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Multimodal analysis demonstrating the
shaping of functional gradients in the
marmoset brain

Chuanjun Tong 1,2,3, Cirong Liu 2, Kaiwei Zhang2, Binshi Bo2, Ying Xia2,
Hao Yang2, Yanqiu Feng 1,3,4 & Zhifeng Liang 2,5

The discovery of functional gradients introduce a new perspective in under-
standing the cortical spectrum of intrinsic dynamics, as it captures major axes
of functional connectivity in low-dimensional space. However, how functional
gradients arise and dynamically vary remains poorly understood. In this study,
we investigated the biological basis of functional gradients using awake
resting-state fMRI, retrograde tracing and gene expression datasets in mar-
mosets. We found functional gradients in marmosets showed a sensorimotor-
to-visual principal gradient followed by a unimodal-to-multimodal gradient,
resembling functional gradients in human children. Although strongly con-
strained by structural wirings, functional gradients were dynamically modu-
lated by arousal levels. Utilizing a reduced model, we uncovered opposing
effects on gradient dynamics by structural connectivity (invertedU-shape) and
neuromodulatory input (U-shape) with arousal fluctuations, and dissected the
contribution of individual neuromodulatory receptors. This study provides
insights into biological basis of functional gradients by revealing the interac-
tion between structural connectivity and ascending neuromodulatory system.

The brain is a complex network of anatomically connected and func-
tionally interacting neuronal populations1. Numerous studies have
examined how the whole-brain network is parceled and organized2.
Recent advances in human fMRI connectomehave brought an analytic
tool, i.e., large-scale cortical gradients, to capture the intrinsic
dimensions of cortical organization3. The principal functional gradient
in humans is the unimodal-to-transmodal spatial gradient, tracking a
functional hierarchy from direct perception and action to integration
and abstraction of information4. MRI studies of human cortex have
revealed similar spatial distributions of cortical thickness5 and myelin
content6. The secondary intrinsic dimension reveals a visual-to-
sensorimotor gradient which differentiates between the different

sensory modalities3,7. The functional gradients provide a novel per-
spective of how the large-scale functional networks are organized3,7–9.

In addition to functional gradients andhierarchy, recent studies in
rodents and non-human primates described cortical hierarchy based
on tract-tracing connectivity data3,8,10. Both interneuron density and
inter-areal axonal connectivity vary along a functional hierarchy of
cortical areas in mouse8. And also, retrograde tracing based structural
connectivity (SC) of marmoset10 and macaque11 reveals that a gradient
of brain networks hierarchically extends outward from primary cor-
tices to progressively high-order transmodal association cortices.
Although previous evidences have suggested the structural relevance
of functional cortical organization, it remains unclear whether the
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structural connectivity supports the functional connectivity in gra-
dient aspects.

Besides the stationary features of functional gradients, it is very
likely that the large-scale cortical functional gradients are dynamic
acrossmultiple time scales, ranging from the time scales of evolution12,
lifespan13,14 and even instantaneous fluctuations. Previous studies
described the age-dependent gradient variations across human
lifespan13,14, highlighting the long-term gradient changes of cortical
organizations across development. However, whether and how func-
tional gradients vary instantaneously and in short time scale is much
less clear. Studies have shown the rsfMRI activity involves dynamic
reconfiguration into transient network states occurring on the time
scale of seconds15, often attributing to the arousal fluctuation16,17.
Importantly, widespread variations in fMRI cortical activity are asso-
ciatedwith the changes in the basal forebrain andmidline thalamus18,19,
which are nodes of ascending neuromodulatory system20. Although
previous studies demonstrate the arousal contributions on the func-
tion connectivity dynamics, it is yet to be determined whether arousal
fluctuations influence the functional gradient dynamics.

While many studies have already examined the structural or
arousal contribution to resting-state functional connectivity as men-
tioned above, very few of them directly examined whether and how
those factors are related to (dynamic) FC gradients. A previous human
study showed the structure-function tetheringwas heterogeneous and
negatively correlated with the principal functional gradient21. Another
mouse study found significant correlations betweenmouse functional
gradients and gene expression patterns12. Although previous studies
have suggested the link between functional gradients and structural
connectivity or gene expression profiles, it remains unclear whether
the functional gradients are dynamic with regard to arousal fluctua-
tions, and if so, how structural connectivity and arousal related gene
expression jointly contribute to such dynamics. Andmarmosets, as an
emerging neuroscience animal model, is uniquely suited to address
this question. Collaborative efforts in marmoset research have yielded
large-scale datasets, including large awake rsfMRI data22, comprehen-
sive retrograde tracing based structural connectivity database23 and
in situ hybridization (ISH) gene expression database24. Such rich
information provides unique advantage to examine the biological
basis of functional gradients. Compare to the diffusion MRI derived
structural connectivity25 and limited tracing data in macaque26,27, the
116 source and 55 target regions based on retrograde tracing23 in
marmoset represents amost complete, curated connectivity dataset in
primates.Moreover,marmoset ISHdatabase provides gene expression
profiles at cellular resolution, while preserving key morphological and
anatomical characteristics24. Combinedwith large awake rsfMRIdata in
marmoset, the functional gradient research in marmoset is uniquely
posed to reveal its biological basis.

In this work, we set out to investigate whether and how struc-
tural connectivity and ascending neuromodulatory system shapes
functional gradients, and ultimately, the dynamic functional gra-
dients, based on multimodal analysis. We systemically characterized
the marmoset functional gradients, which resembles the children
cortical organization of human13. Combined with the marmoset ret-
rograde tracing atlas23, we revealed structural gradients strongly
shaped the functional gradients. Furthermore, based on the mar-
moset gene expression atlas24, we found the opposing effects on
gradient dynamics between structural connectivity and ascending
neuromodulatory system, as the neuromodulatory system provided
higher modulation on functional gradients at the very low or high
arousal levels. Finally, we showed that the axes of functional gra-
dients were closely related to spatial patterns of gene expression for
specific families of neuromodulatory receptors, which provides a
biological substrate for the modulation of large scale functional
dynamics. In summary, we demonstrate the strong structural basis of
functional gradients and highlight the association between distinct

neuromodulatory receptor families and large scale brain dynamics
with instantaneously arousal fluctuations.

Results
Marmoset functional connectivity gradient and its struc-
tural basis
To investigate the intrinsic low dimensional topography of marmoset
cortex, we decomposed the functional connectivity matrix from our
dual-center awake resting state fMRI data into a set of gradients3,8,9,12

via diffusion embedding mapping. The principal functional gradient,
which captured the highest explained variance (ION: 29.00%, NIH:
30.61%) in the cortical functional connectivity (Supplementary Fig. 1),
separated the sensorimotor cortex and visual cortex (Fig. 1a, b, Sup-
plementary Fig. 2 and Supplementary Table 1). The second functional
gradient (explained variance: ION: 17.13%, NIH: 14.10%)was anchored at
one end by the sensorimotor and auditory cortex, while the other end
were multimodal regions, part of which has been described as mar-
moset’s default-mode network (DMN)28 (Fig. 1a, b). The third func-
tional gradient separated the anatomically defined sensorimotor
cortex into two clusters, i.e., dorsal and ventral parts. The fourth
functional gradient reflected the dimension between auditory and
frontal pole network versus other regions. The above functional gra-
dients were highly reproducible in both ION and NIH marmoset data-
sets (Supplementary Fig. 3), showing similar spatial topographies and
high between-dataset correspondence (Fig. 1d). In addition, we sys-
tematically evaluated the individual variability andheadmotion effects
on marmoset functional gradients, and found high stability across
individual subjects (Supplementary Fig. 4) and minimal motion influ-
ence (Supplementary Fig. 5) on gradient results.

Furthermore, the principal gradient in marmosets closely resem-
bled the second gradient identified in human adults (Fig. 1e and Sup-
plementary Fig. 6a), showing an intrinsic visual-to-sensorimotor
dimension3,13. Conversely, the second gradient in marmosets resem-
bled the principal gradient in human adults, showing a multimodal-to-
unimodal dimension. Using the fingerprinting method29,30 (Supple-
mentary Fig. 7), we quantitatively examined the similarity of the first
two gradients between marmoset and human (children and adults),
and found significantly higher similarity of the gradient order between
marmoset and human children, compared to human adults (Supple-
mentary Fig. 7). This result suggested a potential link between devel-
opmental and evolutionary processes31. Importantly, this cross-species
gradient similarity was highly stable at the individual marmoset level
(Supplementary Fig. 8), and remained stable using different pre-
processing pipelines on fMRI data (Supplementary Fig. 9).

To investigate whether the structural connectivity governs the
functional architecture in gradient space, we took advantage of a
recently published marmoset retrograde tracing database, which pro-
vides a directional structural connectivity matrix23. The marmoset
structural gradients exhibited highly similar spatial characteristics
comparing to functional ones (Fig. 2a, Supplementary Figs. 1 and 2b),
with the first and second structural gradients reflecting “visual-to-sen-
sorimotor” and “multimodal-to-unimodal” dimensions, respectively.
However, the third structural gradient showed less similar topographical
profile, peaking on attention-related networks, including frontal parietal
and middle temporal areas. The fourth structural gradient reflected the
dimension between salience-like network and other brain regions
(Supplementary Fig. 2). Quantitatively, first and second structural
topographies were strongly correlated with their functional gradients,
while the third and fourth gradients showed less similarity for both ION
and NIH datasets (Fig. 2b, c). The above statistical significance of simi-
larity of structural-functional gradients was corrected using the null
distributions of spatial autocorrelation preserving surrogate maps
(Supplementary Fig. 10).

In addition, we evaluated the similarity between functional gra-
dients and other structural features, such as cortical thickness and
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myelin patterns in marmosets and humans (Supplementary Fig. 11).
Human cortical thickness and myelin gradients showed significant
similarities with functional gradients, consistent with previous
studies5,7. Intriguingly, such correlations between cortical thickness
(and myelin maps) and functional gradients was not statistically sig-
nificant in marmosets (Supplementary Fig. 11).

Arousal relevant functional gradient dynamics
The convergence and divergence of structure-function gradient simi-
larity suggested that the anatomical connectivity may not be the only
contributor for functional gradients (Fig. 2b,c). Furthermore, the
structure-function gradient similarity showed high scan-by-scan
variability (Fig. 2d). One known factor contributing to resting-state
dynamics is arousal fluctuation19. Therefore, we aimed to examine
whether arousal fluctuation might partially account for dynamics of
functional gradients. Using the 2nd-order polynomial fitting, we found
an invert U-shape relationship (Fig. 2d and Supplementary Fig. 12)
between the marmoset eye open ratio (used as a proxy for arousal
levels32,33) and structure-function gradient similarity, prompting fur-
ther investigations of arousal contribution.

Accordingly, we adopted a previous approach for inferring arou-
sal fluctuations from fMRI data16, achieving a refined frame-by-frame

arousal estimation. Briefly, we generated the “arousal spatial template”
from the correlation between voxel-wise BOLD signals and HRF-
convolved pupil size variations (Supplementary Fig. 13a–c). After
projecting the “template” onto successive fMRI volumes (Supple-
mentary Fig. 13d), we obtained a continuous time series of estimated
arousal level, termed “fMRI based arousal index” (Supplementary
Fig. 13e). Significant correlation was observed between behavioral and
fMRI-based arousal index at both individual scan level and group level
(Supplementary Fig. 13f). In addition to being able to estimate arousal
level during the eye closed condition16, the above approach allowed to
examine arousal contributions in NIH dataset that lacked marmoset
pupillometry data. This method has been previously validated16,34, and
thus only fMRI based arousal index was used in later results.

Based on the above fMRI based arousal index, we binned dynamic
function connectivity (dFC)matrices into 10 bins from low (drowsy) to
high (alert) arousal levels (Fig. 3a). The dFC matrices were calculated
by voxel-wise dynamic conditional connectivity35. These matrices
within each arousal bin were averaged and used to derive the dynamic
connectivity gradients. Interestingly, the explained variance (i.e.,
strength) exhibited an inverted U-shape relationship with arousal level
for all four gradients (Fig. 3b and Supplementary Fig. 14), whereas the
ordering of thosegradients remained the same across arousal levels. In
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addition, we conducted similar analysis on the sampled dFCs, i.e.,
picking the first frame every 10 s or 20 s, and observed consistent
inverted U-shape relationship with arousal level for all four gradients
(Supplementary Fig. 14). We next explored the trajectories of dynamic
gradients by projecting the low dimensional topography into gradient
space14. Although trajectories of fifteen brain regions showed stable
topological properties in gradient space, they exhibited “flood and
ebb” dynamics with arousal fluctuations (Fig. 3b, c). To quantitatively
evaluate this phenomenon, the arousal index was shuffled by scan and
then same analysis was applied to generate a null model control
(Supplementary Fig. 15). We found most brain regions showed statis-
tically significant shift of such arousal relevant flow compared to the
null model (Supplementary Fig. 15), including ventral and dorsal
somatosensory, primary to higher order visual, auditory, frontal pole,
auditory, defaultmodel,mACCandpremotor networks.We found that
the BOLD functional connectivity (FC) was more heterogeneous at
mid-arousal, compared to low and high arousal (Supplementary
Fig. 16a, b) as evaluated using entropy of FC. The entropy of FC was
significant correlated with the mean absolute strength of functional
gradients,whichwas the averageof the absolute gradient values across
cortical voxels (Supplementary Fig. 16c). Furthermore, we found sig-
nificant correlations between the entropy of FC and the relative dis-
tance in the gradient space (Supplementary Fig. 16d, e). These results
suggested that the heterogeneity of FC is likely related to the “flood
and ebb” effect of gradient dynamics with arousal fluctuations.

Likewise, the structure-function gradient similarity showed an
apparent inverted U-shape relationship with arousal level (Fig. 3d). In
addition, the above results of gradient dynamics were not significantly
correlated with head motions across arousal levels (Supplemen-
tary Fig. 17).

Similar results (Fig. 3e, f) were also observed in humanusing human
HCP dataset36 and a previously published EEG-based vigilance

correlation coefficients map as the “arousal spatial map”34 (Supple-
mentary Fig. 18). The above result highlights the arousal modulation of
gradient dynamics is likely to be conserved across species.

Structural connectivity and neuromodulatory similarity collec-
tively contributed to functional gradients
To quantitatively dissect how brain structure and arousal fluctuations
influence functional gradients, we utilized the general linear model
(GLM) to generate the predicted function connectivity21,37 and derived
the predicted functional gradients via diffusion embedding mapping
(Fig. 4a). This GLM framework assumed that cortical function con-
nectivity depends on structural and neuromodulatory inputs38. The
relationship of structure factor is intuitive1,21, i.e., brain regions that
have strong structural connections are more likely to be functionally
connected (Supplementary Fig. 19). In addition, neuromodulatory
contribution was included in this model, as ascending neuromodula-
tory system is known to regulate arousal20,39. Thus, we hypothesized
that brain regions which have stronger functional connections are
more likely to exhibit similar neuromodulatory receptor expression
profiles38. Such expression profiles were obtained from marmoset
gene atlas24 and the neuromodulatory similarity (NS) matrix was cal-
culated using the correlation of gene expression level across each pair
of brain regions38 (Supplementary Fig. 20). We found the neuromo-
dulatory similarity gradients were also correlated with the functional
gradients, but to a less extent compared to the structural gradients
(Supplementary Fig. 21).

The significant correlation (cvR2 = 0.18 ± 0.002; mean ± sem)
between predicted and empirical FC (Fig. 4b, c, “leave-one-out” cross
validation) promoted us to investigate the characteristics of predicted
gradients. The predicted functional gradient resembled the empirical
one, achieving a significant correlation ofR2 > 0.5 (Fig. 4d). To examine
the individual contribution of the two factors, single variable model
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was performed for structure connectivity and neuromodulatory
similarity37, and the predicted gradients from two factors alone still
exhibited high similarities (Fig. 4d). This result suggested that expla-
natory power of these two factor may largely overlap37,40 (Fig. 4e).

To address this issue, we utilized the reduced model to capture
the unique contribution of each variable40. Notably, the usage of the
“reduced model” was adopted from a previous study40, in which
unique contributions of various spontaneous behaviors to calcium
imaging data in mice were dissected. In our reduced model, a parti-
cular variable was randomly shuffled 1000 times, and the resulting

difference compared to the full model, provides a lower bound for the
unique contribution of each predictor (Fig. 4e, non-overlapping part),
while the single variable model provides a upper bound of each pre-
dictor (Fig. 4e, circle). Supplementary Fig. 22 further illustrated the
computational pipeline of functional gradients (dynamics) using the
full general linearmodel (GLM) and reducedmodel. Quantitatively, we
found structural connectivity (SC) provided more predictive power
than neuromodulatory similarity (NS) in both single variable (Fig. 4f,
cvR2

SC = 0.13 ± 0.001 v.s. cvR2
NS = 0.10 ±0.002) and reduced models

(Fig. 4f, ΔR2
SC = 0.07 ±0.0005 v.s. ΔR2

NS = 0.04 ± 0.001). In contrast to
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the predicted gradient maps from single variable model (Fig. 4g), the
unique contribution of gradient maps in the reduced model exhibited
highly spatially localized features (Fig. 4h). For the structure con-
nectivity variable, the second gradient exhibited an apparent “multi-
modal vs. unimodal” spectrum as well (Fig. 4h). Moreover, the second
gradient values in temporal cortex for reducedmodelwere higher than
that of single variable model (Fig. 4h, red arrow), adding more simi-
larity to the principal functional gradient (or DMN network) in human
adults3. Moreover, for the neuromodulatory similarity variable, the
first gradientmaps for reducedmodel displayed amore homogeneous
profile in dorsal regions compared with the single variable model
(Fig. 4h, blue arrow). It suggests that the neuromodulatory influence is
widely distributed across cortex, in linewith the ubiquitous expression

of neuromodulatory receptor genes20,39,41. As expected, the reduced
model clearly reduced the overlap and allowed us to disentangle the
unique contribution of structure connectivity and neuromodulatory
similarity, respectively.

Ascending neuromodulatory system modulated functional gra-
dient dynamics under structural constraint
We next extended the modelling framework to the dynamic regime.
Predicted dFCmatrices were binned by arousal indices and were used
to derive the arousal relevant dynamic gradients (Fig. 5a). Then, these
predicted dFC matrices were fitted to the empirical ones using frame-
by-frame GLM modelling. The predicted gradients exhibited similar
topological properties to those of empirical ones (Supplementary
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Fig. 23), suggesting good modelling performance. The explained var-
iances in full model exhibited an inverted U-shape relationship with
arousal level infirst and secondpredicted gradients, showing a striking
similarity to the empirical results (Fig. 5b). Moreover, the gradient
flowswere very similar to the empirical ones (Fig. 5c). In contrast to full
model derived gradientmaps, the unique contribution for gradients in
reduced model exhibited distinctively spatial topographies of struc-
tural connectivity (Fig. 5d) and neuromodulatory similarity (Fig. 5e),
respectively. Importantly, the explained variances in reduced model
between the two variables revealed opposing relationshipwith arousal
level. Unlike the inverted U-shape for structural connectivity, the
neuromodulatory similarity showed a positive U-shape relationship
with peak explained variance at the two extremes of the arousal fluc-
tuation (Fig. 5d, e, right panel). To further evaluate whether the
U-shape modulation was specific to the neuromodulatory similarity
(NS), we conducted three control analysis (Supplementary Fig. 24) by
(1) adding a noisematrix (NM) as another variable, (2) replacing the NS
with random ISH expression similarity (RS) and (3) replacing the NS
with glutamate receptor ISH expression similarity (GluS) (see Supple-
mentary Table 2–4). The results showed the U-shape modulation was
more pronounced to neuromodulatory receptors, compared to the
above three control variables (NM, RS and GluS).

Likewise, the gradient flows of the unique contribution of struc-
tural connectivity and neuromodulatory similarity presented opposite
directions with arousal fluctuations (Fig. 5f, g). The gradient flow of
structure connectivity (Fig. 5f) showed a similar trajectory to that of
full model, but it was the opposite for the flow of neuromodulatory
similarity (Fig. 5g). In conclusion, the structure topography served as
the backbone of the functional gradients, while the neuromodulatory
similaritymodulated the dynamics with higher contribution at the two
extremes of arousal fluctuations (Fig. 5h).

Neuromodulatory receptors differentiallymodulated functional
gradient dynamics
Arousal fluctuations typically involve multiple co-varying neuromo-
dulatory systems or receptors. Thus, we sought to dissect the indivi-
dual modulations of neuromodulatory receptors on functional
gradient dynamics. To obtain the unique contribution of each neuro-
modulatory receptor,we utilized the reducedmodel similar to Fig. 5, in
which we spatially shuffled a particular receptor expressionmap 1000
times and obtained the surrogate neuromodulatory similarity matrix,
respectively.

We ranked the contribution strength of receptors according to
the mean explained variance (Fig. 6a) and significance level (Supple-
mentary Fig. 25). Because the expression patterns of neuromodulatory
receptors are spatially auto-correlated, we adopted a procedure from
previous studies42–44 to overcome this issue and test the significance
level of a given receptor (Supplementary Fig. 25). Then, we applied the

false discovery rate (FDR) correctionon all receptors and found several
receptors showing statistically significant contributions on the gra-
dient dynamics with arousal fluctuations (Fig. 6b and Supplementary
Fig. 26). With these approaches, we observed four groups of neuro-
modulatory receptors regarding their relationship with the first two
functional gradients (Fig. 6b). Four receptors (Group 1) positively
loaded onto the gradient 1 (sensorimotor-to-visual) in marmosets,
including dopaminergic (DRD1 and DRD4), noradrenergic (ADRA2A)
and cholinergic receptors (CHRM3). Five receptors (Group2) positively
loaded on the gradient 2 (multimodal-to-unimodal), including dopa-
minergic (DRD3), noradrenergic (ADRA1A), serotonergic (HTR1B and
HTR2A) and cholinergic receptors (CHRNA6). Two receptors (Group 3)
positively loaded onto both gradients, both being cholinergic (CHRM1
and CHRM5) receptors. The rest of receptors (Group 4) showed no
significant contribution to functional gradient dynamics.

Moreover, to investigate the low dimensional features among
those groups of neuromodulatory receptors, we applied principal
component analysis (PCA) to neuromodulatory receptor maps
(Fig. 6c). PC1 was significantly correlated with both “sensorimotor-to-
visual” and “multimodal-to-unimodal” gradients in marmoset, sug-
gesting a homogeneous distribution of neuromodulatroy receptors
across the cortex20,39 (Fig. 6d, green lines, Fig. 6e). PC2 represented
“Group 1 & 3” dominated features (Fig. 6d, orange lines, Fig. 6e),
showing significantly correlation with the primary “sensorimotor-to-
visual” gradient only, and “Group 2 & 3” dominated PC3 (Fig. 6d, blue
lines, Fig. 6e) with the secondary “multimodal-to-unimodal” gradient
only. The spatial similarity between neuromodulatory PC maps and
functional gradients (Fig. 6d, e) confirmed that large scale cortical
dynamics of different modalities were modulated by the recruitment
of distinct neuromodulatory receptor classes45.

In summary, our results demonstrated that while functional gra-
dients are strongly shaped by structural connectivity gradients, arou-
sal translates the static anatomical wiring into dynamic functional
configurations via the ascending neuromodulatory system.

Discussion
Mechanistic understandingof large-scale functional dynamics requires
multimodal integration of functional, structural and molecular sig-
natures. The current study systematically combined our large dual-
centermarmoset resting-state fMRI dataset22 withmarmoset structural
connectivity atlas23 and marmoset gene atlas24, to uncover the large-
scale functional organization and its biological underpinnings in the
marmoset brain. Our result revealed marmoset functional gradients
exhibited human children-like functional organization and were pow-
erfully shaped by structural gradients. Furthermore, the functional
gradients showed a “flood and ebb”-like dynamics with arousal fluc-
tuations, in which structure connectivity and neuromodulatory system
exhibited opposing effects. At the two extremes (very drowsy and

Fig. 4 | Reduced GLM model dissected unique contributions of structural
connectivity and neuromodulatory inputs to the functional gradients.
a Computational strategy of function gradients modeling. We utilized a general
linear model (GLM), in which the dependent variable was the empirical function
connectivity (FC) and the independent variables were the structure connectivity23

(details in Supplementary Fig. 19) and neuromodulatory receptor similarity24

(details in Supplementary Fig. 20). Then, the resulting predicted FC was projected
into gradients via the diffusion embedding methodology and compared with the
empirical gradients. b Significant correlation between predicted and empirical FC
(two-tailed t-test). c Cross-validated explained variance (cvR2) across all EPI
runs (n = 709 runs). Each dot represented an EPI run. The box showed the first
and third quartiles; inner line was the median over EPI runs; whiskers repre-
sentedminimumandmaximumvalues (outliers removed).dHigh performance
of function gradients prediction. The predicted function gradient (left panel)
were significantly correlated (right panel) with the empirical one (two-tailed t-
test). Each dot represented a brain region based on the Riken’s marmoset

parcellation70. e Reduced model for investigating the unique distribution of
each variable (non-overlapping part). The structure connectivity or neuromo-
dulatory receptor similarity (circle) may have overlapped information with the
other one, thus the reducedmodel (non-overlapping part) provides the unique
contribution of each predictor. fTop: cross-validated explained variance (cvR2)
maps for different single-variable models. Bottom: unique contribution (ΔR2)
maps for the same variables. The box showed the first and third quartiles; inner
line was the median over EPI runs (n = 709 runs); whiskers represented mini-
mum and maximum values (outliers removed). g Low dimensional topography
contributed by structure connectivity and neuromodulatory similarity,
respectively. Significant spatial correlation indicated largely overlaps between
predictors (two-tailed t-test). C.C. Pearson’s correlation coefficients. h As in (g)
but for reduced model. Distinct gradient profile of the unique contribution
from structure connectivity and neuromodulatory similarity exhibited non-
significant spatial correlation (two-tailed t-test). Source data are provided as a
Source Data file.
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alert) of arousal fluctuations, neuromodulatory contribution was ele-
vated, while the contribution from structure connectivity was partially
suppressed. Moreover, our results revealed the receptor specific
neuromodulatorymodulations on large scale functional topographies.

The marmoset functional gradients, highly reproducible across
individual animals and between ION and NIH datasets, revealed a
spatial arrangement for functional specializations of different mod-
alities, sharing an analogous gradient space with human children13.
Unlike the cortical organization ofmacaque11 and human3,11, marmoset
exhibited a sensory specialized profiles (“sensorimotor-to-visual” gra-
dient dominated), rather than global processing hierarchies7 (“unim-
odal-to-multimodal” gradient dominated). This finding resonates with
a recent study of mouse functional gradients12 which showed a

principal spatial progression from archicortex (hippocampus) to
palecortex (piriformarea), in linewith the dual origin theoryof cortical
evolution46. A previous study suggested that the massive expansion of
multimodal areas in humans has untethered these area from the
influence of molecular gradients that constrain the organization of
sensory regions47, which may in part explain the functional gradient
differences across species.

Despite an increasing number of observations and modelling stra-
tegies on hierarchical structure-function relationship with the under-
lying cortical microstructure8 and gene expression8,37, it remains unclear
whether and how the functional organization arise from structural
constraint in large scale gradient aspect. We observed spatial localized
cortical structural gradients utilizing a comprehensive marmoset
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Fig. 5 | Opposing effects ongradient dynamics between structural connectivity
and ascending neuromodulatory system. a Pipeline for the dynamic function
gradients prediction. Briefly, we fitted the empirical dynamic function con-
nectivity (dFC) frame-by-frame utilizing the same GLM strategy as Fig. 4a. After
binned by the arousal index, the predicted dFC matrices were averaged and
projected into dynamic function gradients, respectively. b Predicted dynamic
function gradients and corresponding explained variances (Full model). Details
were shown in Supplementary Fig. 23. c Arousal relevant flow of each network in

gradient space (Full model). Arrow reflected the direction of the shift along with
arousal dynamics. d, e As in (b) but for the unique distribution of structure
connectivity (d) and neuromodulatory similarity (e), respectively. f, g As in (c) but
for the unique distribution of each predictor. Notably, the flow of arrows was in
an opposite way between structure connectivity f and neuromodulatory similarity
g. h Conceptual summary of the underlying basis of complex global functional
processing in large scale cortical organization. Source data are provided as a
Source Data file.
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Fig. 6 | Receptor specific neuromodulatory signatures of functional gradient
dynamics. a The unique contribution on explained variance of first two gradient
dynamics for neuromodulatory receptor maps. The bar was ranked and scaled
according to the mean explained variance (%) of each receptor map. b Scatter plot
of neuromodulatory receptors according to the unique contribution on explained
variance of first two gradient dynamics. The receptors were divided into four
groups based on the statistical significance (FDR corrected p <0.05, right-tailed t-
test). c Spatial maps for the first three principal components of neuromodulatory
receptors. d Associations between functional gradients and neuromodulatory
receptor communities. The color rings of receptors were based on the inset in b.

The lines were scaled according to the absolute principal component coefficients
(green, orange and blue) or spatial correlation coefficients (gray, Pearson’s corre-
lation). ****, p < 10−4; n.s., no significance. e Large scale functional gradients were
strongly shaped by structural wiring and dynamically modulated by ascending
neuromodulatory system. At the extremes of arousal fluctuations (very drowsy or
alert), both group 1 and group 3 receptors (PC2 dominated) positively loaded onto
the “sensorimotor-to-visual” gradient (G1), while group 2 and group 3 receptors
(PC3 dominated) positively loaded onto the “multimodal-to-unimodal” gradient
(G2). Subsequently, the strong structure-function gradient correspondence was
partially suppressed. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34371-w

Nature Communications |         (2022) 13:6584 9



structural connectivity matrix23. Thus, we presented new evidence that
functional gradients were highly constrained by structural wiring in
gradient aspect. However, whether such strong coupling is specific to
marmoset or it also applies in other species such as human25 remains to
be answered. We found weaker correspondence of structure-function
gradients (Supplementary Fig. 6c) in human compared to the result of
marmosets. For example, a noticeable difference in the angular gyrus
(ag) of principal structural (Supplementary Fig. 6b) and functional gra-
dients can be clearly observed. Such disparity may be in part attributed
to inaccuracy in diffusion MRI based tractography, as it is well known
that diffusion tractography suffers from low reliability48. In contrast,
retrograde tracer injection in marmoset yielded precise structural con-
nectivity that can be considered gold standard23,49.

While the functional gradient is highly constrained by structural
wiring, the current study provided empirical evidence that such gra-
dient organization is dynamic. Previous studies found functional
connectivity fluctuates over brain states15, but whether such arousal
related FC dynamics modulate the macroscopic topography is rarely
reported. This recent human task fMRI study50 suggested that among
well rested, sleep deprived and sleep recovered states, there was very
minor changes of functional gradients, suggesting low contribution of
arousal modulation on the functional gradients. This might be related
to the difference of fMRI paradigms (tasked based v.s. resting state)
and the resulting difference between task regressed gradients and
resting-state gradients. Nevertheless, in the current study the inverted
U-shape relationship between arousal level and gradient values in the
present study presents first clear evidence of arousal modulation on
functional gradients. As the gradient values could be considered as a
spectrum of connectivity similarity, the gradient value reflects differ-
ence of functional connectivity patterns. From low (drowsy) to inter-
mediate (possibly quiet awake) arousal levels, the increase of gradient
values indicated larger separations among brain networks14. In
dynamic functional connectivity analysis, the global signal removal
caused anatomically heterogeneous increases in functional con-
nectivity and its dynamics51. Thus, the increased inter-network
separations might be contributed by the global decrease of func-
tional connectivity17. The reduction in whole-brain connectivity has
been identified from N1 (and N2) sleep to awake state in human EEG-
fMRI study52, whichmay contribute to the abovementioned increasing
trend of gradient values in the left half of the U-shaped dynamics. Yet,
from intermediate to high (vigilant) arousal levels (i.e., the right half of
the U-shape), the decrease of functional gradients indicated higher
degree of integration among brain networks. Previous studies indi-
cated the lysergic acid diethylamide (LSD) enhanced global and
between-module communication while diminished the integrity of
individual modules41, and such effect is mediated by the brain’s key
integration centers that are rich in 5-HT2A receptors in human41. Fur-
thermore, chemogenetic locus coeruleus (LC) activation increased
whole-brain functional connectivity in mouse53, accompanied by sig-
nificant pupil size increase32. The above results suggested the activa-
tion of ascending neuromodulatory system leads to the increases of
global functional connectivity, which provides a putative substrate for
our finding in the right half of the U-shape. Overall, at the extremes
(drowsy and alert) of arousal level, higher neuromodulatory con-
tribution results in the increase of global functional connectivity, and
the resulting less inter-class discriminations of whole-brain con-
nectivity might contribute to lower functional gradient values.

A recent study revealed that the infra-slowglobal waves of resting-
state fMRI signals propagates along the primary gradient in humans,
and these propagations are highly sensitive to the brain arousal state54.
Such propagation of the infra-slow waves may be related to both
anatomical connectivity among cortical hierarchy and ascending
neuromodulatory system,providingmoreplausibility that arousalmay
translate the static anatomical wiring into dynamic functional config-
urations via the ascending neuromodulatory system.

As we presented empirical evidence of how structure wiring and
neuromodulatory system shape functional gradients, it is important to
further disentangle their contributions quantitatively41. Past studies
developed a series ofmodelling strategies on the link of structural and
functional connectivity, achieving improvedmodel performance21,37,42.
However, in these models multicollinearity among predictors was
often ignored, potentially leading to unreliable andunstable estimates.
In the current study, we focused on characterizing the unique dis-
tribution of structural connectivity and neuromodulatory information
under aGLMframework.Our approachwas in linewith apreviouswide
field calcium imaging study in mouse40, in which the difference in
explained variance between the full GLM and the reduced model
yielded the unique contribution of the corresponding predictor. We
observed significant spatial similarity between two predictors using
single variable model, further confirming the multicollinearity of
model inputs. The association between those two inputs are not
unexpected, as structural covariance was associated with tran-
scriptomic similarity38. Using the reduced model approach, higher
predicted gradient value in the temporal cortex was found for the
second gradient of structural connectivity, adding more similarity to
the DMNofmacaque55 and human56. Meanwhile, the principal gradient
of neuromodulatory similarity (unique contribution) exhibited higher
cortical homogeneity, consistent with our prior knowledge of neuro-
modulatory system20,57. Therefore, our approachof the reducedmodel
allowed more precise dissection of unique contributions of structural
and neuromodulatory inputs to the functional macroscopic
topography.

Interestingly, our reduced model revealed a U-shape relationship
between the unique contribution of neuromodulatory similarity and
arousal fluctuations, while full model and the unique contribution of
structural connectivity showed an inverted U-shape relationship with
arousal. This result is in agreement with studies reporting higher
neuromodulator releases in sleep57 and active awake state32, compared
to quiet awake state. And also, intracellular recordings in awake
behaving rodents revealed a U-shape dependence of average mem-
brane potential and cortical activation on arousal58. Therefore, this
result suggested the neuromodulatory systemmay contributemore to
the functional gradients either at very low or very high arousal level,
conferring temporal dynamics to functional macroscopic topography
under the structural constraint1,41.

The ascending neuromodulatory system is highly inter-connected
and individual receptor system often co-varies with arousal59, thus it is
difficult to dissect the specific contribution of each arousal nucleus or
neuromodulatory receptor on large-scale functional dynamics. Utiliz-
ing the reduced model approach with shuffled individual receptor
map, our study was able to disentangle the co-variation among
receptor systems. For the dopaminergic receptors, DRD1 and DRD4
showed significant contributions to sensory specialization (gradient 1),
with only DRD3 contributing to hierarchical processing (gradient 2).
Studies using genetic knock-out mice reported similar effects of
dopaminergic receptor subtypes, including DRD1 mediated motor
dysfunctions60, DRD3 related higher-order spatial working memory61

and DRD4 related specific exploration62. Moreover, a number of stu-
dies revealed tight associations between whole brain neural activities
and neuromodulatory receptors, including LSD mediated global
integration41 (HTR2A), chemogenetic LC-activation induced increaseof
brain network communications53 (ADRA1A and ADRA2A) and reduction
of REM and NREM sleep63 and CHRM3 knockout mice. The significant
effects on sensory specialization or hierarchical processing were
consistent with our findings of unique and individual contribution of
each receptors (Fig. 6b) on functional dynamics. Notably, computa-
tional work linked neuromodulatory system to the alteration of the
brain state and cognitive performance45. Our results provided evi-
dence for these concepts, and further dissected the mechanisms of
each neuromodulatory receptor on cortical activities.
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In the current study, we used the fMRI based arousal index based
on previous work in macaque16 and human34. Our marmoset arousal
template showed widespread significant negative correlations across
cortex, which closely resembled the previous result in macaque16. The
fMRI based arousal estimation provides an avenue to infer arousal
fluctuations from fMRI data alone when external measures are not
available in scanner, such as EEG (ION and NIH dataset) or pupilome-
tery (NIH dataset). The previous study suggested that fMRI based
arousal indexwas sensitive to brain states and showedhigh correlation
with the electrophysiological arousal index16. Nevertheless, unlike the
standard EEG based arousal measurement, this approach detects pri-
marily relative, rather than absolute, arousal index across each scan. In
addition, as fMRI signals are often detrended to remove scanner arti-
facts, such indexmay not detect slower baseline shifts of arousal level.
Another limitation is that the present resource of marmoset structural
connectivity23 does not provide full and unbiased whole-brain cover-
age, which reduced our ability of accurate modelling.

Finally, for the cross-species comparison of the functional gra-
dient characteristics in marmosets and humans, several factors are
different across the animal andhumandatasets, whichmaycomplicate
such comparison. For example, the high prevalence of nested family
relationship in the human HCP dataset does not exist in ourmarmoset
dataset. However, as we have shown in Supplementary Figs. 4 and 8,
theoverall spatial patterns and the ordering of the functional gradients
in marmoset are relatively stable at the individual level, so it’s unlikely
that family relationship difference would significantly affect our cross-
species comparison. Also, the current study is limited by the fact that
functional connectivity, structural connectivity and gene expression
data fromdifferentmarmosets, and as such, age, sex and the individual
differences may limit our inference. In particular, the functional con-
nectivity and structural connectivity data were both from adult mar-
mosets, while the gene expression data were largely from infant or
juvenile marmosets (Supplementary File 1). Such age difference may
potentially lead to biases across the three data types. Nevertheless, we
examined expression patterns of DRD1 and CHRM3 (Supplementary
Fig. 27) and found relative stable patterns across age and sexes. Future
detailed examination is required to systemically investigate the age
and sex dependence of the neuromodulatory receptor gene expres-
sion, especially when adult gene expression data becomemore readily
available. In addition to age and sex, the individual differencemay also
lead to potential instability in our results. However, due to the nature
of the tracer injection and ISH experiments, it is not feasible to collect
all data fromone single animal andwill require technical improvement
in the future, such as spatial transcriptomics.

In conclusion, through multimodal analysis of functional, struc-
tural and molecular datasets in marmoset monkeys, we revealed the
structural basis and arousal modulation of the large-scale functional
gradients in the awakemarmoset brain. Those results provide concrete
and specific insights of the global functional organization, and provide
a solid foundation for utilizing marmosets for studying large-scale
functional dynamics and arousal. The current study also opens a
number of new research directions for future work. First, the cross-
species comparison of functional gradients requires further compre-
hensive investigations. For example, whether the strong coupling of
structural and cortical gradients holds for other species, particularly
human, remains unclear. Second, with increasingly sophisticated tools
available in marmosets, it would be beneficial to extend the current
framework to neurological and psychiatric marmoset models, to
examine the pathological impacts on the functional gradients and their
biological underpinnings.

Methods
Animals and MRI scanning
Adual-center (IONandNIH)marmoset (Callithrix jacchus) resting state
fMRI (rsfMRI) dataset was utilized including 39 adult marmosets with

709 17-min functional scans (12males and 1 female were from ION, age
3 ± 1 years old; and 19 males and 7 females from NIH, age 4 ± 2 years
old). The experimental procedures were approved by the Animal Care
and Use Committees from the Institute of Neuroscience (ION) at the
Chinese Academy of Sciences and National Institute of Neurological
Disorders and Stroke at the National Institutes of Health (NIH).

All rsfMRI data followed a standardized imaging protocol to
ensure consistent data quality. All marmosets underwent a 3-to-4 week
acclimatization protocol as previously described64. Briefly, in the first
week, only body restraining was applied with an increasing period
from 15 to 60min. In the second week, recordedMRI noise was added
and habituation periods gradually increased to 120min. In the third
week, head fixation using the customized helmet was added. After the
3-week training period, marmosets were fully acclimated to lay in the
sphinx position, with their heads comfortably restrained by 3D-printed
helmets22.

Briefly, un-anesthetized marmosets were scanned in horizontal
MRI scanners (ION, 9.4 T/30 cm; NIH, 7 T/30 cm, Bruker, Billerica, USA,
software ParaVision for MRI acquisition). For each session, multiple
runs of rsfMRI data were collected using 2D gradient echo EPI
sequence with the following parameters: TR = 2000ms, TE= 18ms
(ION) or 22.2ms (NIH), flip angle = 70.4°, FOV = 28× 36mm, matrix
size = 56× 72, 38 axial slices, slice thickness = 0.5mm, 512 volumes per
scan. Two sets of spin-echo EPI with opposite phase-encoding direc-
tions (LR and RL) were also collected for EPI-distortion correction with
following parameters: TR = 3000ms, TE = 37.69ms (ION) or 36ms
(NIH), flip angle = 90°, FOV = 28 × 36mm, matrix size = 56× 72, 38
axial slices, slice thickness = 0.5mm, 8 volumes for each set. After each
rsfMRI session, a T2-weighted structural image was acquired for co-
registration with following parameters: TR = 8000ms (ION) or
6000ms (NIH), TE = 10ms (ION) or 9ms (NIH), flip angle = 90°,
FOV = 28 × 36mm, matrix size = 112 × 144, 38 axial slices, slice
thickness = 0.5mm.

Additionally, in the ION dataset, an infrared MR compatible video
camera (sampling rate of 60 fps, 12M or 12M-I camera, MRC Systems
GmbH) inside the bore was used to record the pupil size of the animal,
which was later used to estimate the behavior arousal level (details in
Behavior arousal index below).

Marmoset fMRI preprocessing
After data format conversion, EPI distortion correction was applied
using FSL’s topup. The marmoset brain was extracted manually using
ITK-SNAP (http://www.itksnap.org/). All subsequent procedures were
performed using custom scripts in MATLAB 2020a (MathWorks,
Natick, MA) and SPM12 (http://www.fil.ion.ucl.ac.uk/spm/). First, each
fMRI scan was registered to the scan-specific structural image using
rigid body transformation and the scan-specific structure image was
then nonlinearly transformed to a study-specific marmoset template65

(https://marmosetbrainmapping.org/atlas.html).
After the registration, the resting state fMRI data were further

regressed by 22 “nuisance signals” to reduce motion artifacts, includ-
ing 6 headmotion parameters, their 1st order derivatives66 and 10 non-
brain tissue based principal components (PCs)67. We also conducted
parallel analyses on data with ICA-FIX de-noising68 and obtained very
similar results. The main results reported in this study were from the
regression based de-noised data only. A light spatial smoothing
(0.5mm FWHM isotropic) and a band-pass filter (0.001–0.1Hz) were
also performed. The BOLD signals were normalized by subtracting its
temporal mean and dividing by its temporal standard deviation on a
voxel-by-voxel basis.

Human fMRI preprocessing
Weused theHCP 500-subjectdata release, which includes 526 subjects
with eye-open (https://www.humanconnectome.org/). We restricted
our analysis to 469 subjects (age = 29.2 ± 3.5, range: 22–36, 275
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females) who have all four sessions of resting-state fMRI in full length,
resulting 1755 runs in total. The acquisition parameters were described
in details in previous studies36.

The HCP data were preprocessed using the HCP MR minimal
preprocessing pipeline, which combines a set of tools from FSL,
FreeSurfer, and the HCP Connectome Workbench. After the minimal
preprocessing pipeline, the resting-state fMRI data were further
denoised using the ICA-FIX method36,68. In addition to the preproces-
sing steps implemented by the HCP, we applied smoothing both spa-
tially (Gaussian filter with the FWHM=2.4mm) and temporally (band-
pass filtered at 0.005–0.1 Hz). Following preprocessing, themean time
series was extracted from 1000 predefined cortical regions-of-interest
using Schaefer. et al. human parcellation2.

Gradient analysis
Diffusion embedding mapping was a nonlinear dimension reduction
method, seeking to project a set of “symmetric” connectivity or simi-
laritymatrix into low-dimensional space upon theMarkov chain on the
network3,12,13.

Voxel-wise function connectivity (FC) matrices were first gener-
ated for each scan by calculating the Pearson’s correlation coefficient
between any two pair of voxels. Scan-wise FC matrices were next
averaged across scans to form a study-specific FC matrix. Consistent
with previous studies3,12,13, only the top 10% connections were retained
andothers in thematrixwere set to 0. The resulting asymmetricmatrix
was converted into normalized cosine angle matrix and nonlinearly
reduced the dimensionality via the diffusion embeddingmapping. The
gradients were ordered by the explained variance. To determine the
arousal relevant characteristics of connectivity gradients, scan-wise
embedding solutions were aligned to the study-specific gradients via
Procrustes rotations9. The Procrustes alignment enabled comparison
across scan-wise results and provided the original data is equivalent
enough to produce comparable Euclidean spaces14.

Behavior arousal index
To reduce the computing load, the eye monitoring videos were down-
sampled from 60 fps to 6 fps. We adopted a U-Net architecture for
pupil segmentation33 in 2D grayscale images and achieved repro-
ducibly accurate segmentation outputs. Then, themedian valuewithin
the time bin corresponding to each fMRI volume (TR= 2 s) was cal-
culated, yielding a time series sampled at the same rate as the fMRI
data. Thus, fast blinks (less than 0.5 s) was most likely excluded in this
process and very unlikely to affect further analysis. For each scan, this
time series was subsequently normalized by dividing by the maximum
value, corresponding to the eye being fully open, so that the units were
rendered comparable across sessions despite slight variations in the
positioning of the camera relative to the eyes. The resulting normal-
ized variation of pupil size was termed as the “behavior arousal index”.

fMRI template based arousal index
fMRI based arousal indexwas calculated using a previously established
approach16. The “arousal spatial template” was generated by the cor-
relating between resting state BOLD signal and hemodynamic
response function (HRF) convolved pupil size on a voxel-by-voxel
basis. This arousal spatial template was used to calculate the spatial
correlationbetween each successive fMRI frameand this template, and
the resulting time series of correlation was termed fMRI based arousal
index16,34.

Dynamic function gradient
We calculated the dynamic function connectivity using dynamic con-
ditional connectivity on a voxel-by-voxel (Fig. 3e) or region-by-region
(Fig. 5a) basis35. Dynamic connectivity was computed using the
dynamic conditional correlation approach (https://github.com/
canlab/Lindquist_Dynamic_Correlation), a multivariate volatility

method35. Briefly, the dynamic conditional correlationmodel was used
to deal with the temporal autocorrelation and non-stationarity in fMRI
time-series. This model assumes that the brain time courses follow a
multivariate Gaussian distribution, and that the conditional mean,
variance and co-variances change in an autoregressive form. Unlike
sliding-window approaches that estimate connectivity over a fixed
window length, this is a model-based method that estimates the con-
tribution of surrounding timepoints to the covariancematrix. Pairwise
dynamic connectivity values were obtained for every time point of
each resting-state run. This resulted in a matrix of connectivity values
that wasM (time points) × N (connections) for each run.Webinned the
dynamic function connectivity matrices according to arousal index
with equal samples, yielding same degree of freedoms. Then, dynamic
function connectivitymatrices were averaged across bins andmapped
to low dimensional space via the diffusion embedding methodology.

Marmoset structural connectivity
The marmoset structural connectivity matrix was obtained from
Marmoset Brain Connectivity atlas (https://www.marmosetbrain.org/)
and the procedure of generating the connectivity matrix was descri-
bed in details previously23. Briefly, the raw data include 143 injections
of retrograde tracers in 52 young adult (1.4–4.6 years, median age: 2.5
years, 31 males, 21 females), and standard histological procedure was
applied. Digitized histological sections were 3D reconstructed and
registered to a template. Injection sites and retrograde labeled cells
were assigned to cortical areas based on the atlas parcellation. And
finally the structural connectivity matrix was generated by compiling
data from all injection experiments. Notably, the primary marmoset
neuronal tracing connectomematrix, comprising of 116 source and 55
target areas, was directional and not a square matrix. The unidirec-
tional tracing connectome matrix was transformed by logarithm
operation, and then Pearson correlation between each pair of regions
was calculated to generate the symmetric similarity matrix, which was
used as input to calculate structural connectivity gradient (Supple-
mentary Fig. 19).

Marmoset neuromodulatory similarity
The neuromodulatory receptor information was obtained from the
marmoset gene atlas database (https://gene-atlas.brainminds.riken.jp/).
Registration of marmoset ISH images to MRI space was summarized in
Supplementary Fig. 20. Briefly, we downloaded the Nissl stained coronal
images and neuromodulatory receptor related gene expression maps.
Next, we mapped the receptor expression maps to the Nissl stained
images, using “rigid-body transformation” for the coarse whole brain
registration and “large deformation diffeomorphic metric mapping49,69

(LDDMM)” for more subtle slice-by-slice registration. To facilitate the
comparison with fMRI results, the Nissl stained images were registered
to the study-specific MRI template by affine nonlinear transformation
(“oldnormalize” of SPM12), and the affine transformation matrix was
then applied to the receptor expression map to bring it to the MRI
space. Also, the median filter was applied to each set of ISH data to
improve the data quality. Next, receptor expression data were parcel-
lated into 116 cortical regions of interest, based on the Riken Brain/
MINDS cortical parcellation70. Finally, the resulting neuromodulatory
receptor similarity was calculated using the correlation of gene
expression level across each pair of regions.

General linear model
A general linear model was used to predict the functional
connetivity21,37. The predictors were modified structural connectivity
and the neuromodulatory receptor similarity matrix. The model was
then constructed as

FC =b0 +b1 × SC + b2 ×NS, ð1Þ
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where the output variable FC was the set of whole brain functional
connectivity (116 × 116 regions), and the input variables were modified
structural connectivity (SC) and neuromodulatory receptor similarity
(NS). The regression coefficient b0, b1 and b2 were then solved by
ordinary least squares techniques with Euclid norm constraint. The
resulting best fit of empirical FC was termed as the predicted FC, i.e.,
the linear combination of the regression coefficients and corre-
sponding input variables (SC and NS).

We constructed three GLM models (full model, single variable
model and reduced model) to dissect the contribution on functional
gradients from structural connectivity and neuromodulatory
similarity40 with the “leave-one-out” cross-validation. For the full
model, all variableswere included in theGLMmodel (Fig. 4e, the union
of two circles). The single variablemodel only included one variable in
the GLM model (Fig. 4e, circle). However, we concluded that the two
predictors shared large overlap, evidenced by high correlation
between predicted gradients from two single variablemodels (Fig. 4d).
To address this issue, we constructed the reduced model to capture
the unique contribution of each variables by applying random shuf-
fling to a particular variable (1000 times). The resulting loss of
explained variance captured the unique contribution of the corre-
sponding variable (Fig. 4e non-overlapping part). Notably, variable
shufflingwasbetter thandirectly removing one variable, as it keeps the
same degree of freedom as the original model40. The single variable
model provided an upper bound for the given variable, while the
reducedmodel provided a lower bound for the unique contribution of
the corresponding variable.

In addition, the “reduced model” in our results was not meant to
refer to the “reduced model” as conventionally defined in linear
regression, i.e., “restricted model” (yi =b0 + εi) vs. the full general linear
model, i.e., “unrestricted model” (yi =b0 +b1xi1 + εi). The reduced
model we used was defined as the difference between the full GLM
model and the “randomly perturbed” GLMmodel (yi = b0 + b1 �xi1 + εi) in
which a particular variable �xi1 was randomly shuffled 1000 times. The
full GLM and reduced model and their applications on functional gra-
dients (and dynamics) were further illustrated in Supplementary Fig. 22.

Significance test using the spatial autocorrelation preserving
shuffling
Because profiles of functional gradients and neuromodulatory receptors
are spatially auto-correlated, we adopted a procedure from previous
studies42–44 to overcome this issue and generate statistical significance.

To evaluate the significance level of structural-functional gradient
correlation (Supplementary Fig. 10), we generated surrogatemaps that
randomly varied in their particular topographies (n = 1000 times
shuffling) but preserved the general spatial autocorrelation (SA)
structure. Using null distributions generated from SA preserving sur-
rogate maps, we generated the significance level of empirical
structural-functional gradient similarity.

To evaluate the significance level of a given receptor’s contribu-
tion in Fig. 6b, we firstly generated surrogate maps of corresponding
receptors (Supplementary Fig. 25) using the same procedure above.
We calculated the Pearson’s C.C. (right tail) between the surrogate
similarity (to the empirical one, n = 1000) and the unique contribution
on functional gradients of a particular receptor42. If the correlation is
not significant, it indicates random receptor maps could contribute
similar arousal modulation, i.e., the empirical receptor does not spe-
cifically contribute to arousal dynamics. Alternatively, if the correla-
tion is significant, it indicates larger spatial map shuffling causes larger
lossof theunique contribution for the corresponding receptor, i.e., the
empirical receptor does contribute to arousal dynamics.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The dual center resting-state functional MRI dataset is publicly avail-
able via Marmoset Brain Mapping Resource website (https://
marmosetbrainmapping.org). The raw resting-state MRI data are pro-
vided in the standard BIDS format for cross-platform sharing. The
marmoset neuro-tracing data (https://www.marmosetbrain.org/) and
gene expression data (https://gene-atlas.brainminds.riken.jp/) was
published previously as open resource. All human fMRI data are pro-
vided by the Human Connectome Project (https://www.
humanconnectome.org/). The source data underlying Figs. 1–6 and
Supplementary Figs. 1, 3–17, 19, and 21 are provided as a Source Data
file. Source data are provided with this paper.

Code availability
Codes used in this study are available at https://github.com/
TrangeTung/marmoset_gradient. The Zenodo DOI for this code is
https://doi.org/10.5281/zenodo.7215504.
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