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Systematic tissue annotations of genomics
samplesbymodelingunstructuredmetadata
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There are currently >1.3 million human –omics samples that are publicly
available. This valuable resource remains acutely underused because dis-
covering particular samples from this ever-growing data collection remains a
significant challenge. The major impediment is that sample attributes are
routinely described using varied terminologies written in unstructured natural
language. We propose a natural-language-processing-based machine learning
approach (NLP-ML) to infer tissue and cell-type annotations for genomics
samples based only on their free-text metadata. NLP-ML works by creating
numerical representations of sample descriptions and using these repre-
sentations as features in a supervised learning classifier that predicts tissue/
cell-type terms. Our approach significantly outperforms an advanced graph-
based reasoning annotation method (MetaSRA) and a baseline exact string
matching method (TAGGER). Model similarities between related tissues
demonstrate that NLP-ML models capture biologically-meaningful signals in
text. Additionally, these models correctly classify tissue-associated biological
processes and diseases based on their text descriptions alone. NLP-MLmodels
are nearly as accurate as models based on gene-expression profiles in pre-
dicting sample tissue annotations but have the distinct capability to classify
samples irrespective of the genomics experiment type based on their text
metadata. Python NLP-ML prediction code and trained tissue models are
available at https://github.com/krishnanlab/txt2onto.

Currently, there are data from >1.3million human—omics samples and
>26,000—omics datasets that are publicly available in repositories like
the EBI ArrayExpress1,2 and NCBI Gene Expression Omnibus3 (GEO).
These samples capture cellular responses of diverse human tissues/cell
types under thousands of conditions, making these published data
invaluable for other researchers to reuse for various tasks: (i) reanalyze
them to answer new questions, (ii) check reproducibility of original
findings, iii) perform integrative-/meta-analysis across multiple stu-
dies, (iv) reviewearlier studies for supportof newdata/findings, and (v)
generate large-scale data-driven hypotheses for experimental follow-

up. However, these data remain acutely underused because discover-
ing all the samples relevant to one’s interest, quickly and thoroughly,
from this ocean of data is still a major challenge. This is because
samples are routinely described using non-standard, varied terminol-
ogies written in unstructured natural language even though guidelines
for describing data submitted to public repositories were established
as early as 20014.

To address this issue, considerable effort has been invested in
creating sample metadata hubs like Biosamples5 where human cura-
tors use semi-automated workflows6 to manually annotate samples by
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assigning them with terms in controlled vocabularies or ontologies7

such as the Uber-anatomy ontology8 (Uberon). Others have developed
similar web platforms for manual sample annotation9 and explored
crowdsourcing to curate sample annotations10,11. The latter efforts are
usually case studies and rely on an interested and available population
of individuals to spread out the burden of manual curation. While
curation efforts often lead to high-quality gold standards, automated
high-throughput methods are needed to keep up with the scale of
available samples, which already totals to more than a million and
continues to grow exponentially12–15.

To meet this challenge, a number of methods have recently been
developed that use natural language processing to computationally
infer standardized sample annotations from their text descriptions16.
Most of these methods are based on biological ‘named entity recog-
nition’ (NER), the taskof automatically recognizingwords or phrases in
plain text that correspond to known biological entities such as tissues,
phenotypes, and species, uniquely identified using terms in various
ontologies. NER has been applied by searching for commonphrases in
experiment descriptions followed by finding matches to terms in a
controlled vocabulary17 or by generating all possible n-grams from
experiment descriptions before finding term matches18. These
approaches heavily rely on exact text matching and are not robust to
misspellings and acronyms or abbreviations. Tools such as Metamap19

and ConceptMapper20 help deal with spelling variants, abbreviations/
acronyms, and synonyms, and have been applied to annotate ChIP-seq
data21. Others have used NER-based heuristic searches, including the
use of regular expressions, to achieve similar outcomes10,22. However,
without an additional step of manual curation, NER-based methods
suffer from high false-positive rates due to the presence of varied and
conflicting pieces of information in sample descriptions. For instance,
tissue annotation methods need to deal with information about other
aspects of the sample and experiment, including mentions of more
than one tissue/cell type.

Newer studies have helped overcome some of these challenges,
improving on NER by incorporating some structured information
available in samplemetadata entries in the form of key-value pairs. For
example, checking specific metadata entries against predefined rules
about word/phrase context has been shown to be helpful in inferring
technology platform, sample type, organism, molecule type, and
labeling compound23. A method called MetaSRA24 also significantly
improves upon NER by examining key-value pairs using graph-based
reasoning over the structure of existing ontologies. The annotation
scheme in MetaSRA is robust to misspellings and acronyms or abbre-
viations. Additionally, it can check for logical consistencies in the
knowledge graph, which ensures high-quality annotations. However,
MetaSRA software is currently written in Python 2, which is no longer
officially supported. Further, we observe that this complexmethodhas
long runtimes and still incurs a number of false positives (see Results).
Finally, some attributes about a sample might be missing in the input
textbutwouldbe identifiable by association (e.g.,mentioning ‘cerebral
palsy’ while omitting source tissue ‘muscle’). Some recent studies are
finding that creating numerical representations of parts of sample text
descriptions can help with this problem. Specifically, NER using
representations created by a recurrent neural network trained on key-
value pair metadata has been shown to result in models that can pre-
dict if short segments of study titles correspond to any one of
11 sample attributes25. Here, tissues and cell types are among the
attributes that are hard to recognize. Previously, term-frequency-
based vectors and topic modeling have been shown to be useful in
creating such representations to inform general metadata
prediction26, which does not include standardized annotations of tis-
sues and cell types.

We have developed a scalable approach, NLP-ML, that combines
natural language processing (NLP) and machine learning (ML) to
annotate samples to their tissue-of-origin solely based on their

unstructured text descriptions. In the following sections, we first
describe the details of NLP-ML and then demonstrate that NLP-ML
outperforms exact-string matching and MetaSRA (that uses graph-
based reasoning) in inferring tissue annotations from sample meta-
data. We then explore the benefits and limitations of supplementing
predictions based on sample descriptions with those based on the
description of the entire dataset. We observe that NLP-ML models of
anatomically related tissues have similar model coefficients. By
applying these models to classify the descriptions of biological pro-
cesses and diseases, we demonstrate that NLP-ML models capture
general, biologically meaningful text signals. The final sections high-
light how NLP-ML models are as accurate as models trained on the
sample’s expression profile in classifying transcriptome samples and
can, additionally, classify samples from many other experiment types
using the common currency of text descriptions.

Results
Overview of NLP-ML for sample tissue annotation
The central idea behind NLP-ML is that unstructured sample descrip-
tions can be represented as numerical embeddings that can serve as
input to supervised machine learning classifiers to accurately predict
the tissue-of-origin of samples (Fig. 1).

The input to our method is unstructured sample descriptions
where each description is a bag-of-words consisting of values in all
metadata fields for that sample. Considering metadata as a bag-of-
words allows our approach to handle the immense variability between
the types of experiments and the quality and completeness of
researcher-submitted metadata. For instance, one cannot guarantee
that the same metadata fields will be available for hundreds of thou-
sands of samples. We then preprocess each of these sample descrip-
tions to remove punctuation, remove words that contain numeric
characters, lemmatize to cast words to their root forms, and finally
turn all words to lowercase.

Using the preprocessed words associated with each sample
description, we then create a numerical representation for that sample
description using pre-trained embedding models from the flair
library27, trained on a general English and a biomedical text corpus.
Flair creates word embeddings by examining character-level informa-
tion. This makes the associated representations robust tomisspellings
and allows us to create word embeddings for words that did not
appear in the corpus the original neural network models were trained
on. The embedding for the whole sample description is calculated by
averaging the embeddings of the constituent words, weighted by the
inverse document frequency of each word estimated based on the
PubMed text corpus (see Methods). Though this weighting did not
show impact on performance (Fig. S1), we decided to use weighted
averaging based on the hypothesis that sample embeddings influ-
enced by infrequent words could lead to more interpretable models.

These description-based sample embeddings can serve as fea-
tures in supervisedmachine learningmodels that are trained topredict
the sample’s tissue-of-origin. To train such models, we constructed a
gold-standard containing tissue labels for about 11,600 human gene-
expression samples based on annotations from a previous study28 that
we mapped to and propagated based on the UBERON-CL tissue and
cell ontology (see Methods; Table 1). In total, our gold standard con-
tains annotations for 81 unique tissues and cell types from over 300
datasets. After expanding these annotations and filtering for high-
information content terms (see Methods), we were able to train
models for 153 tissues and cell types. The median number of ‘positive’
samples for each tissue/cell-type model was ~50. Negative samples
were chosen in a way consistent with the term relationships in
UBERON-CL (see Methods).

Then, using this gold standard, we trained a series of one-vs-rest
L1-regularized logistic regressionmodels—onemodel per tissue term—

using the sample embeddings as features to separate samples from a
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particular tissue from samples fromother unrelated tissues. We tested
multiple classifiers and observed that support vector machines and
logistic regression performed the best (Fig. S2). We picked L1-
regularized logistic regression because it results in sparse models
that are more likely to be generalizable to new text, and naturally
return probabilities at the prediction stage. Finally, tissue predictions
can be made for new sample descriptions—or, in fact, any snippet of
text of interest—by preprocessing the text, creating an embedding
using a weighted average of word embeddings for tokens in the text,
and then running the text embeddings through eachof our pre-trained
tissuemodels to get a predicted probability that the given piece of text
can be annotated for each one of the tissues or cell types.

Comparison of text-based methods for sample annotation
NLP-ML relies solely on free-text (i.e., unstructured) metadata. To
evaluate its effectiveness, we compared it to two other methods that

similarly associate text with tissue and cell-type labels. These two
methods are representative of the two most common approaches in
the literature. TAGGER29 is a named-entity recognition (NER) method
that looks for exact-string matches of words/phrases in a dictionary in
the input text. MetaSRA24 uses sophisticated graph-based reasoning
and prior knowledge in the form of ontologies to do an NER-like task.
Figure 2 shows the area under the precision-recall curve (auPRC)
values for NLP-ML models along with those of TAGGER and MetaSRA
based on cross-validation (CV). In these CV runs, samples from the
same dataset were kept together (i.e., never split across training and
testing) to avoid overestimation of prediction performance due to
experiment/batch effects (see Methods).

First, we observe that our NLP-ML models significantly outper-
forms the other two text-based methods (higher auPRC for 74% of
terms, Wilcoxon p-value = 2.01e-5 against MetaSRA; higher auPRC for
86% of terms, p-value = 2.27e-27 against TAGGER, Fig. S3). NLP-ML has
a median auPRC of 0.74, which means that, out of the top 100 pre-
dicted samples for a given tissue, on average, 74 of them are correct.
Not surprisingly, TAGGER consistently performs the worst due to
incurring a large number of false negatives by only looking for exact-
string matches in order to make an annotation. MetaSRA, with its
careful processing of key and value data in the description based on
ontologies, achieves a median auPRC of 0.48 and significantly out-
performas TAGGER (higher auPRC for 69% of terms, Wilcoxon p-
value = 1.12e-13).

While the median performance of NLP-ML is substantially higher
than that of MetaSRA, the boxplots also indicate that there are a
number of tissues for which MetaSRA performs better. To better
understand the differences in relative performance of NLP-ML and
MetaSRA, we first summarizedmethod performance for tissues within

Fig. 1 | Overview of NLP-ML. The NLP-ML approach contains four steps: (i) Text
preprocessing: Unstructuredmetadata of samples arepreprocessed to remove text
elements extraneous to sample classification and reduce words to their roots; (ii)
Creating text-based sample embeddings: A neural network model trained on large
text corpora is used to create numerical embeddings of individual words. An
embedding of a sample is createdby averaging the embeddingsof thewords in that
sample’s metadata; (iii) Training sample tissue classifiers: Supervised machine

learning models—one per tissue/cell type—are trained using sample text embed-
dings as features and manually curated sample to tissue/cell-type annotations as
labels; and (iv) Classifying new samples: Descriptions of unlabeled samples are
preprocessed and turned into numerical embeddings. Each trained model takes
these embeddings as input and provides the probability that the sample is from
that tissue/cell type.

Table 1 | Summary of tissue/cell-type gold-standard size and
attributes of the associated sample and dataset metadata

Median Range

No. samples per dataset 16 1–525

No. samples per tissue/cell type 48 1–1590

No. samples per tissue/cell type after propagation 121 1–3683

No. tissue/cell-type annotations per sample after
propagation

5 1–39

Lengths of sample descriptions (words) 30 1–244

Lengths of dataset descriptions (words) 105 4–512

Lengths of dataset descriptions (sentences) 8 2–34
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each of 13 anatomical systems (Fig. S4). The overall trend is consistent:
NLP-ML outperforms MetaSRA in tissues from 10 anatomical systems.
The methods perform similarly in nervous system tissues and NLP-ML
is worse than MetaSRA for tissues in the respiratory and reproductive
systems (Fig. S4). Next, we compared the two methods within four
equal-sized groups of tissues where each group of tissues had a similar
number of positive training examples. As expected, when more sam-
ples are available for training (the last two groups with ≥154 samples
per tissue in training), the performance of NLP-ML is high (median
auPRC>0.8) and better thanMetaSRA (Figs. S5C, D, S6C, D). In tissues
with a moderate number (≥64 and <154) of training samples, NLP-ML
and MetaSRA perform quite similarly with a median auPRC of about
0.6 (Figs. S5B, S6B). It is worth noting thatMetaSRA achieves an auPRC
of close to 1 for a number of tissues in this group. Finally, in the group
with the smallest amount of training data, the performance of both
methods drop to auPRC <0.5 with NLP-ML performing better than
MetaSRA (Figs. S5A, S6A). These patterns indicate that while our
method tends to invariably outperform MetaSRA, size of the training
set makes a difference. Further, there are likely features in sample text
(e.g., names of the fields, i.e., keys) that a rule-based method like
MetaSRA may be able to leverage better than our models.

Therefore, we evaluated the performance of combining the pre-
dictions from these two methods (see Methods) and observed that
combining NLP-ML with MetaSRA results in a median auPRC of 0.93,
more than the performance of either method alone (Fig. 2). This
overall improvement is particularly due to the boost fromMetaSRA in
tissues with relatively small training sets (<154 samples per tissue;
Fig. S5, S6). The aggregate performance also indicates that automated
methods can be developed to accurately assign tissue and cell-type
annotations 9 out of 10 times just based on their unstructured or semi-
structured text descriptions. A number of specific cases are discussed
below (see Discussion and Supplemental Notes) to highlight and
understand some ways in which NLP-ML and MetaSRA perform in
sample tissue classification.

While the combination of MetaSRA and NLP-ML more accu-
rately annotates samples than NLP-ML, there are a number of fac-
tors to consider when using MetaSRA in future applications.
MetaSRA is implemented in Python 2, which as of January, 2020, is
no longer officially supported. Hence, maintaining a long-term
software solution dependent on MetaSRA may be a challenge.

Secondly, the method is low throughput, requiring a large amount
of time and computational resources to process a single piece of
text. The full MetaSRA pipeline needs to be executed for each
unique input. For instance, annotating our >11,000 samples meant
generating a unique input for each description and running the full
computation pipeline for each input individually. The average
runtime for annotating each sample was ~1 h. The average runtime
for dataset descriptions often exceeded 3 h. Alternatively, each of
our models can create an embedding for any text and make a
prediction within seconds with modest hardware requirements.
Finally, MetaSRA does not scale with larger passages of text. When
making predictions on dataset-level metadata, MetaSRA took
hours of computation time. MetaSRA also requires semi-structured
data in the form of key-value pairs of information whereas NLP-ML
can provide predictions on any piece due to our bag-of-words
approach, making NLP-MLmore widely usable. We have also shown
that, given enough training data, NLP-ML significantly outperforms
other text-based methods (see Fig. S5). Therefore, while the com-
bination of NLP-ML and MetaSRA outperforms NLP-ML alone, the
scalability andmaintainability of NLP-MLmake it amore usable and
long-term solution (also see Discussion). Additionally, as more
data become available for different tissues and cell types, we
expect NLP-ML to continue to further improve in performance.

Incorporating dataset-level information to annotate samples
Current methods for text-based sample annotation are designed to
only use themetadata of a particular sample without taking advantage
of the metadata available for the parent dataset that the sample
belongs to.We investigated if thesedataset descriptions could serve as
an additional rich source of information to improve the annotation of
individual samples. First, for a given dataset, we predicted tissue
annotations by providing the dataset’s metadata as input to the NLP-
ML models trained on sample metadata (excluding samples in that
dataset during training; see Methods) and transferred those annota-
tions to each of its constituent samples (referred to as ‘dataset-based
prediction’). Then, for each sample, we obtained a new tissue predic-
tion by adding the prediction based on its own (sample)metadata with
the prediction for its parent dataset (referred to as ‘dataset-and-sam-
ple-based prediction’). Comparing these schemes to each other, we
observe that sample predictions supplemented by dataset predictions
result in better performance for a number of tissues and cell types
(Fig. 3). This improvement indicates that, for some tissue and cell
types, leveraging additional dataset descriptions can help annotate
samples correctly. However, the combination of dataset and sample
predictions does not always outperform using sample text alone. In
fact, the dataset-and-sample-based predictions are nearly always bet-
ter or are equally as good as using the dataset-based predictions.
Therefore, while dataset metadata can be useful in some cases to
improve sample annotations, it is insufficient to use dataset metadata
alone to make sample tissue annotations. A direct comparison shows
that NLP-ML based on sample descriptions alone, in general, outper-
forms NLP-ML using dataset descriptions alone (Fig. S7, S8).

Biological meaningfulness and generalizability of NLP-ML
models
Having shown that NLP-ML tissue predictionmodels outperformother
text-based methods, we next wanted to explore whether these
machine learningmodels are achieving high accuracy because they are
capturing biologically meaningful signals in sample descriptions. First,
as each individual tissuemodel is trained independently of each other,
we hypothesized that if themodels are capturingmeaningful signals in
the text data, then models of related tissues should be similar to each
other. To test this hypothesis, we analyzed the model coefficients of
the full logistic regression classifier of all the tissues using dimen-
sionality reduction (Fig. 4). Visualizing the tissue models based on the

Fig. 2 | NLP-ML outperforms other text-based methods for sample tissue clas-
sification. Distribution of the area under the precision-recall curve (auPRC) scores
across 153 tissues for each of the three individual text-based methods for sample
classification: TAGGER, MetaSRA, and NLP-ML. Also shown is the distribution of
auPRC scores for combining the predictions of NLP-ML andMetaSRA. Each point in
the boxplot is the performance for a single-tissue model averaged across cross-
validation folds. In each boxplot (in a different color), the bounds of the box cor-
respond to the distribution’s first and third quartiles, the center line is the median,
the whiskers extend to the farthest data point within 1.5 times the interquartile
range from the bounds, and the separate dots are outliers. Source data are pro-
vided as a Source Data file.
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first two components reveals that models of tissues from the same
anatomical systems tend to be clustered with each other, indicating
that NLP-ML models of related terms in the tissue ontology have
similar model coefficients.

Second,we leveraged the inherentflexibility of ourNLP-MLmodels
to examine their generalizability: though they are trained to classify
sample descriptions, practically any piece of text can be provided as
input to these NLP-ML models to get tissue predictions as output. We
began with using descriptions of terms in biomedical ontologies. We
created text-based embeddings of terms (see Methods, Creating
embeddings for ontology terms) in a number of ontologies based on
the names and descriptions of those terms provided in each ontology
and made tissue predictions on these embeddings using our NLP-ML
models. We then examined the predictions for a subset of tissue-
specific Gene Ontology Biological Processes (GOBP) and Disease
Ontology (DO) terms based on term-tissue mappings from a previous
study30. Our NLP-ML models classify tissue-specific GOBP terms to the

right tissue with an auPRC three times as expected by random chance
(median log2(auPRC/prior) = 3.51 across tissues; Fig. 5A). GOBP terms
mapped to blood are the hardest to predict most likely because of the
diversity of blood-related processes and the variability in associating
specific biological processes to blood. TheNLP-MLmodels have a lower
performance (median log2(auPRC/prior) = 1.05 across tissues; Fig. 5B)
when classifying diseases (DO terms) to their mapped tissues. This
result is not surprising because short descriptions of disease terms
available from ontologies will invariably lack information about the
tissue associated with the disease. Further, the disease-tissuemappings
used for this evaluation are imperfect (e.g., general, multi-system terms
such as coenzyme Q10 deficiency being mapped to the brain) or, many
times, ambiguous because it is not clear whether a disease ismapped to
a tissue because of disease origin, manifestation, or clinical symptoms.
In both cases, GOBP and DO, model performance does not depend on
the number of terms annotated to a given tissue. Whenwe examine the
predicted probability for each tissue-specific term, we find that relevant

Fig. 3 | Metadata of sample’s parent dataset is useful but insufficient to infer
sample annotations. A Scatterplot of the area under the precision-recall curve
(auPRC) scores of sample tissue predictions from just sample text (x-axis) vs.
combination of predictions from both sample and dataset text (y-axis). B) Scat-
terplot similar to (and shares y-axis with) panel A but with auPRC scores of pre-
dictions from just dataset text on the x-axis. Combination of dataset-and-sample-

based predictions versus the dataset-based predictions, where the predicted
probability for an experiment is used as the prediction for all samples in that
dataset. Each point in the scatterplots correspond to a tissue/cell-type term. auPRC
scores are averages across cross-validation folds. The solid line denotes equal
performance between the two methods. Source data are provided as a Source
Data file.

Fig. 4 | NLP-MLmodels of anatomically related tissues are similar to eachother.
tSNE visualization of standardized logistic regression model coefficients for NLP-
MLmodels of all tissues and cell types trained on the full gold standard. Tissue/cell-
type terms with similar models are close to each other on this plot. Colors and

marker shapes designate terms to high-level anatomical systems based on the
UBERON-CL ontology (see Methods). Source data are provided as a Source
Data file.
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GOBP terms are more often correctly predicted than DO terms (GO:
Tables S1–2; DO: TableS3–S4 as examples). Nevertheless, taken toge-
ther, the model clustering and ontology term predictions demonstrate
that the NLP-ML tissue models trained using sample descriptions are
capturing meaningful relationships between tissues and are using
tissue-relevant signals in text to drive the predictions.

Comparing and combining NLP-ML with models based on gene
expression
A powerful approach to predict sample annotations is to, in fact,
completely disregard the provided sample description and instead use
the genomics data associated with the sample as input to machine
learning models. This approach has been successfully used to predict
multiple types of annotations for transcriptome samples including
sex31, tissue and cell types28, phenotypes32, and diseases33. Therefore,
we looked into how our models that predict tissue annotation based
on a sample’s description (NLP-ML) perform compared tomodels that
predict tissue annotation based on the sample’s recorded tran-
scriptome profile. For this analysis, just like before, we trained L1-
regularized logistic regression (L1-LR) models—one model per tissue—
based on our gold standard of 11,618 microarray samples and their
associated tissue labels but using the expression profiles as features (in
contrast to using embeddings of sample text descriptions as features
in NLP-ML). We observed that L1-LR performed slightly better than

other classifiers for this task (Fig. S9). Then, we compared the per-
formance of these models to the NLP-ML and MetaSRA models using
the sameCV schemeused to evaluateNLP-ML.With amedian auPRCof
0.80, in aggregate, the expression-basedmodels performa little better
than NLP-ML and a lot better than MetaSRA.

Though the performances of expression-based models and NLP-
ML models are comparable in terms of overall performances (Fig. 6)
(median auPRC values of about 0.80 and 0.74, respectively; p = 0.12,
Fig. S3), there is high variability in their relative performances over
various tissues based on their training set sizes (Figs. S10, S11). Both
methods perform with high accuracy for tissues with larger training
sets (≥154 samples/tissue; Figs. S10C, D, S11C, D). However, in the
group of tissues with amoderate number of training samples (≥64 and
<154 samples/tissue), while the performance of both methods drop,
the expression-based models achieve high auPRCs for a handful of
tissues (Figs. S10B, S11B). This trend is more pronounced in the group
with the smallest training sets (<64 samples/tissue; Figs. S10A, S11A).
Here, while NLP-ML has a low-to-moderate performance for all tissues
in this group, the expression-based models are split into two distinct
groups with high and low performance. Hence, at least for a subset of
tissues, accurate expression-models can be trained even with very
small training sets and, for such tissues, these models can be com-
plementary to the NLP-ML models. Conversely, the better perfor-
mance of NLP-ML in many other tissues indicates that there are
features predictive of tissues/cell types in sample text that cannot be
gleaned from the associated expression data until larger training set
sizes are reached. Due to this complementarity between these two
types of models, we also tested combining their predictions and
observed that NLP-ML+ Expression models indeed perform better
than either model across the board (Figs. S3, S10, S11E–H). Finally,
adding predictions from MetaSRA to this combination further
improves performance, resulting in a median auPRC of 0.97 (Figs. S3,
S10, S11I–L), trends that are also consistent across tissues from various
anatomical systems (Figs. S3, S12). In the Discussion section below and
in Supplemental Note 1, we have considered specific cases in detail to
shed more light on when and how these very different kinds of
methods—based on text and genomics data—perform differently.

These results reveal that text-based features in sample descrip-
tions can be as effective as and complementary to the molecular sig-
nals in their genomics profiles for informing sample tissue prediction.
However, text-based models have a unique practical advantage: while
models based on genomics profiles need to be trained anew for each
experiment type (e.g., microarrays, RNA-seq, ChIP-seq, and methyla-
tion arrays) using newly curated gold standard, once trained using any
gold standard, text-based models can be used to classify samples
irrespective of type.

Using NLP-ML to annotate samples from multiple experi-
ment types
In our final analysis, we examined two aspects of the predictive per-
formance of our NLP-ML models. First, in addition to the careful
dataset-stratified cross-validation scheme, we wanted to evaluate
thesemodels using a set of samples thatwere completely independent
of the 11,618 samples used to train any of the models. Second, we
wanted to evaluate the ability of our models to crossover and make
predictions on samples from new experiment types, a previously
mentioned benefit to using text as machine learning features. To
satisfy both requirements, we selected the five experiment types on
ArrayExpress with the most number of human samples—‘RNA-seq of
coding RNA’, ‘ChIP-seq’, ‘comparative genomic hybridization by array’,
‘methylation profiling by array’, and ‘transcription profiling by array’—
and made predictions on a large random subset of samples from each
experiment type (see Methods, Cross-platform annotations). To then
validate our predictions, for each of our five top-performing NLP-ML
models—colon, brain, muscle tissue, neural tube, and adipose tissue—

Fig. 5 | NLP-ML models can correctly classify tissue-associated biological pro-
cesses anddiseasesbasedontheir text descriptions.AModel performancesona
set of manually curated tissue-specific Gene Ontology biological process (GOBP)
terms30.BModel performances on a set ofmanually curated tissue-specific Disease
Ontology terms30. In bothpanels, Themodels are indicated along the y-axiswith the
number of annotated GOBP/DO terms in parentheses next to the tissue name.
Performance is shown on the x-axis using the logarithm of the area under the
precision-recall curve (auPRC) over the prior, where the prior is the fraction of all
GOBP/DO terms specific to a particular tissue. Thismetric accounts for the variable
number of annotated terms per tissue. Source data are provided as a Source
Data file.

Article https://doi.org/10.1038/s41467-022-34435-x

Nature Communications |         (2022) 13:6736 6



we manually examined the metadata of the top 10 predictions from
each experiment type.

First, we observed that none of the top 10 predictions for any
model and experiment type had a predicted probability less than 0.5.
Table 2 shows the number of correct predictions out of the top
10 samples made by the five selected models from each of the five
experiment types. The average precision (i.e., the average fraction of
the top 10 predictions that are correct) of these five models is 0.80,
which indicates thatNLP-MLmodels are able to identify tissue samples
with high accuracy from new experiment types without needing to
retrain the models. Brain and neural tube models performed the best
on this cross-experiment analysis, followed by colon and adipose tis-
sue. The low performance of the muscle model (precision =0.58)
could be explained by the presence of the word “musculus” (indicative
of a mouse sample) in the majority of samples incorrectly annotated
for muscle tissue. This could be the result of a character-level
embedding method like flair yielding similar embeddings for simi-
larly spelled words, which may not be an issue for token-level

embedding methods that consider the full word. False-positive pre-
dictions by the adipose tissue model were typically samples collected
from individuals described to be on high-fat diets. Nevertheless, these
shortcomings of NLP-ML are far outweighed by its practical benefit of
being able to be deployed seamlessly on samples across experi-
ment types.

Discussion
Though there is growing awareness about the importance of complete
and unambiguous sample metadata34, the millions of human—omics
samples that have already been submitted to databases like NCBI GEO
and EBI ArrayExpress are associatedwith incomplete and unstructured
sample descriptions. Here, we propose an approach, NLP-ML, that
combines natural language processing and machine learning to
annotate samples to their tissue of origin solely based on the
unstructured text description available for them.

We have shown that our NLP-ML outperforms two representative
text-based methods: (i) TAGGER29, a baseline method that uses exact-

Fig. 6 | NLP-ML models are nearly as accurate as expression-based models in
predicting tissue source of transcriptome samples, and combining them is
better than either. A Distribution of the area under the precision-recall curve
(auPRC) scores across 153 tissues for the two top-performing text-basedmethods—
MetaSRA and NLP-ML—and for the method based on expression profiles (‘Expres-
sion’) for sample tissue classification. Also shown are the distributions of auPRC
scores for combining the predictions of Expression with NLP-ML (‘NLP-ML +
Expression’) and with NLP-ML and MetaSRA (‘NLP-ML +MetaSRA+Expression’).
Each point in the boxplot (in a different color; defined as in Fig. 2) is the

performance for a single-tissue model averaged across cross-validation folds.
B Scatterplot of the area under the precision-recall curve (auPRC) scores of sample
tissue predictions by NLP-ML models (x-axis) vs. predictions by expression-based
models (y-axis). C Scatterplot similar to (and shares y-axis with) panel B but with
auPRC scores of predictions by MetaSRA on the x-axis. Each point in the scatter-
plots correspond to a tissue/cell-type term. auPRC scores are averages across cross-
validation folds. The solid line denotes equal performance between the two
methods. Source data are provided as a Source Data file.
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string matching to annotate sample descriptions, and (ii) MetaSRA24,
an advanced method that uses graph-based reasoning to infer anno-
tations from semi-structured sample metadata. We chose a bag-of-
words representation for the sample descriptions in this work due to
the unstructured nature of most sample metadata in GEO and
ArrayExpress. Even when metadata tags or fields are used, they are
used and presented inconsistently. Therefore, we chose to use the
presence of words in sample descriptions as the input signal.

Examining specific instances illustrates why this approach based
on unstructured text (NLP-ML) correctly annotates samples where the
other text-basedmethods (MetaSRA and Tagger) do not. For example,
several samples lack informative metadata directly about the source
tissues/cell types but the descriptions include mentions of a disease
relevant to the source tissue, which is picked up by NLP-ML as a useful
piece of information (Supplemental Note 1 1.1, 1.2). NLP-ML also works
better thanothermethodswhen unstructured sample descriptions are
further complicated by details about the experiment and sample
preparation (SN1 2.1, 2.2). Another common scenario where NLP-ML
outperforms othermethods is when samples are from individuals with
an affliction related to one tissue but the sample itself is from another
tissue (typically blood) and both tissues are included in the description
(SN1 2.3). As expected, in the subset of samples where the tissue is
explicitly mentioned without the presence of accessory tissues aside
from the true label, all three text-based methods provide accurate
annotations not just for microarray samples (SN1 3) but also for sam-
ples from other technologies (SN1 3.5, 3.6). These findings align with
the design principles of the other text-based methods we have com-
pared NLP-ML to in this work. Tagger relies on the explicit mention of
keywords in the text. MetaSRA has been shown to be highly accurate
for providing metadata annotations based on sparse, structured key-
value pairs, a result which we are able to observe and confirm in our
work as well. Examining specific sample descriptions (Supplemental
Note 2) also showcases how NLP-ML is able to achieve lower false-
positive rates by taking advantage of the overrepresentation of the
true tissue name (compared to mentions of other, non-source tissues
or cell types) in the descriptions.

Next, along with the descriptions of the sample alone, we
explored the potential of using the typically large, unstructured
descriptions that comewith the entire experiment a sample is a part of.
We observed that experiment-level metadata can bolster NLP-ML
predictions for samples from some tissues and cell types (Fig. 3A),
indicating that there are experiments where the sample-level infor-
mation is lacking critical information needed to accurately classify
tissues and cell types, and this information could be present in more
experiment-wide descriptions (Fig. S8). On the other hand, for most
tissues, including the description of the entire experiment did not
make any difference or, sometimes, even hurt performance (Fig. 3A).
We also show that, in general, experiment-level metadata alone is not
sufficient for accurate classification (Fig. 3B, S8) and should be viewed
as supplemental rather than complimentary information.

Given the NLP-ML models show good performance in text-based
tissue classification, we examined the trained logistic regression
models in detail to understand if they were biologically meaningful.
Specifically, we compared all tissue models to each other based on
their model coefficients and observed that models of tissues from the
same anatomical system cluster with each other in low dimensional
space (Fig. 4). Then, taking advantage of the fact that our models can
be applied to making tissue predictions on any text input, we made
predictions on tissue-related pieces texts in the formof descriptions of
subsets terms in the Gene Ontology (biological processes) and the
DiseaseOntology (Fig. 5A, B). OurNLP-MLmodels achievehighmedian
performance (log2(auprc/prior) values) across all tissues for which we
have a set of curated tissue-specific terms30. These two findings toge-
ther show that the NLP-ML models are able to generalize and achieve
accurate tissue classification for unseen pieces of text, doing so in a
way that captures the underlying biological relationships between
tissues.

A number of studies have effectively shown that molecular
genomics profile that were experimentally measured from samples,
for e.g., the gene-expression profile of a transcriptome sample, can
‘predict’ various attributes of the sample’s source, including tissue,
age, sex, and phenotype. This approach is highly complementary to
inferring annotation from sample text description because genomics
profile-based models can predict attributes missing in the original
sample description. Many samples are known to contain descriptions
that are lacking informative text or are missing specific attributes
altogether35.Wefirst confirm this fact in our setting and then show that
the aggregate performance NLP-ML is comparable to that of
expression-based models in sample tissue classification (Fig. 6A). In
most cases, NLP-ML and expression-basedmodel performances across
tissues are also correlated with each other except for the tissues with
the smallest amount of training data (Fig. S11A–D). Samples where
expression-based models tend to outperform text-based methods
pertain to multi-level, complex tissues like the brain (SN1 4.1, 4.2).
Such tissues are also likely to have small training set sizes. Text-based
models do not tend to match up to expression-based model perfor-
mance when sample descriptions contain dense information with
several other types of details such as experimental protocols and
treatments (SN1 4.3, 4.4). On the other hand, for more general tissues
involved in complex structures (e.g., hippocampus), or samples with
descriptions explicitly containing the tissue terms, as previously
noted, our text-based models outperform expression-based models
(SN1 5).

Given the complementarity of the text- and expression-based
models, we combined the predictions frombothmodels and observed
that this combination improves the median model performance
beyond either NLP-ML or expression alone (p = 4.47E-03 and p =0.12
compared to NLP-ML and expression, respectively). We suspect that
the improvement in performance from combining NLP-ML and
expression is not greater because both predictors are trained on the

Table 2 | NLP-ML models trained on microarray sample descriptions can accurately infer annotations for samples from five
different genomics exp types

RNA-seq ChIP-seq Methylation array CGHA Microarray Total

Adipose tissue 7 8 10 3 10 38

Brain 10 10 10 9 10 49

Colon 6 10 10 5 9 40

Neural tube 10 10 10 7 9 46

Muscle tissue 9 0 10 0 10 29

Each rowcorresponds tooneoffive top-performingNLP-ML tissuemodels. The lastcolumnshows the total outof 50 thateachof thesemodels annotated correctly. Columns2–6show thenumber of
samples (out of 10) from each experiment type that each tissue model annotated correctly.
RNA-seq RNA-seq of coding RNA,Methylation array methylation profiling by array, CGHA comparative genomic hybridization by array, Microarray transcription profiling by array.
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same gold standard. And, hence, if trained on different standards—
which can be done given enough available data—we are likely to see
even greater performance gains from the combined use of text and
molecular-profile features.

Specific instances such as those noted in SN1 6.1 and6.6highlight
scenarios in which combining the two models leads to more accurate
classification. In these cases, sample metadata contains conflicting
tissue signals and the expression profile may have weak molecular
signals, but together, result in a correct classification.

Our NLP-ML method has a number of specific advantages com-
pared to existing text and expression-based solutions to annotating
samples for tissues and cell types. Our models are able to make pre-
dictions for any genomics sample given a plain-text sample descrip-
tion, which lends itself to predictive flexibility compared to methods
that use the underlying molecular data to make tissue or cell type
annotations. These descriptions can be any unstructured plain text.
This is a key advantage over MetaSRA, which was designed for lever-
aging structured key-value data (particularly the ‘Characteristics’ field)
in order to construct knowledge graphs for annotating samples. NLP-
ML is also computationally lightweight: predictions for >300 fully
trained models can bemade on dozens of pieces of text in a matter of
minutes on a modest local computer. This is significantly faster than
MetaSRA, which takes on the order of hours for sample descriptions
and needs to be executed for each individual piece of text, and Tagger,
which needs to load large dictionaries into memory before doing an
exhaustive, exact-string matching to the dictionary. MetaSRA was
especially designed to operate on very small pieces of text (key-value
pairs). Our method outperforms other text-based methods while
maintaining biological interpretability both in terms of how the mod-
els are trained (taking into account ontology structure when assigning
training labels) and in how the models perform (Figs. 4 and 5), which
when combined with the other benefits of NLP-ML—predominantly
scalability, efficiency, and the ability toworkonunstructured text from
any source—set it apart from existing text-based methods. Further,
because NLP-ML addresses a more general problem, i.e., annotating
large collections of unstructured text, it can easily be applied to any
text data including descriptions of more –omics data types beyond
genomics. However, a significant challenge faced by the biomedical
community—an open challenge recognized by funding agencies such
as NIH and data consortia such as NCI Data Commons—is the lack of
sample-level information that methods like ours can utilize. For
instance, PRIDE36, the preeminent public database for proteomics
datasets, only includes descriptions of entiredatasets and experiments
and not of individual samples. Addressing this challenge of lack of
sample-level descriptions requires careful human annotation using
semi-automated systems such as ZOOMA(https://www.ebi.ac.uk/spot/
zooma/) based on descriptions about samples available elsewhere,
including accompanying publications.

TheNLP-MLapproachdeveloped in this study has several features
that lend themselves for further development towards more accurate
text-based sample classifiers. First, NLP-ML is accurate for several tis-
sues and cell types despite using all the words in the sample descrip-
tion. However, model performance could be impacted by parts of the
metadata that is irrelevant to the prediction task at hand. This could
include fields such as institution, platform, and author and contact
information. In our current work, we only downweight commonly
occuring words using IDF weights computed from PubMed. However,
this weighting may end up emphasizing author or institution names
that are likely rarely mentioned across PubMed, thus throwing off
predictions. In future work, this weighting of words in sample
descriptions canbe improved in a supervised, task-dependentmanner.
Second, combining predictions from a sample’s molecular profile and
the sample’s plain-text description can boost performance more than
what we have shown here if the two models are trained on

independently labeled samples and datasets. In this way, molecular
genomics profile-based models can truly complement text-based
methods by filling in information missing in the sample metadata.
Third, our observation about the improvement in the performance of
NLP-ML with training set size means that prediction accuracy of our
approach can continue to be improved simply by curating more
samples and datasets to specific tissues and cell types. Finally, the
approach presented here can be naturally extended to other types of
sample annotations including experimental factors, phenotypes, dis-
eases, and real-valued parameters such as age and condition/treat-
ment duration. Recent studies have also shown similar approaches can
benefit query expansion during database searches37 and in standar-
dizing image metadata38.

Broadly, our approach empowers new discoveries by providing
structured annotations to publicly available genomics samples so that
biologists can easily find the samples (and datasets) relevant to their
problem of interest from the ocean of hundreds of thousands of
samples available to them. Using the annotations from NLP-ML will
enable them to more accurately find the samples relevant to their
scientific inquiries, which in turn can enable subsequent analyses that
may lead to novel discoveries of various forms. Immediate broad
impact of NLP-ML can be realized by incorporating it into existing
computational sample annotation workflows that bioinformaticians,
computational biologists, and data analysts will run on hundreds/
thousands of sample descriptions. To ensure that our approach can be
easily incorporated into large-scale data workflows, we have released a
well-documented Python software (txt2onto) and have provided code
in our github repository: (i) to train custom text-based machine
learning models using NLP-ML (to predict any sample attribute based
on the sample description), and (ii) to apply the trained model to
predict the desired sample annotations on a large number of new
samples. Ultimately, our approach helps democratize data-driven
biology by enabling biologists to easily discover publicly available
genomics data.

Large consortia of researchers and organizations such as the NIH
are rightly pushing for the adherence of FAIR Principles towards
making publicly available data findable, accessible, interoperable, and
reusable39. Our NLP-ML approach supports these goals by providing
systematic annotations of human genomics samples for tissues and
cell types, thereby enabling researchers to find and reuse relevant data
from public data repositories. While care needs to be exercised in
using predicted annotations for further analysis40, such systematic
annotations provide a strong starting point towards enhancing the
ability to discover, use, and interpret millions of –omics profiles.

Methods
Preparation of tissue/cell-type gold standard
Converting labels from BTO to UBERON-CL. We obtained tissue and
cell type annotations of human gene-expression samples from
Unveiling RNA Sample Annotation’s (URSA’s) >14,000 diverse samples
representing over 244 tissues/cell types28. In these annotations, the
tissues/cell types were identified using terms in Brenda Tissue Ontol-
ogy (BTO). We mapped these annotations to terms in the UBERON
ontology8 that is also extended to contain terms in the Cell Ontology41

(CL).We choseUBERONandCLbecause they aremore comprehensive
ontologies, agnostic to any specific organism, and updated con-
tinuously. The extended UBERON-CL ontology was obtained from
https://uberon.github.io/. TomapBTO terms toUBERON-CL terms, we
first matched as many terms as possible based on exact-string mat-
ches. The remaining terms were compared using the difflib Python
library to find the closest match in UBERON to the given BTO term
using approximate string matching. We then manually reviewed these
matches for correctness. In the cases where there were either no
quality approximate string matches or no matches at all, BTO terms
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were searchedon the ontology lookup service7 (https://www.ebi.ac.uk/
ols/index) for UBERON synonyms.

Assigning positive and negative samples for each tissue. Next, we
used the annotations of samples to UBERON-CL terms and the struc-
ture of the UBERON-CL ontology to construct a gold standard for as
many tissues and cell types following the procedure in Lee et al.28. For a
particular tissue or cell-type term, any sample annotated directly to
that term of any of its descendants in the ontology is labeled as a
positive example. Any sample directly annotated to any of the term’s
ancestors in the ontology is ignored (removed from the training and
testing sets) because of the ambiguity associated with whether or not
that sample should be positive or negative. All other samples are
labeled as negatives.

We used the sample-level gold standard to then construct a
dataset-level gold standard. For each tissue/cell-type term, if the
majority of the samples in a dataset were positives for that term, then
the entire dataset is labeled as positive. If themajority of samples in the
dataset were ignored for that term, the entire dataset is also ignored
and thus removed from the training and testing sets. If neither case is
true, the dataset is labeled as a negative.

Assigning tissue and cell-type terms to high-level anatomical sys-
tems.Wemanually selected a set of high-level terms from theUBERON
ontology to categorize all the terms we are building models for into
anatomical groups: endocrine system, reproductive system, respira-
tory system, digestive system, renal system, nervous system, sensory
system, gustatory system, hematopoietic system, musculoskeletal
system, exocrine system, immune system, integumental system, gen-
itourinary system, cardiovascular system. Then, we mapped each tis-
sue in the ontology to each systems-level term that was its ancestor in
the ontology. Terms that do not map to any systems-level terms were
assigned to the category of “NA.”Once thismappingwas complete, we
applied a threshold to each system-level term and only kept terms
which contained more than 8 models. We determined this cutoff by
varying it until 75%of themodelswere assigned to at leastone systems-
level term.The remainingmodels were redesignated as “NA.”Thus, the
“NA” category comprises models that either do not map to a system-
level term, or map to a system-level term that is not prevalent enough
in the data. This thresholding is done for simplicity of presenting the
results.

Selecting terms for training and evaluation. Finally, to ensure robust
model training and evaluation, we selected the subset of tissue/cell-
type terms that have positively labeled samples from at least three
datasets, each with associated metadata from ArrayExpress (see
below). As detailed inModel evaluation, during evaluation using cross-
validation (CV), samples from the same dataset are kept together in
training or testing folds to measure the performance of models on
their ability to predict annotations of samples from unseen datasets.
This entire curation and selection procedure resulted in a gold stan-
dard containing 11,618 human gene-expression samples from the
human whole-genome Affymetrix platform from 321 datasets anno-
tated to 153 tissue/cell-type terms (more details in Table 1).

Downloading and preprocessing sample and dataset metadata
We extracted sample and dataset metadata from the sample and data
relationship files (SDRF) from ArrayExpress as raw text using the curl
command line tool. All metadata were downloaded fromArrayExpress
on May 29, 2019.

We put together the metadata for each sample by processing the
tabularized elements of an SDRF. If a sample appeared in multiple
dataset SDRFs, the samplewas randomlydesignated to a single dataset
for the entirety of the analysis. A continuous string of metadata text
was created for each sample excluding the tabularized headings in an

SDRF. This text, with some preprocessing (see below), was used as
input for TAGGER and NLP-ML. For MetaSRA, each sample’s metadata
input JSON file was created by gathering key-value pairs from tabu-
larized elements. Table headers were used for the keys and the
respective entries for the samplewere usedas the values.Noadditional
processing was done with sample JSON files, consistent with the
original study.

For dataset-level metadata, we downloaded the investigation
descriptionfile (IDF) for eachdataset inour gold standard andused the
entry in the “Experiment Description” field. The IDF and SDRF files
were compared to ensure that all samples with metadata also had a
corresponding dataset-level metadata. Various attributes of the sam-
ple and dataset metadata are presented in Table 1.

NLP-ML: Natural language processing and machine learning
The NLP-ML approach described here contains four steps: text pre-
processing, creating text-based sample embeddings, training sample
tissue classifiers, and predicting tissue annotations for unlabeled
samples.

Text preprocessing. The entirety of the metadata associated with
samples and datasets contains several extraneous pieces of informa-
tion that need to be preprocessed before being used as input to
annotation methods. Hence, we first processed the continuous string
of metadata for a sample by removing non-UTF-8 encodable char-
acters and all punctuations. Then, all whitespaces were converted to
spaces and themetadata string was split into a list of words on spaces.
For each word in the list of words for a sample, if the word contained
numerical characters, characters indicative of a URL (e.g., “https,” “://”,
“www”), or was fewer than three characters in length, it was removed
from the list. All remaining words were changed to lowercase, lem-
matized using the WordNetLemmatizer available in the NLTK Python
package42, and used as the bag of words associated with each sample.
For datasets, each sentence in the dataset metadata was processed
using the same method.

Creating text-based sample embeddings. The second step in NLP-
ML entails creating a numerical representation called an embedding
for each sample based on its text description by combining the
embeddings of the words in the sample’s preprocessed metadata.
Word embeddings were created using the Flair Python library 0.8.027.
We chose Flair because of the availability of multiple neural network
models that could be stacked to create word embeddings using
combinations of methods. For NLP-ML, we created a stacked model in
Flair using ELMo trained on PubMed text43 and the large uncased
version of BERT44. Then, we created an embedding for each sample by
combining the embeddings of the individual words in the sample’s
metadata using element-wise weighted averaging.

As potential word weights, we calculated the inverse document
frequencies (IDF) for words by processing all PubMed entries (~18
million abstracts and 27million titles) obtained from https://www.nlm.
nih.gov/databases/download/pubmed_medline.html on August 16,
2020. A ‘document’ was defined as a paper’s title and abstract. If an
entry lacked one or the other, then a document was considered to be
the available text for the entry. For each document in PubMed, we
extracted all unique words and incremented their document count by
1. We then calculated the IDF of each word t as

IDFðt,DÞ= log N
fd 2 D : t 2 dg , ð1Þ

where N is the number of documents in PubMed, d is the number of
documents in PubMed—among the total number of documentsD—that
contain the word t. We also explored another weighting scheme based
on TFIDF (short for term frequency–inverse document frequency),
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calculated per tissue/cell-type term by multiplying each word’s IDF by
the frequency of thatword in descriptions of the samples annotated to
that term in the gold standard. Finally, the unweighted case is when all
weights are set to 1. In all cases, if a word did not have a weight,
oftentimes caused by misspelling of words or concatenations of many
words (due to metadata entry errors), the word was assigned a weight
equal to the mean weight of all words in the description with a weight.
Note that an embedding can still be created for these words because
Flair creates embeddings using character-level information.

In the case of datasets, for tackling large, multi-sentence
descriptions, we created an embedding for each sentence in a data-
set’s description based on the procedure outlined above, represented
the entire dataset as a matrix with the number of rows equal to the
number of sentences and the number of columns equal to the
dimensionality of the word embedding.

Training sample tissue classifiers. The third step in NLP-ML is to use
the text-based embeddings as features in a supervised machine
learning model built per tissue/cell-type term, trained based on the
positively- and negatively-labeled samples in the curated gold stan-
dard. After comparisons of multiple classifiers, we chose the L1-
regularized logistic regression classifier owing to its good perfor-
mance, model sparsity, and ability to directly provide prediction
probabilities. We trained logistic regression classifiers using the
implementation in scikit-learn version 0.20.3 (C = 1, penalty = ‘l1’, sol-
ver = ‘liblinear’; Python 3.7.7).

Predicting tissue annotations for unlabeled samples, datasets, text
snippets. The final part of NLP-ML is to use the trained sample tissue
classifiers to classify unlabeled samples based on their metadata. The
metadata for these new samples are processed and converted to
sample embeddings using the same procedures outlined above (steps
2 and 3). For each tissue/cell-type term, the corresponding trained
model provides a prediction score for a particular sample corre-
sponding to a probability (between 0 and 1).

We made predictions for datasets based on dataset-level meta-
data by first splitting the full block of dataset text into individual
sentences. The sentences are thenprocessed, embedded, and supplied
to trained NLP-ML models for predictions. For each tissue/cell-type
term, the prediction score for a particular dataset corresponds to the
maximum predicted probability across all sentences.

We obtained the dataset-and-sample-based predictions for each
sample by simply adding the predicted probabilities based on its own
(sample) metadata with the probability for its parent dataset. We
compared this addition with taking the maximum of the two (see
Figs. S4, S5) and observed no significant difference.

To make predictions on text that was not sample or dataset
metadata, e.g., descriptions of biological processes or diseases,

Other text-based methods for inferring sample tissue
annotation
TAGGER. We downloaded the full TAGGER dictionary from http://
download.jensenlab.org/.We added additional terms to this dictionary
based on UBERON and CL terms in the extended Uberon Ontology,
including all synonyms present in each term’s metadata. Using the
Python 2 module for TAGGER, we identified UBERON and CL matches
in the sample metadata available from ArrayExpress. For each tissue/
cell-type term, we set the TAGGER prediction score for a particular
sample as 1 if that term appears in the list of terms identified by
TAGGER. If not, the sample’s score is set to 0.

MetaSRA. We downloaded the source code for the MetaSRA pipeline
fromhttps://github.com/deweylab/MetaSRA-pipeline onMay 16, 2019.
A modification to the source code was made to save the many con-
structed graph objects as a pickle file to reduce computation time. The

OBO files used in MetaSRA were downloaded between May 16, 2019
andMay 31, 2019. MetaSRA takes unprocessed samplemetadata in the
form of key-value pairs as input and outputs a list of ontology terms.
For each tissue/cell-type term,we set theMetaSRAprediction score for
a particular sample as 1 if that term appears in the list of terms iden-
tified by MetaSRA. If not, the sample’s score is set to 0.

Expression-based sample tissue classification
We used GEOmetadb45 to get the list of available human Affymetrix
whole-genome gene-expression samples in GEO. We queried and
downloaded all CEL files corresponding to these samples on July 29,
2019. These data were background corrected, normalized, and sum-
marized using the frma46 and affy47 R packages and gene names con-
verted to Entrez IDs using thehgu133afrmavecs, hgu133plus2frmavecs,
hgu133plus2hsentrezgcdf, and hgu133ahsentrezgcdf R packages48.
Then, we trained expression-based sample tissue classifiers using L1-
regularized logistic regression (identical to the models used in NLP-
ML) with these expression profiles as features and based on labeled
samples in the curated gold standard.

Combining predictions from different methods
When combining predictions between any set ofmethods amongNLP-
ML, MetaSRA, and Expression, we first calculated an F1 score (the
harmonic mean of precision and recall) for each method for a parti-
cular tissue or cell type. These F1 scores were then used as weights to
calculate a weighted average of the predicted probabilities for a par-
ticular sample.

Model evaluation
We evaluated all methods using dataset-level k-fold cross-validation
(CV). Dataset-level CV means that all the samples within the same
dataset are never split across folds, i.e., kept together in the training or
the testing folds. We do this to prevent the models from learning any
dataset-specific characteristics and evaluate the ability of the models
to predict annotations of samples in unseen datasets. As our gold
standard contains several tissues/cell-type terms with as low as three
positively labeled datasets, we picked 3–5 CV folds for each term’s
model based on data availability: 3-fold CV for terms with just three
positive datasets, 4-fold CV for terms with four datasets, and 5-fold CV
for terms with five or more datasets. Results reported in this work are
based on model performance calculated using area under the
precision-recall curve (auPRC) and averaged over the 3-, 4-, or 5-folds
depending on the term.

For all evaluations, predictions on samples and datasets were
made bymodels trained on folds that did not include any sample from
the corresponding datasets. Predictions on descriptions of ontology
terms and metadata of samples from different technologies were
made by models trained on the full gold standard.

Creating embeddings for ontology terms
To test the ability of the trained NLP-ML models to generally classify
text to various tissues, we supplied the descriptions of biological
processes and diseases (associated with various tissues) as input to
NLP-ML. We obtained these descriptions by parsing the OBO files for
the Gene Ontology (Biological Process branch; GOBP) and the Disease
Ontology (DOID) and extracting the plain-text name and definition for
each ontology term. For each ontology term, we concatenated the
name and definition to a single string, and then preprocessed and
embedded each string following the same methodology outlined for
sample descriptions to generate ontology term embeddings.

Cross-platform annotations
To explore the ability of NLP-ML models (trained on descriptions of
gene-expression samples) to annotate genomics samples from differ-
ent technologies, we chose five of our top-performing NLP-MLmodels
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from our cross-validation results: colon (UBERON:0001155), brain
(UBERON:0000955), muscle tissue (UBERON:0002385), neural tube
(UBERON:0001049), and adipose tissue (UBERON:0001013). Then, we
chose five experiment types in ArrayExpress with the maximum
number of available human samples: RNA-seq of coding RNA, ChIP-
seq, comparative genomic hybridization by array, methylation profil-
ing by array, and transcription profiling by array. We downloaded and
preprocessed all available sample metadata from all SDRFs across the
samples from these experiment types and randomly selected
10,000 samples from each experiment type. We constructed a sample
embedding for all 50,000 samples and ran them through the five fully
trained NLP-MLmodels (top five in performance) tomake a prediction
for each of these five tissues/cell types. Then, for each of our five
models, we selected the top 10 predicted samples from each experi-
ment type andpulled the corresponding processedmetadata fromour
input files. We then manually examined the metadata from these
50 samples in a random order for each tissue/cell-type model to
evaluate the models’ predictions. Correct and incorrect predictions
were declared as true positives and false positives. Additionally, in the
case where a sample’s metadata was too ambiguous to decide whether
the annotation was correct or not, or if themetadata lacked any usable
information, these cases were also declared as false positives.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the gold-standard annotations (labeled examples) used to train all
themodels and the cross-validation splits used to evaluate the models
are available in the repository https://github.com/krishnanlab/
txt2onto. Lists of samples from specific microarray platforms (avail-
able at https://github.com/krishnanlab/txt2onto/tree/main/gold_
standard) were downloaded from GEOMetaDB https://doi.org/doi:10.
18129/B9.bioc.GEOmetadb. Metadata were downloaded from
ArrayExpress https://www.ebi.ac.uk/arrayexpress/. Source data files
necessary to recreate our figures are provided in the repository and
with this paper. Source data are provided with this paper.

Code availability
We have made the trained NLP-ML models, a Python utility for text-
based tissue classification, and demo scripts, along with extensive
documentation, at https://github.com/krishnanlab/txt2onto (v1.0.0
archived at https://doi.org/10.5281/zenodo.7232237)49. Given an input
file where each line is a piece of text to be classified, the txt2onto utility
will perform the necessary text preprocessing, create an embedding
for each piece of text, and then run each embedding through our pre-
trained tissue models. The repository also includes a set of utilities for
training new NLP-ML models for a user-defined problem.
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