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Hippocampal convergence during
anticipatory midbrain activation
promotes subsequent memory formation

Jia-Hou Poh 1 , Mai-Anh T. Vu1,2,3, Jessica K. Stanek1,4, Abigail Hsiung1,4,
Tobias Egner 1,4 & R. Alison Adcock 1,2,4,5

The hippocampus has been a focus of memory research since H.M’s surgery
abolished his ability to formnewmemories, yet itsmechanistic role inmemory
remains debated. Here, we identify a candidate memory mechanism: an
anticipatory hippocampal “convergence state”, observed while awaiting valu-
able information, and which predicts subsequent learning. During fMRI, par-
ticipants viewed trivia questions eliciting high or low curiosity, followed
seconds later by its answer. We reasoned that encoding success requires a
confluence of conditions, so that hippocampal states more conducive to
memory formation should converge in state space. To operationalize con-
vergence of neural states, we quantified the typicality ofmultivoxel patterns in
the medial temporal lobes during anticipation and encoding of trivia answers.
We found that the typicality of anticipatory hippocampal patterns increased
during high curiosity. Crucially, anticipatory hippocampal pattern typicality
increased with dopaminergic midbrain activation and uniquely accounted for
the association between midbrain activation and subsequent recall. We pro-
pose that hippocampal convergence states may complete a cascade from
motivation and midbrain activation to memory enhancement, and may be a
general predictor of memory formation.

The mysterious translation of daily life into the faulty record of
memory has long compelled human wonder and conflict. A growing
literature has shown that, while some kinds of events are inherently
more memorable, our ongoing motivational states are important
determinants of whether and how experience is remembered1–6. It has
been known for decades that neurotransmitters associated with
motivation influence neural plasticity at the cellular level7–9. More
recent research has identified network relationships between nuclei
that release these neurotransmitters and the hippocampus, long
implicated in memory formation, to show that these relationships
predict memory formation10,11. These studies have traced a cascade
frommotivational state, to engagement of neuromodulatory nuclei, to
activation of hippocampal systems, concluding that neuromodulation

helps the hippocampus create memories. However, they do not
answer the question of how activation in neuromodulatory nuclei
might create hippocampal states conducive for memory formation.
This is perhaps unsurprising given that, despite its remarkable anat-
omy and physiological specializations, researchers still debate the
canonical function of the hippocampus and its role in memory12–16.

The mesolimbic dopamine system is the major neuromodulatory
system implicated in motivated learning of valuable information17. It
has been proposed that the motivation to learn engages mesolimbic
dopaminergic circuits to support plasticity in the hippocampus18,19.
Consistent with this account, fMRI studies in humans have shown that
the motivation to learn, inspired by both intrinsic and extrinsic
rewards, is accompanied by increased anticipatory activation in the
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dopaminergic midbrain18. Such increases in midbrain BOLD have been
shown to correlate with PET measures of dopamine release in target
regions20. During anticipatory midbrain activation, greater functional
connectivity between themidbrain and regions in themedial temporal
lobe, including the hippocampus (HPC)18,19,21, predicts memory. Intri-
guingly, in one such study where participants were motivated by
intrinsic curiosity, memorywas enhanced not only for the information
of interest, but also for temporally proximal irrelevant information19,
suggesting a sustained state of enhanced encoding.

Independent lines of work suggest that the hippocampus can
express different functional states that reflect neuromodulation, and
that these may manifest as physiological signatures associated with
distinct patterns of activity in the hippocampus. First, the hippo-
campus receives inputs from the dopaminergic midbrain, including
ventral tegmental area (VTA)22–24, and midbrain projections modulate
hippocampal physiology and influence performance on memory
tasks25–29. Studies of place cells in rodents have also shown that place
field stability is influenced by task goals, dependent on midbrain
modulation1,30. Such shifts in response properties and circuit function
have physiological signatures that could manifest in BOLD activation
patterns31. Indeed, in humans, dopamine receptor density has been
associated with variability in the BOLD signal intensity in the
hippocampus32. The anatomical separation of mesolimbic terminals
relative to dopamine receptors in the hippocampus is ill-suited to
temporally precise signals17 and further suggests that midbrain dopa-
mine regulates expression of sustained functional states in the hip-
pocampus conducive to encoding1,17,30,33.

Second, memory-related patterns of activity in the hippocampus,
detectable using multivoxel pattern analysis (MVPA) of fMRI data34–37

have been shown to reflect incentive contexts and goals. With MVPA,
patterns of activity across spatially distributed voxels can be for-
mulated as points within a high dimensional state space, with activity
in each voxel constituting a single dimension. Multivoxel patterns in
the hippocampus differentiate reward contexts and predict individual
differences in reward-related memory benefits34. When selective
attention was manipulated by changing task goals, stability of hippo-
campal representations for the goal category predicted memory36. In
addition to representations of rewarded contexts and goal-relevant
stimuli, multivoxel patterns in the hippocampus have also been shown
to differentiate processes associated with encoding or retrieval38.
Thus, while variations in the hippocampal patterns are generally stu-
died as informational representations, these findings and others sug-
gest that hippocampal patterns and states may also manifest the
effects of neuromodulation.

Here, we were motivated by the premise that hippocampal mul-
tivoxel activation patterns may manifest, in addition to representa-
tions of information, neural states conducive to memory formation.
We reasoned that if conducive state-spaces exist, their instantiation
would be a candidate mechanism for memory enhancement by neu-
romodulation. To isolate patterns associated with neuromodulatory
effects from those representing information to be encoded, we
examined intervals prior to the presentation of memoranda. We
hypothesized that while awaiting valuable information, (i) hippo-
campal states would reflect the univariate activation of dopaminergic
midbrain VTA, (ii) that instantiation of patterns associated with
memory-conducive neural states would predict subsequent memory,
and (iii) that memory-conducive states would account for previously
reported associations between increased midbrain VTA activation and
memory formation.

We posited that hippocampal states associated with successful
memory formationwould fall within an optimally conducive subspace.
To identify the optimal subspace,we canexploit the likelihood that the
successful formation of new memories requires the convergence of
multiple cognitive andphysiological factors. If so, the lackof any factor
could impede memory formation, yielding multiple ways to fail. An

intuition for this convergence state principle is captured in the opening
of Leo Tolstoy’s novel Anna Karenina - “All happy families are alike;
each unhappy family is unhappy in its own way”. The “Anna Karenina
principle” has been applied to the study of dynamical systems (e.g.,
ref. 39), including the examination of humanbrain networks40. Related
lines of work on spontaneous brain dynamics have consistently asso-
ciated better perceptual processing with reduced neural variability in
sensory cortices41,42. Here, we apply similar logic to identification of
brain states conducive to successful memory formation.

Our proposed usage of convergence state denotes the manifesta-
tion of an optimal subspace among neural states when multiple con-
ditions are met. While building on and sharing conceptual
commonalities with prior formulations of the hippocampus as a con-
vergence zone where multiple streams of information are integrated
(e.g., refs. 43–47), we use convergence states to indicate not only an
anatomical nexus, but also co-occurrence of conditions that support
the encoding of information. These conditions are not per se repre-
sentations of information; they may relate to processes described
using words like arousal, attention, or neuromodulation. To the extent
that midbrain VTA neuromodulation engages a hippocampal state
conducive for memory formation, the convergence state principle
predicts that, compared to states associated with failed encoding,
these neural convergence states would be closer to a prototypical
state. Thus, we hypothesized the existence of a hippocampal con-
vergence state that would predict successful subsequent memory
formation, and moreover would reflect univariate activation of dopa-
minergic midbrain ventral tegmental area.

In the current study, we investigated relationships among moti-
vation, midbrain VTA activation, anticipatory hippocampal states, and
subsequent memory formation in an fMRI study of participants read-
ing trivia questions and awaiting their answers. To operationalize
putative convergence states, we devised a novel MVPA approach.
Briefly, the activation pattern for each trial was operationalized as a
point in an N-dimensional state space (with N voxels), and a centroid
that represented theprototypical neural state (i.e., spatially distributed
patterns) was defined using data from independent scan runs.We then
calculated the typicality of each state, that is, its trial-level deviation
from the prototypical state centroid. Patterns closer to the centroid
show higher typicality and were thus considered to be more con-
vergent than patterns further from the centroid. We applied con-
vergence analysis to fMRI data acquired while participants engaged in
a trivia quiz paradigm designed to elicit anticipatory states associated
with either high or low motivation to learn, here curiosity. Replicating
findings from prior work18,19, we found that high motivation was
associatedwith better subsequent recall, andwith greater activation in
the midbrain VTA during anticipation of answers. Using our novel
analysis, we showed that higher anticipatory pattern typicality in the
hippocampus, but not in the medial temporal cortex, was strongly
modulated by curiosity state. Higher anticipatory typicality in the
hippocampus was also predictive of better subsequent recall. Cru-
cially, hippocampal pattern typicality was strongly associated with
trial-by-trial anticipatory midbrain VTA activation, and uniquely
accounted for the significant association between greater midbrain
VTA activation and greater subsequentmemory recall. Together, these
findings support the notion of a hippocampal convergence state
conducive to memory formation, and further suggest instantiating a
convergence state as a candidate mechanism for neuromodulation of
memory.

Results
Memory recall was better for high-curiosity than low-curiosity
trivia
During an fMRI session, participants viewed trivia questions they
had previously rated as eliciting different levels of curiosity, each
followed by its answer after a variable time interval (Fig. 1a). Only
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trivia questions that the participant indicated not knowing the
answer to were included for the fMRI session (see “Trivia question
stimulus screening” in the Methods section for details). In a memory
test following the fMRI session, participants were presented with
the trivia questions, and were required to recall the associated
answer. Consistent with the expectation of enhanced learning in a
motivated state, participants recalled more answers to trivia ques-
tions that had previously elicited higher levels of curiosity than
those eliciting lower levels of curiosity (t(22) = 9.32, p < 0.001,
d = 1.94, mean difference = 0.23, 95% CI = [0.18 0.28], High Curiosity:
M = 0.63, SD = 0.17; Low Curiosity: M = 0.40, SD = 0.16, Fig. 1b). This
finding remained robust when controlling for self-reported like-
lihood of knowing, and when curiosity ratings were used as con-
tinuous predictors of memory (Supplementary Results).

Midbrain VTA activation during anticipation of answers
increased after high-curiosity questions and predicted
better recall
We used mixed-effects models to examine if trivia questions eliciting
higher curiosity also evoked greater anticipatory activation in the
mesolimbic midbrain VTA, hippocampus, and the medial temporal
cortices, regions that havebeen associatedwith enhanced learning in a

motivated state (Fig. 2; refer to “Univariate analysis - Effects of Curiosity
on anticipatory activity” in the Methods section for model specifica-
tions). In linewith evidence ofmidbrain engagement duringmotivated
learning, anticipatory activation in the midbrain VTA was greater fol-
lowing the presentation of high curiosity questions than following the
presentation of low curiosity questions (b =0.099, SE =0.045,
p =0.026). In the medial temporal cortices, the perirhinal cortex
showed a similar effect of curiosity (b = 0.085, SE = 0.036, p =0.017),
with greater anticipatory activation for high curiosity than low curi-
osity questions. While this trend was also observed in the para-
hippocampal cortex, it did not reach statistical significance (b = 0.08,
SE = 0.042, p =0.056). In contrast to the medial temporal cortices,
anticipatory activity in the hippocampuswas not significantly different
between curiosity states (b = 0.019, SE = .040, p = 0.63).

To examine whether anticipatory activation was related to mem-
ory for subsequently presented trivia answers,weused amixed-effects
logistic regression approach with trial-level univariate activation of all
ROIs included as predictors of subsequent recall (i.e., a separate
regressor for each ROI). This approach allows the identification of
variance that is uniquely accounted for by each of the ROIs (Fig. 3).
Consistent with prior findings, VTA was a significant predictor of
subsequent recall, such that greater VTA activation was associated

Fig. 1 | Task schematics & Memory performance. a Prior to fMRI scanning, par-
ticipantswere shown a seriesof triviaquestions. For each, theywere told to indicate
the likelihood that they knew the answer, and how curious they were about it.
Questions were excluded if participants indicated a likelihood of knowing the
answer above 90%. The remaining questions were separated into tertiles to be used
for fMRI scanning,with the 1st and3rd tertile categorized as LowandHighCuriosity
questions respectively (72 questions each). During fMRI scanning, participants
were shown each trivia question along with a colored rectangle that indicated the
duration and action contingency of the trial. On action-contingent trials, an arrow
was presented after a 9 s or 13 s delay. Participants indicated the direction of the
arrow with a button press. This was followed by the presentation of the trivia
answer. On non-action contingent trials, the trivia answer was presented

immediately after the delay interval. Following the scan, participants were shown
each trivia question and were required to recall its associated answer. Analyses of
answer Anticipation used activation evoked by each question (the Question Inter-
val). Analyses of answer encoding used activation evoked by each answer (Answer
Interval, including the response on action-contingent trials). b Box plots for
memory recall performance across each condition. Memory recall was better for
high- (orange) than low-curiosity (blue) trials based on two-tailed paired t-test
(t(22) = 9.32, p <0.001, d = 1.94, mean difference =0.23, 95% CI = [0.18 0.28]; N = 23
participants).The center of each box corresponds to themean value, the upper and
lower hinges correspond to the first and third quartiles, while the whiskers corre-
spond to the largest and smallest values within 1.5 times of the interquartile range.
Each dot corresponds to the recall performance of each participant. ***p <0.001.
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with a greater likelihood of recall (b =0.121, SE = 0.049, p =0.015).
Univariate activation in all other ROIs was not a significant predictor of
memory outcome. To ensure that this was not simplydriven by greater
univariate activity for the High curiosity questions, a model compar-
ison was performed comparing model fit between a model with and
without an interaction term for the Curiosity condition. The inclusion
of an interaction term for VTA activation andCuriosity did not result in
a better model fit (χ2 = 1.72, p =0.190), suggesting that fluctuations in
anticipatory midbrain VTA activation are related to subsequent recall
performance regardless of curiosity states.

Hippocampal pattern typicality during anticipation of answers
increased after high-curiosity questions and predicted better
recall
Given our hypothesis that the motivation to learn would bias antici-
patory hippocampal states toward a successful encoding state that
followed the Anna Karenina principle, we devised an approach to
characterize the convergence of hippocampal states based on their
pattern typicality or the distance from a prototypical state centroid
(Fig. 4a; refer to “Multivariate convergence analysis” in the Methods
section for details). For this convergence analysis, weused a leave-one-
run out approachwhere a cluster centroidwas defined using data from
N-1 runs. The multivariate activation pattern for each trial can be
operationalized as a point in a high dimensional state space. The
centroid is the point with the shortest distance (Pearson’s correlation
distance) to all other points in the state space. This centroid was then
used as the origin to quantify the distance for trials from the left-out
run. This was repeated for all runs, and each trial was assigned a value
representing the distance between the activation pattern for that trial,
and the independently defined centroid. In the current formulation,
patterns closer to the centroid (i.e., shorter distances), thus showing
greater typicality, are considered to exhibit greater convergence than
patterns further from the centroid.

We first examinedwhether the convergence of anticipatory states
in the medial temporal lobe ROIs was influenced by curiosity (Fig. 4b).
Consistent with the expectation that a motivation to learn may bias
hippocampal state, we observed a significant main effect of curiosity,

such that spatially distributed patterns in the hippocampus showed
greater typicality during high-curiosity anticipation than during low-
curiosity (b = −0.017, SE = 0.007, p =0.011). This effectwas seen only in
the hippocampus, not in the surrounding parahippocampal
(b = −0.009, SE =0.011, p =0.421) or perirhinal cortices (b =0.003,
SE = 0.010, p = 0.788).

To examine whether state convergence during anticipation pre-
dicted subsequent recall (Fig. 4c), we used a mixed effect logistic
regression, with pattern typicality of all medial temporal lobe ROIs as
predictors of recall. Pattern typicality in the hippocampuswas the only
significant predictor of subsequent recall. Thus, anticipatoryactivation
patterns that were more typical were also associated with a higher
likelihood of successful memory formation (b = −0.55, SE = 0.21,
p =0.008). Like the effects of curiosity, the relationshipof anticipatory
pattern typicality to memory was also specific to the hippocampus,
and not seen in the surrounding medial temporal cortices (Para-
hippocampal cortex: b =0.06, p = 0.622; Perirhinal cortex: b =0.06,
p =0.634). While anticipatory univariate activation in the hippo-
campus was not a significant predictor of subsequent recall, we ran an
additional control analysis including univariate signal in the hippo-
campus as a covariate to ensure that the convergence effect was not
driven by differences in signal amplitude. Pattern typicality in the
hippocampus remained a significant predictor after controlling for
univariate activation (b = −0.55, SE = 0.21, p =0.008), and after con-
trolling for curiosity ratings (b = −0.44, SE = 0.20, p = 0.029). More-
over, the inclusion of curiosity as an interaction term improved the
model fit (χ2 = 191.28, p <0.001). Posthoc comparisons showed that
the slope was more negative in the low curiosity condition than in the
high curiosity condition (bDifference = −1.24, SE = 0.09, p <0.001), sug-
gesting that low anticipatory hippocampal convergence may be par-
ticularly damaging to subsequent memory formation when the
motivation to learn is lower.

Trial-to-trial midbrain VTA activation predicted hippocampal
typicality during anticipation of answers
Central to our primary hypothesis, univariate activation in the
midbrain VTA during anticipation of answers was a significant

Fig. 2 | Curiosity increased univariate activation in the midbrain VTA and
perirhinal cortex during anticipation of trivia answers. Anticipatory BOLD
activation (i.e., during the Question interval preceding each trivia answer) was
greater after High-Curiosity (orange) versus Low-Curiosity (blue) trivia questions in
the midbrain VTA (p =0.026) and perirhinal cortex (PRC) (p =0.017; N = 23

participants). Hippocampus (HPC) and parahippocampal cortex (PHC) activation
did not differentiate curiosity states. Red overlays on the brain images demarcate
the ROIs (Brain template obtained from FSL and reproduced with permission). The
large dots in each panel represent the group mean; small dots represent mean
activation for each participant. Error bars represent the SEM. *p <0.05.
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predictor of pattern typicality in the hippocampus (b = −0.059,
SE = 0.012, p < 0.001, Fig. 5a), with greater VTA activation associated
with greater hippocampal typicality (i.e., shorter distances). This
result remained robust when univariate hippocampal activation was
included as a covariate (b = −0.049, SE = 0.011, p < 0.001). To ensure
that this was not simply driven by differences between the curiosity
states, a model comparison was performed comparing model fit
between models with and without an interaction term for the
Curiosity condition. The inclusion of an interaction term did not
result in a better model fit (χ2 = 0.44, p = 0.507), suggesting that the
association between VTA activation and hippocampal typicality was
not driven by differences across the curiosity states. To control for
potential effects of vigilance, we also examined time-on-task
effects48,49, modeling run and trial numbers as predictors of pat-
tern typicality. There was no significant main effect of either run
(p = 0.918), trial (p = 0.225) or their interaction (p = 0.315), suggest-
ing that pattern typicality in the hippocampus was unlikely to be
influenced by vigilance.

To examine whether pattern typicality in the hippocampus was
also associated with univariate activation in other brain regions, we
performed an exploratory whole-brain voxel-wise analysis corre-
lating hippocampal typicality with each voxel’s univariate activation
(controlling for VTA activation). To control for spurious correla-
tions, a null distribution was generated for each voxel using a
permutation-based approach (500 iterations), and the r-value at the
95th percentile was subtracted from each voxel. This approach
ensured that only correlation values greater than the 95th percen-
tile of the null distribution are positive, and a one-sample t-test was
then performed across subjects to identify regions showing a sig-
nificant correlation with hippocampal convergence. At a statistical

threshold of p < 0.05 (FWE-corrected), we see significant clusters
only in the posterior hippocampus (Peak coord: −22, −32, −2,
t = 10.90; Fig. 5b) and the early visual cortex (Peak Coord: 16, −86,
6, t = 7.49).

Hippocampal pattern typicality uniquely accounted for the
effect of anticipatorymidbrain VTAactivation onmemory recall
Based on our prediction that activity in themidbrain VTA influences
subsequent learning by stabilizing a hippocampal convergence
state, we compared mixed-effects logistic regression models that
included either VTA activation, hippocampal pattern typicality, or
both terms. Consistent with our hypothesis, the inclusion of both
VTA activation and hippocampal typicality resulted in a better fit
than amodel with only VTA activation (χ2 = 5.19, p = 0.023), but not a
model with only hippocampal typicality (χ2 = 2.81, p = 0.09). This
was further supported by a mediation analysis showing a significant
mediation of VTA activation by hippocampal typicality (pME =
0.276, 95% CI = [0.028 1.09], p = 0.032). Together, these findings
suggest that the influence of anticipatory VTA activation on sub-
sequent recall is primarily mediated via specific effects on neural
state in the hippocampus.

Individual differences in midbrain VTA activation and
hippocampal pattern typicality
Complementing the intra-individual analyses reported, we also
observed a significant correlation of midbrain VTA activation and hip-
pocampal pattern typicality across individuals, where participants with
greater VTA activation showed greater typicality in the HPC (r= −0.56,
95% CI = [−0.79 0.19], p =0.005). This relationship was observed for
both theHigh curiosity (r= −0.57, 95%CI = [−0.72−0.22],p=0.004) and

Fig. 3 | Midbrain VTA univariate activation during anticipation of trivia
answers uniquely explains subsequent recall. Anticipatory BOLD activation (i.e.,
during theQuestion interval preceding each trivia answer) in themidbrain VTA and
medial temporal lobe ROIs was used to predict memory outcome for each trial in a
mixed-effects logistic regression model (N = 23 participants). This method allows
the identificationof variance that is uniquely accounted for by each of the ROIs. Bar
graphs in each panel represent the parameter estimate for each ROI in the full
model. Among the ROIs, midbrain VTA activation was the only statistically

significant predictor of subsequent recall of answers (p =0.015). For visualization,
the estimated predicted probability of recall relative to the individual’s mean
probability (delta fromwithin-subjectmean, y-axis) is plotted against the univariate
signal in each ROI (arbitrary units, a.u.; x-axis). Red overlays on the brain images
demarcate the ROIs (Brain template obtained from FSL and reproduced with per-
mission). Light gray lines depict the slope for each participant, while the solid black
line depicts the mean slope across all participants. Error bars represent the
SEM. *p <0.05.
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Low curiosity conditions (r= −0.44, 95% CI = [−0.72 −0.04], p =0.033).
Thus, beyond intra-individual variation, individual differences in the
engagement of VTA were also associated with hippocampal pattern
typicality.

Additionally, we examined if curiosity-related modulation of hip-
pocampal convergence could account for individual differences in
memory performance. We did not observe a significant correlation
between the individual curiosity-related hippocampal pattern typicality

Fig. 4 | Anticipatory pattern typicality in the hippocampus is uniquely asso-
ciatedwith curiosity and subsequent recall. a For the convergence state analysis,
patterns of activation for each trialwereextracted fromeachof theROIs (Brain icon
created with BioRender.com). Convergence states were operationalized as pattern
typicality, or the distance between the activation pattern of each trial and an
independently defined centroid representing the prototypical state). A leave-one-
run-out approach was used where the cluster centroid was identified using data
fromN-1 runs. This centroidwas then used as the origin to quantify the distance for
trials from the left-out run. Patterns showing higher typicality, (i.e., shorter distance
from the centroid) are considered to exhibit greater convergence than patterns
more eccentric from the centroid. b During the anticipation of High-Curiosity
(orange) trivia answers, patterns of activation exhibited higher typicality in the
hippocampus (HPC, p =0.011), but not the surrounding medial temporal lobe

cortices (PHC: Parahippocampal cortex; PRC: Perirhinal cortex) (N = 23 partici-
pants). The larger dots in each panel represents the groupmean, while the smaller
dots represent the mean distance for each participant. c We used a mixed-effects
logistic regression model to predict memory outcome for each trial using the
pattern typicality of the medial temporal lobe ROIs (N = 23 participants). Hippo-
campal typicality was the only significant predictor of subsequent recall
(p =0.008). Bar graphof each panel represents the parameter estimate of each ROI
in the full model. For visualization, the estimated change in probability of recall
(demeaned within subject) is plotted against the distance from centroid for each
ROI. Light gray lines depict the slope for each participant, while the solid black line
depicts the mean slope across all participants. Error bars represent the SEM.
*p <0.05, **p <0.01.
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(Low - High curiosity) and memory benefits (r = −0.05, 95% CI = [−0.45
0.37], p =0.831). Instead we found a significant correlation between
curiosity-related hippocampal typicality and overall memory perfor-
mance (across both conditions), whereby a greater curiosity-related
hippocampal typicality was associated with better memory perfor-
mance overall (r=0.44, 95% CI = [0.03 0.72], p =0.037). An additional
control analysis also showed that individual hippocampal pattern typi-
cality was not correlated with motion (absolute RMS; r =0.15, 95% CI =
[−0.27, 0.53], p =0.475).

During encoding of answers, pattern typicality in the medial
temporal cortices predicted subsequent recall, unrelated to
curiosity
While our primary focus was on the anticipatory state following the
presentation of the trivia questions, for completeness, we also con-
ducted the same analyses on activation associated with encoding,
during thepresentationof trivia answers. High curiositywas associated
with a trend towards greater univariate activation in the VTA
(b =0.059, SE =0.031, p =0.057). None of the medial temporal lobe
ROIs showed a significant effect of curiosity during the presentation of
answers (Hippocampus: b = −0.020, SE = 0.028, p =0.481; Para-
hippocampal cortex: b = −0.017, SE =0.029, p = .574; Perirhinal cortex:
b = 0.036, SE =0.024, p =0.127). Across all ROIs, only activation in the
perirhinal cortex was associated with a greater likelihood of recall
(b =0.223, SE =0.076, p = 0.003). These findings held when activation
across both intervals (Questions & Answers) were included in a single
model (Supplementary Fig. 1), suggesting that univariate activation
during the presentation of questions and answers each account for
unique variance related to memory outcomes.

We also performed convergence analyses assessing pattern typi-
cality during the encoding of trivia answers (Supplementary Fig. 2).

Curiosity did not predict pattern typicality during answers in anyof the
medial temporal lobe ROIs (Hippocampus: b =0.002, SE =0.008,
p =0.750; Parahippocampal cortex: b = 0.006, SE =0.011, p =0.558;
Perirhinal cortex: b = −0.009, SE =0.010, p = 0.361). Unrelated to
curiosity, pattern typicality during answers in the parahippocampal
(b = −0.500, SE=0.133, p <0.001) and perirhinal (b = −0.605, SE=
0.139, p <0.001) cortices, but not the hippocampus (b = 0.124, SE=
0.184, p = 0.500), significantly predicted subsequent recall. This
remained significant after controlling for univariate activation in both
the parahippocampal (b = −0.379, SE =0.132, p =0.004) and perirhinal
cortices (b = −0.558, SE = 0.137, p <0.001).

Discussion
The current study identifies a unique predictor of subsequent mem-
ory- anticipatory multivariate pattern typicality in the hippocampus,
consistent with our proposal of a hippocampal convergence state
conducive to successful memory formation. After trivia questions eli-
citing high curiosity, patterns of activation in the hippocampus, but
not the surrounding medial temporal cortices, were biased towards
greater anticipatory typicality, and anticipatory hippocampal typi-
cality was uniquely associated with later recall of the anticipated
answers. Across individuals, curiosity-related hippocampal typicality
was correlated with overall recall. Most importantly, the typicality of
hippocampal patterns was strongly associated with trial-by-trial var-
iation in anticipatory univariatemidbrain VTA activation, and uniquely
accounted for the relationship between midbrain VTA activation and
subsequent recall. These findings suggest that when higher curiosity
during anticipation of answers engaged midbrain VTA activation, a
multivariate pattern exhibiting high typicality (i.e., convergence state)
simultaneously emerged in the hippocampus, predicting memory
formation. This implied cascade points toward potential answers to
long standing questions about neuromodulation and about funda-
mental hippocampal memory mechanisms.

Our approach leverages prior work in which fMRI multivoxel
pattern analysis was used to examine representations of content dur-
ing encoding. In prior studies, similarity in neural patterns across
repeated occurrences of the same stimulus was associated with better
memory, attributed to reinstatement of stimulus specific
information50–52. Similar analytical approaches comparing patterns of
activation across consecutive timepoints have also been used to
examine temporal dynamics in the hippocampus53. Here, we used
pattern analysis not to study stimulus representations or temporal
dynamics, but rather to identify consistent engagement of states or
cognitive processes associated with the anticipation of answers and
successful memory formation. Our convergence analysis calculated
the distance from a prototypical activation pattern that includes trials
from all conditions, and patterns associated with subsequent
remembering exhibited greater “typicality”, while patterns associated
with forgetting showed greater eccentricity. This dissociation is con-
sistent with the expectation that successfulmemory formation is likely
to require the convergence of multiple cognitive operations and
physiological conditions, while memory failures can arise from dis-
ruption to any of the component elements, following the Anna Kar-
enina principle. In the domain of human neuroimaging, this principle
has been previously applied to examine individual differences40. Here,
by showing that hippocampal convergence was positively associated
with both activation in the midbrain VTA and with subsequent recall
(as summarized in Fig. 6), we demonstrate that the Anna Karenina
principle can similarly be applied to examine intra-individual varia-
bility in cognitive states to predict momentary behavior.

While our current approach is agnostic to underlying processes
manifesting in a convergence state, a central question that remains is
how an anticipatory convergence state in the hippocampus specifically
benefits the formation of new memories. We consider two potential
mechanisms. First, it has been suggested that the hippocampus can

Fig. 5 | Anticipatory midbrain VTA activation selectively modulates hippo-
campal pattern typicality. a Greater activation in the midbrain VTA is associated
with greater pattern typicality in the hippocampus during the anticipation of trivia
answers (p <0.001; N = 23 participants). The bar graph represents the parameter
estimate for the association of VTA activation and hippocampal typicality. For
visualization, the predicted distance from centroid for the hippocampus is plotted
against univariate VTA BOLD activation. Light gray lines depict the slope for each
participant, while the solid black line depicts themean slope across all participants.
Typicality is defined as a shorter distance from centroid. b Whole-brain analysis
(controlling for univariate VTA activation) showed that anticipatory univariate
activations in clusters that included the visual cortex and posterior hippocampus
(overlaid on brain template obtained from FSL and reproduced with permission)
were also positively associated with pattern typicality in the HPC (FWE p <0.05).
Error bars represent the SEM. ***p <0.001.
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maintain multiple spatial maps of the environment, allowing for
dynamic switching between spatial frames depending on the relevant
context54. Here, a “contextual frame” account would suggest that
convergence in the hippocampus may reflect the instantiation of a
“motivated context /map” that serves as the scaffold in which new
memories may be embedded. This instantiation of a specific reference
framemay be akin to processes underlying the “Memory palace”or the
method of loci mnemonic device, where memorization is supported
through the active instantiation andmaintenanceof a spatial reference
frame that accommodates the “storage” of to-be-remembered
information.

An alternative from dynamical systems is the communication
subspace account55. It has been proposed that interareal communica-
tion across brain regions is mediated by the alignment of neural sub-
spaces, allowing for selective propagation of neural activity56,57. In the
memory domain, neuromodulatory activity may alter the covariance
structure of neural firing within the hippocampus, thus altering the
response subspace. This can facilitate the propagation of information
into, and across the hippocampus, potentially suppressing noise-
related activity from misaligned subspaces. This account would also
build on prior proposals of the hippocampus as a mnemonic con-
vergence zone. Indeed, ourfindings suggest that anticipatorymidbrain
activity may prime the hippocampus for optimal integration of
upstream sensory information. Much in the same way that hikers may
halt a conversation when attempting to locate the sound of a flowing
stream, a convergent state may thus reduce noise-driven variability,
supporting more efficient encoding of the incoming signal.

Related lines of work on spontaneous brain dynamics have con-
sistently shown that variability in neural response can be reduced by
exogenous stimulus58 or by endogenous allocation of attention42,59.
This reduction in neural variability has been associated with enhanced
processing of stimulus-related information41, and greater sensitivity in
perceptual performance42. Computational accounts have proposed
that the underlying mechanism of such reduction in neural variability
may be the stabilization of specific attractors and the suppression of
noise-driven transitions between different possible attractor states60.
Though it may be tempting to attribute our current observation to
similar underlying mechanisms, there are several key differences that
should be noted. While the reduction in neural variability has been
observed acrosswidespreadbrain regions atdifferent levels of analysis
(e.g., extracellular recording58, MRI61, ECoG62, EEG63), these are pri-
marily observed in neocortical regions and it is uncertain if the same
phenomenon would manifest in the hippocampus. In our current
study, hippocampal convergence wasmodulated by curiosity and was
predictive of subsequent recall only during anticipation (Question
interval), whereas convergence in the medial temporal cortices was
predictive of memory only during the presentation of information
(Answer interval). These findings are consistent with an account of
enhanced information processing with reduced neural variability, but
also raises an intriguing possibility that convergence in the hippo-
campus may be more strongly modulated by internal states (curiosity
in this case), whereas convergence in themedial temporal corticesmay
be more strongly associated with attention to external stimulus.

The idea that internal motivational states like curiosity modulate
hippocampal function has now been substantiated by accumulating
evidence that midbrain dopaminergic circuitry interacts with the hip-
pocampus across multiple timescales to influence the formation of
episodic memory. Neurobiological mechanisms that have been pro-
posed to explain the effects of dopamine onmemory formation in the
hippocampus include meta-plastic changes, such as lowering the
threshold for LTP8,9, or “tagging” for subsequent consolidation64. It is
unclear how, or whether, suchmeta-plastic changes would translate to
metabolic demand, and thus changes in univariate BOLD activity
during encoding. However, neuromodulation by dopamine can also
alter the physiological properties of the hippocampus1,8,9.We reasoned
that while an fMRI analytical approach cannot provide evidence about
meta-plastic changes not reflected in BOLD, it is well-suited to detect
modulatory influences that establish a distributed state across the
hippocampus conducive to memory formation, including the con-
vergence state we hypothesized.

It is known that the hippocampus can exhibit distinct functional
states that influence how information is processed and subsequently
encoded2,34,35,38,65–69. Computational models of episodic memory have
proposed that the hippocampal memory system may alternate
between functional states supporting encoding or retrieval70–74. While
alternation between encoding and retrieval states has been suggested
to occur on a rapid timescale based on theta phase, evidence from
both human75,76 and rodent77 studies have also shown oscillatory sig-
natures of sustained states aligned with the timescales of neuromo-
dulatory influence. Such sustained state changes have similarly been
observed using fMRI, where patterns of activation were successfully
used to classify states associated with encoding or retrieval38, and in
identifying fluctuation of network states relating to encoding
success78. In addition, behavioral studies have also shown evidence
that hippocampal processing can fluctuate between a bias towards
pattern separation or completion over several seconds79,80. As our
current analytical approach focuses on anticipatory convergence
states, it is unclear if our observation corresponds to any of the pre-
viously identified states, or to a theoretical “encoding-state”. However,
it should be noted that the current task requires not only encoding of
the trivia answer, but also binding of the answer to the associated
question. Although we have no separate measures of item encoding

Fig. 6 | Schematic of proposed relationships of hippocampal convergencewith
midbrain VTA neuromodulation. During the anticipation of high curiosity
answers, we propose that neuromodulation by the VTA promotes the consistent
engagement of neural states/processes in the hippocampus that supports the
formation of new memories. This can manifest as greater convergence in dis-
tributed patterns of activity. In the absence of neuromodulatory inputs from the
VTA (during low curiosity), patterns of activity in the hippocampus can show
greater variability. The increased convergence in hippocampal state during VTA
neuromodulation may be supported by the stabilization of specific attractors and
the suppression of noise-driven transitions between different possible attractor
states. As hippocampal convergence and VTA activation were measured over
simultaneous intervals, it is possible that hippocampal convergence supports
univariate VTA activation; see text for detailed discussion.
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and relational binding, we saw a dissociation consistent with their
distinct roles81–83 in item and relational memory: recall was predicted
by hippocampal convergence bridging the gap between the question
and answer, but by perirhinal convergence during presentation of
answers alone.

While it is possible that the modulation of anticipatory hippo-
campal state spaces associated with midbrain VTA activation is a sig-
nature of a whole brain state that is synonymous with some usages of
attention, rather than the specific VTA neuromodulation we hypo-
thesized, we found an association between hippocampal convergence
and memory only during the Question phase (i.e., preceding encod-
ing), not during the Answer phase (i.e., during encoding). Recent
human work using depth electrodes showed that pre-stimulus hippo-
campal spiking predicted subsequent memory but not ongoing
retrieval accuracy, suggesting that hippocampal activity preceding
successful encoding is unlikely to be related to attention or arousal68. If
our findings were a result of attention, we would expect the relation
between hippocampal convergence and memory to also be observed
during the actual encoding of answers.

Contrastingwith our findings in the hippocampus, we did observe
an association of memory with perirhinal and parahippocampal con-
vergence during encoding (i.e., the Answer phase). Cortical MTL
regions are known to exhibit attention-related modulation (e.g.,
refs. 84,85), and in somework this hasbeen accompaniedby attention-
related modulation in the hippocampus (e.g., refs. 36,37) Importantly,
all of these previously reported effects of attention occurred during
encoding, not during anticipation. Thus, while our cortical MTL find-
ings could be attributable to attention, the anticipatory hippocampal
convergence findings we report are not consistent with known atten-
tional effects. In addition, hippocampal convergence remained a sig-
nificant predictor of memory after the inclusion of curiosity as a
covariate, suggesting that the observed relationshipwas unlikely to be
driven by curiosity-dependent allocation of attention.

In human fMRI studies, overall increases in activation of the
midbrain and the hippocampus preceding18,19,86, during87–90, and fol-
lowing encoding91–93 have been related to better subsequent memory
performance.While thesepriorfindings are consistentwith an account
of dopaminergic neuromodulation, the mechanisms of such effects
have remained to be specified. As discussed above, some known
mechanisms of dopamine on hippocampal plasticity (metaplastic tag
and capture, lowered LTP threshold) might not manifest in univariate
BOLD activation. In particular, it was previously unknown how or
whether spatially distributed patterns of activity in the hippocampus
are modulated by midbrain activity. Our work bridges these gaps,
further substantiating an account of neuromodulation of the hippo-
campus by midbrain activity, by showing a trial-level association
between activation in the midbrain and convergence of distributed
patterns in the hippocampus.

In contrast to the results of prior studies showing greater uni-
variate activation in the hippocampus preceding successful memory
formation18,19, and despite the relationship we found between sub-
sequent memory and pattern typicality, we found no relationship
between subsequent memory and univariate signal magnitude in the
hippocampus. Apart from key differences in experimental design that
could have influenced anticipatory activity in prior studies, such as the
use of intentional encoding18, or the expectation of irrelevant faces19,
several analytical decisions may also have contributed to the differ-
ence in observations. In particular, our current univariate analysis was
performed on the average signal across all voxels within our ROI, and
was not optimized to isolate localized univariate differences. Addi-
tionally, in both of the prior studies, the mnemonic effect in the hip-
pocampuswas specific to thehighmotivation condition,whereashere,
we showed that multivariate convergence in the hippocampus was
associated with subsequent recall in both the high and low curiosity
states, suggesting that distributed patterns of activity may be more

sensitive for the detection of such mnemonic effects. However, it
should be noted that multivariate convergence and univariate event-
related activation can co-occur, as evidenced in the medial temporal
cortices during answer presentation, where both univariate activation
and multivariate convergence were associated with subsequent recall.
Furthermore, convergence in medial temporal cortices remained a
significant predictor of recall when controlling for univariate activity,
suggesting that these measures have dissociable mechanisms con-
tributing to memory formation. We did not observe an association
between anticipatory VTA and anticipatory hippocampal univariate
activation. Prior findings aside, this should not be entirely surprising,
because not all neuromodulatory effects that promote memory for-
mation should be evident in changes inmagnitude of BOLD activation;
this premise is a main motivation for the current study. An optimal
subspace account is not inconsistent with prior findings of increased
anticipatory univariate activation within the hippocampus: Such acti-
vation would be expected under conditions where greater metabolic
activity is required to “shift” ongoing states into the optimal subspace.

Our current contribution focuses on potential neuromodulatory
influence of the hippocampus by dopaminergic nuclei in themidbrain.
It should be noted that activation of the midbrain is also associated
with the release of other neurotransmitters besides dopamine, and the
hippocampus is also innervated by other major neuromodulatory
nuclei including the basal forebrain and locus coeruleus (LC). The
release of acetylcholine in the hippocampus has been shown to pro-
mote memory formation, and it has been suggested that the fluctua-
tions in levels of acetylcholine can drive functional states in the
hippocampus, with high acetylcholine promoting an encoding state
and pattern separation, while low acetylcholine may promote a
retrieval state and pattern completion74,94,95. Although our exploratory
whole-brain analysis did not reveal a significant association in the basal
forebrain, the primary source of cholinergic projections, this could be
due to a lack of sensitivity in our current approach. It should be noted
that the noradrenergic locus coeruleus has also been shown to release
dopamine in the hippocampus96,97, and recent work in mice has sug-
gested that novelty-enhanced memory may be more strongly depen-
dent on projections from the LC than the midbrain VTA96. While our
current acquisition precludes a precise localization of the LC, future
work should also examine if activity in the LC is similarly associated
with hippocampal convergence. If hippocampal convergence is an
outcome of dopaminergic modulation irrespective of its source or
dynamics, thenmanymanipulations, including novelty and prediction
error, should all promote greater hippocampal convergence. We have
argued previously that mesolimbic signaling to the hippocampus is
more likely to be sustained than phasic17,33. An intriguing possibility is
that hippocampal convergence is a memory mechanism specific to
modulation by dopamine from mesolimbic projections.

Finally, while we evaluated a neuromodulatory hypothesis in
whichmultivariate hippocampal convergence resulted fromunivariate
midbrain VTA activation, it should be noted that activity in the mid-
brain can also be influenced, indirectly, by signaling from the
hippocampus26,98. We have previously shown that integrating over
hippocampal activation history significantly predicts midbrain VTA
activation baseline drift (but not transients) in fMRI data33. Themodels
used here cannot disambiguate directionality in the hippocampus-
midbrain relationship. Notably, though, hippocampal convergence
and midbrain activation occurred without any significant univariate
hippocampal activation, so a hippocampus-to-midbrain directionality
would imply that hippocampal convergence per se drove a midbrain
univariate response, impacting subsequent memory. Our model
comparisons and mediation analyses, moreover, showed that hippo-
campal convergence accounted for a greater proportion of memory
variance and mediated the trial-wise relationship between VTA acti-
vation and subsequentmemory.Whether convergence statesmanifest
the effects of neuromodulation, produce it, or both, will require
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further investigation in human and animal models. The chief con-
tribution of the current work is to offer evidence for the instantiation
of convergence states as a distinct hippocampal contribution to
memory and as a potential route for memory modulation.

In conclusion, by using a novel systems-level characterization of
hippocampal function, we identified a physiological signature con-
sistent with an anticipatory convergence state conducive to memory
formation. During high curiosity, anticipatory hippocampal con-
vergence correlated with midbrain VTA activation and accounted for
its relationship to subsequent memory, suggesting a candidate
mechanism for mesolimbic memory modulation. These findings offer
new tools for investigatingmodulation of neural states and behavior in
many domains. Most fundamentally, the concept of a convergence
state could potentially unite piecemeal understanding of individual
mechanisms into a cohesive picture of the role of the hippocampus in
memory formation.

Methods
Subjects
Twenty-five healthy, right-handed young adults were recruited for the
study. All participants provided informed consent for our study pro-
tocol approvedby theDukeUniversity InstitutionalReviewBoard. Two
participants had to be excluded (one participant fell asleep during the
scan, and one did not complete the scanning session), and all
remaining 23 participants were included in the analyses (10 Female;
Mean age = 26.4 years, Age range = 19–35 years).

Tasks
We selected 360 trivia questions from the stimuli used in the study by
Gruber and colleagues (2014), and a pre-task screening session was
used to sort trivia questions into high- and low- curiosity categories for
each participant. For the pre-screening session, participants were
presented with a series of trivia questions and they were required to
make self-paced ratings on a continuous scale. Participants responded
to the following questions: (1) “How likely is it that you know the
answer?” and (2) “How curious are you about the answer?”. Trivia
questions were excluded if participants indicated a high likelihood of
knowing the answer (>90% on the scale), and they responded until 216
trivia questions were eligible for inclusion. Included trivia questions
were separated into tertiles based on curiosity ratings (72 questions
each), with questions in the 1st and 3rd tertiles categorized as low and
high curiosity, respectively. Twelve questions from the 2nd tertile were
used as catch trials during encoding and were not included in any
analysis.

Participants performed the encoding task during fMRI scanning
where they were shown the trivia questions (Question Interval) and
were presented with the associated answer (Answer Interval) after a
variable delay interval. During the question presentation, participants
were shown a single trivia question together with a colored rectangle
for 4 s. The colored rectangle indicated the duration and action con-
tingency for the upcoming trial, whereby the length of the rectangle
indicated the duration of the anticipation period (9 s or 13 s), and the
color indicated if participants were required tomake a button press to
see the trivia answer. On trials that required a button press, a green
arrow appeared on the left or right side of the screen, and participants
made a button press to indicate the side that the arrow was presented
on. For action contingent trials, the trivia answer was shown only if the
participants responded correctly or the string “XXXXX” would be
presented (Participants were highly accurate and saw the trivia answer
for most trials (M= 98.6%, SD =0.4). Only trials that were correctly
responded to were included for subsequent analyses). On non-action
contingent trials, the trivia answer was shown at the end of the
anticipation period. The manipulation of action-contingency was
performed for the investigation of a separate research question that
would be elaborated on in a separate communication. The trivia

answer was presented for 1 s, following which, participants performed
an active baseline task where they were required to count backward
from different starting numbers for a duration between 1 to 20 s. To
encourage compliance with the active baseline task, catch trials
occurred at random intervals, and participants were required to indi-
cate whether their current count was above or below a given number.
There were a total of 12 catch trials and trivia questions presented
following the catch trials (taken from the 2nd tertile)werenot included
in the analysis.

Participants underwent a total of 6 scanning runs (10min each),
with 12 high curiosity trials, 12 low curiosity trials, and 2 catch trials
presented within each run. Within each curiosity condition, there was
an equal number of action contingent andnon-action contingent trials.
Condition onset and trial intervals were optimized using OptSeq2
(Dale, 1999), and the task was coded on Matlab using PsychToolBox
(Brainard, 1997).

Immediately following the scan (~30min), participants were given
a surprise recall test for the trivia questions. Participants were shown
all 144 (72 High and 72 Low curiosity) trivia questions in randomorder,
and were required to type out the correct answer for each question.
Participants were told not to make any guesses if they were unable to
remember the correct answer.

MRI data acquisition
MRI data were acquired on a 3 T GE Signa MRI scanner at the Duke
Brain Imaging andAnalysis Center. fMRI data for each participant were
acquired using an echo-planar imaging (EPI) sequence (TE = 27ms, flip
angle = 77 degrees, TR = 2000ms, voxel size = 3.75 × 3.75mm) with 34
axial slices (slice thickness = 3.8mm). Participants completed a total of
6 functional scan runs each consisting of 298 fMRI volumes. Cardiac
and respiratory physiological data were also collected during func-
tional scans using BioPac. Prior to the functional scans, whole-brain,
inversion recovery, spoiled gradient high resolution anatomical image
(voxel size = 1mm isotropic) was collected for spatial normalization.

fMRI preprocessing
Preprocessing of the fMRI data was performed using fMRI Expert
Analysis Tool (FEAT) Version 6.00 implemented on FSL 5.0.8 (www.
fmrib.ox.ac.uk/fsl). The first 6 volumes from each scan run were
discarded to allow for signal stabilization. Physiological noise cor-
rection was performed using the Physiological Noise Modeling
toolbox in FSL. Skull stripping was performed using BET99, and
images were realigned within-run, intensity normalized by a single
multiplicative factor, spatially smoothed with a 4mm full-width
half-maximum (FWHM) kernel, and subjected to a high-pass filter
(80 s). The 4mm smoothing kernel was chosen to optimize the
differentiation of midbrain and hippocampal signals18. Spatial nor-
malization was performed using a two-step procedure, where mean
EPI from each run was co-registered to the high-resolution anato-
mical image using FLIRT, which was followed by the normalization
of the high-resolution anatomical image to MNI space using a
nonlinear transformation with a 10mm warp resolution imple-
mented with FNIRT.

Defining regions-of-interest
To examine how activity in the midbrain interacts with the medial
temporal lobe (MTL), we identified regions of interest which included
the midbrain VTA and regions within the MTL. The VTA was defined
using a midbrain probabilistic atlas thresholded at 50% probability100.
Three separate ROIs were defined within the medial temporal lobe
(Supplementary Fig. 4), which included the hippocampus proper,
perirhinal cortex and parahippocampal cortex. The hippocampus was
defined using the AAL atlas, while the perirhinal and parahippocampal
cortex were defined using anatomical mask from101. All ROIs were
defined in MNI space.
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Analysis
Due to a programming error, trivia questions for one participant were
not correctly selected (based on screening), and 62 trials were
removed from subsequent analysis. Statistical analysis was performed
using linear and logistic mixed-effects modeling using the lme4102 and
lmerTest103 packages in R (R Core Team, 2020). Data visualization was
generated using the ggplot2 package104.

Behavioral analysis of Memory performance: Memory perfor-
mance was analyzed using a paired t-test comparing recall rates
between the high and low curiosity condition. An additional analysis
was also conducted using repeatedmeasure ANOVAwith curiosity and
action-contingency as factors. Post-hoc comparisons were conducted
based on the contrast of estimatedmarginalmeans, and recall ratewas
greater for the high curiosity condition across both levels of action-
contingency.

fMRI analysis. To capture trial-level estimates, we used the Least-
squares-all approach52,105 to estimate the betas associated with each
condition at each trial. Briefly, the Question and Answer interval of
each trial is modeled as a separate regressor, resulting in a total of
288 separate parameter estimates (144 trials x 2 intervals). All models
also included nuisance regressors for the 6 motion parameters, and
physiological (cardiac & respiratory) noise. Parameter estimates were
converted to t-values andwere then converted to z-values basedon the
inverse transform of the p-values, as implemented in FSL. Voxel values
from the z-maps were used for both univariate and multivariate
analyses.

Univariate analysis - Effects of Curiosity on anticipatory activity.
Univariate analyses were conducted using the mean value across all
voxels within each ROI during the anticipation of trivia answers (fol-
lowing Question presentation). Linear-mixed effects analysis was
conducted for each ROI with curiosity state as fixed effect, and sub-
jects as random effect. As previously mentioned, the manipulation of
action-contingency was performed for the investigation of a separate
research question, and for the current study, action-contingency was
omitted from all models to increase statistical power given the limited
number of trials. However, it should be noted that there was neither a
main effect nor interaction of action-contingency in any of our ROIs
(Supplementary Fig. 3), and the inclusion of action-contingency as a
covariate did not alter any of our findings (Supplementary Results).
Post-hoc comparisons were performed on the estimated marginal
means using the emmeans package.

Multivariate convergence analysis. For the proposed analysis, pat-
terns of activation in the ROIs are operationalized as points in an
N-dimensional space, with N being the number of voxels in each ROI.
Distance in the current analysis was measured using correlation dis-
tance (1 - Pearson’s r), a distance metric commonly used in multivoxel
pattern analysis. To examine the association between VTA activity and
neural state in the medial temporal lobe, we devised an approach to
quantify the trial-by-trial variation in neural state based on their dis-
tance from an independently defined centroid. The cluster centroid is
a point with the shortest distance to all other points in high dimen-
sional state space, and can be thought of as a prototypical state. We
defined the centroid using a leave-one-run-out approach, where the
cluster centroid was identified, with a k-means algorithm, using data
fromN-1 runs. This centroidwas then used as the origin to quantify the
distance for trials from the left-out run. Centroids for the analysis of
the anticipatory period were defined using activation patterns from
the Question interval, while analysis for the encoding of answers were
defined using activation patterns from the Answer interval. This was
repeated for all runs and was performed independently for each sub-
ject. The typicality for each trial was quantified based on their distance
from the independently defined centroid. As the trials beingmeasured

do not contribute to the definition of the centroid (which they are
measured relative to), this approach ensures the independence of the
tested trials and the centroid-defining samples. Additionally, this also
ensures that the quantification of typicality is not confounded by
temporal correlation (since the centroid is defined using data from a
different scanning run). In the current formulation, patterns closer to
the centroid (i.e., shorter distance) are considered to exhibit greater
convergence than patterns further from the centroid. This oper-
ationalization is similar to measures of neural variability, whereby a
larger absolute difference from the average signal amplitude is con-
sidered to reflect greater trial-to-trial variability (e.g., ref. 62). In con-
trast to a conventional linear classification approach, which would be
suboptimal given the small number of datapoints and the imbalance
between conditions in the current study (between number of
Remembered and Forgotten trials), this approach also capitalizes on
the expectation that successful memory formation is likely to require
the confluence ofmultiple factors, and thus neural states conducive to
memory formation should converge in state space. Linear-mixed
effects analysis was conducted using the raw pattern typicality score
for each ROI. To account for potential effects of outliers, key analyses
were repeated after the exclusion of trials with outlying values, and all
findings remained unchanged (Supplementary Results). For visualiza-
tion, the measure of pattern typicality was z-scored across trials for
each participant.

Relating univariate activity andmultivariate typicality. To examine if
multivariate pattern typicality in the hippocampus is associated with
univariate activity in the midbrain VTA, a linear mixed effects model
was implemented with trial-level univariate activation as a predictor of
hippocampal pattern typicality. The model included subjects as ran-
dom intercepts, andVTAactivity as a randomslope.Mediation analysis
was performed using the mediation package.

To examine if convergence in the hippocampus is also associated
with univariate activation in other brain regions, we performed an
exploratory whole-brain voxel-wise analysis correlating hippocampal
pattern typicality with each voxel’s univariate activation (controlling
for VTA activation). To control for spurious correlations, a null dis-
tribution was generated for each voxel using a permutation-based
approach (500 iterations), and the r-value at the 95th percentile was
subtracted from each voxel. This approach ensured that only corre-
lation values greater than the 95th percentile of the null distribution
are positive. A one-sample t-test was implemented using SPM12
(https://www.fil.ion.ucl.ac.uk/spm/), to identify regions showing a sig-
nificant correlation with HPC convergence across all subjects. Sig-
nificant voxels were identified using a threshold of FWE p <0.05.

Relating brain activity and memory outcomes: To examine the
behavioral relevance of univariate and multivariate measures of brain
activity, mixed effects logistic regression was performed with trial-
level brain measures (i.e., univariate activation or multivariate state
convergence) of all ROIs included as predictors of subsequent recall.
By including all ROIs in a single model, this approach allows the
identification of variance that is uniquely accounted for by the activity
of each ROIs. For all mixed-effects models, subjects were included as
random intercepts, and random slopes were included if it generated a
better model fit based on model comparisons evaluated using a like-
lihood ratio test.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Source data are provided with this paper and are also available at -
https://github.com/JiaHou-Poh/TunedToLearn-AnticipatoryState.
Source data are provided with this paper.
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