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Single-cell profiling reveals a memory B
cell-like subtype of follicular lymphoma
with increased transformation risk
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Follicular lymphoma (FL) is an indolent cancer of mature B-cells but with
ongoing risk of transformation to more aggressive histology over time.
Recurrent mutations associated with transformation have been identified;
however, prognostic features that can be discerned at diagnosis could be
clinically useful. We present here comprehensive profiling of both tumor and
immune compartments in 155 diagnostic FL biopsies at single-cell resolution
by mass cytometry. This revealed a diversity of phenotypes but included two
recurrent patterns, one which closely resembles germinal center B-cells (GCB)
and another which appears more related to memory B-cells (MB). GCB-type
tumors are enriched for EZH2, TNFRSF14, andMEF2Bmutations, whileMB-type
tumors contain increased follicular helper T-cells. MB-type and intratumoral
phenotypic diversity are independently associated with increased risk of
transformation, supporting biological relevance of these features. Notably, a
reduced 26-marker panel retains sufficient information to allow phenotypic
profiling of future cohorts by conventional flow cytometry.

Follicular lymphoma (FL) is one of themost common types of indolent
non-Hodgkin lymphoma. Management ranges from watchful waiting
to rituximab-based combination therapy for symptomatic or threa-
tening disease. Regardless of the therapeutic approach applied, in
addition to expected relapse or progression of FL disease, there is an
inherent risk of transformation to a more aggressive B-cell lymphoma,
most commonly diffuse large B cell lymphoma (DLBCL), at a rate of

2–3% per year1. Disease progression or transformation is thought to
occur as a result of evolution of pre-existing clones, or emergence of
new clones that have managed to evade, nullify, or co-opt the host
immune response2. Baseline clinical features such as FLIPI score, per-
formance status, and B symptoms are informative for risk of
transformation;3,4 however, identifying biological predictors at diag-
nosis has proven elusive2.

Received: 5 April 2022

Accepted: 20 October 2022

Check for updates

1Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada. 2Lymphoid Cancer Research, BC Cancer Agency, Vancouver, BC, Canada. 3Drug
Development Unit, Institut Gustave Roussy, Villejuif, France. 4Canada’sMichael SmithGenomeSciences Centre, BCCancer Agency, Vancouver, BC, Canada.
5Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada. 6Molecular Oncology, BC Cancer Agency, Vancouver,
BC,Canada. 7Epidemiology andBiostatistics,Memorial Sloan KetteringCancerCenter, NewYork, NY, USA. 8These authors contributed equally: XuehaiWang,
Michael Nissen. e-mail: aweng@bccrc.ca

Nature Communications |         (2022) 13:6772 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-6153-7595
http://orcid.org/0000-0002-6153-7595
http://orcid.org/0000-0002-6153-7595
http://orcid.org/0000-0002-6153-7595
http://orcid.org/0000-0002-6153-7595
http://orcid.org/0000-0002-6413-6586
http://orcid.org/0000-0002-6413-6586
http://orcid.org/0000-0002-6413-6586
http://orcid.org/0000-0002-6413-6586
http://orcid.org/0000-0002-6413-6586
http://orcid.org/0000-0002-9161-079X
http://orcid.org/0000-0002-9161-079X
http://orcid.org/0000-0002-9161-079X
http://orcid.org/0000-0002-9161-079X
http://orcid.org/0000-0002-9161-079X
http://orcid.org/0000-0001-6782-8361
http://orcid.org/0000-0001-6782-8361
http://orcid.org/0000-0001-6782-8361
http://orcid.org/0000-0001-6782-8361
http://orcid.org/0000-0001-6782-8361
http://orcid.org/0000-0001-9136-9054
http://orcid.org/0000-0001-9136-9054
http://orcid.org/0000-0001-9136-9054
http://orcid.org/0000-0001-9136-9054
http://orcid.org/0000-0001-9136-9054
http://orcid.org/0000-0001-6753-892X
http://orcid.org/0000-0001-6753-892X
http://orcid.org/0000-0001-6753-892X
http://orcid.org/0000-0001-6753-892X
http://orcid.org/0000-0001-6753-892X
http://orcid.org/0000-0003-2932-7800
http://orcid.org/0000-0003-2932-7800
http://orcid.org/0000-0003-2932-7800
http://orcid.org/0000-0003-2932-7800
http://orcid.org/0000-0003-2932-7800
http://orcid.org/0000-0003-3422-8823
http://orcid.org/0000-0003-3422-8823
http://orcid.org/0000-0003-3422-8823
http://orcid.org/0000-0003-3422-8823
http://orcid.org/0000-0003-3422-8823
http://orcid.org/0000-0003-1295-3258
http://orcid.org/0000-0003-1295-3258
http://orcid.org/0000-0003-1295-3258
http://orcid.org/0000-0003-1295-3258
http://orcid.org/0000-0003-1295-3258
http://orcid.org/0000-0001-9842-9750
http://orcid.org/0000-0001-9842-9750
http://orcid.org/0000-0001-9842-9750
http://orcid.org/0000-0001-9842-9750
http://orcid.org/0000-0001-9842-9750
http://orcid.org/0000-0001-7394-5425
http://orcid.org/0000-0001-7394-5425
http://orcid.org/0000-0001-7394-5425
http://orcid.org/0000-0001-7394-5425
http://orcid.org/0000-0001-7394-5425
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34408-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34408-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34408-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34408-0&domain=pdf
mailto:aweng@bccrc.ca


We describe here a phenotypic analysis of both malignant B-cell
and infiltrating T-cell populations from patient lymph node (LN)
biopsies involved by FL using mass cytometry (CyTOF)5. The relatively
large size of our study cohort which includes 155 diagnostic FL plus 36
normal, or reactive LN (rLN) specimens enabled discovery of variable
but also recurrent phenotypes among patient samples. Integrated
analysis with clinical outcome information reveals features associated
with risk of transformation, thus supporting the utility of highly
dimensional single-cell phenotypic profiling.

Results
Patient samples
From 2013 through 2017, we identified a total of 155 patients with FL
for whom cryopreserved cells were available from their initial, pre-
treatment diagnostic excisional biopsy specimens. All but 6 were LN
specimens (Supplementary Data 1). Patient characteristics for the
identified sample cohort are shown in Supplementary Table 1. We
accessed an additional 36 rLN biopsies with age/sex/anatomic site

distribution comparable to the 155 FL cohort and deemed non-
malignant on pathologic review to serve as normal controls (Table S1
and Supplementary Data 1).

Global multi-dimensional analysis readily segregates normal
and malignant B-cell populations
After data pre-processing (Supplementary Fig. 1), globalmapping of all
191 samples (155 FL + 36 rLN) in UMAP6 space revealed that normal and
malignant B-cells occupied largely distinct regions of phenotypic
space (Fig. 1A). There was remarkably limited phenotypic variation
across the 36 rLN samples which is highlighted by their high Shannon
entropy (Fig. 1B). Cells from FL samples on the other hand generally
occupied areas high, intermediate, and low entropy. High entropy
areas co-localized with rLN cells (dashed red lines in Fig. 1B), sug-
gesting these represented residual normal B-cells in FL samples.
Intermediate entropy areas (solid red lines in Fig. 1B) suggested two
abnormal, but recurrent, phenotypes adopted by FL cells from dif-
ferent patients. The remainder of cells occurred in areas of low
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Fig. 1 | Highly dimensional single-cell phenotyping reveals both variable and
recurrent phenotypes in FL. A Dimensional reduction UMAP plots of B-cell data
from combined analysis of 36 rLN + 155 FL patient samples. Each dot represents a
single cell. Dots are colored bypatient sample. Equal numbers of cells from rLN and
FL groups were randomly sampled for display. Contour lines show density in the
combined dataset. B UMAP plots as in (A) but with cells colored by Shannon index
to revealmixing of cells from different patients (intertumoral entropy). Broken red
lines highlight regions co-occupied by rLN cells. Solid red lines highlight two
regions of high entropy unique to FL samples. C UMAP plots as in A but with cells
colored according to their assigned PhenoGraph (PG) cluster. Normal B-cell
populations in rLN samples were manually annotated based on expression of

reference marker proteins. D UMAP plots as in A but with cells colored by their
assigned MetaCluster (MC). E Heatmap of relative protein expression by CyTOF
fromall rLN andFL samples. Each row is a proteinmarker, each column is aB-cell PG
cluster. B-cell clusters are hierarchically clustered into 19MetaCluster (MC) groups.
MC-Mem and MC-Nav include normal memory (B03, B04) and naïve (B00) B-cells;
MC-A includes normal GC B-cells (B05). F UMAP plot as in A but with cells colored
according to one of 3 defined tumor types. Individual samples with >50% clonal
B-cells assigned toMC-A,MC-B, or neitherweredesignated as typesA, B, or NOS. FL
follicular lymphoma, rLN reactive lymphnode,GCgerminal center, PBplasmablast,
PC plasma cell, PG Phenograph, MC metacluster, NOS not otherwise specified,
UMAP Uniform Manifold Approximation and Projection.
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entropy, each often containing cells from just a single patient
(Fig. 1A, B).

We next sought to cluster the cells in a manner that recapitu-
lated the two dominant areas of tumor cells with moderate entropy
as noted in the UMAP projection. To accomplish this, we first applied
PhenoGraph (PG)7 to define phenotypically distinct clusters among
B-cells across the full dataset which yielded 78 separate PG clusters
(Fig. 1C and Supplementary Fig 2). While this level of clustering
segregated individual populations of tumor cells with low entropy
from one another well, the two dominant areas of moderate entropy
appeared to be over-clustered. We thus applied hierarchical clus-
tering of the 78 PG-level clusters to obtain 19 meta-clusters, or MCs
(Fig. 1D, E and Supplementary Figs. 3 and 4), where 19 represented
the optimal number of clusters asmeasured by the gap statistic8. This
defined two dominant MCs which comprised 25% and 15% of all B-
cells, respectively, and corresponded roughly to the two areas of
moderate entropy seen in Fig. 1B. We designated these two dominant
MCs as MC-A and MC-B (colored red and steel blue, respectively,
in Fig. 1D).

Cells from rLN samples segregated into 7 different PG clusters
which mapped into 5 different MCs and could be annotated as naïve,
memory, and germinal center (GC) B-cells, plasmablasts, and plasma
cells based on canonical markers of normal B-cell differentiation9–13

(Supplementary Fig. 5a). Therewere two distinct PG clusterswithin the
memoryB-cellmeta-clusterwhich couldbe annotated as pre- andpost-
switchmemoryB-cells based on expression of IgG in the latter (Fig. 1E).
The majority of rLN samples exhibited a relatively consistent balance
of naïve, memory, and GC B-cells (Supplementary Fig. 6). FL samples,
in contrast, were often devoid of normal GC B-cells and showed
increased memory B-cells as compared to rLN, revealing that accu-
mulating malignant B-cells distort the normal balance across B-cell
compartments.

Among the 155 FL samples, about one-quarter of cells (23%) were
assigned into the same 7 PG clusters as cells from rLN samples (Fig. S2
and Supplementary Data 2), suggesting they could represent residual,
normal B-cells within the tumor-involved lymph nodes. To verify if
these cells were indeed normal, we examined their surface light chain
expression pattern, defining B-cell polyclonality by kappa:lambda
ratios between 7 and 0.3 (Fig. S7a)14. Based on this definition, the
majority exhibited polytypic light chain expression (356 sample-level
clusters across 155 FL); however, a subset exhibited kappa:lambda
ratios >7 or <0.3 (79 sample-level clusters across 155 FL), including
many which mapped as GC B-cells. These monotypic versions of
otherwise phenotypically normal B-cell clusters were designated with
an Ab(normal) suffix (e.g. B05Ab). Of note, the monotypic light chain
expressed by Ab clusters consistently matched the monotypic light
chain of phenotypically aberrant clusters in the same sample (Sup-
plementary Fig. 7b). One interpretation of these Ab cells is that they
may be part of, or alternatively a precursor to, the established malig-
nant clone; however, the alternate possibility that they represent non-
malignant, transientmonotypic expansions that ultimately self-resolve
cannot be excluded. One FL sample did not contain any detectable
monotypic B-cells by these criteria, thus reducing the number of
informative FL samples to 154 in total.

Unsupervised clustering identifies two recurrent subtypes of
abnormal B-cells in FL
The initial unsupervised PG clustering defined two clusters, B01 and
B02, that contained cells from75 (49%) and 34 (22%) of 154 informative
FL samples, respectively, revealing these two phenotypes are particu-
larly common and shared across many different FL patients. This
finding stands in striking contrast with our recent study of DLBCL
where each patient’s tumor is essentially unique when mapped in 39-
dimensional phenotypic space15. PG clusters B01 and B02mapped into
metaclusters MC-A and MC-B, respectively (Fig. 1E). MC-A also

subsumed normal GC B-cells (PG cluster B05) which would be com-
patible with the conventional notion of FL as being closely related to
GCB-cells.MC-B, on theother hand, didnot subsumeanynormalB-cell
clusters andwas clearly distinct fromGCB-cells, exhibiting phenotypic
features closer to pre-class switch recombination (CSR), IgM+ IgG-
memory B-cells (Fig. 1E and Supplementary Data 3).

The two most populated MC groups, MC-A and MC-B together
comprised half of all malignant B-cells (31% and 19%, respectively).
Phenotypic positions of less populated MC types C-F tended to ema-
nate outward from the more centrally located MC types A and B
(Supplementary Fig. 4), while MC types Mem and Nav were located in
close proximity to, and in fact subsumed their corresponding normal
memory and naïve B-cell PG clusters, respectively (Supplementary
Figs. 4 and 1E). The topmarkers discriminating betweenMC-A andMC-
B, and these two from all other cell types included elements of the
B-cell receptor (BCR; IgM, IgG, KL, CD79B), major histocompatibility
complex (MHC) complex (HLA-DR), and signaling/signaling mod-
ulators CD4416, CD2417, and CD2218 (Supplementary Fig 5b and Sup-
plementary Data 4). For instance, cells of typeMC-A tended to express
IgG, HLA-DR, andCD22, whereas thoseof typeMC-B tended to express
IgM/CD79B/KL andCD24/CD44.Markers discriminating the remaining
MC types are also provided in Supplementary Data 4 and sometimes
include BCR, MHC, and CD44/CD24/CD22 markers, depending on
their proximity to MC-A and MC-B.

It is worthy to note that while MC-A and MC-B describe pheno-
types of cells seen across FL samples, any given patient tumor sample
may be composed of a mixture of cell types. As a convention, we
assigned tumor types according to their most abundant MC cell-type
component, by which 136/154 tumors (88%) were composed of at least
80% cells of the assigned MC type (Supplementary Fig. 8). The lowest
MC-A and B contents of tumors assigned to types A and B were 67.5%
and 64% with the next most abundant MC types being MC-L (32.5%)
and MC-I (33.2%), respectively (Supplementary Data 5). When defined
in thismanner, 28%of FL samples (43/154) would be considered type A
and 18% (28/154) as type B. Tumors of the remaining MC types were
considerably less abundantwith 15, 12, 11, 10, 5, and 4 samples assigned
to types C, D, E, F,Mem, andNav, respectively (SupplementaryData 5).
There was no discernible commonality to these less abundant tumor
MC types and we designated them as type NOS (not otherwise speci-
fied) in order to focus subsequent analyses on distinguishing features
of the more abundant types A and B (Fig. 1F). As expected, tumors
lumped together into the NOS category were phenotypically hetero-
geneous, in contrast to the relative homogeneity seen within types A
and B (Fig. S9).

Orthogonal validation of FL subtypes by single-cell RNA-Seq
Given the unexpected finding of two highly recurrent, distinct sub-
types of FL, we sought to validate this distinction by an independent
approach not limited by our particular selection of 39 CyTOFmarkers.
We thus performed single-cell (sc) RNA-Seq on4 rLN and 6 FL samples,
the latter of which were selected from the CyTOF cohort to include
relatively pure examples of types A and B (Fig. 2A; see Fig. S10 for a
summary of all available data types for each sample). B-cells from rLN
and FL samples again mapped to largely distinct areas from one
another, with the exception of limited numbers of residual normal
B-cells in FL samples, while T-cells from rLN and FL samples were
largely co-incident. PhenoGraph identified 18 clusters, 12 of which
could be annotated as normal B- or T-cell subsets19 (Fig. 2B and Sup-
plementary Fig 11). As in CyTOF data, the 4 included type A FL cases all
mapped in very close proximity with one another and partially over-
lappedwith normalGCB-cells from rLN samples. The 2 included typeB
FL cases mapped separately from the type A cases and showed closer
proximity to non-GC B-cell subsets as measured by Pearson
correlation-based distance (Fig. 2C). Supervised analysis to identify
RNAs that most discriminated between abnormal B-cells from type A
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andB tumors confirmed someof the informative proteinmarkers from
CyTOF including IgM, IgG, CD79B, and CD24 (Fig. 2D). These results
support that type A and B tumors represent distinct subtypes of FL as
assessed in unbiased whole transcriptomic space and render unlikely
the possibility that they represent an artifact unique to the particular
selection of markers used for CyTOF analysis.

The scRNA-Seq data also presented the opportunity to explore
what underlying biological differencesmay exist between type A and B
FL cells. We thus performed differential gene expression analysis
comparing abnormal B-cell populations from the 4 type A vs. 2 type B
FL samples (Supplementary Fig. 12 and Supplementary Data 6). Reac-
tome pathway analysis highlighted enrichment of translation-related
ribosomal protein genes and phagocytic immune response genes in
typeAcells,while antigenpresentation andheat shock/stress response
geneswere enriched in typeB cells (SupplementaryData 6). Alongwith
inspection of the component genes from these pathways, these find-
ings suggest a basic difference could be that type A and B cells may
correspond to late and early phases of the GC reaction, respectively.

We also performed a similar analysis using bulk RNA-seq data from
whole tissue or unfractionated cell suspension material from type A
and B samples which highlighted extracellular matrix remodeling
genes in type A samples and chemokine signaling in type B samples
(Supplementary Fig. 13 and Supplementary Data 6), suggesting that
local microenvironmental interactions likely also differ between the
two FL types. Functional studies will be needed to explore these pos-
sibilities further.

Sample-level analysis reveals recurrent patterns of tumor cell
phenotypes
Identification of common B-cell phenotypes shared across different FL
samples provided the opportunity to addresswhether theremight also
be recurrent patterns of cellular composition across different tumors.
To pursue this question, MCs occupied by at least 1% of malignant
B-cells in each tumor were tabulated and frequencies of co-occupancy
for each MC pair were calculated across all tumors and compared to
their expected pairwise probability distributions20. MC groups that
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were co-occupied more or less frequently than expected by chance
were identified and plotted in a force-directed graph (Fig. 3A, B). Co-
associating MCs were often localized proximal to one another in
phenotypic space (e.g. MC-A with MC-C, MC-B with MC-D/F; Supple-
mentary Fig 4 and Supplementary Data 3). Notably, the extent of
phenotypic variation was not consistent across tumors with some
containing cells occupying only a single PG cluster while others
occupied as many as 8 different PG clusters. We quantified this varia-
tion, taking into account the proportion of cells in different PG clus-
ters, as intratumoral entropy (Fig. 3C). It should be acknowledged that
boundaries between phenotypically adjacent MC groups may not be
completely robust as by definition they dichotomize features that
otherwise may potentially show continuous variation; however, on
average tumors with cells exhibiting greater phenotypic variation will
yield higher entropy values.

Co-occurrence analysis also identified negative correlations, most
notablybetween the twomost populatedMCtypes A andB (Fig. 3A, B).
In fact, despite MC-A and MC-B cells being present in 88/154 and 44/
154 tumors, respectively (Supplementary Data 5), they co-occurred in
significantly fewer samples then expected by chance alone (χ2 = 19.2,
DF = 1, p = 1.2e-5) (Fig. 3D). This tendency for cells fromMCtypes A and
Bnot to co-occurwithin the same tumorwould support the notion that
they represent distinct, non-overlapping phenotypes and between
which cells do not freely interconvert. Further studies will be required
however to determine what if any ontogenic relation may exist
between them.

Characterization of infiltrating T-cell populations
CyTOF phenotyping was also performed in parallel on 73 of 155 FL and
34 of 36 rLN samples using a panel of 39 T-cell markers. PG clustering
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yielded 85 clusters (Fig. 4A) whichweremapped using a force-directed
approach together with 11 canonical T-cell subsets (Fig. 4B and Sup-
plementary Fig. 14). As compared to rLN, FL samples were most
notable for generally decreased CD4 + naïve/Temra cells, and
increased Treg and Tfh subsets. To look for T-cell signatures that may
be shared across individual samples, we performed hierarchical clus-
tering of all 107 (FL + rLN) samples based on relative abundances of
T-cells across the 85 PG clusters. There were 3 main branches evident
in the resulting dendrogramwhich were readily distinguished by their
FL vs. rLNmembership (Fig. 4C). One branch was composedmostly of
rLN and included abundant naïveCD4 + andCD8 + cells (termed “naïve
dominant”). Another containedmostly FL samples andwas notable for
increased Tregswith sub-branches rich inCD8 + effectormemory (EM)
and Th1 cells or Tfh cells (termed “CD8EM/Th-1-rich” and “Tfh-rich”,
respectively). The third branch included a mixture of FL and rLN
samples appeared to be intermediate in cell composition between the
other two branches (termed “mixed”).

Integration of B- and T-cell datasets
We next assessed co-occurrence of B with T cell populations using
107 samples for which both B-cell and T-cell CyTOF data were available

(73 FL and 34 rLN) and plotted the results in a force-directed map
(Fig. 5A). Normal B-cells and various naïve and CM T-cell subsets
formed a dense community that largely excluded tumoral B-cell clus-
ters. Themost populated B-cell PG cluster B01 (andmajor PG cluster in
MC-A) significantly co-occurred with terminally differentiated
(CD57 + ) subsets of Th1 and CD8EM T-cells (clusters T37 and T86,
respectively; highlighted in Fig. 4A). The secondmost populated B-cell
PG cluster B02 (and major PG cluster in MC-B) significantly co-
occurred with a CD57-, cytokine-rich subset of Tfh T-cells (cluster T10;
highlighted in Fig. 4A). This latter association between PG clusters B02
andT10 also extendedmoregenerally to the content ofMC-Bcellswith
total Tfh cells within each tumor (Fig. 5B). In contrast, the content of
MC-A cells did not correlate with Tfh cells across samples. When
tumors were classified into types A vs. B vs. NOS, Tfh cell content was
significantly higher in each of the FL types as compared to rLN, while
type B tumors contained significantly more Tfh cells than either of
types A orNOS (Fig. 5C). These data confirmprior reports that Tfh cells
are generally increased in FL21,22, but additionally reveal an association
with MC-B type FL cells in particular. Of note, immunohistochemical
stains performed on type B tumors enriched for Tfh cells by CyTOF
confirmed higher numbers of PD1 + T-cells withinmalignant follicles as
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compared to type A tumors with low Tfh cell content by CyTOF
(Supplementary Fig 15).

FL subtypes exhibit distinct DNA mutation and rearrangement
patterns
DNAmutational analyses from targeted panel sequencing (TarSeq) was
available for 69 cases with similar proportions of A, B, and NOS tumors
as in the full cohort (29/18.8/52.2% vs. 27.7/18.1/54%) (Fig. 6A and Sup-
plementary Data 7). Mutations in EZH2, MEF2B, and TNFRSF14, were
significantly increased in type A tumors as compared to all others (FDR
q-values <0.1; Fig. 6B and Supplementary Data 7). No significant asso-
ciations were noted for type B tumors among the genes on the TarSeq
panel. These mutational associations will need to be verified in larger
studies; however, they support thenotion that phenotypic subsettingof
MC-A type cells (which we use to define type A tumors) describes a

distinct biological subset of FL. Of note, functional work in mouse
models has shown thatmutations in EZH2,MEF2B, and TNFRSF14 confer
growth advantage to GC B-cells23–27, which would presumably corre-
spond to the biology operative in MC-A type human FL cells.

Using RNA-Seq data available from 38 cases (Fig. S10), we also
assessed somatic hypermutation (SHM) patterns, which revealed that
tumor types A and B exhibited SHM of IGHV regions to similar extents
(Supplementary Fig. 16 and Supplementary Data 8), supporting that
both have previously transited through germinal center reactions. In
combination with their respective phenotypes including surface IgM/
IgG expression status (Supplementary Fig. 17), these results support
that MC-A cells (which dominate within type A tumors) are best
regarded as GCB-cells, whileMC-B cells (whichdominate within type B
tumors) correspond more closely to pre-CSR but post-GC memory
B-cells.
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FL subtypes and intratumoral entropy define patients with dis-
parate clinical outcomes
We next examined whether there were any correlations between
tumor phenotypes and clinical features at diagnosis. When parsed
into the 2 major B-cell groups (types A and B) vs. all others (type
NOS), performance status and stage were significantly different
among the 3 B-cell groups with type B most enriched for poor PS and
advanced stage (Supplementary Fig. 18a and Supplementary
Table 2). When parsed into the 4 identified T-cell groups (naïve-
dominant, CD8EM/Th1-rich, Tfh-rich, mixed), hemoglobin and
stage were significantly different with the CD8EM/Th1-rich
group most enriched for low hemoglobin and advanced stage (Fig.

S18b and Table S2). All other baseline characteristics were not
significant.

We and others have previously examined DNA mutations to
explore mechanisms underlying transformation in FL;2,28 however, we
considered here whether tumor phenotypes might be informative in
this regard. Interestingly, types A vs. B vs. NOS showed significantly
different risks of transformation (Fig. 7A) with type B showing the
highest cumulative risk. Outcomes of individual MC types within the
NOSgroup (i.e., C, D, E, F, etc.) were varied but difficult to assess due to
limited numbers of these cases (Supplementary Fig. 19). We also
looked at intratumoral phenotypic diversity among malignant B-cells
(measured as entropy; Fig. 3C) and found it to be significantly
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correlated with risk of transformation (Supplementary Fig. 20). In
multivariate analyseswith FLIPI group29,30, bothMCtype B and entropy
remained significant (Fig. 7B). As noted above, panel sequencing did
not reveal any significant mutational associations with type B tumors,
and this dataset was similarly non-informative for intratumoral
entropy. Although more extensive sequencing may yet reveal muta-
tional associations with MC-B and entropy, epigenetic features and/or
tumor microenvironment may also contribute to phenotypic identity/
diversification in this setting31.

To examine survival outcomes, a subcohort of 108 patients
receiving a consistent primary systemic therapy regimen of bend-
amustine plus rituximab (BR) was identified with survival time calcu-
lated from start of systemic therapy. Of the 108 patients, 95 received
BR up-front (median time to BR =0.13 yrs), while 13 were observed
prior to initiating BR therapy (watchful waiting; median time to BR =
6.1 years). Despite the increased risk of transformation associatedwith
type B tumors, it was the NOS group that showed poorest outcomes
for disease-specific survival (DSS) with MC type and FLIPI score as
significant variables (Fig. 7C, D and Supplementary Fig. 21). It is worth
emphasizing that the NOS group is a mixed bag of different MC types
and likely subsumes multiple and diverse biologies which will require
further study to delineate. Finally, there were no notable outcome
associations among patients as grouped by the 4 T-cell signatures
defined by compositional clustering (Fig. 4C).

Given that type B and high entropy tumors are more likely to
transform, it remains unclear why these features are not associated
with shorter survival. It should be noted however that the CyTOF
cohort was relatively enriched for younger patients with larger

tumors and who more often required primary systemic therapy as
compared to the general FL patient population seen at our institution
over the same time period (n = 992; Supplementary Table 1).
Accordingly, further work will be needed to determine if these clin-
ical associations bear out in independent and more representative
patient cohorts.

Discussion
A widely held view of FL pathogenesis is that tumors arise from B-cells
following iterative cycles of GC-re-entry with SHM and CSR providing
themutational drive for clonal establishment/progression32. Viewed in
this context, GCB and MB tumor types as described here could reflect
developmental arrest at different points in the re-entry cycle, i.e.,
within and outside of the GC proper, respectively. The developmental
stage of MB type cells appears to correspond most closely to pre-CSR
memory B-cells but could potentially also encompass so-called “FL-like
cells” (FLLC) which paradoxically harbor DNA rearrangements invol-
ving IGH switch regions yet maintain surface IgM expression33–36.
Identification of this alternate, memory-like cell type in FL and its
associated increased risk of transformation suggests that important
aspects of the lymphomagenic process may occur outside of the GC
proper. Interestingly, recent work has shown that CSR may indeed
occur prior to GC entry37,38, in which case MB type cells could poten-
tially be subject to CSR-induced recombination at greater levels than
GCB type cells. The observation that Tfh cells correlate withMB rather
than GCB type FL cells and are found in greatest abundance in type B
tumors (Fig. 5) would also fit with an increasingly recognized role for
Tfh cells outside of the GC proper39.
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In comparison to prior studies of patient FL samples performed at
single cell resolution, our type MC-B may correspond to the naïve/
memory type observed by Wogsland et al.40. When viewed in the
context of functional plasticity as proposed by Milpied et al.41, one
interpretationof our data couldbe that theGC-likeMC-A andmemory-
likeMC-B types represent interconverting or dynamic functional states
as opposed to distinct, static phenotypes. The CyTOF data presented
indeed captures only a snapshot in time of each patient’s disease;
however, co-occurrence of MC-A andMC-B cells in the same sample is
statistically underrepresented, thus arguing against the notion that FL
tumor cells actively interconvert between these two types. Moreover,
type MC-A cells are typically IgG+ and deletion of the intervening Cμ
DNA segment would presumably prevent reversion back to an IgM+
state as is typically seen in type MC-B cells. Taken together, these
features suggest that MC-A cells likely do not give rise to MC-B cells;
however, the data do not exclude the possibility that MC-B cells could
give rise to MC-A cells but diminish rapidly from the tumor thereafter.
Wewould thus conclude that functional plasticity of the sort described
by Milpied et al. would most likely represent a separate phenomenon
from the GCB vs. MB tumor cell types described here.

The unexpected contrasts between the twomost common FL cell
types MC-A and MC-B (phenotypes, infrequent co-occurrence, asso-
ciated T-cells) combined with distinct mutational associations and
transformation risks suggests theymay reflect distinct biologies. These
two cell types could potentially arise independently from one another
(i.e., from alternate GCB- or MB-like stages of differentiation), arise
from a common precursor (yet deviate from one another under the
influence of subsequently acquired gene mutations, epigenetic mod-
ifications, or microenvironmental interactions), or develop in
sequential order (i.e., MC-B giving rise to MC-A). Perhaps the most

likely situation is that all possible paths are explored by tumor cells as
they develop and progress within constantly evolving genetic/epige-
netic, cell developmental stage, and environmental contexts. Finally,
since about 20% of tumors show no detectable MC-A or MC-B cells
(Fig. 3D), tumors arising independently of MC-A or MC-B phenotypes
cannot be excluded.

FL tumors dominated by cells of other, more phenotypically
divergent MC types (e.g., MC-C/D/E/F/etc.) often contained small
proportions of MC-A or MC-B cells (Fig. S22). Also, type MC-C cells
tended to co-occurmore frequently withMC-A cellswhile typesMC-D/
E/F/Mem/Nav co-occurredmore frequently withMC-B (Fig. 3A, B). One
interpretation of these observations could be that FL tumors trace
ontogenic paths involving MC-A and/or MC-B types initially, and then
progress onwards to more divergent (NOS) phenotypes (Fig. 8). Type
NOS cases could thus potentially be regarded as further along in the
natural historyofdisease, thereby suggesting a possible explanation as
to their apparently shorter DSS (Fig. 7C, D). Marked phenotypic het-
erogeneity across MC types within the NOS group (Fig. S9) suggests
they represent a diverse collection of biologies, however, and not a
distinct entity per se with poor survival. Larger numbers of NOS cases
will need to be studied to determine if there is any biological com-
monality among those with shorter survival.

An alternate possibility could be that tumors progress towards,
rather than away from MC-A and MC-B phenotypes over time. One
scenario could be, for example, that evolving tumor cells are funneled
into normative phenotypes as they adapt to a limited range of sup-
portive lymph nodemicroenvironments. These notions are admittedly
speculative, however, and would need to be evaluated by dedicated
approaches todetermine if there exists a hierarchy ofmutationswithin
different phenotypic subsets of a given tumor, or if other aspects such

Fig. 8 | Hypotheticalmodel of FL genesis.MBmemory B-cell, GCB germinal center B-cell, MCmetacluster, NOS not otherwise specified, Tfh follicular helper T-cell, FLLC
follicular lymphoma-like cell.
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as the epigenome or tumor microenvironment may be responsible for
creating the observed patterns of cell phenotypes.

It is worth noting that while 80% of transformed FL are DLBCL of
GCB type31, our data would support that type B (memory B-like) FL
have higher risk of transformation than type A (GCB-like). In con-
sidering this ostensible disconnect, we would point out that type B
comprises under 20% of FL at diagnosis, and that while pre-switch IgM
+ type B tumors could presumably transform to either ABC-DLBCL
(which are most often IgM/D + ) or GCB-DLBCL (which are most often
IgG/A+ )42, post-switch IgG+ type A tumors would presumably more
likely give rise to an IgG+ GCB-DLBCL than an IgM+ ABC-DLBCL (at
least directly). Further, TNFRSF14 and EZH2 mutations are seen much
more frequently in GCB- than ABC-DLBCL43,44, and would imply that
type A FL, which are also enriched for these mutations, would be
predisposed to adopt GCB/EZB/C3 character upon transformation. In
contrast, pre-switch IgM+ type B FL with no clear mutational associa-
tions would presumably have a wider range of transformation paths
available. Finally, our prior study examining clonal dynamics in pro-
gressed vs. transformed FL has shown that the overt genetic signature
of FL changes dramatically after transformation2, and thus it may be
misleading to draw rigid connections between pre- and post-
transformation tumor profiles.

While additional studies will be needed to validate clinical out-
come associations with tumor MC type and entropy features, these
may not necessarily require that CyTOF be performed to determine
tumor cell phenotypes. In fact, ranking of individual markers by their
contribution to discriminating MC types A vs. B vs. NOS revealed that
98%of information content is capturedwith just 26 of 39markers from
the full CyTOF panel (Fig. S23 and Supplementary Data 9) and re-
analysis of the CyTOF data using just these top 26 markers largely
retained the ability to identify high-risk FL cases in terms of type B and
entropy features (Fig. S24). Of note, segregation of tumors by IgM/IgG
status alone did not reveal significant differences in clinical outcome
(Fig. S25). Validation of these findings in additional cohorts is needed
prior to consideration for development as a clinical assay; however, a
reduced 26-marker set is at least within reach of conventional flow
cytometry and thus could reasonably be deployed in some clinical
settings.

Methods
Patient samples
Excess single-cell suspension material from excisional LN biopsy spe-
cimens remaining after clinical diagnostic assessment were pro-
spectively banked with DMSO cryoprotectant. Informed consent or
consent waiver was obtained for all samples utilized for research
according to protocols approved by the University of British Colum-
bia/BC Cancer Agency Research Ethics Board.

Antibody staining
Cryopreserved cell suspensions were thawed at 37 °C, washed in
complete media (RPMI-1640 + 10% FCS), and stained with B- and T-cell
antibody panels (Supplementary Data 9). Antibodies not already con-
jugated to metal tags by the vendor were conjugated in-house using
Maxpar X8 Multimetal Labeling Kits (Fluidigm cat# 201300).

For B-cell panel staining, cells were first incubated with 25uM
cisplatin in serum-free media to label dead cells. Cells were next
stainedwith any antibodies against antigens sensitive to the barcoding
procedure, then each sample was barcoded using palladium-based
mass tags (Cell-ID 20-Plex Pd Barcoding Kit; Fludigm cat#201060).
After sample barcoding, cells from up to 12 different samples were
pooled into a single tube and stained with the remaining panel anti-
bodies in bulk.

For T-cell panel staining, thawed cells were transferred immedi-
ately onto 96-well plates and rested overnight at 37 C in a humidified,
5% CO2 incubator. The following day, cellswere stimulated for 4 hwith

PMA (200 ng/ml)/Ionomycin (1.5ug/ml) in the presence of Brefeldin A
(2μg/ml) and monensin (1μg/ml) (GolgiStop cat#554724 and Golgi-
Plug cat#555029; BD Biosciences), then stained sequentially with cis-
platin, barcoding-sensitive antibodies, and Pd barcodes. Cells from up
to 12 different samples were then pooled into a single tube, treated
with Cytofix/Cytoperm Fixation/Permeabilization Kit (BD Biosciences
cat#554714), and stained with the remaining antibodies.

Each of the 12-plex barcoded sample batches included an aliquot
of cells fromamaster pool of 10–20 rLN samples to serve as an internal
staining control and enable batch-to-batch normalization. After anti-
body staining was completed, cells were fixed with methanol and
stained with Cell-ID Intercalator-Ir dye (Fluidigm cat#201192) and
prepared for CyTOF acquisition according to the manufacturer’s pro-
tocols. Cells were acquired on a CyTOF2 instrument (Fluidigm)
equipped with Super Sampler (Victorian Airship). Typically, ~50,000
live B- or T-cell events per sample were obtained.

CyTOF data pre-processing
FCS files from each acquisition batch were concatenated using CyTOF
Software (v6.0.626, Fludigm) and normalized with spiked-in EQ Four
Element Calibration beads (Fludigm cat#201078) using Normalizer
(v0.3)45 from MATLAB (v8.6). Bead-normalized FCS files were then
imported to MATLAB-based Single-cell Debarcoder (https://github.
com/zunderlab/single-cell-debarcoder)46 which generates sample-
assigned FCS files with two debarcoding parameters (separation and
mahalanobis distances). Sample-tailored 2-D gates were created based
on these two parameters in FlowJo (v10; BD Biosciences) to achieve
optimal cell yield while maintaining high specificity for each sample.
For B-cell panel analysis, viable non-T cells were gated in FlowJo based
on negative staining for cisplatin and CD3, then exported as FCS files.
DNA gating was not applied in these analyses since we observed DNA-
gain in some FL samples and further that single-cell debarcoding
procedures efficiently removed cross-sample cell doublets. For T-cell
panel analysis, viable T-cell singlets were gated and exported as FCS
files. All downstream analyseswere subsequently performed in R (v3.3-
v3.5) or Python (v3.6).

Batch effect normalization and compensation
Cell-derived normalization using the pooled rLN control was applied
to correct for batch-to-batch variation47. Briefly, channel-based nor-
malization factors were calculated by dividing the median intensity of
each channel from each batch with weakest median intensity of cor-
responding channel among all batches (normalized to the weakest
signals across all batches). Normalization of each sample was per-
formedbydividing the expressionmatrix by a vector containingbatch-
specific normalization factors for each channel. We also assessed
spillover/crosstalk from channels 142Nd, 155Gd, 160Gd, 162Dy, 163Dy,
172Yb, and 174Yb using spillover controls. Spillover in the actual
samples was corrected using the CATALYST (v1.10.3) package with
non-negative least-squares (NNLS) method to avoid introducing
negative values48. Normalized and compensated files were trans-
formed using inverse hyperbolic sine (arcsinh) function in FlowCore
(v1.52.1) package (a = 0.2, b = 0).

Dimensional reduction
We chose UMAP dimensional reduction tool6 from umap-learn (v0.3-
v0.4) package to visualize single-cell data with the following settings:
minimal distance (md) =0.4 and nearest neighbor number (nn) = 30.
t-SNE was also used in some analyses, mostly for QC assessment. We
used the Barnes-Hut Stochastic Neighbor Embedding (bh-SNE
implementation)49 available in Rtsne (v0.15) R package. Markers used
for dimensional reduction and clustering analyses are indicated in
Supplementary Data 9. We replaced the two Ig light chain markers,
kappa and lambda, with a single anonymized Ig light chain marker,
“KL”, using the higher value from either kappa or lambda.
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Unsupervised clustering of B-cell data
To accommodate computational limitations, typically ~5000 non-T
cell (CD3-negative) events were randomly subsetted from each
patient sample, then concatenated into a single data matrix con-
taining ~900,000 total cell events. We then performed clustering
using the graph-based algorithm PhenoGraph (v1.5.2; Python pack-
age) on the same data matrix as for dimensional reduction with
nn = 100, which was used previously on a dataset of similar size50. To
minimize stochasticity of the clustering algorithm, we first per-
formed 25 iterations of PhenoGraph clustering. We then then applied
the Adjusted Rand Index (ARI)51 and Normalized Mutual Information
(NMI)52 measures to generate pair-wise similarity scores and plotted
the resulting 25 sets of 24 values each. We defined the consensus
cluster assignment as the set of results with highest average ARI and
NMI scores (ARI: 0.96, NMI: 0.95). ARI and NMI scores were calcu-
lated using functions from aricode (v1.0.0) R packages. To reduce
noise from rare cell events, we retained only those cells that were
assigned to Phenograph clusters containing at least 1% of total non-T
cells in each respective sample. Following Phenograph clustering, all
output clusters containing verifiable CD19+, CD20+, and/or CD22 +
B-cells were meta-clustered by hierarchical clustering using the
hclust function in R. We then selected 19 meta-clusters as optimal
based on the gap statistic8.

Inter-sample entropy calculation
We used Shannon entropy to help identify phenotypically similar cells
across samples. For a dataset with n = 191 samples, a K-NN graph (K = n
−1) was constructed to find the K nearest neighbors, followed by cal-
culating the proportion (pm) of each sample among the K nearest
neighbors. Thenwe calculated the inter-sample entropy score for each
cell as -

P190
m= 1 pm � logðpmÞ

Intra-tumoral entropy calculation
For each samplewefirst calculatedpi, as proportion of every abnormal
cell type or PG (i = 1, . . . ,n) among its total abnormal cells, entropy
scores were then calculated as -

Pn
i = 1 pi � logðpiÞ

Unsupervised clustering of T-cell data
To accommodate computational limitations, we clustered 856,000
T-cells from 107 samples (8,000 cells randomly subsetted per sample)
using multi-level PhenoGraph (nearest neighbor number, k =100) as
implemented in iGraph (v1.2.6). Markers included in the clustering
analysis are indicated in Supplementary Data 9. The top layer of clus-
tering results which yielded 104 clusters was extracted. After pruning
rare clusters, the 85 remaining clusters were used for downstream
analyses.

Scaffold map analysis
To visualize large numbers of T-cell subsets identified by unsupervised
clustering and to interrogate differences in T-cell content between FL
and rLN samples, we employed the Scaffold Map Analysis
approach53,54. Scaffold mapping organized unsupervised clusters (see
above) togetherwith 11manually curated conventional landmarkT-cell
populations (Tem = CD197- CD45RA- CD45RO+ , Tcm = CD197 +
CD45RA- CD45RO+ , naïve = CD197 +CD45RA+CD45RO-, Temra =
CD197- CD45RA+CD45RO-, Treg = CD4+CD127- CD25 + , Tfh = PD1 +
CXCR5 +CD25-, Th1 = CD197- IFNγ + ; Fig. S14) to provide visual cues
when exploring the landscape of T-cell populations. Each landmark
node was allowed to keep up to 20 edges, and each sample node up to
10 edges. Force-directed maps were generated in Gephi (v0.9.2) using
the ForceAtlas algorithm. Since TIM3 and LAG3 antibody staining in
the first 5 acquisition batches was not optimal, these markers were
excluded from initial construction of the Scaffoldmap; however, in the
final steps of map construction, each node was assigned with median
values for TIM3 and LAG3 which were calculated based on data from

corresponding nodes acquired in the latter 7 batches. Significance
Analysis of Microarrays (SAM v3.0)53 was performed to identify sig-
nificant changes in the abundance of cells within each node between
FL and rLN samples. The SAM method employs a permutation-based
approach to control for Type I errors and accordingly reports FDR
values. Each sample node was also classified into one of the landmark
groups based on highest pairwise similarity.

Co-occurrence analyses
To explore the co-occurrence of B-B, T-T, and B-T populations within
individual samples, we employed a probabilistic co-occurrence model
originally designed for ecological studies into the role of species
coexistence in community structure (cooccur v1.3)20. We assigned
values of 1 to indicate presence of those PG-defined populations with
abundances greater than 1% of total viable cells within each sample,
and values of 0 to indicate absence for those with less than 1% abun-
dance. We then defined the probability of presence for each popula-
tion simply as the number of patient samples in which the population
waspresent over the total numberof samples. Probability distributions
for co-presenceof all possible pairsof populationswere calculated and
observed co-occurrence frequencies were then compared against
these distributions to determine which, if any of the co-occurrences
were statistically significantly increased or decreased (alpha =0.05).
Additional adjustment for multiple testing was not performed as the
numbers of possible cluster pairs and total samples did not together
exceed thosemodeled using simulated randomdata to assess for Type
I errors in the originally reported method55. The ForceAtlas algorithm
in Gephi (v0.9.2) was then used to graph significant positive and
negative associations between nodes. Since ForceAtlas does not
accept negative values, association scores were transformed using the
exponential function, e.

To assess mutual exclusivity of MC-A and MC-B type cells within
individual samples,we examined all available data events up to 50,000
non-T cells per sample. We applied the 1% threshold for presence/
absence as above but calculated as a fraction of total malignant B-cells
within the sample. Similar results were obtained when the cutoff was
reduced down to 0.5, 0.4, and 0.3%, or alternatively, down to an
absolute number of 50 cells.

Immunohistochemistry
Formalin-fixed, paraffin-embedded (FFPE) serial whole tissue sections
(4 um thickness) from diagnostic FL biopsies were stained with anti-
bodies against CD3 (polyclonal, Dako cat#GA50361-2), CD57 (clone
TB01, Dako cat#GA64761-2), or PD1 (clone NAT105, Cell Marque
cat#315M) after antigen retrieval at 97C with high pH for 20min on a
DakoOmnis automated slide-staining system.Whole slide imageswere
acquired using a MoticEasyScan Pro digital slide scanner (x40 magni-
fication, standard mode) and viewed using Aperio ImageScope
(v12.4.3.5008) software.

RNA-Seq
Single-cell RNA-sequencing (scRNA-Seq) was performed on the 10x
Genomics platform with Chromium Single Cell 3′ Chip Kit v2 (10x
Genomics cat#1000009). Libraries were constructed using the Single
Cell 3′ Library and Gel Bead Kit v2 (10x Genomics cat#120237) and
Chromium i7 Multiplex Kit 10x Genomics cat#120262). Two single-cell
libraries were pooled and sequenced per HiSeq 2500 125-base
PET lane.

Conventional (bulk) RNA-sequencing was performed on unfrac-
tionated cell suspension or snap frozen whole tissue material. Total
RNA was isolated with TRIzol reagent followed by purification over
PureLink RNA Mini Kit columns (Invitrogen cat#12183018 A). RNA-seq
was performed using a polyA-enriched strand-specific library con-
struction protocol56 and paired-end 75 bp sequencing on an Illumina
HiSeq 2500 instrument.
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Single-cell RNA-Seq data analysis
CellRanger software (v2.1.0) was used to demultiplex the raw data,
generate quality metrics, and generate per-gene count data for each
cell. Data was then imported into the R statistical environment (v3.5.2)
as SingleCellExperiment objects. Scater (v1.8.0) R package was used
for data pre-processing and quality filtering. A total of 31,026 cells
across the 6 FL + 4 rLN samples, or ~3,000 cells per sample were
recovered after data pre-processing and used for analysis. Count data
was log-normalized and Scran (v1.9.11) R package was used for batch
correction (fast mutual nearest neighbors, MNN). The matrix con-
taining corrected low-dimensional coordinates for each cell was used
for downstream analyses.

For visualizing these data in UMAP, we used the pl.umap function
from Scanpy (v1.6.0). We used network-based Phenograph clustering
including pp.neighbors to find nearest neighbors, followed by tl.lou-
vain to define the clusters. Clusters were annotated with normal B-cell
subset designations where appropriate based on results from a recent
scRNA-seq study of normal human B-cells37. Hierarchical clustering of
samples and normal B-cell subsets was performed using the scan-
py.tl.dendrogram function with default settings. To identify RNA spe-
cies most correlated with CyTOF-defined type A vs. type B tumor
samples, we used the rank_genes_groups function withWilcoxon rank-
sum method (two sided) followed by Benjamini-Hochberg correction
for multiple testing (p <0.05) and then filtered for genes with log2
fold-change >1.

Bulk RNA-Seq data analysis
Raw reads were aligned to the reference human genome assembly
GRCh37 (hg19) using STAR (v2.5.2.a). To improve spliced alignment,
STARwas providedwith exon junction coordinates from the reference
annotations (Gencode v19). We applied a modified version of a bioin-
formatics workflow for normalization of raw read counts and differ-
ential gene expression analysis57. Gene-level read counts were
quantified using HTSEQ-count (v0.11.0; intersection-strict, reverse
mode)58. Genes showing low read counts (i.e., genes not showing
counts permillion (cpm)> 1.0 in at least 10%of samples)were removed
from further analysis. Raw counts from expressed genes were then
TMM-normalized and scaled to counts per million (CPM) using the
edgeR (v3.22.2) package59.

Differential gene expression analysis was performed in R (v4.1.1)
using the DESeq2 package (v1.34). Batch correction was performed to
account for sample source (cell suspension vs. snap frozen whole tis-
sue) using the removeBatchEffect function in limma (v3.50.3). Differ-
entially expressed genes were filtered for absolute log2 fold-change > 1
and Benjamini-Hochberg-corrected p-value <0.05 (2-sided Wald test).
Heatmaps were generated using the pheatmap package (v1.0.12).

Targeted sequencing
We used the TruSeq Custom Amplicon assay (TSCA; mean coverage:
767; range: 128–2,039; SD: 180) to identify variants within the protein
coding regions of 59 genes commonly mutated in human B-cell lym-
phomas (Supplementary Data 7)60–62. TSCA variants were validated
with the FluidigmAccessArray systemwhich achieved a 97% validation
rate. Discrepancies between TSCA and Fluidigm results were further
validated by Sanger sequencing.

Targeted sequencing data analysis
Reads were mapped with BWA (v0.7.5a). SNVs and indels were pre-
dicted with Mutascope (v1.02). SAMtools (v0.1.19) was used to create
pileup files and dbSNP (v137) for SNP annotation. All variants with an
allele frequency of ≥5% at loci covered at least 50-fold were retained.

IGHV mutation status assessment
To identify the immunoglobulin heavy-chain variable (IGHV) mutation
status from bulk RNA-seq data, we developed an in-house pipeline63

motivated by the work of Balchly et al64. Briefly, we performed de novo
assembly of the paired-end RNA-seq reads using Trinity (v2.1.1)65 to
construct IGHV transcripts. We selected the most abundant and pro-
ductive IGHV transcript to define somatic hypermutation status. The
selected transcript sequence was queried against NCBI IgBLAST
(v1.14.0) to identify IGH-V, D, and J genes. IgBLAST was used with
default parameters to detect percent identity between the query and
the highest similarity germline IGHV gene.

Statistical analyses
All statistical tests were performed as two-sided tests where applicable
using R packages (v3.3-v3.5 & v4.1.1) or Prism v8 (GraphPad).

Clinical outcome analyses
We defined transformation based on biopsy-confirmed histology
consistent with diffuse large B-cell lymphoma or clinical criteria as
outlined previously1 where at least one of the following were present:
sudden rise in LDH to greater than or equal to twice the upper limit of
normal, rapid discordant localized nodal growth detected clinically or
by imaging studies, new involvement of unusual extranodal sites, new
B symptoms, or development of new hypercalcemia. Non-parametric
Kaplan-Meier (KM) survival, semi-parametric Cox regression, and
weighted Cox regression analyses where necessary were performed.
While there were no significant non-linear patterns in the
survival models, the constant hazard ratio (HR) assumption did not
hold for all models. We applied the regular Cox model for those with
constant HR; otherwise, a weighted Coxmodel with estimated average
HR was used.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source CyTOF datafiles are available on FlowRepository under acces-
sion #FR-FCM-Z3EL. These data are associated with Figs. 1, 3, 4, and 5.
scRNA-seq BAM files (generated with CellRanger v2.1.0) for the 4 rLN
samples have previously been deposited in the European Genome-
phenome Archive (EGA) under accession #EGAS0000100408566.
scRNA-seq BAM files for the 6 FL samples have been deposited into
EGA under accession #EGAS00001005257. Access to these data is
restricted to academic use only due to patient privacy concerns
relating to potentially identifiable sequence-level information.
Access can be requested from the Data Access Committee via the
EGA portal with data made available within approximately 2 months.
These data are associated with Fig. 2. Bulk RNA-seq FASTQ data
files have been deposited in the EGA under accession
#EGAS00001006646. This data is part of an ongoing study, and is
also available under restricted access. Access can be requested as
above. Genome alignments were performed against the reference
human genome assembly GRCh37/hg19 [https://www.ncbi.nlm.nih.
gov/data-hub/genome/GCF_000001405.13/]. Exon junction coordi-
nates were referenced from GENCODE release 19 [https://www.
gencodegenes.org/human/release_19.html]. Single nucleotide poly-
morphisms were identified using dbSNP build 137 [https://www.ncbi.
nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view
+summars&build_id=137].

References
1. Al-Tourah, A. J. et al. Population-based analysis of incidence and

outcome of transformed non-hodgkin’s lymphoma. J. Clin. Oncol.
26, 5165–5169 (2008).

2. Kridel, R. et al. Histological transformation and progression in fol-
licular lymphoma: a clonal evolution study. PLoSMed. 13, e1002197
(2016).

Article https://doi.org/10.1038/s41467-022-34408-0

Nature Communications |         (2022) 13:6772 13

https://flowrepository.org/id/FR-FCM-Z3EL
https://ega-archive.org/studies/EGAS00001004085
https://ega-archive.org/studies/EGAS00001005257
https://ega-archive.org/studies/EGAS00001006646
https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_000001405.13/
https://www.ncbi.nlm.nih.gov/data-hub/genome/GCF_000001405.13/
https://www.gencodegenes.org/human/release_19.html
https://www.gencodegenes.org/human/release_19.html
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view+summars&build_id=137
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view+summars&build_id=137
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?view+summary=view+summars&build_id=137


3. Wagner-Johnston, N. D. et al. Outcomes of transformed follicular
lymphoma in the modern era: a report from the National Lympho-
Care Study (NLCS). Blood 126, 851–857 (2015).

4. Sarkozy, C. et al. Risk factors and outcomes for patients with folli-
cular lymphoma who had histologic transformation after response
to first-line immunochemotherapy in the PRIMA trial. J. Clin. Oncol.
34, 2575–2582 (2016).

5. Bendall, S.C. &Nolan,G. P. Fromsingle cells to deepphenotypes in
cancer. Nat. Biotechnol. 30, 639–647 (2012).

6. Becht, E. et al. Dimensionality reduction for visualizing single-cell
data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

7. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals
progenitor-like cells that correlate with prognosis. Cell 162,
184–197 (2015).

8. Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of
clusters in a data set via the gap statistic. J. R. Stat. Soc.: Ser. B (Stat.
Methodol.) 63, 411–423 (2001).

9. Maecker, H. T., McCoy, J. P. & Nussenblatt, R. Standardizing
immunophenotyping for the Human Immunology Project. Nat. Rev.
Immunol. 12, 191–200 (2012).

10. Moshkani, S. et al. CD23+CD21(high) CD1d(high) B cells in inflamed
lymph nodes are a locally differentiated population with increased
antigen capture and activation potential. J. Immunol. 188,
5944–5953 (2012).

11. Klein, U. et al. Transcriptional analysis of the B cell germinal
center reaction. Proc. Natl Acad. Sci. USA 100, 2639–2644
(2003).

12. Sanz, I., Wei, C., Lee, F. E. & Anolik, J. Phenotypic and functional
heterogeneity of human memory B cells. Semin. Immunol. 20,
67–82 (2008).

13. Björck, P., Axelsson, B. & Paulie, S. Expression of CD40 and CD43
during activation of human B lymphocytes. Scand. J. Immunol. 33,
211–218 (1991).

14. Szczepański, T., van der Velden, V. H. & van Dongen, J. J. Flow-
cytometric immunophenotyping of normal and malignant lym-
phocytes. Clin. Chem. Lab Med. 44, 775–796 (2006).

15. Nissen, M. D. et al. Single cell phenotypic profiling of 27 DLBCL
cases reveals marked intertumoral and intratumoral heterogeneity.
Cytometry A 97, 620–629 (2019).

16. Senbanjo, L. T. & Chellaiah, M. A. CD44: a multifunctional cell sur-
face adhesion receptor is a regulator of progression andmetastasis
of cancer cells. Front. Cell Dev. Biol. 5, 18 (2017).

17. Ayre, D. C. & Christian, S. L. CD24: a rheostat that modulates cell
surface receptor signalingof diverse receptors.Front. Cell Dev. Biol.
4, 146 (2016).

18. Clark, E. A. & Giltiay, N. V. CD22: A regulator of innate and
adaptive B cell responses and autoimmunity. Front. Immunol.
9, 2235 (2018).

19. King, H. W. et al. Antibody repertoire and gene expression
dynamics of diverse human B cell states during affinity
maturation. bioRxiv https://doi.org/10.1101/2020.04.28.
054775 (2020).

20. Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: probabilistic
species co-occurrence analysis in R. 2016 69, 17 (2016).

21. Ame-Thomas, P. et al. Characterization of intratumoral follicular
helper T cells in follicular lymphoma: role in the survival of malig-
nant B cells. Leukemia 26, 1053–1063 (2012).

22. Pangault, C. et al. Follicular lymphoma cell niche: identification of a
preeminent IL-4-dependent TFH-B cell axis. Leukemia 24,
2080–2089 (2010).

23. Mintz, M. A. et al. The HVEM-BTLA axis restrains T cell help to
germinal center B cells and functions as a cell-extrinsic
suppressor in lymphomagenesis. Immunity 51,
310–323.e317 (2019).

24. Béguelin, W. et al. EZH2 is required for germinal center formation
and somatic EZH2 mutations promote lymphoid transformation.
Cancer Cell 23, 677–692 (2013).

25. Brescia, P. et al. MEF2B instructs germinal center development and
acts as an oncogene in B cell lymphomagenesis. Cancer Cell 34,
453–465.e459 (2018).

26. Boice, M. et al. Loss of the HVEM tumor suppressor in lymphoma
and restoration by modified CAR-T cells. Cell 167, 405–418.e413
(2016).

27. Béguelin,W. et al. Mutant EZH2 induces a pre-malignant lymphoma
niche by reprogramming the immune response. Cancer Cell 37,
655–673.e611 (2020).

28. Pasqualucci, L. et al. Genetics of follicular lymphoma transforma-
tion. Cell Rep. 6, 130–140 (2014).

29. Solal-Céligny, P. et al. Follicular lymphoma international prognostic
index. Blood 104, 1258–12265 (2004).

30. Giné, E. et al. The Follicular Lymphoma International Prognostic
Index (FLIPI) and the histological subtype are the most important
factors to predict histological transformation in follicular lym-
phoma. Ann. Oncol. 17, 1539–1545 (2006).

31. Kridel, R. et al. Cell of origin of transformed follicular lymphoma.
Blood 126, 2118–2127 (2015).

32. Sungalee, S. et al. Germinal center reentries of BCL2-
overexpressing B cells drive follicular lymphoma progression. J.
Clin. Invest. 124, 5337–5351 (2014).

33. Huet, S., Sujobert, P. & Salles, G. From genetics to the clinic: a
translational perspective on follicular lymphoma. Nat. Rev. Cancer
18, 224–239 (2018).

34. Roulland, S. et al. Follicular lymphoma-like B cells in healthy indi-
viduals: a novel intermediate step in early lymphomagenesis. J. Exp.
Med .203, 2425–2431 (2006).

35. Vaandrager, J. W. et al. DNA fiber fluorescence in situ hybridization
analysis of immunoglobulin class switching in B-cell neoplasia:
aberrant CHgene rearrangements in follicle center-cell lymphoma.
Blood 92, 2871–2878 (1998).

36. Brisou, G., Nadel, B. & Roulland, S. The premalignant ancestor cell
of t(14;18)+ lymphoma. HemaSphere 5, e579 (2021).

37. King, H. W. et al. Single-cell analysis of human B cell maturation
predicts how antibody class switching shapes selection dynamics.
Sci. Immunol. 6, eabe6291 (2021).

38. Roco, J. A. et al. Class-switch recombination occurs infrequently in
germinal centers. Immunity 51, 337–350.e337 (2019).

39. Crotty, S. T follicular helper cell differentiation, function, and roles
in disease. Immunity 41, 529–542 (2014).

40. Wogsland, C. E. et al. Mass cytometry of follicular lymphoma
tumors reveals intrinsic heterogeneity in proteins including
HLA-DR and a deficit in nonmalignant plasmablast and
germinal center B-cell populations. Cytom. B Clin. Cytom. 92,
79–87 (2017).

41. Milpied, P. et al. Human germinal center transcriptional programs
are de-synchronized in B cell lymphoma. Nat. Immunol. 19,
1013–1024 (2018).

42. Ruminy, P. et al. The isotype of the BCR as a surrogate for the GCB
and ABC molecular subtypes in diffuse large B-cell lymphoma.
Leukemia 25, 681–688 (2011).

43. Chapuy, B. et al. Molecular subtypes of diffuse large B cell lym-
phoma are associated with distinct pathogenic mechanisms and
outcomes. Nat. Med. 24, 679–690 (2018).

44. Schmitz, R. et al. Genetics and pathogenesis of diffuse large B-cell
lymphoma. N. Engl. J. Med. 378, 1396–1407 (2018).

45. Finck, R. et al. Normalization of mass cytometry data with bead
standards. Cytom. A 83, 483–494 (2013).

46. Fread, K. I., Strickland, W. D., Nolan, G. & Zunder, E. R. An updated
debarcoding tool for mass cytometry with cell type-specific and

Article https://doi.org/10.1038/s41467-022-34408-0

Nature Communications |         (2022) 13:6772 14

https://doi.org/10.1101/2020.04.28.054775
https://doi.org/10.1101/2020.04.28.054775


cell sample-specific stringency adjustment. Pac. Symp. Biocomput.
22, 588–598 (2017).

47. Hahne, F. et al. Per-channel basis normalization methods for flow
cytometry data. Cytom. A 77A, 121–131 (2010).

48. Chevrier, S. et al. Compensation of signal spillover in suspension
and imaging mass cytometry. Cell Syst. 6, 612–620.e615 (2018).

49. van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J.
Mach. Learn Res. 9, 2579–2605 (2008).

50. Wagner, J. et al. A single-cell atlas of the tumor and immune eco-
system of human breast cancer. Cell 177, 1330–1345.e1318 (2019).

51. Hubert, L. & Arabie, P. Comparing partitions. J. Classification 2,
193–218 (1985).

52. Vinh, N. X., Epps, J. & Bailey, J. Information theoretic measures for
clusterings comparison: variants, properties, normalization and
correction for chance. J. Mach. Learn. Res. 11, 2837–2854 (2010).

53. Spitzer, M. H. et al. Systemic immunity is required for effective
cancer immunotherapy. Cell 168, 487–502.e415 (2017).

54. Spitzer, M. H. et al. An interactive reference framework for model-
ing a dynamic immune system. Science 349, 1259425 (2015).

55. Veech, J. A. A probabilistic model for analysing species co-
occurrence. Glob. Ecol. Biogeogr. 22, 252–260 (2013).

56. Chun, H. E. et al. Genome-wide profiles of extra-cranial malignant
rhabdoid tumors reveal heterogeneity and dysregulated develop-
mental pathways. Cancer Cell 29, 394–406 (2016).

57. Law, C. et al. RNA-seq analysis is easy as 1-2-3 with limma, Glimma
and edgeR [version 3; peer review: 3 approved]. F1000Research 5,
1408 (2018).

58. Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to
work with high-throughput sequencing data. Bioinformatics 31,
166–169 (2014).

59. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bio-
conductor package for differential expression analysis of digital
gene expression data. Bioinformatics 26, 139–140 (2010).

60. Ennishi, D. et al. TMEM30A loss-of-function mutations drive lym-
phomagenesis and confer therapeutically exploitable vulnerability
in B-cell lymphoma. Nat. Med. 26, 577–588 (2020).

61. Ennishi, D. et al. Genetic profiling of MYC and BCL2 in diffuse large
B-cell lymphoma determines cell-of-origin–specific clinical impact.
Blood 129, 2760–2770 (2017).

62. Ennishi, D. et al. Molecular and genetic characterization of MHC
deficiency identifies EZH2 as therapeutic target for enhancing
immune recognition. Cancer Discov. 9, 546–563 (2019).

63. Islam, R., Bilenky, M., Weng, A. P., Connors, J. M. & Hirst, M. CRIS:
complete reconstruction of immunoglobulin V-D-J sequences from
RNA-seq data. Bioinform. Adv. 1, vbab021(2021).

64. Blachly, J. S. et al. Immunoglobulin transcript sequence and
somatic hypermutation computation from unselected RNA-seq
reads in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA
112, 4322–4327 (2015).

65. Haas, B. J. et al. De novo transcript sequence reconstruction from
RNA-seq using the Trinity platform for reference generation and
analysis. Nat. Protoc. 8, 1494–1512 (2013).

66. Aoki, T. et al. Single-cell transcriptome analysis reveals disease-
defining T-cell subsets in the tumor microenvironment of classic
hodgkin lymphoma. Cancer Discov. 10, 406–421 (2020).

Acknowledgements
This work was supported by operating grants from the Cancer Research
Society (Montreal; to A.P.W.) and Canadian Institutes for Health
Research (CIHR; to A.P.W.), a Program Project Grant from the Terry Fox
Research Institute (TFRI; to A.P.W., S.P.S., C.St, and D.W.S.), Large Scale
Applied Research Project funding from Genome Canada, Genome BC,
and CIHR (to C.St and D.W.S.), and infrastructure support from the BC
Cancer Foundation.

Author contributions
X.W., M.N., D.G., M.K., G.S., E.A.C., G.C.S., and J.K. generated data. X.W.,
M.N., G.D., C.Sa, L.H., R.W., T.A., R.I., C.M., S.H., K.T., R.D.M., and A.J.R.
analyzed data and interpreted results. A.J. performed survival analyses.
C.Sa, T.A., C.F., L.H.S., and K.J.S. provided clinical information and
insight. R.R.B., A.K., and M.H. provided advice. J.W.C. and A.P.W.
reviewed histology. S.P.S., C.St, D.W.S., and A.P.W. conceived the study
and provided project supervision. X.W. and A.P.W. wrote the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-022-34408-0.

Correspondence and requests for materials should be addressed to
Andrew P. Weng.

Peer review information Nature Communications thanks Jonathan
Schatz and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

Article https://doi.org/10.1038/s41467-022-34408-0

Nature Communications |         (2022) 13:6772 15

https://doi.org/10.1038/s41467-022-34408-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Single-cell profiling reveals a memory B cell-�like subtype of follicular lymphoma with�increased transformation risk
	Results
	Patient samples
	Global multi-dimensional analysis readily segregates normal and malignant B-cell populations
	Unsupervised clustering identifies two recurrent subtypes of abnormal B-cells in FL
	Orthogonal validation of FL subtypes by single-cell RNA-Seq
	Sample-level analysis reveals recurrent patterns of tumor cell phenotypes
	Characterization of infiltrating T-cell populations
	Integration of B- and T-cell datasets
	FL subtypes exhibit distinct DNA mutation and rearrangement patterns
	FL subtypes and intratumoral entropy define patients with disparate clinical outcomes

	Discussion
	Methods
	Patient samples
	Antibody staining
	CyTOF data pre-processing
	Batch effect normalization and compensation
	Dimensional reduction
	Unsupervised clustering of B-cell data
	Inter-sample entropy calculation
	Intra-tumoral entropy calculation
	Unsupervised clustering of T-cell data
	Scaffold map analysis
	Co-occurrence analyses
	Immunohistochemistry
	RNA-Seq
	Single-cell RNA-Seq data analysis
	Bulk RNA-Seq data analysis
	Targeted sequencing
	Targeted sequencing data analysis
	IGHV mutation status assessment
	Statistical analyses
	Clinical outcome analyses
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




