secretory IgA on T regulatory cells, this may,
under certain conditions, result in uncontrolled effector T cell
response and break immune tolerance48. We show that the rs7528684-
G allele that increases the production of this surface receptor FCRL3
was under positive selection. Hence, this phenotype associated with
pathogen detection was likely beneficial. However, the same allele is
associated with many autoimmune conditions and has an adverse
effect, albeit at the older age47. This phenotype is a promising example
of antagonistic pleiotropy that deserves further exploration.We report
a number of risk SNPs under positive selection that are associatedwith
late-onset inflammatory diseases (manifesting after the peak of
reproductive years) (Supplementary Data 2). Some of them may be
explained by antagonistic pleiotropy, provided that these late-onset
diseases are associatedwith improved reproduction or survival during
or before the reproductive period7.

Microbial exposure has long been used to trigger an autoimmune
response in animal disease models23. There are numerous examples
wherepathogens (viruses, bacteria, andparasites) areknown to trigger
human autoimmune disease and exacerbate it further22. For example,
tonsillar infection with Streptococcus pyogenes has been known for
decades to trigger and exacerbate psoriasis skin lesions60–62. Even in
celiac disease, the aberrant response to dietary gluten is initiated by a
viral infection63. Despite the accumulated evidence, infectious triggers
of autoimmune diseases, such as, for example, Herpesvirus, are known
to be common in a healthy population and do not lead to auto-
immunity. Therefore, the major knowledge gap is whether pathogens
interact differently with individuals having risk alleles to autoimmune
diseases, and that results in autoimmunity. Our study offers an
actionable list of 60 candidate risk loci to ask this question for various
autoimmune diseases using experiments that involve knownmicrobial
triggers22. Such experiments can shed light onmolecular pathways that
microbial exposure initiates in carriersof risk SNPs and illuminate early
events in pathogenesis. The latter is a poorly understood aspect of
autoimmunity with promises for treatment.

Methods
Genetic risk loci associated with autoimmune diseases and LD
blocks
In this study, we started with 593 unique genomic risk loci associated
with 21 autoimmune disorders and reported selection analyses for 535
loci with MAF>0.05, for which the previous study prioritized 4950
(4331 unique) potentially causal SNPs (“candidate SNPs”), each anno-
tated with a PICS (Probabilistic Identification of Causal SNPs) score.
PICS score reflects the probability of the candidate SNP to be causal
given the haplotype structure and observed pattern of association at
the locus35. As we are interested in evidence for positive selection not
only at thepotential candidate SNPsbut also at linked loci, in addition to
the 4331 unique candidate SNPs from ref. 35, we selected 6156 SNPs in
high LD (r2≥0.8) with at least one candidate SNP among the Estonian
Biobank samples with whole-genome sequences (see below for details
on the dataset used). As a result, we started our analysis with a list of
10487 SNPs (Supplementary Data 1) grouped around 593 unique risk
loci (index SNPs) but reported final results for 535 loci withMAF>0.05.
Since risk loci for different diseases can be in linkage disequilibrium
and, hence, clustered, we defined LD blocks to track selection signals
that can affect such clusters. For that, SNPs were grouped into LD-
blocks so that any 2 SNPs belonging to different LD-blocks had r2 < 0.6
(Supplementary Fig. 1). For individual risk loci and LD blocks, when risk
loci were clustered into LD blocks, we computed haplotypes and their
frequencies using the Haplostrips tool version 1.2.164. Disease-specific
risk alleleswere retrievedeither fromref. 35or from IEUGWASdatabase
using ieugwasr R package version 0.1.565. Handling VCF files with
sequence data, filtering, subsetting, as well as LD calculations was done
using bcftools version 1.966 and vcftools version 0.1.1467.

Evidence for natural selection based on local trees
A typical genomic risk locus for a complex disease usually spans sev-
eral tens of kilobases and contains multiple potentially causal SNPs.
Such genomic regions contain smaller chunks bounded by recombi-
nation that occurred during the evolutionary history of the risk loci.
Each such chunk has a genealogy that correlates with nearby sub-
regions (due to LD). Such genealogies or local trees reflect the full
history of the genomic subregion and candidate SNPs in it (Supple-
mentary Fig. 1). If the candidate SNP had a selective advantage in the
past, onewould expect the selective sweep to distort the local tree and
deviate from neutrality expectations in terms of its topology and
branch lengths. The extent of distortion can be translated into the
likelihood of natural selection and the competing neutrality scenarios.
This is the most accurate way to test for evidence of selection. Both
elements of this powerful concept are implemented in the recently
proposed Relate approach31 to infer local trees and the CLUES algo-
rithm to compute the log-likelihood of competing models32. We used
this approach to test evidence for natural selection for candidate SNPs
within the 535 risk loci that are clustered into 464 linkage dis-
equilibrium blocks.

Specifically, wefirst inferred local trees for subregionswithin each
risk loci that cumulatively contained 10487 variants (4331 previously
published candidate SNPs with PICS and additional 6156 SNPs in high
LD in our sequences). Out of the total 10487 SNPs considered, 9102
passed Relate QC requirements, derived allele frequency (DAF) > 5%,
and mapped on the Relate-inferred local trees such that each tree
branch contained one SNP (4838) (Supplementary Data 2). Next, for
each inferred tree, we estimated the log-likelihood ratio for the posi-
tive selection scenario versus the neutral scenario using the CLUES
approach. The overall Relate and CLUES-based analyses consist of
several key steps briefly outlined below.

To test candidate SNPs for signatures of positive selection, we start
by building local genealogies for whole-genome sequences from Esto-
nian Biobank using Relate31; We then extract subtrees corresponding to
samples of interest. Next, based on the extracted subtrees, we estimate

Article https://doi.org/10.1038/s41467-022-34461-9

Nature Communications |         (2022) 13:7069 8



the coalescence rate through time to trace the trajectory of the effective
population size for the Estonian population. This information is needed
for CLUES analysis and to mimic the demographic history of the Esto-
nian population when we simulate sequences and explore the logLR
distribution expected under neutral demography. Finally, we run the
CLUES inference for the SNPs of interest using the extracted subtrees
and coalescence rate through time. Below, we describe each step in the
Relate and CLUES pipeline in more detail.

Overview of our approach to detecting positive selection
We chose CLUES32 for detecting positive selection since it has several
desired properties: (1) it can estimate the strength of selection in the
formof the selection coefficient (s) and evaluate evidence for selection
at the focal SNP in the form of a log-likelihood ratio (logLR) for two
competing models, one with the inferred value of s and the other for
neutral model (s = 0); (2) it allows selection target fine-mapping by
comparing logLR values between partially linked SNPs; (3) it allows the
user to specify the time period to focus on and (4) it is suitable for
detecting selection on standing variation. This is possible because
CLUES estimates the derived allele frequency trajectory over time for a
tested SNPusing the local tree’s topology andbranch length as input. A
local tree represents evolutionary relationships (the order and time of
coalescence) between DNA sequences at a given genomic location. As
we move along the chromosome, the topologies and branch length of
the local trees change as we cross recombination points; however,
overall, neighboring trees are highly correlated in their structure. The
properties of a local tree are disturbed by positive selection in a pre-
dictablemanner, resulting in an increased coalescence rate (and hence
shorter length) of branches carrying the selected allele within the time
intervalwhen the selectionwas acting. The local trees and the genome-
wide average estimate of coalescence rate through the time required
by CLUES as input can be obtained by running Relate - a local tree
inference tool that relies on whole-genome sequences31.

Thus, our inference consisted of the following steps:
1. Preparing the whole-genome sequences data set and applying

Relate31 to it to build local trees.
2. Extracting subtrees corresponding to a subset of samples to (a)

filter samples for CLUES and (b) use a smaller subset for esti-
mating coalescence rate over time which becomes computation-
ally costly with too many samples.

3. Running the coalescence rate/branch length estimation proce-
dure on a small subset of the samples but on thewhole genome to
obtain the neutral expectation of coalescence rate over time.

4. Extracting a local tree corresponding to a given SNP of interest
and resampling its branch length to take into account the uncer-
tainty in the branch length estimate. This results in a sample of
local trees with the same topology but different branch lengths.
As each new tree in the sample is obtained by re-estimating the
branch length of the previous tree, the earlier trees in the sample
are likely to have less accurate branch length, and hence it makes
sense to remove those as burn-in. Also, neighboring trees in the
sample are likely to have similar branch length estimates, and
hence it is desired to “thin” the sample of trees to avoid
redundancy by keeping every ith tree.

5. Running CLUES on the sample of local trees for a given SNP
obtained from the previous step.

Steps 1–3were runonce for thewhole genome,while steps 4 and 5
were run independently for each SNP of interest. As described above,
we started with 10,487 variants, of which 9372 passed the strict call-
abilitymask from 1000Genomes Project68 andweremapped toRelate-
inferred local trees. We then retained 9102 SNPs with minor allele
frequency (MAF) > 0.05 for CLUES selection tests. As several SNPs can
map to the same branch of the same local tree (reflecting perfect
linkage), thus providing the same information, we analyzed one SNP

per branch (4838 in total) and then assigned the samevalue to all other
SNPs residing on the same branch.

Tree building
The local genealogical treeswerebuilt by applyingRelate version v1.1.4
to 2420 phased whole-genome sequences of the Estonian Biobank
participants described in Kals et al.33 and Pankratov et al.34. We kept
only SNP positions with high variant calling certainty in our sequence
data using the strict callabilitymask (GRCh37) from the 1000Genomes
project (The 1000 Genomes Project Consortium). SNP alleles were
polarized into ancestral and derived based on the GRCh37_e71 homo
sapiens ancestral genome, and SNPs with unknown ancestral state
were removed. To carry out the tree-building procedure, we used the
GRCh37 recombination map (The 1000 Genomes Project Con-
sortium), the mutation rate of 1.25 × 10-8, and the effective population
size of 30000 haploids.

Extracting subtrees
Since CLUES expects a panmictic population, we removed close rela-
tives, ancestry outliers, and clusters of individuals with excessive IBD
sharing. For this, we started with the dataset of 2305 samples and
removed extreme PCA outliers and close relatives up to 3rd degree.
Thus, we removed (a) outliers in PCA within the Estonian dataset or
when projecting Estonian samples on the PC space defined by samples
from various European populations; in both cases, we removed sam-
ples falling out of the 2.5–97.5 percentile range for the first and second
Principal Components; (b) top and bottom 2.5% of the samples based
on singleton counts per genome and (c) samples that had pairwise
total IBD sharing of 166.2 cM or more with more than one another
sample in the dataset. After filtering, we randomly subsampled 1800
individuals for CLUES. We further downsampled these 1800 to 100
individuals for coalescence rate through time estimation. Therefore,
the subtrees for the subset of 100 and 1800 samples were extracted
separately using the SubTreesForSubpopulation mode in the Rela-
teExtract program.

Estimating coalescence rate through time
To estimate the coalescence rate through time, we applied Relate’s
EstimatePopulationSize.sh module to the random set of 100 samples
with the following parameters: mutation rate 1.25 × 10-8, generation
time 28 years, number of iterations 5, tree dropping threshold 0.5, and
time bins defined as 10x years ago where x changes from 2 to 7 with an
increment of 0.1.

CLUES analyses
Next, we used Relate’s local trees corresponding to the 1800 indivi-
duals as input for CLUES selection analysis. For a target SNP, we
extracted the corresponding local tree and resampled its branch
length 200 times. We removed the first 100 sampled trees as burn-in
and pruned the remaining 100 trees by keeping every 5th tree. The
resulting 20 trees were then used for CLUES. We focused on a time
period between 0 and 500 generations ago. As CLUES relies on sam-
pling branch length in an MCMC-like manner, it does not return the
same result when run on the same SNP twice, and the degree of dis-
cordance depends on the uncertainty in branch length, which is tree-
specific. To account for that, we ranCLUES twice for eachSNP (starting
frombranch length sampling), and if the logLR values differed bymore
than two units (indicating higher uncertainty), we ran it for the third
time. Then we assigned themedian values of logLR and s (out of 2 or 3
observations) to each SNP.

CLUES selection test adjusted for genetic drift in population
history
To minimize spurious selection signals due to genetic drift, we esti-
mated logLR expected for the Estonian population history using

Article https://doi.org/10.1038/s41467-022-34461-9

Nature Communications |         (2022) 13:7069 9



simulations. Namely, we simulated Estonian demography, computed
logLR from it anddefinedour neutrality rejection criteria using the95%
percentile of the simulation-based logLR distribution (logLR ≥ 1.59)
(Supplementary Fig. 2b). For this, we first inferred the effective
population size (Ne) trajectory for the Estonian population using
Relate (Supplementary Data 8 and Supplementary Fig. 2a) and used
parameters of this Ne trajectory to simulate 3600 sequences (1800
diploid individuals) that are equivalent to chromosome 1 (GRCh37) in
length using msprime version 0.7.469. Recombination rates were
adapted from the GRCh37 recombination map of chromosome 1 (The
1000 Genomes Project Consortium), and the mutation rate was taken
as 1.25 × 10−8 per nucleotide per generation. To simulate demographic
events at generations 0 to 1000, we used the discrete-time Wright-
Fishermodel (model = “dtwf”) and then switched to theHudsonmodel
(model = “hudson”) after generation 1000. The simulated sequences
were then used to perform tree-building (for 1800 diploids) and Ne
trajectory estimation (for a random subset of 100 diploids) as descri-
bed for the real data. The resulting local tree estimates using Relate
were then used to compute logLR using CLUES. To select SNPs for the
CLUES analyses, we first removed SNPs thatmatched at least oneof the
following criteria: (a) not passing the strict callability mask, (b) not
mapping to the inferred trees, and (c) had aminor derived allele count
less than four in the sample (1800 diploids), which resulted in 765217
SNPs, altogether. We further pruned our SNP set by retaining every
76th SNP and used the resulting 10,068 SNPs for our CLUES analyses
performed as described for the real data. The resulting logLR dis-
tribution from simulateddatawith 95%, 99%, and99.9%percentiles are
shown in Supplementary Fig. 2b.

To compare evidence for selection at candidate SNPs in other
European populations, we used published sequence data for British
(GBR), Finns (FIN), and Italians (TSI) from the 1000Genomes Project68.
LogLR computations were performed using the same Relate/CLUES
steps, described above.

Positive selection test based on iHS score
We scanned traces of positive selection on samples of Estonian
Biobank, using the integrated haplotype score (iHS), as implemented
in the Selscan program version 1.2.1a70. The iHS statistic was com-
puted on SNPs with minor allele frequency (MAF) > 0.05. To allow
comparison with earlier studies, we applied the same cut-off
threshold as in ref. 13, the top 5% iHS hits in our dataset (p < 0.05,
|iHS| > 1.9).

SNP annotations
Toobtain functional consequences of candidate SNPs at the transcript,
gene, and protein levels, we used Ensembl Variant Effect Predictor
(VEP)71 release 106. We also predicted the deleteriousness of SNPs by
retrieving phred-scaled CADD scores release 1.672. Finally, evolutionary
conservation at SNP position was estimated using the PhyloP score73.
PhyloP score shows the substitution rate for each genomic position
based on a genomic alignment of 100 vertebrate species. A higher than
expected (under neutral drift) substitution rate means acceleration
(negative PhyloP score), and a lower rate suggests conservation
(positive PhyloP score).

Inferring eQTLs, target genes and tissues using eQTL Catalogue
We searched our 9102 candidate SNPs in the eQTL Catalogue74, which
stores uniformly standardized eQTL summary data from published
sources. Expression QTLs were searched in 50 human body tissues/
cells41,42 and 35 immune cell types and states (naïve, activated, and
memory cells)42–46 (Supplementary Fig. 8). For each tissue, we filtered
significant eQTLs at 10% false discovery rate (FDR) using qvalue R
package version 2.28.075. eQTLs at 10% FDR were then matched with
candidate SNPs. Enrichment in hematopoietic cell types was tested
using fisher exact test in the stats R package76. Enrichment analysis of

biological pathways for eQTL affected genes was performed using the
PANTHER Overrepresentation Test77 on http://pantherdb.org/tools/
compareToRefList.jsp. Specifically, we tested eQTL target genes
against the full Homo sapiens reference genes using the GO Biological
Process annotation dataset (https://doi.org/10.5281/zenodo.6399963
Released 2022-03-22).

Basic statistical tests and graphs
Spearman correlation (rho) was computed using the stats package
function cor.test in R version 4.2.076. Graphs were produced using the
ggplot2 package version 3.3.678 in R.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Estonian Biobank sequencing data analyzed in this study are
available upon request. The application procedure to access the data
can be found under the following link: https://genomics.ut.ee/en/
content/estonian-biobank Full annotation data for the 153 risk loci with
logLR, PICS scores, risk haplotype, Ensembl genes, and LD blocks are
available in the Figshare repository with the identifier https://doi.org/
10.6084/m9.figshare.16691638.v1. Source data are provided with this
paper. The GOBiological Process annotation dataset used in this study
is available in https://zenodo.org with the identifier https://doi.org/10.
5281/zenodo.6399963. The 1000Genomes Project strictmask files are
publicly accessible through http://ftp.1000genomes.ebi.ac.uk/vol1/
ftp/release/20130502/supporting/accessible_genome_masks/
StrictMask/. The Ancestral Genome sequences for Homo sapiens
(GRCh37) are accessible through http://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/phase1/analysis_results/supporting/ancestral_alignments/.
The 1000 Genomes Project Recombination map is publicly available
through http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/work
ing/20110106_recombination_hotspots/. The CADD score version 1.6
is publicly available through https://cadd.gs.washington.edu/
download. The PhyloP measure of evolutionary conservation is avail-
able through http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
phyloP100way/. The OpenGWAS database of GWAS summary data-
sets is accessible through https://gwas.mrcieu.ac.uk/. The eQTL Cata-
logue database of uniformly processed eQTL datasets is accessible
through https://www.ebi.ac.uk/eqtl/. The Ensembl VEP release 106 is
accessible through https://www.ensembl.org/info/docs/tools/vep/
index.html. Source data are provided with this paper.
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