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Non-Abelian anyon collider

June-Young M. Lee 1 & H.-S. Sim 1

A colliderwhere particles are injected onto a beam splitter fromopposite sides
has been used for identifying quantum statistics of identical particles. The
collision leads to bunching of the particles for bosons and antibunching for
fermions. In recent experiments, a colliderwas applied to a fractional quantum
Hall regime hosting Abelian anyons. The observed negative cross-correlation
of electrical currents cannot be understoodwith fermionic antibunching. Here
we predict, based on a conformal field theory and a non-perturbative treat-
ment of non-equilibrium anyon injection, that the collider provides a tool for
observation of the braiding statistics of various Abelian and non-Abelian
anyons. Its dominant process is not direct collision between injected anyons,
contrary to common expectation, but braiding between injected anyons and
an anyon excited at the collider. The dependence of the resulting negative
cross-correlation on the injection currents distinguishes non-Abelian SU(2)k
anyons, Ising anyons, and Abelian Laughlin anyons.

Anyons are quasiparticles that are neither fermions nor bosons1,2. They
exhibit fractional statistics behavior when an anyon winds around
another in two dimensions. This is characterized by the overlap, called
monodromy, between their states before and after the winding or
braiding3. While bosons and fermions have the trivial monodromy
M = 1, Abelian anyons have a complex phase factor M = e−i2θ, where
θ ≠0,π is their position exchange phase. Non-Abelian anyons have a
monodromy of ∣M∣ < 1, as their braiding results in unitary rotation of
their state in a degenerate state manifold. The unitary rotation is an
element of topological quantum computing4. It is expected that along
fractional quantum Hall edge channels, there flow anyons such as
Abelian Laughlin anyons at filling factor ν = 1/3, non-Abelian SU(2)k=2
anyons of the anti-Pfaffian state5,6 or Ising anyons of the particle-hole
Pfaffian state at ν = 5/27, and non-Abelian SU(2)k=3 anyons of the anti-
Read-Rezayi state at ν = 12/58.

On top of a long time efforts9–29 on detecting the fractional
statistics, there were experimental breakthroughs at ν = 1/330,31. In a
collider experiment31, two dilute streams of Abelian anyons are
injected into a quantum point contact (QPC) that behaves as a col-
lider beam splitter. It shows negative cross-correlations of electrical
currents at the output ports of the collider in agreement with a
nonequilibrium bosonization theory26. It, however, remains unclear
which aspect of the Abelian anyon statistics is identified from the
experimental result. On one hand, it seems natural to interpret the
result as an intermediate between fermionic antibunching and
bosonic bunching by the direct collision between injected anyons26.

On the other hand, a braiding effect was predicted27,28 in a related
setup where Abelian anyons are injected from only one side. The
identification is important in pursuing more direct evidence of
anyons. It is also intriguing to apply the collider to non-Abelian
anyons. There has been no prediction on this issue.

We here develop a theory of a collider encompassing generic
Abelian and non-Abelian anyons in fractional quantum Hall systems.
We demonstrate that for Abelian and non-Abelian anyons, its domi-
nant process is “time-domain” interference, inwhich an anyon, excited
at the collider QPCC, braids the injected anyons passing QPCC within
the interference time window. More anyons are braided as more
injected anyons pass. So the cross-correlation depends on the product
of the injection current and the monodromy from the braiding, dif-
ferentiating various anyons. The interference is absent in bosons and
fermions, where it corresponds to a trivial vacuumbubble process that
does not contribute to observables. Hence the dependence cannot be
interpreted as a deviation from fermionic antibunching32 due to the
commonly anticipated direct collision between injected anyons.

Results
Non-equilibrium correlator of anyon collider
Figure 1 (a) shows a collider setup. The QPCs of the setup are in the
weak backscattering regime that anyon tunneling happens dominantly
by the most relevant single type of anyon. Anyons are injected with
rate IA/B,inj/e* at QPCA/B by voltage VA/B,inj, and flow to QPCC with
velocity v. The injected anyons are downstream charged anyons or
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upstream charge-neutral anyons, and they are not further fractiona-
lized while flowing. Anyon tuneling at QPCC is described by Hamilto-
nian HT = T ðtÞ+ T yðtÞ= γC½ψy

Bð0, tÞψAð0, tÞ�I + h.c.. γC is the tunneling
strength, ψy

A=Bðx,tÞ creates an anyon on Edge A/B at position x and
time t, and [⋯]I indicates the vacuum fusion channel of the anyon. We
consider the dilute injection of e*VA/B,inj≫ hIA/B,inj/e* in non-equilibrium
with e*VA/B,inj≫ kBT at temperature T as in experiments31, and derive
the non-equilibrium correlator of the tunneling operators

T yð0ÞT ðtÞ� �
neq = e

�I t T yð0ÞT ðtÞ� �
eq + subleading terms ,

I = ð1�MÞ IA,inj
e*

+ ð1�M*Þ IB,inj
e*

= Re ½1�M� I +
e*

+ i Im½1�M� I�
e*

ð1Þ

for t >0, using the conformal field theory (CFT), Keldysh none-
quilibrium theory, and non-perturbative resummation over all pertur-
bation orders of anyon tunneling at QPCA/B (Supplementary Note 1);
for t <0, t→ − t andM→M* are replaced in Eq. (1).M is the monodromy
of the injected anyon flowing toward QPCC, which will be discussed
later. � � �h ieq is the equilibrium correlator at VA/B,inj = 0 and I± = IA,inj ±
IB,inj. Equation (1) is valid at t≫ ℏ/e*VA/B,inj.

The current IT and its zero-frequency noise δI2T
D E

at QPCC are

written as IT = e
*
R1
�1 dt T yð0Þ,T ðtÞ� �� �

neq and δI2T
D E

= e*2
R1
�1 dt

T yð0Þ,T ðtÞ� �� �
neq in the lowest tunneling order O(∣γC∣2) at QPCC,

hence, the observables can be directly obtained from Eq. (1). We find

IT = � 4e*∣γC∣
2d�1

ψ Γð1� 2δÞ sinπδ ImI2δ�1 + subleading terms ,

δI2T
D E

=4e*2∣γC∣
2d�1

ψ Γð1� 2δÞ cosπδ Re I2δ�1 + subleading terms

ð2Þ

at e*VA/B,inj≫ hIA/B,inj/e* and zero temperature (see Methods for finite
temperature). dψ and δ are the quantum dimension and tunneling
exponent of the anyon, and Γ is the gamma function. The zero-
frequency cross-correlation δIAδIB

� �
of the collider output currents at

Detectors DA and DB is related with IT and δI2T
D E

(Methods).

Time-domain interference with anyon braiding
It is remarkable that the observables depend on the product I of the
injection currents IA/B,inj and the monodromy factor (M − 1) in Eq. (1).

Its origin, the time-domain interference involving anyon braiding, is
identified, using our perturbation approach. We consider an inter-
ference event (n, m) between two subprocesses a1 and a2 in a time
window t. Tunneling of an anyon happens at QPCC at time t in a1 and
at time 0 in a2 [Fig. 1c]. This tunneling occurs not by the voltage VA/

B,inj but by thermal excitations, and it is described by the equilibrium
correlator T yð0ÞT ðtÞ� �

eq in Eq. (1). Within the time window, n anyons
on Edge A and m anyons on Edge B pass QPCC without tunneling.
These anyons were injected by VA/B,inj. So the interference loop a*

2a1

in the time axis braids the n anyons on Edge A in a direction and the
m anyons on Edge B in the opposite direction, gaining monodromy
MnðM*Þm. The braiding happens with probability pA(n, t)pB(m, t)
where pαðnα , tÞ= ð�nnα Þ=nα !

�
e��n is the Poisson probability distribution

for random anyon injections nα times at QPCα=A,B over time t, with an
average number �nðt,αÞ= Iα,injt=e*. Average of the monodromy over
different (n, m)’s reproduces the exponential factor in Eq. (1),

exp
IA,inj
e*

ðM � 1Þt + IB,inj
e*

ðM* � 1Þt
	 


=
X
n,m

pAðn, tÞpBðm, tÞMnðM*Þm:

ð3Þ

The validity condition of Eq. (2) with large VA/B,inj is necessary for the
braiding; the temporal width h/(e*VA/B,inj) of the injected anyons must
be narrower than their separation e*/IA/B,inj and the window t≲ h/(kBT).
The braiding happens even when anyons are injected from only one
side, IA,inj = 0 or IB,inj = 0.

The time-domain interference is distinct from the conventional
collision in Fig. 1(b). In the former, the anyon tunneling at QPCC

occurs thermally. In the latter, an anyon injected by the voltage VA/

B,inj undergoes tunneling at QPCC. The former dominates over the
latter at e*VA/B,inj≫ kBT and determines Eq. (2), when the tunneling
exponent δ of QPCC is smaller than 1 (Supplementary Note 2). This is
implied from the voltage dependence I ~ V2δ−1 of QPC tunneling
currents in the fractional quantum Hall regime. We note that the
factors sinπδ and cosπδ in Eq. (2) come from the topological spin
or twist factor3eiπδ = ei2πhψ that appears due to operator ordering
exchange in the equilibrium correlator T yð0ÞT ðtÞ� �

eq for the anyon
excited at QPCC, where hψ( = δ/2) is the scaling dimension of the
anyon. For Abelian anyons, eiπδ coincides with the exchange
phase eiθ.

Fig. 1 | Fractional quantumHall collider. a Setup. Anyons are injected to Edge A/B
through QPCA/B by voltage VA/B,inj applied to Source SA/B, accompanied by current
IA/B,inj of charge e*. The injected anyons (red narrow peaks) flow downstream to
QPCC (red trajectories); a corresponding setup for upstream anyons is shown in
Fig. 2. The QPCs are in a weak backscattering regime. b Conventional collision
where an injected anyon collides with another after tunneling at QPCC. c Time-
domain interference involving (n,m) braiding. Its subprocesses a1 and a2 share the
common spatial locations of injected anyons on the Edges. They have tunneling of

anadditional anyon atQPCC (bluewidepeaks for the anyon, white peaks for its hole
counterpart) by thermal or quantum fluctuations, but at different times (blue tra-
jectories). In a1 (resp. a2), the tunneling happens after (resp. before) n and m
injected anyons pass QPCC on Edges A and B. In their interference a*

2a1, the addi-
tional anyon braids the injected anyons, depicted as a blue twisted loop topolo-
gically linked with n “counterclockwise” andm “clockwise” red loops. Untying and
untwisting the loops give monodromy MnðM*Þm and topological spin eiπδ.
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Fano factor
The dependence of the observables on the product I in Eq. (2) offers

possibility of observing anyon braiding. The Fano factor P�ðI�=I + Þ �
δIAδIBh i

e* I +
∂IT
∂I� ∣I� =0

introduced in ref. 26 is useful. When IA,inj = IB,inj, we find

P�ð0Þ= 1�
Re½1�M�
Im½1�M�

cotπδ
1� 2δ

ð4Þ

at zero temperature. ForAbelian anyons,M = e−2iθ, then Eq. (4) becomes
identical to the expression that was found in ref. 26 but without
recognition of the braiding. The dependence of P− on I−/I+ was
observed at ν = 1/331. Our time-domain interference implies that the
observation is an evidence of Abelian anyon braiding.

Application to non-Abelian anyons
Ourfindings are equally applicable to non-Abeliananyons.On themost
promising non-Abelian states such as anti-Pfaffian5,6 and particle-hole
symmetric Pfaffian state at ν = 5/27, or anti-Read-Rezayi state at ν = 12/
58, the tunneling at QPCs generates downstream Abelian anyons and
upstream non-Abelian anyons together. Hence, one can inject the
former or latter selectively intoQPCC, to observe its braiding.We focus
on the case that upstream non-Abelian anyons flow from QPCA/B to
QPCC on Edge A/B (Fig. 2). In this case, anyon tunneling happens at
QPCA/B with rate IA/B,inj/e*. The tunneling results in downstreamcurrent
IA/B,inj of Abeliananyons of charge e*flowing towardDA/B, andupstream
charge-neutralmodeof the non-Abelian anyons that propagate toward
QPCC andexperiencebraidingwith another non-Abeliananyonexcited
at QPCC as in the collider at ν = 1/3. Although the non-Abelian anyon
excited atQPCC is chargeneutral, the excitation is always accompanied
by tunneling of a charged Abelian anyon, giving rise to charge currents
detected at DA or DB. Hence the braiding information can be read out
from δIAδIB

� �
. Side effects by back flows from QPCC to QPCA/B are

negligible in our parameter regime (Supplementary Note 4), and Eqs.
(1), (2), and (4) are also valid for the non-Abelian anyons. In the equa-
tions, δ is the tunneling exponent of a composite of the charged
Abelian anyon and the neutral non-Abelian anyon that together tunnel
at QPCC, while M is the monodromy of only the non-Abelian anyon
since the braiding happens between the non-Abelian anyon and other
injected non-Abelian anyons.

The non-Abelian anyons at ν = 5/2 and 12/5 have Im½M�=0 (see
their monodromy in Fig. 3). As a notable result, the time-domain
interference contributes to the current IT destructively [see Eqs. (1) and
(2)], and Fano factor P−(0) diverges; the divergence is regularized,

P� ∼O ðe*Þ2
_

VA=B,inj

IA=B,inj

� �ha
	 


, by the subleading terms in Eq. (2), where ha is

the scaling dimension of a fusion channel different from the vacuum
(Supplementary Note 2). For quantitative comparison among anyons,
we suggest another Fano factor PrefðI�=I + Þ � ðe*e=hÞ δIAδIB

� �
=

ðI + ∂IT=∂V ref ∣I� =0,V ref = 0
Þ defined with a small reference voltage Vref

applied to Source S0A and voltage shift VA,inj→VA,inj +Vref at Source SA
(the voltage across QPCA remains as VA,inj). We find
Pref ðI�=I + Þ= P�ðI�=I + ÞIm½1�M�e=ð2πe*Þ. When IA,inj = IB,inj,

Pref ð0Þ=
Im½1�M�
2πe*=e

� Re ½1�M�
2πe*=e

cotπδ
1� 2δ

: ð5Þ

Pref is notably independent of I−/I+ for the non-Abelian anyons having
Im½M�=0. In Fig. 4, the behavior of Pref distinguishes various anyons.
Pref also differs between the anti-Pfaffian state and the particle-hole
Pfaffian state at ν = 5/2; the states have M =0 in common but
different δ.

Pref is experimentally measurable (Methods). It is also possible to
gain monodromy information from IT without measuring δIAδIB

� �
(Methods).

We note that there are some non-Abelian states, e.g., the Pfaffian
state at ν = 5/233, in which a Abelian charge mode and a non-Abelian
neutral mode co-propagate along edges. In those cases, the neutral
mode propagates typically slower than the charge mode, and Eq. (1) is
not directly applicable. The multiplicative factor of Eq. (1) is modified

Fig. 2 | Anyon collider of upstream modes. It has counter-propagating edge
channels, downstream charge modes (black arrows, label c) and upstream neutral
modes (red arrows, label n). In this setup, the injection current IA/B,inj at QPCA/B

results in the flow of upstream modes from QPCA/B to QPCC on Edge A/B. The
locations of the charge sources (SA=B,S

0
A=B) and detectors (DA=B,D

0
A=B) are different

from Fig. 1a.

††

=

Fig. 3 | Monodromy M for non-Abelian anyons. Two particle-hole pairs of ψ
anyons are initially split from the vacuum (I). After the braiding, they fuse into the
vacuum. The monodromy is the amplitude of this process. The red and blue loops
correspond to anyons that tunnel at QPCA/B and QPCC, respectively [See the loops
of the same colors in Fig. 1c]. Untying the topological link between the loops
amounts to the monodromy M (or M* depending on the direction of the loops).
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Laughlin ( = 1/3)

APF ( = 5/2)

PH-PF ( = 5/2)

ARR = 3 ( = 12/5)

ref

−/ +

Fig. 4 | Dependence of Fano factor Pref on I−/I+ for various anyons. The Fano
factors are shown for free fermions (gray dashed), Laughlin anyons at ν = 1/3
(black), anti-Pfaffian state at ν = 5/2 (APf, blue), particle-hole Pfaffian state at ν = 5/2
(PH-Pf, red), and anti-Read-Rezayi state at ν = 12/5 (ARR, purple). At any value of I−/
I+, Pref = −1 for the anti-Pfaffian state, Pref = −π/4 for the particle-hole Pfaffian state,
and Pref = � 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
250� 110

ffiffiffi
5

pp
=4π ’ �0:8 for the anti-Read-Rezayi state. The

behaviors of the non-Abelian anyons are distinguished from free fermions with
Pref = 0 and the Abelian anyons.
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non-universally, depending on the velocities of the modes and the
distances between the QPCs.

Discussion
We compare the time-domain interference with a Fabry–Perot
interference14,17–22,25,30. In the latter, an anyon moving around the edge
of a Fabry–Perot cavity braid localized bulk anyons inside the cavity. It
is detected in the linear response of the interference current, with
changing the number of the localized anyons by a gate voltage. It
corresponds to the interference of free fermions where the braiding is
trivial. By contrast, in the former, braiding happensbetween anyons on
one-dimensional edges, as the time ordering provides an extra
dimension for braiding. It is detected in the non-equilibrium response,
with changing the number of injected anyons by IA/B,inj.

The time-domain interference is absent in free fermions of
M = 1. For them, the exponential factor in Eq. (1) becomes the
trivial value 1, and the leading contributions in Eq. (2) vanish. It is
because the topological link between the blue and red loops in
Fig. 1c becomes trivial. The blue loop is completely independent
of the red loops, constituting a disconnected Feynman diagram (a
vacuum bubble) in the perturbation theory. This diagram cannot
contribute to observables, as its contribution M to the inter-
ference is exactly canceled, M − 1 = 0, by the trivial value 1 from a
partner disconnected diagram, according to the linked cluster
theorem. By contrast, in Abelian and non-Abelian anyons, the
cancellation is only partial, M − 1 ≠ 0. We notice, in every pertur-
bation order, the pairwise appearance of a braiding diagram and
its partner disconnected diagram resulting in the factor M − 1
(Supplementary Note 1). This explains M − 1 in Eqs. (1) and (2). As
the time-domain interference has no counterpart in free fer-
mions, the result in Fig. 4 cannot be interpreted as a deviation
from fermionic antibunching due to the direct collision.

Our computation methods, results, and interpretations are
based on the bulk-edge correspondence of topological order. The
edge of a topological order is described by a certain CFT, whose
primary fields correspond to the anyons of the topological order.
The wavefunction of “bulk” anyons localized in the bulk of the
topological order can be written as the correlator of the primary
fields4. The braiding statistics of the anyons is encoded in the
duality matrices of the corresponding conformal block. Hence,
one can obtain information about the braiding statistics among
“edge” anyons propagating along the edge, using the anyon col-
lider or similar setups, without involving bulk anyons. Meanwhile,
however, the edge anyons are not protected by the energy gap of
the topological order, and the structure of the CFT can be altered
by various mechanisms34,35 such as decoherence and edge
reconstruction. Then the monodromy M and the topological spin
δ can have values different from those of the topological order.

We discuss experimental observability. To observe the Fano fac-
tor P−, phase coherence of Edge A/B is required near QPCC over a
distance longer than the thermal length ℏv/(kBT), where v is the anyon
velocity. Edge reconstruction34 needs to be avoided over the distance,
as it modifiesM and δ. It is also required that QPCC follows the power
law I ~V2δ−1 in an energy windowwhich covers the voltages e*VA/B,inj and
temperature kBT. The requirements may be achieved in experiments31.
When the energy window also includes the small voltage e*Vref, the
Fano factor Pref can be measured. Note that the bulk-edge coupling of
non-Abelian anyons21–23 and Coulomb interaction24,25 of a Fabry–Perot
cavity may be irrelevant in the collider.

It is interesting that the braiding effect appears and dominates the
observables in the collider. It differs from the conventional collision,
and provides a tool for identifying the braiding of various Abelian and
non-Abelian anyons. Our finding implies that recent collider
experiments31, in fact, provide a signature of Abelian anyon braiding,
rather than the (anti)bunching effects commonly recognized by the

community. Our theory is applicable to other topological orders, as it
is based on the generic CFT. The time-domain interference will be
useful for identifying fractional statistics in systems having no topo-
logical order36,37 and for the engineering mobile anyons with tuning
edge channels by electrical gates.

Methods
Tunneling current and noise
We provide the expression of the electrical current IT and its
zero-frequency noise δI2T

D E
at QPCC at temperature kBT≪ e*VA/B,inj and

hIA/B,inj/e*≪ e*VA/B,inj,

IT = e
*
Z 1

�1
dt T yð0Þ,T ðtÞ� �� �

neq = � Ce*ðkBTÞ2δ�1 Im
ΓðI=2πkBT + δÞ

ΓðI=2πkBT + 1� δÞ

� �
,

δI2T
D E

= e*2
Z 1

�1
dt T yð0Þ,T ðtÞ� �� �

neq =
Ce*2

tanπδ
ðkBTÞ2δ�1 Re

ΓðI=2πkBT + δÞ
ΓðI=2πkBT + 1� δÞ

� �
,

ð6Þ

where C =4ð2πÞ2δ�1∣γC∣
2Γð1� 2δÞ sinπδ=dψ. This is the generalization

of the zero-temperature result for Abelian anyons in ref. 26 to Abelian
or non-Abelian anyons at finite temperature.

Cross-correlation
The cross-correlation δIAδIB

� �
is related with IT and δI2T

D E
. Using the

charge conservation, we derive the zero-temperature relations of

δIAδIB
� �

= � δI2T
D E

+ δIA,injδIT
D E

� δIB,injδIT
D E

+ δIA,injδIB,inj
D E

,

δIAðBÞ,injδIT
D E

= e*IAðBÞ,inj
∂IT

∂IAðBÞ,inj
:

ð7Þ

The latter relation is valid when Im½M�≠0. In Supplementary
Note 3, the derivationof the relations, δIA=B,injδIT

D E
, and δIA,injδIB,inj

D E
is found, and the case of Im½M�=0 is discussed.

Symmetric injection
In the nearly symmetric injection case of IA,inj≃ IB,inj or I+≫ I−, the zero-
temperature expressions of IT and δI2T

D E
at QPCC in Eq. (2) are sim-

plified as

IT ’ 4∣γC∣
2e*

dψ cscπδ
ð1� 2δÞΓð1� 2δÞ Re½1�M� I +

e*

	 
2δ�2 e*V ref

_
� Im½M� I�

e*

	 

,

δI2T
D E

’ 4∣γC∣
2e*2

dψ secπδ
Γð1� 2δÞ Re½1�M� I +

e*

	 
2δ�1

:

ð8Þ
Here we consider the situation where the voltage VA,inj +Vref is

applied at Source SA, VB,inj is at Source SB, and a very small voltage Vref

is at Source S0A. In this situation, the voltage cross QPCA remains as
VA,inj. The effect of Vref does notmodify Eq. (2) except the replacement
of I ! I =Re ½1�M� I +e* + i Im½1�M� I�e* + i e

*

_ V ref . Vref decouples from
the monodromy factor (1 −M) in I , as it does not cause any braiding.

Properties of non-Abelian anyons
We briefly introduce the anti-Read-Rezayi (ARR) state at level-k, a
promising candidate hosting non-Abelian anyonic excitations8. It has
been expected that it is the ground state at ν = 2+ 2

k + 2. In particular, the
ARR states of level 2 and of level 3 correspond to the anti-Pfaffian state
at ν = 5/2 and the ARR state at ν = 12/5, respectively. The edge-channel
structure of the level-kARR state is decomposed, as a result of random
inter-edge tunneling5,6,8, into downstream chargemodes, described by
the free boson CFT, and an upstream neutral mode, described by the
SU(2)k Wess–Zumino–Witten CFT. There are two types of quasi-
particleswith the smallest scaling dimensionofhψ = 1/(k + 2) andhence
the smallest tunneling exponent δ = 2hψ = 2/(k + 2) for ideal edges, one
carrying only charge e* = 2e/(k + 2), and the other carrying e* = e/(k + 2)
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and the neutral part j = 1/2 in the context of the SU(2)k anyons. As the
bare tunneling strength of the former at a QPC is expected to bemuch
smaller than the latter, we assume that tunneling at the QPCs is
dominated by the latter having non-Abelian anyons in the neutral part.
The monodromy of the non-Abelian anyons is M = cosð2π=ðk + 2ÞÞ

cosðπ=ðk + 2ÞÞ .
We also consider the particle-hole symmetric Pfaffian state,

another competitive ground state candidate of ν = 5/229. Its edge
structure is similar to the anti-Pfaffian state, except that the neutral
mode is described by the Ising CFT, and charge e/4 quasiparticle
contains the non-Abelian anyonic σ primary field with a scaling
dimension of 1/87. The monodromy of the non-Abelian anyon isM =0.

Differential conductances
We suggest how ∂IT/∂I− and ∂IT/∂Vref, hence, the Fano factors P− and
Pref, can be obtained from standard lock-in measurements. First, to
obtain ∂IT/∂I−, one applies a small AC voltage to Source S′A in the
presence of the voltages VA/B,inj at QPCA/B, and measures the AC cur-
rent at Detector DB. Then one gets the differential conductance of

dIð1ÞDB

dV
=
dIT
dV

=
∂IT
∂IA,inj

∂IA,inj
∂VA,inj

=GTA
∂IT
∂IA,inj

: ð9Þ

G is the conductance quantum e*e/h. TA ≡G−1∂IA,inj/∂VA,inj is the trans-
mission probability atQPCA, and it can bemeasured by another lock-in
measurement. From this, one can obtain ∂IT/∂IA,inj. In the limit of I− =0,
∂IT/∂I− is identical to ∂IT/∂IA,inj. At nonzero I−, one has a similar
measurement for ∂IT/∂IB,inj, and obtains ∂IT/∂I− = (∂IT/∂IA,inj − ∂IT/
∂IB,inj)/2.

Next, to obtain ∂IT/∂Vref, one applies a small AC voltage to Source
S0A in thepresenceof the voltagesVA/B,inj atQPCA/B, andmeasures theAC
current at Detector DB. Then one gets the differential conductance of

dIð2ÞDB

dV
=
dIT
dV

= � ∂IT
∂IA,inj

∂IA,inj
∂VA,inj

+
∂IT
∂V ref

= � GTA
∂IT
∂IA,inj

+
∂IT
∂V ref

: ð10Þ

CombiningdIð1ÞDB
=dV anddIð2ÞDB

=dV , one canobtain∂IT/∂Vref. Note that in
the equality in Eq. (10), IA,inj and Vref are treated as independent vari-
ables. It is because we consider the situation of the voltage VA,inj +Vref

applied at Source SA, VB,inj at Source SB, and a very small voltage Vref at
Source S0A; in this situation, the voltage across the QPCA (hence IA,inj) is
independent of Vref.

It is possible to gainmonodromy information from thedifferential
conductances withoutmeasuring the cross-correlation, since the time-
domain interference involving the braiding affects the tunneling cur-
rent IT. From Eqs. (2) and (8), we find that the ratio of the differential
conductances depends only on the fractional charge and Im½M�,

∂IT=∂I�∣V ref = 0

∂IT=∂V ref ∣V ref = 0
=

_

ðe*Þ2
Im½1�M�: ð11Þ

Interestingly, this ratio is independent of I+ and I−. For those non-
Abelian anyons having Im½M�=0, this ratio shows a vanishingly small

value of O _
ðe*Þ2

IA=B,inj
VA=B,inj

� �ha
	 


. The ratio can be measured when QPCC

follows the power law I ~V2δ−1 in an energy window which covers the
voltages e*VA/B,inj, temperature kBT, and small voltage e*Vref.

Data availability
All the calculation details are provided in Supplementary Information.
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