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Deep learning empowered volume
delineation of whole-body organs-at-risk
for accelerated radiotherapy

Feng Shi1,7, Weigang Hu2,3,7, Jiaojiao Wu1,7, Miaofei Han1, Jiazhou Wang 2,3,
Wei Zhang4, Qing Zhou1, Jingjie Zhou4, Ying Wei1, Ying Shao1, Yanbo Chen1,
Yue Yu1, Xiaohuan Cao1, Yiqiang Zhan1, Xiang Sean Zhou1, Yaozong Gao1 &
Dinggang Shen 5,1,6

In radiotherapy for cancer patients, an indispensable process is to delineate
organs-at-risk (OARs) and tumors. However, it is the most time-consuming
step as manual delineation is always required from radiation oncologists.
Herein, we propose a lightweight deep learning framework for radiotherapy
treatment planning (RTP), named RTP-Net, to promote an automatic, rapid,
and precise initialization of whole-body OARs and tumors. Briefly, the fra-
mework implements a cascade coarse-to-fine segmentation, with adaptive
module for both small and large organs, and attention mechanisms for
organs and boundaries. Our experiments show three merits: 1) Extensively
evaluates on 67 delineation tasks on a large-scale dataset of 28,581 cases; 2)
Demonstrates comparable or superior accuracy with an average Dice of
0.95; 3) Achieves near real-time delineation in most tasks with <2 s. This
framework could be utilized to accelerate the contouring process in the All-
in-One radiotherapy scheme, and thus greatly shorten the turnaround time
of patients.

Cancer is considered to be a major burden of disease with rapidly
increasing morbidity and mortality worldwide1–3. It is estimated to be
28.4 million new cancer cases in 2040, a 47.2% rise from the corre-
sponding 19.3 million new cancer cases that occurred in 2020.
Radiotherapy (RT) is used as the fundamentally curative or palliative
treatment for cancer, with approximately 50% of cancer patients
receiving benefits from RT4–6. Considering that high-energy radiation
can damage genetic materials of both cancer and normal cells, it is
important to balance the efficacy and the safety of RT, which highly
depends on the dose distribution of irradiation, as well as the func-
tional status of organs-at-risk (OARs)6–9. Accurate delineation of
tumors and OARs can directly influence outcomes of RT, since

inaccurate delineation may lead to overdosing or under-dosing issues
and increase the risk of toxicities or decrease the efficacy of tumors.
Therefore, in order to deliver a designated dose to the target tumor
while protecting the OARs, accurate segmentation is highly desired.

The routinely clinical RT workflow can be divided into four steps,
including (1) CT image acquisition and initial diagnosis, (2) radio-
therapy treatment planning (RTP), (3) delivery of radiation, and (4)
follow-up care. This is guided by a team of healthcare professionals,
such as radiation oncologists, medical dosimetrists, radiation thera-
pists, and so on10,11. Generally, during the RTP stage, the contouring of
OARs and target tumors is performed manually by radiation oncolo-
gists anddosimetrists. Note that the reproducibility and consistency of
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manual segmentation are challenging due to intra- and inter-observer
variability12. Also, manual process is very time-consuming, and often
takes hours or even days per patient, leading to significant delays in RT
treatment12,13. Therefore, it is desired to develop fast segmentation
approach to achieve accurate and consistent delineation for both
OARs and target tumors.

Most recently, deep learning-based segmentation has shown
enormous potential in providing accurate and consistent
results10,11,14–16, in comparison to most classification and regression
approaches, such as atlas-based contouring, statistical shape model-
ing, and so on17–20. The most popular architecture is convolutional
neural networks (CNNs)21–23, including U-Net24,25, V-Net26, as well as
nnU-Net27, which achieve excellent performance in Medical Image
Decathlon Segmentation Competition. Besides, other hybrid algo-
rithms also have shown outstanding segmentation performance28–30,
i.e., Swin UNETR31. However, deep learning-based algorithm needs
specific computing resources such as graphics processing unit (GPU)
memory, especially for 3D image processing13, thus leading to limited
clinical applications in practice.

To address the above challenges, herein, wepropose a lightweight
automatic segmentation framework, named RTP-Net, to greatly
reduce the processing time of contouring OARs and target tumors,
while achieving comparable or better performance with the state-of-
the-art methods. Note that this framework has potential to be used in
the recent emerging All-in-One RT scheme (Fig. 1). All-in-One RT
intends for providing a one-stop service for patients by integrating the
CT scanning, contouring, dosimetric planning, and image-guided
in situ beam delivery in one visit. In this process, the contouring step
could be accelerated by the artificial intelligence (AI) algorithm from
hours to seconds, followed by an oncologist’s review with minimal
requiredmodifications, which can significantly improve efficiency and
accelerate process at the planning stage (Fig. 1a). With the develop-
ment of the RT-linac platform and the integration of multi-functional
modules (i.e., fast contouring, auto-planning, and radiation delivery),
the All-in-One RT can shorten the whole RT process from days to
minutes32 (Fig. 1b).

Results and discussion
RTP-Net for efficient contouring of OARs and tumors
To increase accuracy and also save time for RTP, we propose a light-
weight deep learning-based segmentation framework, named as RTP-
Net, as shown in Fig. 2, for automated contouring of OARs and tumors.
In particular, three strategies are designed to (1) produce customized
segmentation for given OARs, (2) reduce GPU memory cost, and (3)
also achieve rapid and accurate segmentation, as briefed below.
(1) Coarse-to-fine strategy. This is proposed for fast segmentation of

3D images by using a coarse-resolution model to localize a
minimal region of interest (ROI) that includes the to-be-
segmented region in the original image, and then using a fine-
resolution model to use this ROI as input to obtain detailed
boundaries of the region (Fig. 2a). This two-stage approach can
effectively exclude a large amount of irrelevant information,
reduce false positives, and improve segmentationaccuracy.At the
same time, it helps reduce GPU memory cost and improve
efficiency of segmentation. We adopt VB-Net here, as proposed in
our previouswork33, to achieve quick andprecise segmentation. It
is developed based on the classic V-Net architecture, i.e., an
encoder-decoder network with skip connection and residual
connection, and further improved by adding the bottleneck layer.
The VB-Net has achieved first place in the SegTHOR Challenge
2019 (Segmentation of ThoracicOrgans at Risk in CT Images). The
detailed architecture and network settings can be obtained in
Methods and Table 1.

(2) Adaptive inputmodule. To segment both small and large ROIs, an
adaptive input module is also designed in VB-Net architecture, by
adding one down-sampling layer and one up-sampling layer to the
beginning and the end of the VB-Net, respectively, according to
the size of the target ROI (Fig. 2b). Both resampling operations are
implemented through a convolution layer, which can learn best
parameters among processes and reduce GPU memory
simultaneously.

(3) Attention mechanisms. For accurate delineation of the target
volume (PTV/CTV), two attention mechanisms are particularly
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Fig. 1 | Artificial intelligence (AI)-accelerated contouring promotes All-in-One
radiotherapy (RT). a The process overview of conventional RT vs. AI-accelerated
All-in-One RT. The RT workflow can be divided into four steps, in which treatment
planning step can be accelerated by AI. Conventional treatment planning includes
manual contouring of organs-at-risk (OARs), clinical target volume (CTV), and
planning target volume (PTV), followed by the planning procedures. The

contouring step can be accelerated by AI algorithms, followed by an oncologist’s
reviewwithminimal requiredmodification. b The time scales of contouring and RT
workflow in the conventional RT and the AI-acceleratedAll-in-One RT, respectively.
The contouring step can be accelerated by AI fromhours to seconds, and thewhole
RT process can be shortened from days to minutes.
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developed, i.e., the OAR-aware attention map and the boundary-
aware attention map (Fig. 2c). The OAR-aware attention map is
generated by the fine-level OAR segmentation, while the
boundary-aware attention map is applied in the coarse-level
PTV/CTV bounding box. The OAR-aware attention map is utilized
as an additional constraint to improve the performance of the
fine-resolutionmodel. Specifically, the input of the fine-resolution
model is the concatenation of the raw image with its OAR-aware
attention map and boundary-aware attention map in a channel-
wise dimension. That is, both attention mechanisms (combined
with themulti-dimensional adaptive loss function) are adopted to
modify the fine-level VB-Net.

In summary, the proposed RTP-Net framework can segment
target volumes as well as multiple OARs in an automatic, accurate,
and efficient manner, which can be then followed by in-situ dosi-
metric planning and radiation therapy to eventually achieve All-in-
One RT. In our developed segmentation framework, a set of
parameters are open for users to adjust, including pre-processing
configuration, training strategy configuration, network archi-
tecture, and image inference configuration. Also, considering the
diversity of different imaging datasets, such as imaging modality,
reconstruction kernels, image spacing, and so on, the users are
allowed to customize a suitable training configuration setting for
each specific task. The recommended configuration setting of our
multi-resolution segmentation framework is summarized in Table 1
for reference.

Evaluation of segmentation results for whole-body OARs
Segmentation performance of the proposed RTP-Net is extensively
evaluated on the whole-body organs, including overall 65 OARs dis-
tributed in the head, chest, abdomen, pelvic cavity, andwhole body, in
terms of both accuracy and efficiency. Importantly, a large-scale
dataset of 28,219 cases is experimented, of which 4,833 cases are used
as the testing set (~17%) and the remaining cases serve as the training
set (Supplementary Fig. 1).

The accuracy of the segmentation is quantified by the Dice coef-
ficient, ranging from 0 to 1, with Dice coefficient of 1 representing
perfect overlapping between the segmented result and its ground
truth. As shown in Fig. 3 and Supplementary Table 1, the Dice coeffi-
cients of automatic segmentations on a set of OARs are measured.
Totally, we implement 65 segmentation tasks, including 27OARs in the
head part, 16 OARs in the chest part, 10 OARs in the abdomen part, 9
OARs in the pelvic cavity part, and 3OARs in thewholebody. It is worth
noting that the RTP-Net achieves an average Dice of 0.93 ±0.11 on 65
tasks with extensive samples. Specifically, 42 of 65 (64.6%) OARs seg-
mentation tasks achieve satisfactory performance with a mean Dice of
over 0.90, and 57 of 65 (87.7%) OARs segmentation tasks with a mean
Dice of over 0.80. For OARs in the head (Fig. 3a), there are 20 of 27
(74.1%) OARs segmentation tasks achieving plausible performance
with a mean Dice of over 0.80. For OARs in the chest (Fig. 3b), the
lowest segmentation performance is found in the mediastinal lymph
nodeswith ameanDiceof 0.61, whichmay be due to their diffused and
blurry boundaries. In addition, the Dice coefficients of segmentation
results of all tested OARs in the abdomen (Fig. 3c) and pelvic cavity

Fig. 2 | Schematic representations of RTP-Net for fast and accurate delineation
of organs-at-risk (OARs) and tumors. a Coarse-to-fine framework with multi-
resolutions for fast segmentation. A coarse-resolution model is to localize the
region of interest (ROI) in the original image (labeled in the red box), and a fine-
resolution model is to refine the detailed boundaries of ROI. b Adaptive VB-Net for
multi-sized OAR segmentation, which can be also applied to large organs. This is
achieved by adding a stridden convolution layer with a stride of 2 (Conv-s2) and a

transposed convolution layerwith a strideof 2 (T-Conv-s2) to thebeginning and the
end of the VB-Net, respectively. c Attention mechanisms used in the segmentation
framework for accurate target volumedelineation. TheOAR-aware attentionmap is
generated by the fine-level OAR segmentation, and the boundary-aware attention
map is generated by the coarse-level target volume bounding box. Two attention
maps combined with multi-dimensional adaptive loss function are adopted to
modify the fine-level model for obtaining accurate target delineation.
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(Fig. 3d) parts are higher than 0.80. Moreover, segmentations of the
spinal cord, spinal canal, and external skin in the whole body also
achieve superior agreement with manual ground truth. Note that the
segmentation of external skin is assisted by the adaptive inputmodule
in the RTP-Net (Fig. 2b), due to its large size. In summary, the majority
of the segmentation tasks achieve high accuracy by using the pro-
posed RTP-Net, which verifies its superior segmentation performance.
It should be outlined that auto-segmentation results will be reviewed
andmodifiedby the radiation oncologist to ensure accuracy and safety
of RT.

To fully evaluate segmentation quality and efficiency of our pro-
posed RTP-Net, three state-of-the-art methods, including U-Net, nnU-
Net, and Swin UNETR, are included for comparison. Typical segmen-
tation results of eight OARs (including brain, brainstem, rib, heart,
liver, pelvis, rectum, and bladder) by four methods are provided in
Fig. 4 for qualitative comparison. It can be seen that our RTP-Net
achieves consistent segmentations with manual ground truth in all
eight OARs, while the comparison methods show over- or under-
segmentations. In particular, both U-Net and nnU-Net under-segment
four OARs such as brainstem, rib, heart, and pelvis (Fig. 4a–d), while
over-segment two OARs such as liver and bladder (Fig. 4e, f). For the
remaining two OARs such as brain and rectum (Fig. 4g, h), U-Net and
nnU-Net show different performances, with U-Net having under-
segmentation while nnU-Net having over-segmentation. Swin UNETR
achieves consistent segmentations with manual ground truth in the
bladder and brain, while has under-segmentations in the other six
OARs. It is worth emphasizing again that the inaccurate segmentation
of OARs may influence subsequent steps of target tumor delineation
and treatment planning, and finally the precise radiation therapy of the
tumor.Overall, in comparison toU-Net, nnU-Net, and SwinUNETR, our
proposed RTP-Net achieves comparable or superior results in seg-
menting OARs.

To quantitatively evaluate segmentation performance of RTP-
Net, both Dice coefficient and average inference time are calculated.
Figure 5a and Supplementary Table 2 show Dice coefficients on a set
of segmentation tasks by four methods. It can be seen that the
majority of segmentation tasks give high Dice coefficients, especially
in segmentation of brain, liver, and pelvis with relatively less varia-
tion. Compared to nnU-Net, RTP-Net shows no significant difference
in segmentation of most organs in terms of Dice coefficient, except
rectum. While, compared to U-Net, RTP-Net shows significant dif-
ference in better segmenting brainstem, liver, and rectum. Besides,
compared to Swin UNETR, RTP-Net shows better performance in
segmentation of brainstem, heart, liver, and rectum. Overall, the
average Dice coefficients of RTP-Net, U-Net, nnU-Net, and Swin
UNETR in segmentation of eight OARs are 0.95 ± 0.03, 0.91 ± 0.06,
0.95 ± 0.03, and 0.94 ± 0.03, respectively. Results indicate that RTP-
Net achieves comparable or more accurate segmentation perfor-
mance than other methods, which is consistent with visual results
given in Fig. 4.

In addition, the inference efficiency of four methods in the above
eight OAR segmentation tasks is further evaluated in Fig. 5b, c and
Supplementary Table 3. As a lightweight framework, RTP-Net takes less
than 2 s in most segmentation tasks, while U-Net, nnU-Net, and Swin
UNETR take 40–200 s, 200–2000 s, and 15–200 s, respectively. The
heat map of inference time of four methods in segmentation tasks
visually demonstrates a significant difference between RTP-Net and
the other three methods. The ultra-high segmentation speed of RTP-
Net can be attributed to the customized coarse-to-fine frameworkwith
multi-resolutions, which conducts coarse localization and fine seg-
mentation sequentially and also reduces GPU memory cost sig-
nificantly. In addition, the highly efficient segmentation capability of
RTP-Net is also confirmed in more delineation experiments, as shown
in Supplementary Fig. 2. Therefore, our proposed RTP-Net can achieve

Table 1 | The detailed configuration for multi-resolution segmentation framework

Procedure Design choice Coarse model Fine model

Pre-processing Intensity normalization IfCT, z scorewithfixedmean and standarddeviation (SD)&
clipping to [−1, 1];
If MRI, percentile z score with mean and SD & clipping
to [−1, 1]

If CT, z score with fixed mean and SD & clipping to
[−1, 1];
IfMRI, percentile z scorewithmeanandSD&clipping
to [−1, 1]

Image resampling strategy Nearest neighbor interpolation Nearest neighbor interpolation;
Linear interpolation

Annotation resampling
strategy

[0, 1, …, class-1] encoding nearest neighbor / linear
interpolation

[0, 1, …, class-1] encoding nearest neighbor
interpolation

Image target spacing Spacing fixed to [5, 5, 5] Spacing fixed to [1, 1, 1]

Network topology VB-Net for common organs;
Adaptive VB-Net for large organs

VB-Net for common organs;
Adaptive VB-Net for large organs

Patch size [96, 96, 96] [96, 96, 96] for common organs;
[196, 196, 196] for large organs

Batch size At least 2, given multi-GPU memory constraint At least 2, given multi-GPU memory constraint

Training Learning rate Step learning rate schedule (initial, 1e-4) Step learning rate schedule (initial, 1e-4)

Loss function Dice and boundary Dice Dice and boundary Dice for OARs;
3DDice, boundaryDice, and adaptive 2DDice forCTV
and PTV

Optimizer Adam (momentum =0.9, decay = 1e-4, betas = (0.9, 0.999)) Adam (momentum = 0.9, decay = 1e-4, betas =
(0.9, 0.999))

Data augmentation Rotating, scaling, flipping, shifting & adding noise Rotating, scaling, flipping, shifting & adding noise

Training procedure 1000 epochs, global sampling & mask sampling 1000 epochs, global sampling & mask sampling

Testing Configuration for pre-
processing

Resampling to fix spacing as training;
Image partition given GPU memory

Available to expand the bounding box with user-set
size or not;
Resampling to fix spacing as training;
Image partition given GPU memory

Configuration for post-
processing

Resampling to raw image spacing;
Available to pick the largest connected component (CC) in
segmentation or not;
Available to remove small CC in segmentation or not

Resampling to raw image spacing;
Available to pick the largest CC in segmentation
or not;
Available to remove small CC in segmentation or not
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excellent segmentation performance, with superior accuracy and
ultra-high inference speed.

Segmentation of multiple OARs, CTV, and PTV by RTP-Net
Given an input 3D image,weneed to jointly segment all existingOARs
(whether complete or partial), i.e., for delineation of the target
volume, including CTV and PTV. Figure 6 illustrates segmentation
results ofmultiple organs in each specific part, including head, chest,
abdomen, and pelvic cavity. These results further verify performance
of our RTP-Net.

Next, we evaluate performance of the target volume delineation
model (Fig. 2c) to contour the target volumes, including CTV and PTV.
In conventional clinical routine, PTV is generally obtained by dilating
the CTV according to specific guidelines. Considering that the con-
ventional dilated PTV are usually generated on specific software and
may contain some errors (e.g., expanding beyond the skin or over-
lapping with OARs) that require manual corrections, an automatically
generated PTV by RTP-Net can be quite convenient, save processing
time, and showhigh precisionwith verified annotations from radiation
oncologists. The delineation results of CTV and PTV for rectal cancer

Fig. 3 | The segmentation performance of the RTP-Net on whole-body OARs.
The Dice coefficients in segmenting OARs in the head (a), chest (b), abdomen (c)
parts, as well as those in the pelvic cavity part and whole body (d). The shadows in
four box-and-whisker plots give the Dice coefficients with a range from 0.8 to 1.0.
The first quartile forms the bottom and the third quartile forms the top of the box,

in which the line and the plus sign represent the median and the mean values,
respectively. The whiskers range from 2.5th to 97.5th percentile, and points below
and above the whiskers are drawn as individual dots. The detailed number for each
organ can be referred to Supplementary Fig. 1.
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are shown in Fig. 7 and Supplementary Table 4, using visual compar-
ison, accuracy, and efficiency. As shown in Fig. 7a, the CTV delineation
of the RTP-Net shows high performance compared with manual
ground truth. Moreover, no significant difference in terms of Dice
coefficient is found among the four segmentation methods (Fig. 7b).
But, when comparing the mean inference time of CTV delineation,
RTP-Net achieves the fastest delineation with less than 0.5 s
(0.40±0.05 s), while U-Net, nnU-Net, and Swin UNETR take
108.41 ± 19.38 s, 248.43 ± 70.38 s, and 62.63 ± 12.49 s, respectively
(Fig. 7c). A similar result is also found for the PTV delineation task, in
which the inference times of RTP-Net, U-Net, nnU-Net, and Swin
UNETR are 0.44 ± 0.05 s, 109.89 ± 19.61 s, 119.01 ± 34.06 s, and
92.65 ± 16.03 s, respectively. All these results (on CTV and PTV) con-
firm that the proposed RTP-Net can contour the target volume
(including CTV and PTV) in a precise and fast manner. Segmentation
results of OARs, aswell as target tumor, can be seen in Fig. 7d, in which

the PTVof rectal cancer is delineated and surrounded by nearbyOARs,
such as bag bowel, pelvis, and vertebra. Note that, in our method, the
boundary-aware attention map is adopted to avoid segmentation
failure of the upper and lower boundaries of the target volume, by
considering the surrounding OARs and their boundaries in our target
volumedelineationmodel. This could avoid the toxicity of radiation to
normal organs, and makes the following dose simulation and treat-
ment more precise.

So far, we have demonstrated that the proposed deep learning-
based segmentation framework can automatically, efficiently and
accurately delineate the OARs and target volumes. There are multiple
AI-based software tools that are commercially available and have been
used in clinical practices to standardize and accelerate the RT proce-
dures. They include atlas-based contouring tool for automatic
segmentation12,34–37, and knowledge-based planning module for auto-
matic treatment planning38–40. Here, we focus on exploring of AI-based

Fig. 4 | Visual comparison of segmentation performance of our proposed RTP-
Net,U-Net, nnU-Net, andSwinUNETR. Segmentation is performedoneightOARs,
i.e., (a) brainstem, (b) rib, (c) heart, (d) pelvis, (e) liver, (f) bladder, (g) brain, and (h)

rectum. The white circles denote accurate segmentation compared to manual
ground truth by four methods. The blue and yellow circles represent under-
segmentation and over-segmentation, respectively.
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automatic segmentation of target volumes and its integration into RT
workflows. These AI solutions have reportedly achieved comparable
performance withmanual delineations in segmentation accuracy, with
minor editing efforts needed12,35. However,majority of the studieswere
only evaluated on limited organs and data with specific acquisition
protocols, which affects their clinical applicability when used in dif-
ferent hospitals or for different target volumes. Two studies have tried
to address this challenge to improve the model generalizability41,42.
Nikolov et al. applied 3D U-Net to delineate 21 OARs in head and neck

CT scans, and achieved expert-level performance41. The study was
conducted on the training set (663 scans) and testing set (21 scans)
from routine clinical practice, and validation set (39 scans) from two
distinct open-source datasets. Oktay et al. incorporated the AI model
into the existing RT workflow, and demonstrated that AI model could
reducecontouring timewhile yielding clinical valid structural contours
for both prostate and head-and-neck RT planning42. Their study
involved 6 OARs for prostate cancer and 9 OARs for head-and-neck
cancer, where experiments were conducted on a set of 519 pelvic and

Fig. 5 |Quantitative comparisonof segmentationperformanceof fourmethods
in terms of Dice coefficient and inference time. a Dice coefficients of eight seg-
mentation tasks by our proposed RTP-Net, U-Net, nnU-Net, and Swin UNETR.
b Mean inference times in segmenting eight OARs by four methods. Both Dice
coefficients (a) and inference times (b) are shown in box-and-whisker plots. The
first quartile forms the bottom and the third quartile forms the top of the box, in
which the line and the plus sign represent the median and the mean values,
respectively. The whiskers range from 2.5th to 97.5th percentile, and points below
and above the whiskers are drawn as individual dots. The number of eight organs
can be referred to Supplementary Fig. 1. Statistical analyses in (a) and (b) are
performed using two-way ANOVA followed by Dunnett’s multiple comparisons
tests. Asterisk represents two-tailed adjusted p value, with * indicating p <0.05, **
indicating p <0.01, and *** indicating p <0.001. The p values of Dice coefficients in

(a) between RTP-Net and other three methods (U-Net, nnU-Net, and Swin UNETR)
are 0.596, 0.999, and 0.965 for brain segmentation, respectively; <0.001, 0.234,
and 0.001 for brainstem segmentation, respectively; 0.206, 0.181, and 0.183 for rib
segmentation, respectively; 0.367, 0.986, and 0.010 for heart segmentation,
respectively; 0.002, 0.999, 0.003 for liver segmentation, respectively; 0.991,
0.900, and 0.803 for pelvic segmentation, respectively; <0.001, 0.010, and 0.003
for rectum segmentation, respectively; 0.999, 0.827, and 0.932 for bladder seg-
mentation, respectively. All p values in (b) between RTP-Net and other three
methods in eight organs are lower than 0.001. c The heat map of the mean infer-
ence times in multiple segmentation tasks. Asterisk represents two-tailed adjusted
p value obtained in (b), with *** indicating p <0.001, showing the statistical sig-
nificance between RTP-Net and the other three methods.
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242 head-and-neck CT scans acquired at eight distinct clinical sites
with heterogeneous population groups and diverse image acquisition
protocols. In contrast to previous works, we evaluate howRTP-Net can
lead to generalized performance with extensive evaluation on 67 tar-
get volumes with varying volume sizes on a large-scale dataset of
28,581 cases (Supplementary Fig. 1). This large-scale dataset was
obtained from eight distinct publicly-available datasets and one local
dataset with varying acquisition settings and demographics (Supple-
mentary Table 5). Our proposed model demonstrates performance
generalizability across hospitals and target volumes, while achieving
superior levels of agreement with expert contours and also time sav-
ings, which can facilitate easier deployment in clinical sites.

In addition, a variety of deep learning-based algorithms have been
developed for automatically predicting the optimal dose distribution
and accelerating the dose calculation43,44. It is speculated that inte-
grating AI-assisted delineation and AI-aided dosimetric planning into
the RTP system would largely promote the efficiency of RT and reduce
workload in clinical practice, such as Pinnacle3 (PhilipsMedical Systems,
Madison, WI)45. The proposed RTP-Net was integrated into the CT-linac
system (currently being tested for clinical use approval), supporting the
All-in-One RT scheme, in which the auto-contouring results (reviewed
by radiationoncologists) areused for dosimetric treatmentplanning, to
maximize the dose delivered to the tumorwhileminimizing the dose to
the surrounding OARs. This AI-accelerated All-in-One RT workflow has
two potential merits: (1) AI-accelerated auto-contouring could remove
systematic and subjective deviation, and ensure reproducible and pre-
cise decision, with the contouring time controlled within 15 s, much
lower than the conventional contouring with 1–3hour(s) or more,
therefore, the total time for auto-contouring and manual editing by
clinicians is much shorter thanmanual annotation from scratch; (2) All-
in-One RT pipeline would be one-stop, incorporating multiple modules
(i.e., auto-contouring) andmaking patients free of multiple turnaround
waiting periods, and thus will greatly shorten the time of the whole
process from days to minutes32. Importantly, multiple clinical steps in
All-in-One RT workflow need human interventions and require the
presenceof dedicated staff (including radiationoncologist, dosimetrist,
and medical physicist) to make decision, so there is an urgent need to
improve the efficiency and save the turnaround time. In addition, in
some clinical scenarios, there are more patients than what a hospital
could accommodate, given thatmedical resources (e.g., RT equipment,

and professional staff) are relatively insufficient. In these cases, AI-
accelerated All-in-One RT workflow holds great potential to reduce
healthcare burden and benefit patients.

In conclusion, to overcome limitations of manual contouring in
RTP system, such as long waiting time, low reproducibility, and low
consistency, we have developed a deep learning-based framework
(RTP-Net) for automatic contouring of the target tumor and OARs in a
precise and efficient manner. First, we develop a coarse-to-fine fra-
mework to lower GPU memory and improve segmentation speed
without reducing accuracy based on a large-scale dataset. Next, by
redesigning the architecture, our proposed RTP-Net achieves high
efficiency with comparable or superior segmentation performance on
multiple OARs, compared to the state-of-the-art segmentation frame-
works (i.e., U-Net, nnU-Net, Swin UNETR). Third, to accurately deline-
ate the target volumes (CTV/PTV), the OAR-aware attention map,
boundary-aware attention map, as well as multi-dimension loss func-
tion are combined into the training of the network to facilitate
boundary segmentation. This proposed segmentation framework has
been integrated into a CT-linac system and is currently being tested for
clinical use approval32. And this AI-accelerated All-in-One RT workflow
holds great potential in improving the efficiency, reproducibility, and
overall quality of RT for patients with cancer.

Methods
Data
This study was approved by the Research Ethics Committee in Fudan
University Shanghai Cancer Center, Shanghai, China (No. 2201250-16).
A total of 362 images of rectal cancerwere collected.Written informed
consent was waived because of the retrospective nature of the study.
The rest 28,219 data in experiments came from publicly available
multi-center datasets (itemized in Supplementary Table 5), i.e., The
Cancer Imaging Archive (TCIA, https://www.cancerimagingarchive.
net/)46, Head and Neck (HaN) Autosegmetation Challenge 2015 from
Medical Image Computing and Computer Assisted Intervention
society (MICCAI)47,48, Segmentation of Thoracic Organs at Risk in CT
Images (SegTHOR) Challenge 201949, Combined (CT-MR) Healthy
Abdominal Organ Segmentation (CHAOS) Challenge 201950, Medical
Segmentation Decathlon (MSD) Challenge from MICCAI 201851, and
LUng Nodule Analysis (LUNA) 201652. All the CT images were non-
contrast-enhanced.

Fig. 6 |Multiple organs-at-risk (OARs) segmentation resultsusing theproposed
RTP-Net. a Brain, temporal lobe, eyes, teeth, parotid, mandible bone, larynx, bra-
chial plexus; (b) brain, brainstem; (c) heart, trachea, rib, vertebra; (d) lungs; (e) liver,
kidney, pancreas, gallbladder; (f) stomach, esophagus, spleen; (g) large bowel,

small bowel, bladder; (h) femur head, bone pelvis; (i) testis, prostate. All samples
are the CT images. In each sample, the left shows results in 2D view, and the right
shows 3D rendering of segmented OARs.
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Data heterogeneity. Supplementary Table 5 summarizes scanner
types and acquisition protocols, with patient demographics provided
in Supplementary Table 6. More details about datasets can be found in
the corresponding references.

Training and testing datasets. In this study, we include a total of
28,581 cases for 67 segmentation tasks, covering whole-body organs
and target tumors (Supplementary Fig. 1). In all the data, 23,728 cases
are used as the training set (~83%), and the rest 4,853 cases are used as
the testing set (~17%).

Annotation protocols. The ground truth of segmentation is obtained
from manual delineations of experienced raters. The details are
described as follows:
(1) Image data preparation. Large-scale images frommultiple diverse

datasets are adopted in this study (e.g., varying scanner types,
populations, and medical centers) to lower the possible sampling
bias. All CT images are in DICOM or NIFIT formats.

(2) Annotation tools. Based on raters’ preferences, several widely
used tools are adopted to annotate the target at pixel-level details
and visualize them, i.e., ITK-SNAP 3.8.0 (http://www.itksnap.org/
pmwiki/pmwiki.php) and 3D Slicer 5.0.2 (https://www.slicer.org/).
These tools support both semi-automatic andmanual annotation.
Semi-automatic annotation can be used for annotation

initialization and followed by manual correction. This strategy
can save the annotation efforts.

(3) Contouring protocol. For each annotation task, experienced
raters and a senior radiation oncologist are involved. The cor-
responding consensus guidelines (e.g., RTOG guidelines) or
anatomy textbooks are reviewed and a specific contouring
protocol is made after discussion. Annotations are initially
contoured by experienced raters and finally refined and
approved by the senior radiation oncologist. Below we list the
consensus guidelines.

Head dataset. A total of 27 anatomical structures are contoured. The
anatomical definitions of 25 structures refer to the Brouwer atlas53 and
neuroanatomy textbook54, i.e., brain, brainstem, eyes (left and right),
parotid glands (left and right), bone mandibles (left and right), lens
(left and right), oral cavity, joint TM (left and right), lips, teeth, sub-
mandibular gland (left and right), glottis, pharyngeal constrictor
muscles (superior, middle, and inferior), pituitary, chiasm, and bra-
chial plex (left and right). The contouring of temporal lobes (left and
right) refers to the brain atlas55.

Chest dataset. A total of 16 anatomical structures are contoured, in
which 8 anatomical structures are defined following the Radiation
Therapy Oncology Group (RTOG) guideline 110656 and the textbook of

a

b c

d CTVOARs PTV Merge

PTV

Vertebra
Bag bowel

Pelvis

Merge - 3D

PTV

Ground truthRTP-NetnnU-NetU-NetRaw image

CTV

Swin UNETR

Fig. 7 | The performance of target volume delineation by the proposed RTP-
Net, compared with U-Net, nnU-Net, and Swin UNETR. a Delineation results of
the clinical target volume (CTV) and planning target volume (PTV) by the proposed
RTP-Net, U-Net, nnU-Net, and Swin UNETR, labeled by red color. (b) Dice coeffi-
cients and (c) inference times of fourmethods in target volume delineation, shown
in box-and-whisker plots. The first quartile forms the bottom and the third quartile
forms the top of the box, in which the line and the plus sign represent the median
and themean values, respectively. Thewhiskers range fromminimum tomaximum
showing all points. Statistical analyses in (b) and (c) are performed using two-way

ANOVA followed by Dunnett’s multiple comparison tests, with n = 10 replicates per
condition. The two-tailed adjusted p values of Dice coefficients in (b) between RTP-
Net and other three methods (U-Net, nnU-Net, and Swin UNETR) are 0.420, 0.999,
and0.166 forCTV segmentation, respectively, while0.951, 0.859, and0.832 for PTV
segmentation, respectively. All two-tailed adjustedp values of inference times in (c)
between RTP-Net and other threemethods are lower than 0.001, indicatedwith ***.
(d) Overview of the organs-at-risk (OARs) and target volumes. The segmentation
results of PTV and neighboring bag bowel, vertebra, and pelvis are marked in red,
green, pink, and blue, respectively.
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cardiothoracic anatomy57, i.e., heart, lungs (left and right), ascending
aorta, esophagus, vertebral body, trachea, and rib. Breast (left and
right), breast_PRV05 (left and right), mediastinal lymph nodes, and
humerus head (left and right) are contoured referring to the RTOG
breast cancer atlas58. Moreover, the contouring of NSCLC follows
RTOG 051559.

Abdomen dataset. Ten anatomical structures are contoured (i.e.,
bowel bag, gallbladder, kidney (left and right), liver, spleen, stomach,
pancreas, colon, and duodenum) referring to RTOG guideline60, its
official website for delineation recommendations (http://www.rtog.
org), and Netter’s atlas61.

Pelvic cavity dataset. Nine anatomical structures are contoured
referring to RTOG guideline60 and Netter’s atlas61, including femur
head (left and right), pelvis, bladder (male and female), rectum, testis,
prostate, and colon_sigmoid.

Whole body dataset. The structures of the spinal canal, spinal cord,
and external skin are also contoured referring to RTOG guideline
110656.

Tumor dataset. The contours of the CTV and PTV mainly refer to the
RTOG atlas62 and AGITG atlas63.

Image pre-processing
Considering the heterogeneous image characteristics from multiple
centers, data pre-processing is a critical step to normalize data.

Configuration of target spacing. In the coarse-level model (low
resolution), a large target spacing of 5 × 5 × 5mm3 is recommended to
obtain global location information, while, in the fine-level model (high
resolution), we apply a small target spacing of 1 × 1 × 1mm3 to acquire
local structural information.

Image resampling strategy. In the training of the coarse-level model,
the nearest-neighbor interpolation method is recommended to
resample the image into the target spacing. In the training of the fine-
level model, the nearest-neighbor interpolation and linear interpola-
tion methods can be used for the resampling of anisotropic and iso-
tropic images, respectively, to suppress the resampling artifacts.

Configuration of patch size and batch size. Patch size and batch size
are usually limited by the given graphics processing unit (GPU) mem-
ory. For the segmentation of common organs, the patch size of
96 × 96 × 96 is recommended for both the coarse-level model and the
fine-levelmodel. For segmentationof largeorgans, such aswhole-body
skin, the patch sizes of the coarse-level model and the fine-level model
are 96 × 96 × 96 and 196 × 196 × 196, respectively. The mini-batch pat-
ches with fixed size are cropped from the resampled image by ran-
domly generating center points in the image space.

Intensity normalization. Patches with target size and spacing could be
normalized to the intensity of [−1, 1], which can help the network
converge quickly. For CT images, the intensity values are quantitative,
which reflects physical property of tissue. Thus, fixed normalization is
used, where each patch is normalized by subtracting the window level
and then being divided by the half window width of the individual
organ. After normalization, each patch is clipped to the range of [−1, 1]
and then fed to the network for training.

Training settings
Our proposed framework allows setting individual learning rates and
optimizer configurations based on specific tasks.

Learning rate. It is used to refine the network, where the learning rate
could reduce from a large initial value to a small value with con-
vergence of the network.

Optimizer. The Adam optimizer is used with adjustable hyper-
parameters including momentum, decay, and betas.

Data augmentation. It is used to improvemodel robustness, including
rotation, scaling, flipping, shifting, and adding noise.

Training procedure. To ensure robustness to class imbalance, two
sampling schemes are adopted to generate mini-batches from one
training image, including global sampling and mask sampling. Speci-
fically, the global sampling scheme randomly generates center points
in the entire foreground space, and the mask sampling scheme ran-
domly generates center points in the regions of interest (ROIs). Global
sampling is recommended for the coarse-level model to achieve the
goal of locating the target ROI, and mask sampling is recommended
for the fine-level model to achieve the goal of delineating the target
volume accurately.

Loss functions. The basic segmentation loss functions, such as Dice,
boundary Dice, and focal loss function, can be used to optimize the
network. The multi-dimensional loss function is defined as the adap-
tive Dice loss function to enforce the network to pay attention to the
boundary segmentation, especially the boundary of each 2D slice:

lossadaptive = λ1 × loss3D + λ2 ×
Xn

i = 1
λiadaptive × lossi2D ð1Þ

In this equation, loss3D refers to 3D Dice loss and λ1 is its weight, while
lossi2D refers to the 2D Dice loss of the i-th 2D slice and λiadaptive is its
adaptive weight calculated from the performance of this 2D slice; λ2 is
the weight of 2D Dice loss. More detailed definitions of 3D Dice loss
and 2D Dice loss are given in the following two equations:

loss3D = 1� 2 ×pred3D × target3D
pred3D + target3D

ð2Þ

lossi2D = 1� 2 ×predi
2D × target

i
2D

predi
2D + target

i
2D

ð3Þ

In these two equations, pred3D denotes the 3D prediction and target3D
denotes its manual ground truth, while predi2D denotes the 2D pre-
diction of the i-th 2D slice and targeti

2D denotes its manual ground
truth. The settings of the hyper-parameters go as follows: λ1 is set as
0.7, and λ2 is set as 0.3. Besides, λadaptive is an adaptive weight
calculated from the following equation:

λiadaptive = 1�
2×predi

2D × targeti2D
predi

2D + targeti2D

 !2

ð4Þ

Except for the multi-dimensional loss, the attention mechanisms
(including the boundary-aware attention map and the OAR-aware
attention map) are also specifically designed for the target volume
delineation tasks. Detailed information is described in the Results and
Discussion section.

Network component: VB-Net
In our framework, VB-Net is a key component for multi-size organ
segmentation. The VB-Net structure is composed of input block, down
block, up block, and output block (Supplementary Fig. 3). The down/
up blocks are implemented in form of residual structures, and the
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bottleneck is adopted to reduce the dimension of feature maps. In
each down/up block, the number of bottlenecks is available for the
user to assign. Moreover, the skip connection is needed at each reso-
lution level. Especially, VB-Net can also be customized to process large
3D image volumes, e.g., whole-body CT scans. In the customized VB-
Net, an additional down-sampling operation before feeding the image
to the backbone and an additional up-sampling operation after gen-
erating the segmentation probability maps are added to reduce GPU
memory cost and enlarge the receptive field of the VB-Net at the same
time. For these large organs with high-intensity homogeneity, the
enlarged receptive field of the customized VB-Net contributes to focus
on the boundaries with their surrounding low contrast organs.

Inference configuration
The framework is implemented in PyTorchwith one Nvidia Tesla V100
GPU. 10% of the training set is randomly selected as validation in each
task, with its loss computed at the end of each training epoch. The
training process is considered converged if the loss stops decreasing
for 5 epochs.Also, the connected-component-basedpost-processing is
supplied to eliminate spurious false positives by picking the largest
connected component in the organ segmentation tasks or removing
small connected components in the tumor segmentation tasks.

Statistical analysis
For continuous variables that were approximately normally dis-
tributed, they were represented as mean ± standard deviation. For
continuous variables with asymmetrical distributions, they were
represented as median (25th, 75th percentiles). To quantitatively com-
pare the segmentation performance (including Dice coefficients and
inference times) of RTP-Net with other three methods (including U-
Net, nnU-Net, and Swin UNETR), statistical analyses were performed
using two-way ANOVA, followed by Dunnett’s multiple comparison
tests. Two-tailed adjustedp valueswereobtained and representedwith
asterisk, with * indicating p <0.05, ** indicating p < 0.01, and *** indi-
cating p <0.001. All statistical analyses were implemented using IBM
SPSS 26.0.

Box-and-whisker plots were used to qualitatively compare the
segmentation performance (including Dice coefficients and inference
times)of RTP-Netwith other threemethods (includingU-Net, nnU-Net,
and Swin UNETR), which was plotted by GraphPad Prism 9. Visualiza-
tion of segmentation results was generated with ITK-SNAP 3.8.0. All
figures were created by Adobe Illustrator CC 2019.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The OAR-related images (N = 28,219) that support experiments in this
paper came from the publicly available multi-center datasets, i.e., The
Cancer Imaging Archive (TCIA, https://www.cancerimagingarchive.
net/), Head and Neck (HaN) Autosegmetation Challenge 2015 (https://
paperswithcode.com/dataset/miccai-2015-head-and-neck-challenge),
Segmentation of Thoracic Organs at Risk in CT Images (SegTHOR)
Challenge 2019 (https://segthor.grand-challenge.org/), Combined (CT-
MR)HealthyAbdominalOrganSegmentation (CHAOS)Challenge 2019
(https://chaos.grand-challenge.org/), Medical Segmentation Dec-
athlon (MSD) Challenge 2018 (http://medicaldecathlon.com/), and
LUng Nodule Analysis (LUNA) 2016 (https://luna16.grand-challenge.
org/). The rest tumor-related data (N = 362) were obtained from Fudan
University Shanghai Cancer Center (Shanghai, China), where partial
data (i.e., 50 cases) are released together with the code, with the per-
mission obtained from respective cancer center. The full dataset are
protected because of privacy issues and regulation policies in cancer
center.

Code availability
The related code is available on GitHub (https://github.com/simonsf/
RTP-Net)64.
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