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Genetic regulation of serum IgA levels and
susceptibility to common immune,
infectious, kidney, and cardio-metabolic
traits

A list of authors and their affiliations appears at the end of the paper

Immunoglobulin A (IgA)mediatesmucosal responses to food antigens and the
intestinal microbiome and is involved in susceptibility to mucosal pathogens,
celiac disease, inflammatory bowel disease, and IgA nephropathy. We per-
formed a genome-wide association study of serum IgA levels in 41,263 indi-
viduals of diverse ancestries and identified 20 genome-wide significant loci,
including 9 known and 11 novel loci. Co-localization analyses with expression
QTLs prioritized candidate genes for 14 of 20 significant loci. Most loci
encoded genes that produced immune defects and IgA abnormalities when
genetically manipulated in mice. We also observed positive genetic correla-
tions of serum IgA levelswith IgAnephropathy, type 2diabetes, andbodymass
index, and negative correlations with celiac disease, inflammatory bowel dis-
ease, and several infections. Mendelian randomization supported elevated
serum IgA as a causal factor in IgA nephropathy. African ancestry was con-
sistently associated with higher serum IgA levels and greater frequency of IgA-
increasing alleles compared to other ancestries. Our findings provide novel
insights into the genetic regulation of IgA levels and its potential role in human
disease.

Immunoglobulin A (IgA) provides protection against mucosal infec-
tions and contributes to the pathogenesis of autoimmune and
inflammatory disorders1,2. Most of the IgA production occurs at the
mucosal surfaces along the gastrointestinal and respiratory tracts, but
a large portion of circulating IgA is contributed by bone-marrow
plasma cells3. IgA neutralizes mucosal pathogens4 and enhanced IgA
responsiveness has been reported in various respiratory and gastro-
intestinal infections, including acute SARS-CoV-2 infection5–7.
Increased serum IgA levels are a common phenomenon in patients
with IgA nephropathy8,9, diabetes10 and metabolic syndrome11. The
serum concentration of IgA can be influenced by a combination of
inherited factors and environmental exposures, including age, sex, and
lifestyle factors11–14. The heritability of serum IgA levels has been esti-
mated in the range 20–60%15–18. Several GWAS have investigated

genetic determinants of serum IgA levels in individuals from either
European or East Asian ancestry, and nine significant GWAS loci have
been identified to date16,19,20. Notably, African and other more diverse
populations have not been included in prior studies, and limited data
exist on the ancestral differences in IgA levels.

In this study,we conducted a genetic analysis of serum IgA levels in
41,263 individuals, including 22,229 diverse participants across 16
ancestry-defined cohorts with genome-wide imputed data combined
with 19,034 individuals with summary statistics data on significant and
suggestive association signals (P < 10−6) from the previous IgA level
GWAS by deCODE Genetics and Lund University (deCODE-Lund)20. We
identified novel genetic determinants of serum IgA levels and, through
comprehensive functional annotations, we prioritized candidate causal
genes at eachof the IgA-associated loci.We then investigated the shared
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genetic architecture between serum IgA levels and other human traits
using several approaches, including genome-wide genetic correlation
analysis, co-localization of GWAS loci, Mendelian randomization, and
phenome-wide association studies. Our results provide new insights
into the genetic regulation of serum IgA levels and its role in genetic
susceptibility to several human diseases, including immune, infectious,
kidney and cardio-metabolic traits.

Results
Ancestral differences in serum levels of IgA
We first tested for differences in the distribution of serum IgA levels
among 12,260 multi-ancestry individuals broadly classified into 4
major groups based on genetic ancestry (1751 African American, 6791
European, 1257 East Asian, and 2461 Latinx or admixed ancestry indi-
viduals). First, we performed laboratory measurements of serum IgA
levels in all 5420 participants of the Multi-Ethnic Study of Athero-
sclerosis (MESA) with available serum samples, providing us with the
largest multi-ancestry cohort with standardized IgA measurements.
For group comparisons, we generated standardized residuals of log-
transformed serum IgA levels after adjustment for age and sex. Nota-
bly, MESA participants of African ancestry had significantly higher
mean age and sex-adjusted serum IgA levels compared to all other
ancestries (Fig. 1a). We next examined the distribution of adjusted IgA
levels in the pooled dataset of 6840 diverse non-MESA participants
included in our genetic studies. In this independent dataset, we repli-
cated the strong association of genetic African ancestry with higher
IgA levels after age and sex adjustment (Fig. 1b). The admixture ana-
lysis across the MESA cohort confirmed weak, but highly statistically
significant positive correlation between African ancestry and age- and
sex-adjusted serum IgA levels (r =0.026, P = 4.6 × 10−33, Fig. 1c). This
correlation remained significant after additional adjustment for body
mass index (BMI) and diabetes.

Multi-ancestry GWAS meta-analysis
Next, we aimed to identify genetic loci controlling serum IgA levels
using GWAS. We performed a GWAS meta-analysis of 16 diverse
ancestry-defined cohorts comprised of 22,229 individuals genotyped
genome-wide, combined with 4699 significant and suggestive asso-
ciation signals from an independent cohort of 19,034North Europeans
previously published by deCODE-Lund20. Each of the 16 cohorts was
genotyped with high-density SNP arrays and imputed using the latest
genome sequence reference panels (see Table 1 and Online Methods
for details). These cohorts were not ascertained based upon any spe-
cific immune or disease phenotype. Within each of the cohorts, IgA
phenotypeswere defined as standardized residuals of log-transformed
IgA levels regressed against age and sex. The final combined dataset
comprisedof41,263 individualswith serum IgAmeasurements (35,094
European, 1751 African American, 1957 East Asian, and 2461 Latinx or
admixed-ancestry individuals).

The results of joint meta-analysis are provided in Fig. 2a and
Table 2 with regional association plots shown in Supplementary Fig. 1.
We observed minimal genomic inflation of the final meta-analysis
summary statistics (λ = 1.016, Supplementary Fig. 2), confirming neg-
ligible effects of population stratification. In total, we identified 20
genome-wide significant independent loci, including nine known and
11 novel loci based on P < 5 × 10−8. We detected no significant hetero-
geneity in associations across all cohorts, and themeta-analysis results
were robust under both fixed effects and trans-ancestry (TransMeta21)
random effects models. Stepwise conditional analyses of the genome-
wide significant loci revealed that the HLA locus harbored at least two
independently genome-wide significant variants (Supplementary
Fig. 3), but no additional independent signals were detected outside of
the HLA region. Forests plots in Supplementary Figs. 4, 5 provide
detailed comparisons of effect estimates by ancestry for eachof the 20
genome-wide significant loci, while Supplementary Data 1 provides the

breakdown of effect estimates and P-values for each individual cohort.
We additionally identified eight suggestive signals with P < 1 × 10−6

(Supplementary Table 1), including TNFSF13 locus previously reported
in GWAS of Han Chinese ancestry participants19. Using linkage dis-
equilibrium (LD)-score regression method22, we estimated the
genome-wide SNP-basedheritability of age- and sex-adjusted IgA levels
at approximately 7% (95%CI: 2–11%).

As expected, the effect sizes of independently associated variants
were inversely related to their minor allelic frequencies (Fig. 2b). Two
relatively rare ancestry-specific genome-wide significant variants
exhibited the largest effects, including the previously reported RUNX3
locus supported by the European cohorts (IgA-lowering allele
rs188468174-T, Beta = −0.88,P = 3.42× 10−92, EuropeanMAF= 1%, absent
in African genomes), and the novel GPATCH2 locus supported pre-
dominantly by the African ancestry cohorts (IgA-increasing allele
rs73100295-T, Beta = 0.36, P = 3.91 × 10−8, MAF=9% in African ancestry
cohorts,MAF= 2% in admixedcohorts, rare in Europeans). Interestingly,
the IgA-increasing alleles at 12 of the 20 genome-wide significant loci
(60%) were more frequent in African compared to European ancestry,
suggesting an enrichment of IgA-increasing alleles in African genomes.
To assess if a similar trend was present for all IgA-increasing alleles, we
derived a genome-wide polygenic score (GPS) for serum IgA levels (see
Online Methods) and compared its distributions between major
ancestral populations of the 1000 Genomes Phase 3 reference dataset.
The African (AFR) reference population had the highest average GPS of
all other ancestral populations (Fig. 1d), with the mean value over two
standard deviations higher compared to the European (EUR) popula-
tion (t-test P< 2 × 10−16). The observed distributional differences in the
GPS by ancestry had a strikingly parallel pattern to the differences in
serum IgA levels (Fig. 1a, b). Because the GPSweights are constant when
scoring populations, these observations must be driven by inter-
population differences in allelic frequencies. These findings were also
consistent with the results of our admixture analysis demonstrating
positive correlation between the fraction of African ancestry and IgA
levels, leading us to hypothesize that the IgA-increasing alleles could
have provided some degree of fitness advantage in Africa, or decreased
fitness in non-African environment. To assess for potential polygenic
adaptation, we next tested African-European frequency difference for
the IgA-increasing alleles for correlation with their corresponding GPS
weights (LD-score-adjusted effect sizes assuming 1% fraction of causal
variants). We detected a significant positive rank correlation among the
top 1% variants with the largest effect (Spearman’s r =0.01, P =0.0043,
N =67,267 top variants, Fig. 1e). When extended genome-wide by LD
score regression23, this correlation became non-significant (rg =0.05,
P =0.32, N= 6,710,977 variants). Similarly, we detected no significant
genome-wide correlation by LD score regression between polarized
singleton density scores (tSDS)24 for IgA increasing alleles and their
effect sizes (rg = −0.07, P=0.31, N= 3,635,846 variants with tSDS scores
available).

Pathway and tissue enrichments
In a protein–protein interaction (PPI) network analysis of positional
candidate genes from the non-HLA loci, we observed greater network
connectivity than expected by chance (permutation P =0.002, Sup-
plementary Fig. 6), suggesting that the gene products physically
interact and thusmay participate in common biological processes. Our
pathway enrichment analyses based on genome-wide summary
statistics25 identified five significantly enriched pathways at Bonferroni-
adjusted P <0.05 (Fig. 3a and Supplementary Table 2), including
cytokine signaling in immune system (P = 1.2 × 10−6), signaling by
interleukins (P = 1.1 × 10−5), cytokine-cytokine receptor interactions
(P = 5.2 × 10−6), TNFs and their physiological receptors (P = 1.4 × 10−5),
and IL-6-type cytokine receptor ligand interactions (P = 5.0 × 10−5).
Using data-driven expression-prioritized integration for complex traits
(DEPICT) analysis26, we further prioritized 17 tissues and cell types at
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FDR<0.05 based on our GWAS results, with the strongest enrichment
in bone marrow cells, hematopoietic system, as well as blood and
myeloid cells (Fig. 4b and Supplementary Table 3).

Pleiotropic associations based on GWAS catalog
We next interrogated the pleiotropic effect of individual loci by
annotating lead SNPs and their proxies against the GWAS catalog
database (see Online Methods)27. Most of the genome-wide significant
loci had previous GWAS associations with immune-mediated dis-
orders, infections, or hematological traits (Fig. 2c and Supplementary
Data 2). In particular, eight non-HLA loci, SH2B3, ANKRD55, HDAC7,
RCOR1/TRAF3, TNFSF4, POU2AF1, FADS2/TMEM258, and OVOL1/RELA,
displayed either concordant or opposed effects on 18 different auto-
immune and inflammatory disorders, suggesting that genetic regula-
tion of IgA levels may play a pervasive role in the control of
autoimmunity and inflammation. The SH2B3 locus displayed the
highest degree of pleiotropy, being associated with 79 different GWAS

traits. We also found that the alleles associated with higher serum IgA
levels at both SH2B3 and HORMAD2/LIF loci were associated with
increased risk of tonsillectomy, a procedure frequently performed in
the setting of recurrent pharyngitis28. Moreover, concordant effects on
high blood pressure were found at three loci, including SH2B3, CTF1
and HDAC7, consistent with the epidemiologic association of high
blood pressure with increased IgA levels11. Interestingly, the SH2B3
locus showed concordant risk effects on several cardiovascular traits,
including coronary artery disease and hypertension, but had an
opposed effect on LDL cholesterol. The effect on BMI was concordant
with IgA levels for SH2B3 and RCOR1/TRAF3 loci, also consistent with
the reported correlationbetweenhigher serum IgA levels andobesity11.

Functional annotations of GWAS loci
Themajority of lead SNPs at genome-wide significant loci map to non-
coding (intronic or intergenic) regions (Supplementary Table 4). The
lead SNPs at five loci had proxies in the 5′ or 3′UTR regions, in RUNX2,
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Fig. 1 | Ancestral differences in serum IgA levels. a discovery analysis across the
four major ancestral groups in MESA demonstrates that African ancestry is asso-
ciated with higher adjusted IgA levels, b replication analysis in all non-MESA study
participants confirms higher mean IgA levels in individuals of African ancestry,
c mean adjusted IgA levels (±95% confidence intervals) as a function of African
ancestry fraction, demonstrating that individuals in the upper quartile (>75%) of
African ancestry have the highest serum IgA levels (N = 5420 MESA participants);
standardized residuals generated by regression of log-transformed serum IgA
levels against age and sex were significantly correlated with the African ancestry
fraction (P = 4.6 × 10−33), and this relationship remained highly significant after
additional adjustment for BMI and diabetes (P = 3.7 × 10−23), The boxplots in

(a,b, and d) depict themedian (horizontal line), upper/lower quartiles (boxes), and
range (whiskers); the red diamond point denotes the mean value per ancestry
group; two-sided unadjusted t test: *P <0.05; **P <0.01; ***P <0.001.ddistributions
of the GPS for IgA levels in the 1000Genomes (Phase 3) populations demonstrating
higher GPS in African (AFR) compared to European (EUR), Admixed American
(AMR), and East Asian (EAS) populations, e mean AFR-EUR difference in IgA-
increasing allele frequency for each quartile of GPS weights (LD-score-adjusted
effect sizes under the assumption of 0.01 fraction of casual variants, N = 67267
variants included); error bars correspond to 95% confidence intervals around
the mean.
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ELL2, TNFSF15, TNFSF4, TRAF3, and FADS2 genes, and three loci had
missense proxies, in FBXL19, ELL2 and SH2B3 genes. At the previously
reported ELL2 locus, we identified the Thr298Ala missense variant in
ELL2 exon 7 (rs3815768, P = 2.9 × 10−27) in linkage disequilibrium with
the lead SNP (rs3777175,P = 7.8 × 10−30, r2 = 0.69) and located to the end
of the ELL2 domain required for transcriptional elongation29. At the
known SH2B3 locus, rs3184504 in tight LD with the top SNP (r2 = 0.94)
is a missense variant in the canonical transcript of SH2B3 gene,
although this variant is predicted to be benign by PolyPhen2. Given
that other top signals map to non-coding regions, we evaluated their
potential regulatory function by systematic eQTL co-localization ana-
lyses using whole blood30 and 13 primary immune cell types31. The co-
localization probability (PP4) exceeded 50% in at least one cell type for
14 of 20 GWAS loci, prioritizing biologically plausible candidate genes
at each of these loci (Fig. 4a and Supplementary Table 5). We will next
summarize some of our positive functional annotation findings for the
top non-HLA GWAS loci.

RUNX2 and RUNX3 loci
The knownRUNX3 locus on chr.1p36.11 represents one of the strongest
signals in our meta-analysis with the largest effect size (rs188468174,
Beta = 0.88, P = 3.42 × 10−92). This locus was previously associated with
IgG glycosylation32 and IgA levels20, and strongly replicated in our
study. Interestingly, we have also picked up a novel locus with smaller
effect on chr.6p21.1 encoding RUNX2, a related transcription factor
(rs1200427, Beta = 0.06, P = 6.85 × 10−14). RUNX transcription factors
are essential regulators of diverse developmental and signaling
pathways33,34. Both RUNX2 and RUNX3 physically interact35 and have
been linked to retinoic-acid- and TGF-β-induced IgA class switching36.
The novel RUNX2 locus co-localized with the eQTL for the RUNX2 gene
in whole blood with PP4 = 0.99; the IgA-decreasing allele at the index
SNP (rs1200427-G) was associated with higher mRNA levels of RUNX2
(Fig. 4a and Supplementary Table 5). Notably, the leadSNP is in LDwith
rs1200428 (r2 = 0.51), the 3′UTRvariant inRUNX2 that has the strongest
eQTL effects in blood. A similar phenomenon was previously reported
for the RUNX3 locus, where the minor allele of the top SNP
(rs188468174-T) was associated with lower IgA levels and increased
mRNAabundanceof the long isoformofRUNX320. Therefore, our study

solidifies the evidence for a genetic control model of RUNX tran-
scription factors, in which increased RUNX expression suppresses IgA
class switching, reducing circulating IgA levels.

LITAF locus
The new locus on chr.16p13.13 (rs113962704, Beta =0.05, P = 1.91 ×
10−12) encodes lipopolysaccharide-induced TNF-alpha factor (LITAF), a
transcription factor regulating TNF-alpha expression in intestinal
macrophages37,38. Notably, macrophage-specific deficiency of LITAF in
mice leads to attenuated TNF and IL-6 response upon LPS
stimulation39. Our analyses revealed that this locus co-localized with
eQTL for LITAF exclusively in monocytes. Moreover, the top SNP
represented a monocyte-specific hQTL (H3K27ac)40, suggesting that it
alters LITAF enhancer activity in themonocytic lineage (Fig. 4a, c). The
IgA-increasing allele (rs113962704-T)was associatedwith highermRNA
expression of LITAF in monocytes, supporting the hypothesis that this
transcription factor provides a stimulus for IgA production by altering
monocyte function.

IL1R1, TRAF3, ANKRD55, and HDAC7 loci
These four loci exhibited T-cell specific eQTL effects. The new locus on
chr.2q11.2 (rs13427957, Beta = 0.04, P = 6.19 × 10−10) contains the IL1R1
gene encoding Interleukin 1 Receptor Type 1, an important T-cell
receptor involved in cytokine-induced immune and inflammatory
responses41. This locus co-localizes with eQTL forMIR4772 in Th1 cells
(PP4 = 0.69) with concordant effect on IgA levels, and IL1R1 is pre-
dicted to be a target ofMIR4772bymiRDB42 andTargetScan43. Amouse
knock-out of IL1R1 in Th2 cells had decreased IgA levels44.

The new locus on chr.14q32.32 (rs12147883, Beta = 0.05,
P = 5.42 × 10−14) contains TRAF3 encoding TNF Receptor Associated
Factor 3, a protein participating in the CD40 signaling, inhibition of
non-classical NF-κB signaling, and regulation of class switch
recombination in B cells45–47. Interestingly, this locus co-localizes
with eQTL for TRAF3 specifically in T cell lineage, where the IgA-
increasing variant is associated with higher TRAF3 expression. In
contrast to its inhibitory functions in B-cells, TRAF3 is known to
promote many T-cell effector functions through enhancing sig-
naling by the T-cell receptor-CD28 complex48,49.

Another locus on chr.5q11.2 (rs6859219, Beta = 0.07, P = 1.41 ×
10−20) encoding ANKRD55 (closest gene) and IL6ST has previously been
associated with IgA levels20, IgG glycosylation50 and increased risk of
multiple sclerosis, rheumatoid arthritis, and Crohn’s disease (Fig. 1c,
Supplementary Data 2). Notably, ANKRD55 gene expression is specific
to CD4+ T cells, and mouse studies suggest that ANKRD55 is induced
by inflammation and displays T-cell regulatory functions51. We co-
localized this locus with eQTL for ANKRD55 in T regulatory cells
(PP4 = 0.51) as well as in whole blood (PP4 =0.98) with concordant
effect of ANKRD55 expression and IgA levels. Moreover, we found that
rs6859219 intersects two genetically regulated histone-modification
peaks (H3K4me1 and H3K27ac) that are T cell-specific40 (Supplemen-
tary Fig. 7a).

The fourth locus on chr.12q13.11 (rs7487637, Beta = 0.05,
P = 9.97 × 10−15) contains HDAC7 encoding an important histone dea-
cetylase regulating differentiation and function of T-cells52. This new
locus co-localizes with eQTL for HDAC7 specifically in T-cells, where
the IgA-increasing allele is associated with higher mRNA levels
of HDAC7.

OVOL1/RELA locus
The new locus on chr.11q13.1 (rs10896045, Beta = 0.07, P = 2.57 × 10−22)
encodes multiple candidate transcripts including OVOL1, RELA, and
several others. The co-localization analysis suggested that this locus
was shared with IgA nephropathy, with the IgA-increasing allele asso-
ciated with increased risk of IgA nephropathy, a kidney disease due to
IgA deposition in the glomeruli. Previous GWAS also pointed to the

Table 1 | Baseline characteristics of participants in the GWAS
cohorts

Cohorts Ancestry NTotal NMale NFemale Mean age

MESA (European) European 2280 1132 1148 64.17

MESA (African) African 1275 599 676 64.05

MESA (Admixed 1) Admixed 474 209 265 63.38

MESA (Admixed 2) Admixed 750 369 381 63.17

MESA (East Asian) East Asian 641 319 322 62.48

eMERGE (European) European 4261 1622 2640 56.45

eMERGE (African) African 476 326 150 50.06

eMERGE (East Asian) East Asian 73 29 44 45.38

eMERGE (Admixed 1) Admixed 235 84 151 45.63

eMERGE (Admixed 2) Admixed 1002 427 575 54.97

German (European) European 156 104 52 44.88

French (European) European 103 30 73 –

Chinese (East Asian) East Asian 467 318 149 32.39

Japanese (East Asian) East Asian 776 523 252 33.79

U.S. (European) European 93 53 40 35.66

Swedish (PMID:
24676358)

European 9167 4361 4806 64.50

deCODE-Lund (PMID:
28628107)

European 19,034 – – –

All Discovery 41,263 6144 6918 51.18
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protective role of this locus from atopic dermatitis (Fig. 2c). While the
index SNP localizes to the intronic portion of OVOL1, a putative tran-
scription factor of poorly defined function, the nearby RELA gene
encodes a subunit of NF-κB complex53. We found no significant eQTL
effects for either RELA or OVOL1 in blood or primary immune cells.
However, the lead SNP had significant eQTL effects on OVOL1 tran-
script in thyroid (P = 3.1 × 10−12), spleen (P = 1.5 × 10−6) and EBV-
transformed lymphocytes (4.7 × 10−9) with the IgA-increasing allele
(rs10896045-A) associatedwith higher expression ofOVOL1 gene in all
three GTEx tissues.

POU2AF1 locus
The new locus on chr.11q23.1 (rs4938518, Beta = 0.056, P = 7.01 ×
10−16) encodes POU2AF1 (POU class 2 homeobox associating factor
1), the gene involved in B-cell antigen responses required for the
formation of germinal centers54. Mouse knock-out of POU2AF1
leads to increased B-cell apoptosis and decreased IgA production55.
The IgA-decreasing allele at this locus has been associated with
increased risk of primary biliary cholangitis (Fig. 2c and Supple-
mentary Data 2).

Additional newly discovered loci
The new locus on 16p11.2 (rs1458201, Beta = 0.052, P = 2.02 × 10−11)
contains CTF1 (encoding cardiotrophin-1) involved in multiple
immune-related pathways including cytokine signaling in immune
system and interleukins, IL-6-type cytokine receptor ligand interac-
tions and signaling (Fig. 3a). The new locus on chr.6q24.1 (rs17069163,
Beta = 0.05, P = 5.94 × 10−11) contains CITED2, which encodes a CBP/
P300 interacting trans-activator functioning as a molecular switch of
TGF-α and TGF-β induced signaling56, and previously implicated in
immune homeostasis and tolerance57. The new locus on chr.1q41
(rs73100295, Beta = 0.36, P = 3.91 × 10−08) encodes GPATCH2, but its
role in the immune system regulation is unknown. Lastly, our co-
localization analysis of the new locus on chr.7q11.23 (rs55722505, Beta
= 0.048, P = 8.61 × 10−14) suggested several candidate effector genes
including SRCRB4D, DTX2 and YWHAG in whole blood, ZP3 and SSC4D
in monocytes, and POMZP3 in naïve CD8 and B cells (Fig. 4a).

Additional known loci validated in this study
We replicated the previously reported ELL2 locus (rs3777175, Beta =
0.08, P = 7.81 × 10−30), which co-localized with blood eQTL for ELL2
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(PP4 = 0.53, Fig. 4a and Supplementary Table 5). Consistent with pre-
vious reports58, the IgA-increasing allele (rs3777175-G) was associated
with lower transcript level of ELL2 (P = 6.76 × 10−24), prioritizing ELL2
(encoding elongation factor for RNApolymerase II 2) as themost likely
causal gene at this locus. The known TMEM258/FADS2 locus (rs968567,
Beta = 0.12, P = 2.42 × 10−41) co-localized with several candidate genes,
including FADS1 and FADS2 (fatty acid desaturases regulating unsa-
turation of fatty acids, co-localized across most blood cell types) and
the TMEM258 gene (co-localized specifically in T cells), with the IgA-
increasing allele (rs968567-T) associated with higher expression of all
three transcripts. Notably, rs968567 falls into a genetically regulated
histone-modification peak (H3K4me1) for FADS2 in T cells, monocytes,
and neutrophils40 (Supplementary Fig. 7b). TMEM258 represents a
particularly attractive candidate gene at this locus, sincemice deficient
in TMEM258 exhibit severe intestinal inflammation59. We additionally
replicated three known loci encoding members of tumor necrosis
factor ligand superfamily; TNFSF4/TNFSF18 locus on chr.1q25.120

(rs7518129, Beta = 0.06, P = 1.06 × 10−16, TNFSF4 is the closest gene),
TNFSF8/TNFSF15 locus on chr.9q33.116 (rs3181356, Beta = 0.07, P = 1.13 ×
10−18, TNFSF8 is the closest gene), and a suggestive TNFSF13 locus on
chr.17p13.119 (rs3803800, Beta = 0.06, P = 9.41 × 10−08). These loci
encode powerful TNFSF cytokines with partially overlapping
receptors60. TNFSF8/TNFSF15 and TNFSF13 loci are also associated with
the risk of IgA nephropathy, while TNFSF4/TNFSF18 locus has pre-
viously been associated with the risk of eczema, asthma and narco-
lepsy, all with concordant effects to IgA levels (Fig. 2c and
Supplemental Table 5).

Convergence with relevant mouse phenotypes
To further prioritize causal genes at our GWAS loci, we tested for
significant gene set overlaps with human orthologs that cause
immune-related phenotypes when disrupted in mice. This included
gene sets for abnormal IgA levels (120 genes), abnormal immune tol-
erance (408 genes) and abnormal response to infection (562 genes)
from the Mouse Genome Informatics (MGI) database55. We identified

significant overlap for 13 genes linked to abnormal IgA levels in mice
(enrichment P = 5.8 × 10−5), 29 linked to abnormal immune tolerance
(enrichment P = 6.3 × 10−6) and 42 linked to abnormal response to
infection (enrichment P = 1.1 × 10−5) (Fig. 3b and Supplementary
Tables 6–8). Among the 120 genes with abnormal IgA phenotypes in
mice, six additional genes (TRIM13, NCR1, IRF5, FGR, ARHGAP15 and
REL) surpassed a Bonferroni-corrected threshold (P = 0.05/
22169 = 2.26 × 10−06) when tested against our GWAS results; these
represent plausible new candidate genes for regulation of IgA pro-
duction in humans.

Relationship to the risk of IgA nephropathy and tonsillectomy
Given the known role of the IgA system in the pathogenesis of IgA
nephropathy, a kidney disease caused by glomerular deposition of IgA
in the setting of pharyngitis and other mucosal infections, we specifi-
cally tested for shared genetic architecture between IgA levels, IgA
nephropathy, and tonsillectomy61 by systematic lookups and co-
localization analyses of genome-wide significant loci. Among all 20
independent loci associated with higher IgA levels, 8 had nominal
associations with increased risk of IgA nephropathy (P <0.05), all with
concordant effects (Supplementary Table 9). Among these, there were
five genome-wide significant loci with high probability of shared causal
variants (PP4 >0.7), TNFSF4/TNFSF18, ANKRD55/IL6ST, OVOL1/RELA,
SH2B3, and HORMAD2/LIF (Supplementary Table 10). There were also
four loci with an overlapping genomic position, but high probability of
different causal variants between the two traits (PP3 >0.7), HLA, CTF1,
TRAF3, and TNFSF8/TNFSF15. Between IgA levels and tonsillectomy, we
observed two co-localized loci (SH2B3 and HORMAD2/LIF), both with
concordant effects, and another two loci (HLA and CTF1) with high
probability of different causal variants (Supplementary Table 11).
Remarkably, the HORMAD2/LIF locus was genome-wide significant in
all three GWAS and co-localized across all three traits, suggesting a
common genetic mechanism (Fig. 5a, b).

To further explore the genetic relationships between these traits,
we performed two sample Mendelian Randomization (MR) between

Table 2 | Effect estimates for 20 genome-wide significant loci for IgA levels by trans-ancestry meta-analysis

Locus CHR BP (hg19) SNP Effect Allele Beta P-value FE P-value RE I2 Q Note

RUNX3 1 25291697 rs188468174 C 0.876 3.42E−92 1.37E−91 0.0 0.55 Known

TNFSF4, TNFSF18 1 173163568 rs7518129 G 0.056 1.06E−16 4.24E−16 3.3 0.42 Known

GPATCH2 1 217563106 rs73100295 T 0.356 3.91E−08 3.11E−08 0.0 0.98 New

IL1R1 2 102689031 rs13427957 C 0.040 6.19E−10 3.86E−10 33.3 0.08 New

ELL2 5 95277555 rs3777175 G 0.084 7.81E−30 3.13E−29 0.0 0.50 Known

ANKRD55, IL6ST 5 55438580 rs6859219 C 0.073 1.41E−20 4.38E−20 12.4 0.31 Known

HLA 6 31106893 rs1265094 A 0.076 1.86E−31 7.43E−31 37.4 0.06 Known

RUNX2 6 45526470 rs1200427 T 0.059 6.85E−14 2.24E−13 20.1 0.23 New

CITED2 6 139975943 rs17069163 T 0.050 5.94E−11 2.01E−10 37.3 0.06 New

ZP3, SSC4D 7 76034150 rs55722505 C 0.048 8.61E−14 3.44E−13 23.6 0.18 New

TNFSF8, TNFSF15 9 117692882 rs3181356 T 0.069 1.13E−18 2.67E−18 0.0 0.75 Known

TMEM258, FADS2 11 61595564 rs968567 T 0.116 2.42E−41 3.05E−41 14.9 0.29 Known

OVOL1, RELA 11 65555524 rs10896045 A 0.066 2.57E−22 1.03E−21 0.0 0.84 New

POU2AF1 11 111267394 rs4938518 T 0.056 7.01E−16 2.80E−15 0.0 0.74 New

HDAC7 12 48214825 rs7487637 G 0.054 9.97E−15 3.99E−14 4.2 0.41 New

SH2B3 12 111833788 rs10774624 G 0.050 1.37E−13 3.25E−13 0.0 0.54 Known

TRAF3 14 103239630 rs12147883 C 0.048 5.42E−14 3.51E−14 8.4 0.35 New

LITAF 16 11717832 rs113962704 T 0.054 1.91E−12 6.02E−12 0.0 0.54 New

CTF1 16 30916129 rs1458201 A 0.052 2.02E−11 8.07E−11 25.1 0.16 New

HORMAD2, LIF 22 30448399 rs193473 A 0.067 1.58E−20 6.30E−20 0.0 0.51 Known

Beta: per allele effect estimate from linear regression expressed in age, sex, and ancestry-adjusted standard deviation units of IgA distribution. The last column indicates known (previously reported)
and new (newly discovered) loci. Gene names indicated in italics.
FE fixed effects meta-analysis, RE random effects (TransMeta) meta-analysis, I2 Heterogeneity Index, Q Cochrane’s heterogeneity test P-value.
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the co-localized IgA level-associated loci as an exposure instrument
and IgA nephropathy and tonsillectomy as disease outcomes. Using
this strategy, we estimated significant causal effects between serum
IgA levels and IgA nephropathy (inverse variance-weighted OR 9.70
per SD of exposure, 95%CI: 6.80–13.8, P <0.001; Fig. 5c), supporting
IgA level as a strong causal mediator of disease risk for these loci.

Sensitivity analysis confirmed that all co-localized loci contributed
with concordant effects, therewerenooutlier effects, and therewasno
evidence of directional horizontal pleiotropy (Egger intercept test
P =0.58). Moreover, this effect remained highly significant when
instrumental variables were expanded to encompass all genome-wide
significant non-HLA loci for serum IgA levels (inverse variance-

Fig. 3 | Pathway and gene set enrichment analyses. a Pathway enrichment ana-
lysis for genes at the significant GWAS loci (two-sided enrichment test P-values).
b Gene-set enrichment for genes that cause abnormal IgA level. c abnormal
immune tolerance; and (d) abnormal response to infection when genetically
manipulated in mice. The y-axis shows the fixed effects meta-analysis –log10

(P-value) for the variant with the lowest two-sided unadjusted P-value in each
candidate gene. The dashed line corresponds to genome-wide significance (P = 5 ×
10−8). Enrichment P-value corresponds to the two-sided Fisher exact test comparing
the observed number of genes with association signals below the genome-wide
threshold against the number expected under binomial distribution.
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weighted OR= 2.49 per SD of IgA level, 95%CI: 1.56–3.99, P < 0.001). In
contrast, we detected no significant causal effects between IgA levels
and tonsillectomy (P = 0.26), or tonsillectomy and IgA nephro-
pathy (P =0.96).

Genetic correlations with other complex traits studied by GWAS
We assessed genome-wide genetic correlations (rg) of IgA levels with 52
complex traits and diseases, including 13 immune-mediated disorders,
23 infectious diseases, and 16 cardio-metabolic traits using stratified LD
score regression22,23 (Fig. 6a and Supplementary Table 12). In the ana-
lysis that excluded the HLA region (to remove potential bias from large
effects and extended LD at this locus), we confirmed positive genetic
correlation with IgA nephropathy (rg =0.35, P =0.002), tonsillectomy
(rg =0.20, P=0.01), type 2 diabetes (rg = 0.18, P =0.01), and BMI (rg =
0.13,P =0.03).Weobserved anegative genetic correlationwithCrohn’s
disease (rg = −0.19, P =0.005), celiac disease (rg = −0.21, P =0.007), and
inflammatory bowel disease (rg = −0.13, P=0.04). The observed nega-
tive correlation with traits that involve gut inflammation could be
potentially explained by the protective anti-inflammatory effects of
mucosal IgA. Among infectious disease GWAS, we observed mainly
negative genetic correlations, including with bacterial meningitis (rg =
−0.47, P =0.005) and shingles (rg = −0.46, P=0.009), despite the fact

that most existing GWAS for infections are either underpowered or
based only on self-report61. For most, but not all phenotypes, genetic
correlations with and without HLA were comparable, as summarized in
Supplementary Fig. 8 and Supplementary Table 12.

Phenome-wide association studies (PheWAS)
To detect additional genetic associations, we derived a genome-wide
polygenic score (GPS) for serum IgA levels and tested for its phenotypic
associations using the meta-PheWAS approach across the UK Biobank
and eMERGE-III datasets (but removing anyparticipants included in the
discovery GWAS, see Online Methods). In the combined analysis of
556,656 participants, we detected 31 significant phenotypic associa-
tions of the GPS (Fig. 6b and Supplementary Table 13). This included
several protective associations with immune and inflammatory dis-
orders, such as celiac disease (OR per SD=0.54, P = 4.6 × 10−227),
hypothyroidism (ORSD =0.94, P = 1.8 × 10−19), type 1 diabetes (ORSD =
0.91, P = 8.2 × 10−12), and psoriasis (ORSD =0.91, P = 1.7 × 10−10). Among
significant risk associations were disorders of iron metabolism
(ORSD = 1.31, P = 4.0 ×10−19) and hematuria, a commonmanifestation of
IgAN (ORSD = 1.04, P = 1.0 × 10−8). To assess which of these associations
were driven by the HLA region, we next repeated meta-PheWAS after
excluding all HLA variants from the GPS (Fig. 6c and Supplementary
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upper and lower panels show the regionalplots of the LITAF locus for IgAGWASand
eQTLs in monocyte, respectively. The y-axis represents the −log10 of the unad-
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Table 13). In this analysis, we detected only two phenome-wide-
significant associations: a protective association with Celiac disease
(OR per SD=0.86, P = 4.6 ×10−12) and a risk association with morbid
obesity (ORSD = 1.09, P = 3.0 × 10−5). These associations were direction-
consistent with our genome-wide genetic correlation analyses.

Given these results, we next applied Mendelian randomization
approach to resolve potential causal relationships between serum IgA
levels, Celiac disease, and BMI. For instrumental variables, we used
independent genome-wide significant alleles from this study (exclud-
ing the HLA region), and from the largest studies for Celiac disease62

and BMI63. Interestingly, we detected no significant causal effects
between serum IgA levels and Celiac disease or BMI. In reverse caus-
ality analyses we observed no causal effect of Celiac disease on serum
IgA levels, however, there was a highly significant causal effect of BMI
on serum IgA levels (inverse variance weighted effect = 0.12, 95%CI:
0.05–0.19, P <0.001). In sensitivity analyses, there was evidence of
directional pleiotropy (Egger intercept test P =0.004), but the causal
effect of BMI became stronger andmore significantwhen the balanced
pleiotropy assumption was relaxed (Egger regression effect = 0.38,
95%CI: 0.19–0.58,P <0.001). These results suggest that elevated serum
IgA levels in individuals with metabolic syndrome may represent a
consequence rather than a cause of obesity.

Discussion
Our study provides multiple insights into the genetic regulation of
serum IgA levels and dissects shared genetic effects between IgA levels

and several human diseases. Our large multi-ethnic meta-analysis
identified 20 genome-wide significant loci, 11 of which were novel.
These loci encode genes enriched in immune-relatedpathways, with 13
candidate genes demonstrating IgA abnormalities when genetically
manipulated in mice. The complementary enrichment analyses based
on gene expression across multiple tissues/cell types highlighted pri-
mary immune cells, mainly T cells, B cells and monocytes/macro-
phages, as themost likely effector cell types regulating IgAproduction.

Previous smaller GWAS for serum IgA levels have been limited to
European or East Asian ancestry, while African and other ancestries
have not been included in these studies. Our multi-ethnic cohort
included four diverse ancestral groups and allowed us to demonstrate
that African ancestry was associated with higher serum IgA levels
compared to other ancestries. Consistent with this observation, IgA-
increasing alleles weremore frequent in African ancestry compared to
non-African participants, and we demonstrated that the African
ancestry populations had the highest GPS compared to all other
reference populations. Positive correlation of effect sizes with AFR-
EURdifferences in allele frequency for the top 1% IgA-increasing alleles
is supportive of polygenic adaptation. This correlation was not sig-
nificant when extended genome-wide, but the power is limited by the
sample size of our GWAS, low SNP-based heritability of serum IgA
levels, and incomplete knowledge about the true underlying genetic
architecture. Although not statistically significant in genome-wide
analysis, the negative correlation coefficient between IgA-increasing
effects and European tSDS scores is consistent with the hypothesis
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that recent selection might have favored IgA-lowering alleles in Eur-
opeans. However, environmental exposures correlated with African
ancestry may also be contributing to the observed population differ-
ences in IgA levels. Our study was not designed to identify environ-
mental effects, and the existing methods for detecting multi-locus
selection have low power and lack sensitivity24.

Our systematic co-localization analysis of GWAS associations and
eQTLs in whole blood and 13 different immune cell types prioritized
new biologically plausible candidate genes and target cell types for 14
of the 20 significant loci, providing an extensive resource for follow up
studies. We also observed that many eQTL co-localizations were pre-
sent only in specific immune cell subtypes. As an example, variants
within the LITAF locus co-localize specifically with LITAF eQTL but only
in monocytes, pointing to monocyte lineage as the most likely causal
cell type for this locus. In contrast, TRAF3, HDAC7, IL1R1 and ANKRD55
loci co-localize with eQTLs specifically in human T cell lineages,
prioritizing T cells for functional studies of these loci.

In the analysis of genetic relationships with other traits, we
observed shared polygenic determination between IgA levels and
several immune, infections, renal, and cardio-metabolic traits. Our
findings support the protective role of IgA in susceptibility to various
infectious pathogens as well as inflammatory bowel disease. At the
same time, we observed a positive genetic correlation between IgA
levels and IgA nephropathy, a common form of kidney disease due to
IgA deposition. In particular, Mendelian randomization analysis sug-
gested a causal role for elevated IgA levels in the pathogenesis of IgA
nephropathy. Ongoing IgA nephropathy clinical trials targeting path-
ways that reduce IgA levels will shed light on this hypothesis64.

Our study has several important limitations. First, genome-wide
summary statistics from the largest previously published study by
deCODE-Lund20 were not publicly available, thus we were limited to
the use of SNPs with P < 1.0 × 10−6 from that study in ourmeta-analysis.

This reduced our power for new discovery and produced uneven
genomic coverage in the meta-analysis. Consequently, our cis-eQTL
co-localization analyses were restricted to non-deCODE-Lund cohorts
andwere additionally limited by lowpower of presently available eQTL
datasets for primary immune cells. Similarly, genome-wide genetic
correlation analyses were driven largely by our non-deCODE-Lund
cohorts. These analyses were additionally limited by sample sizes of
previously published GWAS, and the fact that infectious traits have
been generally understudied by GWAS. Our GPS modeling strategy
relied on 1000 Genomes for LD reference, since more diverse panels,
such as TopMed, are not publicly available, precluding their use for
this purpose. The key limitations of our PheWAS approach included
missingness of “real life” EHR data, inadequate ICD coding for some
relevant conditions (e.g., IgA nephropathy), and the fact that rare
diagnoses (e.g., IgA deficiency) are generally poorly captured in
population-based biobanks.

In summary, we reported 20 genome-wide significant loci asso-
ciated with serum IgA levels, and we prioritized potential effector
genes and cell types for 70% of the loci. We demonstrated that IgA
levels are positively correlated with African ancestry. We further
characterized shared genetic architecture between serum IgA levels
and other complex traits, demonstrating that while IgA-increasing
alleles appear to have protective effects against infections, they may
represent risk factors for selected auto-immune, kidney, and cardio-
metabolic diseases. Notably, the risk of IgA nephropathy appears to be
causally related to elevated IgA levels with several genome-wide sig-
nificant loci co-localizing between the two traits.

Methods
Measurement of serum IgA levels
Serum total IgA levels were measured via a previously optimized and
validated ‘sandwich’ ELISAprotocol. 96-well plateswere coatedwith an
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Fig. 6 | Genetic relationships between IgA levels and human disease traits.
a genome-wide genetic correlation analyses between IgA levels and autoimmune,
infectious, and cardio-metabolic traits after exclusion of the HLA region (*P <0.05;
two-sided unadjusted P-values for genetic correlation by LD score regression).
Supplementary Table 12 provides genetic correlations with and without HLA with
P-values for each trait, and references to the original GWAS studies; the error bars
correspond to 95% confidence intervals for genetic correlation coefficients.bMeta-
PheWAS of genome-wide polygenic score (GPS) for IgA levels across eMERGE-III
and UKBB biobanks (total N = 556,656). c Meta-PheWAS of GPS for IgA levels
without the HLA region (UKBB and eMERGE-III, totalN = 556,656). In (b) and (c), the
y-axis shows –log10 (P-value); each triangle represents an individual phenotype

(phecode) tested as an outcome against the GPS for IgA levels as a predictor; an
upward triangle indicates a positive (risk) association, while a downward triangle
indicates a negative (protective) association; two-sided unadjusted P-value corre-
sponds to the fixed effects meta-analysis across the two biobanks based on logistic
regression adjusted for age, sex, site, genotyping batch, and principal components
of ancestry; the red line corresponds to the Bonferroni-corrected significance
threshold for 1523 phecodes tested (alpha = 0.05/1523 = 3.28 × 10−5); the pheno-
types are grouped by organ system (or relevant disease category) and sorted based
on their statistical significancewithin each group. Supplementary Table 13 provides
a comparison of significant PheWAS associations with and without the HLA region.
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IgA capture antibody (AffiniPure F(ab′)2 Fragment of Goat Anti-Human
Serum IgA, αChain Specific; Jackson Immuno Research, #09-006-011),
covered, and let to sit on a shaker for 60min. The plate was subse-
quently washed three times with a TBS Wash buffer. Next, 250-μL
Blocking Buffer was added to the wells, and the plate was again cov-
ered, and set on the shaker for 90min. After aspirating the wells of the
blocking buffer, 100 μL/well of samples and standards were added, all
in duplicate. Standards were diluted 1:3 in series beginning with
500 ng/mL. The plate was left to incubate for 120min, after which
samples were aspirated and the plate was washed thoroughly five
times. Next, 100 μL of secondary/detection antibody (Mouse mono-
clonal Ab to Human IgA horseradish peroxidase conjugate, Abcam Bio
#ab7383), was added at 62.5 ng/mL to the wells and left to incubate for
60min. The plate was washed an additional five times. Next, 100 μL of
TMB 2 component ELISA substrate (KPL, 50-76-00) was added to the
wells, and left to incubate for 12min. 100 μL of 2M H2SO4 (Sigma
Aldrich, #339741) was added to each well at the end of the 12min to
stop the reaction, per substrate manufacturer recommendation. The
samples were thenmeasured using the BIO-TEKPowerWaveTMXS and
KC-Jr. plate reading software. The plate was read at 450nm, with a
630nm reference wavelength, per substrate manufacturer recom-
mendation. Samples with an internal CV greater than 10% were re-run.
Samples that fall outside of the standard range (500–0.2 ng/mL) were
re-run at appropriate dilutions.

MESA cohorts
The Multi-Ethnic Study of Atherosclerosis (MESA) is a diverse
population-based cohort of participants recruited prospectively for
studies of cardiovascular disease65. The recruitment took place across
six clinical centers in the United States. The participants were geno-
typed using the Affymetrix Human SNP array 6.066. We measured
serum IgA levels using standardized ELISA protocol (see above) in
N = 5420 participants, and these individuals were included in the
GWAS analysis. The standard genotype quality control (QC) filters
included per-SNP genotyping rate >95%, per-individual genotyping
rate >90%, MAF >0.01, and HWE test p-value >1 × 10−5 within each
ancestry group. We assessed for cryptic relatedness and duplicates,
andweexcluded one individual fromany pairs with estimated pairwise
kinship coefficients >0.05. Gender of each individual was imputed
based on the analysis of sex chromosomemarkers and individualswith
gender mismatch against records were excluded. The imputation
analysis was carried out using Minimac367 after pre-phasing in Eagle
V2.368 and using 1000 Genomes (Phase 3) as ref. 69. A total of
11,102,943 common high-quality markers (R2 > 0.8 and MAF > 0.01)
were imputed and used in the downstream GWAS analyses. The prin-
cipal component analysis (PCA)70 was used to assign genetic ancestry
to the participants based on co-clustering with the major continental
reference populations of the 1000 Genomes Phase 369. After exclu-
sions of ancestry outliers, we identified 5 distinct ancestral clusters
(European: N = 2280, African: N = 1275, Admixed 1: N = 474 and
Admixed 2: N = 750, and East Asian: N = 641). Subsequent GWAS ana-
lyses were then performed within each ancestry cluster. For ancestry
adjustment, we re-run PCA within each cluster, defined significant PCs
by Tracy-Widom test, and included the significant PCs for each cluster
as covariates in the association testing.

Electronic medical records and genomics (eMERGE-III) cohorts
The eMERGE consortium consists of 12medical centers with electronic
health records (EHRs) linked to genome-wide genotype data for
102,138 individuals. The serum IgA level was extracted by a lab value
query performed by eight active sites in the eMERGE phase III. The
genotyping and imputation of the eMERGE cohort have been pre-
viously described in detail71–73. Briefly, we implemented the mimimac3
imputation model with HRC1.1 as references for each genotyping
platform in a separate batch. After imputation, we merged all the 81

imputed batches based on genomic position. Post-imputation marker
QC filters included MAF ≥0.01 and R2 ≥0.8 in ≥75% of 81 imputation
batches. We also excluded duplicates and cryptic relatedness in the
given cohort determined by the estimated pairwise kinship coeffi-
cients >0.05. The genetic ancestry for each individual was assigned
based on PCA with reference populations of the 1000 Genomes Phase
369. After exclusions of ancestryoutliers, thefinaldatasetwithmatched
serum IgA phenotypes consisted of 6047 individuals across five
ancestral groups: N = 4261 European ancestry individuals (6,625,959
high-quality imputed markers), N = 476 African ancestry individuals
(7,006,144 high-quality imputed markers), N = 73 East Asian ancestry
individuals (5,410,844 high-quality imputed markers), N = 235
Admixed 1 cohort (7,106,891 high-quality imputed markers) and
N = 1002 Admixed 2 cohort (7,296,903 high-quality imputedmarkers).
Like the MESA cohort analysis, we repeated the PCA within each
ancestry cohort and defined significant PCs to be used as covariates in
association testing.

German, French, Chinese, Japanese, and U.S. cohorts
The description of these cohorts including recruitment and measure-
ments of serum IgA levels have been published previously74. For this
study, we included only individuals who were ascertained as ‘healthy
population controls’ for GWAS studies, thus these cohorts were not
enriched in any specific disease type. The genotyping was performed
using Illumina 550v3 (US cohort), Illumina 370-Duo (French cohort),
IlluminaMEGAv1.0 (Chinese and Japanesecohorts) and IlluminaMEGA
v1.1 (German cohort). The standard genotype QC filters included per-
SNP genotyping rate >95%, per-individual genotyping rate >90%, MAF
>0.01, and HWE test p-value >1 × 10−5 within each cohort. We assessed
for cryptic relatedness and duplicates, and we excluded one individual
from any pairs with estimated pairwise kinship coefficients >0.05.
Gender of each individual was imputed based on the analysis of sex
chromosome markers and individuals with gender mismatch against
records were excluded. The imputation was performed using MACH
1.0 for pre-phasing and then Minimac3 for imputation based on
ancestry-matched reference panels of 1000Genome Project (Phase 3).
We performed PCA of each dataset to exclude outliers and define the
number of significant PCs by Tracy-Widom test. The final numbers of
individuals and high-quality markers (R2 > 0.8, MAF>0.01) used in
downstream GWAS analyses were as follows: the German cohort of
N = 156 healthy individuals (7,612,078 markers); the French cohort
of N = 103 healthy individuals (7,096,980 markers), the Chinese
cohort of N = 467 healthy individuals (5,113,877 markers), the
Japanese cohort of N = 776 healthy individuals (6,673,613 markers);
and the U.S. cohort of N = 93 healthy individuals (7,439,363 markers).

Swedish cohort
We obtained summary statistics for GWAS for total IgA levels for 9,617
participants; the ascertainment, genotyping, and analysis of this cohorts
has been published previously16. In order to improvemarker density, we
re-imputed this cohort based on association estimates of the genotyped
markers from the summary statistics using ImPG V1.075 software and the
1000Genomes (Phase 3) European reference69. Using ImPGsoftware,we
derived the posterior mean of z-scores at untyped SNPs given the
z-scores at typed SNPs and the correlation matrix among all pairs of
SNPs induced by their linkage disequilibrium (LD) that were estimated
using the reference panel. The effect size and standard error for each
imputed SNP were then estimated based on its imputed z-score and
reference allelic frequency as described previously76. A total of
6,907,390 variants were imputed with high quality (R2 > 0.8 and MAF >
0.01) and included in our downstream analysis.

The deCODE-Lund cohort
The analysis of this cohort composed of 16,883 participants from
Iceland and 2151 individuals fromsouthern Swedenhasbeenpublished
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previously20. The association summary statistics for IgA levels includ-
ing effect size, P-value and minor allele frequencies for 4699 variants
with P < 1 × 10−6 were provided by the authors in their publication20. In
order to incorporate this dataset using fixed-effects meta-analysis, the
unbiased standard error for each variant was derived using the fol-
lowing equation77:

SE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2pð1� pÞb2

2pð1� pÞn

s

where b is the standardized allelic effect on IgA levels, p is the minor
allele frequency, and n is the sample size.

Genome-wide association studies and multi-ancestry meta-
analysis
We conducted a multi-ancestry meta-analysis of 16 cohorts with
genome-wide data for 22,229 diverse study participants with
4699 suggestive association signals (P < 10−6) from the previous GWAS
bydeCODEGenetics and LundUniversity (19,034 participants of North
European ancestry)20. Multi-ancestry cohorts were classified into
ancestry-specific strata based on global principal component analysis.
In each sub-cohort, serum IgA levels were log-transformed and
expressed as standard-normalized residuals from regression of log-
transformed IgA levels against age and sex. We performed genome-
wide association testing in each cohort for the markers that were
imputedathighquality (r2 >0:8) using a linear regressionmodel under
additive coding of the dosage genotypes, and with adjustment for
cohort-specific significant principal components (PCs) of ancestry78.
To quantify potential inflation of type I error due to stratification or
technical artifacts, we estimated the genomic inflation factor for each
cohort but detected no substantial inflation with lambda <1.05 in each
individual study. We performed a fixed-effects as well as TransMeta
randomeffectsmeta-analysis to combine the results of all 17 individual
cohort summary statistics using METAL79 and TransMeta21 software,
respectively. All significant loci were further assessed for hetero-
geneity by derivation of Heterogeneity Index (I2) and by testing using
Cochrane’s heterogeneity test in PLINK80. The quantile-quantile plot of
thefinalmeta-analysis showednoglobal departures from the expected
null distribution, with the genomic inflation factor estimated at 1.016
(Supplementary Fig. 2). The genome-wide significant signals were
defined by the generally accepted P < 5.0 × 10−8 and signals with
P < 1.0 × 10−6 were considered as suggestive.

Conditional analyses
To detect independent variant associations at each genome-wide sig-
nificant locus, we performed stepwise conditional analysis within each
cohort, followed by meta-analysis of the conditioned summary statis-
tics. For the deCODE-Lund and Swedish cohorts, only summary sta-
tistics were available, thus we used the approximate conditioning
using conditional & joint association analysis method (COJO, GCTA
software81) with 1000 Genomes Phase 369 (European populations only)
for LD reference. All other cohorts had genome-wide genotype data
available, andweused primary genotype data to perform conditioning
before meta-analysis.

Tissue/cell type and pathway enrichment analyses
The region of each GWAS locus was defined by first selecting all proxy
SNPs in LD (r2 > 0.5) with the lead SNP, then extending the genomic
region 250kb upstream and downstream of the first and last proxy
SNP based on genomic position. Each regionwas then annotated using
Ensembl human gene annotations. Gene sets were created for all
genome-wide significant regions but excluding the HLA region. For
tissue/cell type enrichment, we used DEPICT (Data-driven Expression-
Prioritized Integration for Complex Traits) to test for tissues and cell-
types in which genes from the associated regions were highly

expressed as previously described26. Next, for each tissue, empirical
enrichment p-values were computed by repeatedly sampling random
sets of loci from the entire genome to estimate the null distribution for
the enrichment statistic. For pathway enrichment analysis, we used
established pathways from the databases including Molecular Sig-
natures Database (MSigDB C2), KEGG, BioCyC, REACTOME, Pathway
Interaction Database. Statistical significance for enrichment was set at
FDR q-value <0.05.

Functional annotations
We first defined each GWAS locus by ±400 kb of the genome-wide
significant index SNP. We annotated all transcripts within these inter-
vals using the latest assembly of the human genome (hg19) to create
sets of positional candidate genes for each locus. Using ANNOVAR
software82, we annotated all variants within the region that were in LD
(r2 > 0.5) with the top SNP, including all known coding, splicing, and 3′
UTR and 5′UTR variants. To prioritize the candidate genes at each of
the GWAS loci, we next performed colocalization analyses based on
our meta-analysis statistics and gene expression QTLs in whole blood
quantified from 31,684 individuals30, as well as 13 human immune cell
types from the Database of Immune Cell eQTLs (DICE) project31. After
harmonization of effect alleles, we identified all co-localized eQTLs
mapping to the region of the index SNP ± 400 kb using Coloc Package
in R83. Co-localization with PP4 greater than 0.7 was considered as
strong evidence in support of shared causal SNPs, while PP4>0.5 was
considered as suggestive. To test for histone QTL effects in immune
cells, we interrogated all GWAS index SNPs and their proxies (r2 > 0.5)
against histone QTL of three major human immune cell types (CD14+
monocytes, CD16+ neutrophils, and naive CD4+ T-cells) based on the
analysis of ~200 individuals40.

Protein–protein interactions (PPI) network analyses
Protein–protein interactions among the positional candidate genes at
the GWAS loci were predicted using InWeb_InBioMap84, a curated and
computationally derived regulatory network of 420,000 interactions
(Supplementary Fig. 6). We used high confidence interactions defined
by the recommended cut off confidence score <0.1. The candidate
gene network contained a total of 48 genes and 52 interactions. The
network components were grouped into ten modules based on their
connectivity. Functional andpathwayenrichmentswithin eachmodule
were identified based on Gene Ontology, KEGG, and Reactome data-
bases. We used ToppGene Suite85 to calculate interaction enrichment
p-values for each gene; a Bonferroni-corrected P <0.05 was used as
enrichment significance cut-off.

Intersection with related mouse phenotypes
We evaluated genes that when genetically manipulated cause abnor-
mal immune phenotypes in mice based on the comprehensive MGI
phenotype ontology database. The following mouse phenotypes were
evaluated: abnormal IgA levels (MP:0020171); abnormal immune tol-
erance (MP:0005000); and abnormal response to infection
(MP:0005025). The human orthologs of these genes were obtained
with the Human–Mouse Disease Connection web tool (http://www.
informatics.jax.org/humanDisease.html). The significance of intersec-
tions between these gene sets and the list of positional candidate
genes from GWAS was determined using a hypergeometric test.

Heritability and genetic correlations with other phenotypes
SNP-based heritability of IgA level GWAS was estimated by LD score
regressionmodel using the LDSC software22. The LD score for eachSNP
was estimated based on LD matrices derived from ancestry-matched
1000 Genome Project Phase 3 populations. To investigate the shared
genetic architecture between IgA levels and other phenotypes, we first
collected the summary statistics of autoimmune and inflammatory
disorders and cardio-metabolic traits from the LD-hub86 or GWAS
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catalog27, and summary statistics for infection-related phenotypes
were provide by 23andMe61. For each phenotype, we used GWAS
summary statistics from the largest GWAS available with a minimum
coverage of 2 million SNPs. We excluded traits with estimated
SNP-based heritability <1%. The genetic correlations were next esti-
mated using bivariate LD score regression22 with ancestry-matched
1000 Genome Project Phase 3 as the LD reference panel.

Pleiotropic annotation of GWAS loci
To systematically cross-annotate our loci against all previously pub-
lished GWAS findings, we downloaded the GWAS catalog27. We filtered
all published SNPs that were associated with any disease phenotype or
trait at a genome-wide significance (P < 5 × 10−8) and resided within the
genomic regions of association with IgA level. For each SNP associa-
tions, we manually verified the direction of effect for a reference allele
basedonoriginal GWASpublications. Next, each selected SNP from the
catalogue was queried against our GWAS results to extract the odds
ratios and P-values for associationswith IgA levels. The directionality of
allelic effects was assessed to identify pleiotropic alleles with con-
cordant or opposed effects.We calculated amaximum r2 betweenSNPs
associated with each cataloged trait and the independent SNPs from
our study based on 1000 Genomes Project Phase 3 data87. We defined
shared susceptibility alleles if r2 between the top SNPs exceeded 0.5.
We constructed a susceptibility overlap map that connected each of
the IgA GWAS loci to the previously associated GWAS traits and high-
lights associations with SNPs in high LD with the top signals. The map
was visualized with Cytoscape v.3.6 software88. Moreover, given a large
number of overlapping GWAS loci between IgA levels, IgAN, and ton-
sillectomy, we performed systematic locus colocalization analyses
based on regional summary statistics using Coloc software83.

Genome-wide polygenic score and tests of polygenic adaptation
For the purpose of testing cumulative effects of genetic determi-
nants of serum IgA levels, we derived a genome-wide polygenic
score (GPS) for IgA levels using LDPred algorithm89 which estimates
posteriormean causal effect sizes fromGWAS summary statistics by
assuming a prior for the genetic architecture and LD information
from a reference panel. We used GWAS summary statistics for IgA
levels assuming 1% fraction of causal variants and for LD reference
we used 1000 Genomes (Phase 3), all populations except South
Asian ancestry that was not represented in our cohorts69. To test for
population differences in the GPS distributions, we applied the
score to the 1000 Genomes participants and performed pairwise
t-test comparisons between the reference populations. To test for
potential polygenic adaptation, we performed rank correlation
analysis of LDPred posterior mean causal effect sizes versus AFR-
EUR allelic frequency difference calculated based on 1000Genomes
reference populations; given our LDPred priors, we used only the
top 1% of GPS variants with the highest weights for this analysis (the
weights for the remaining variants were close to zero as expected).
Next, we extended this analysis genome-wide by testing for genetic
correlation between AFR-EUR allelic frequency difference and
GWAS effect sizes for IgA-increasing alleles using LD score
regression23. In this analysis, we replace GWAS Z-scores for one of
the two traits with a Z-score-normalized IgA-increasing allele fre-
quency difference. Lastly, we used singleton density score (SDS)
method based on contemporary European genome sequences that
infers recent (~2000–3000 years) changes in derived allele
frequencies24. We derived trait-SDS (tSDS) scores from the raw
European SDS scores by polarizing them to IgA-increasing alleles
(we reset the sign of SDS scores such that positive values indicate
increased frequency of the IgA-increasing allele instead of the
derived allele). The tSDS scores were standardized to mean 0 and
variance 1 within each 1% allelic frequency bin and tested for
genome-wide genetic correlation with IgA-increasing effects using

LD score regression23. These analyses were performed with R ver-
sion 3.4 (CRAN).

Meta-phenome-wide association study (Meta-PheWAS)
We performed a meta-PheWAS analysis for the GPS across the UK
Biobank (UKBB, N = 460,364 participants) and Electronic Medical
Records and Genomics-III (eMERGE-III, N = 96,292, after excluding
those participants analyzed in the GWAS for IgA levels). The eMERGE-
III genotype data was processed in the same way as for GWAS descri-
bed above, but for ancestry adjustments we performed principal
component analysis of the entire eMERGE-III cohort using FlashPCA90

on a set of 48,509 common (MAF>0.01) and independent variants
(pruned in PLINK with–indep-pairwise 500 50 0.05 command). The
first 3 PCs were included as a covariate in PheWAS. The UKBB is a large
prospective population-based cohort that enrolled individuals ages
40–69 for genetic studies91. All 488,377 UKBB participants underwent
genotypingwith Affymetrix’sUKBiobank AxiomandUKBiLEVE Axiom
arrays with genotype imputation using a 1000 Genomes reference
panel with IMPUTE4 software92–94. We applied similar QC filters to
eMERGE-III, retaining 9,233,643 common (MAF≥0:01) variants impu-
ted with high confidence (R2 ≥0:8). For principal component analysis
using FlashPCA90, we used a set of 35,226 variants withMAF > 0.01 and
pruned using–indep-pairwise 500 50 0.05 command in PLINK. The
first 3 PCs were used as covariates in PheWAS. To harmonize coded
diagnoses between UKBB and eMERGE-III we converted all available
ICD-10 codes to ICD-9-CM system given that the great majority
eMERGE-III diagnoses were coded using ICD-9-CM. After the conver-
sion, eMERGE participants had a total of 20,783 ICD codes that were
then mapped to 1817 distinct phecodes. The 488,377 UKBB partici-
pants had a total of 10,221 ICD codes mapped to 1523 phecodes.
Phenome-wide associations were then performed using the PheWAS R
package95. The case definition required aminimumof two ICD-9 codes
from the “case” grouping of each phecode, while “control” group had
no ICD-9 codes relevant to the tested phecode. In total, 1,523 over-
lapping phecodes were tested in both UKBB and eMERGE-III using
logistic regression after adjusting each analysis for age, sex, study
site, genotyping batch, and 3 PCs of ancestry. The meta-PheWAS
across both datasets was performed using metagen under fixed
effects model in PheWAS R library95. To establish significant dis-
ease associations in PheWAS, we set the Bonferroni-corrected
statistical significance threshold at 3.28 × 10−5 (0.05/1523) cor-
recting for 1523 independent phecodes tested.

Mendelian randomization analyses
Two sample mendelian randomization (MR) analyses were performed
using genetic variants as instruments to test the causal effects between
an exposure and an outcome. Only SNPs independently associated
with the exposure at a genome-wide significance (P < 5 × 10−8) were
used as instruments in MR studies. We excluded HLA alleles from all
instruments, since these alleles are likely to exhibit strong pleiotropic
associations with a wide range of immune-related outcomes. For pri-
mary hypothesis testing, we used inverse variance weightedMRmodel
under the assumption of balanced pleiotropy by meta-analyzing SNP
specific Wald estimates using multiplicative random effects. The ran-
dom effects model was chosen to account for any potential hetero-
geneity. Given a total of eight bi-directional MR tests performed
between IgA levels and IgAN, tonsillectomy, Celiac disease, and BMI,
we used aBonferroni-corrected significance threshold alpha =0.05/8 =
0.00625. We additionally tested for the presence of directed hor-
izontal pleiotropy using Egger test for non-zero intercept. Additional
sensitivity analyses were performed by testing for outlier effects, and
relaxing the assumption of balanced horizontal pleiotropy by using
median-based estimator, mode-based estimator, and Egger regression
methods. The testing was conducted using the TwoSampleMR
package96.
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Ethics statement
All subjects provided informed consent to participate in genetic stu-
dies, and the Institutional Review Board of Columbia University
approved our studies under the following protocol numbers: IRB-
AAAC7385 (primary analysis), IRB-AAAQ9205 (eMERGE-III analysis),
IRB-AAAC9458 (MESA SHARe analysis), and IRB-AAAS3500 (UK Bio-
bank analysis).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The MESA SHARe genotype and phenotype data (including serum
IgA levels measured in this study) are available through dbGAP,
accession number phs000209.v13.p3. The Electronic Medical
Records and Genomics-III (eMERGE-III) imputed genotype and
phenotype data are available through dbGAP, accession number:
phs001584.v2.p2. The UK Biobank genotype and phenotype data
are available through the UK Biobank web portal. Genotype data for
other cohorts are available through dbGAP, accession number:
phs000431.v3.p1. The 1000 Genomes data are available publicly
through https://www.internationalgenome.org/category/data-
access/. GWAS summary statistics are available for download
from https://www.columbiamedicine.org/divisions/kiryluk/study_
gwas_stat_IgA.php.
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