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Advances in artificial intelligence (AI) and com-
puter vision hold great promise for assisting
medical staff, optimizing healthcare workflow,
and improving patient outcomes. The COVID-19
pandemic, which caused unprecedented stress
on healthcare systems around the world, pre-
sented what seems to be a perfect opportunity
for AI to demonstrate its usefulness. However, of
the several hundred medical imaging AI models
developed for COVID-19, very few were fit for
deployment in real-world settings, and some
were potentially harmful. This review aims to
examine the strengths and weaknesses of prior
studies and provide recommendations for dif-
ferent stages of building useful AI models for
medical imaging, among them: needfinding,
dataset curation, model development and eva-
luation, and post-deployment considerations. In
addition, this review summarizes the lessons
learned to inform the scientific community
about ways to create useful medical imaging
AI in a future pandemic.
The COVID-19 pandemic arose during one of the most innovative
periods for biomedical data science, chiefly led by achievements in
artificial intelligence (AI), which inspired many efforts globally to
leverage digital health data and machine learning techniques to
address challenges posed by the pandemic. However, of the innu-
merable COVID-19-related machine learning efforts developed during
the pandemic’s most critical time, almost all failed to materialize
demonstrable value, andworse, somewere potentially harmful1–5. That
these failures occurred despite the AI and data science community’s
worldwide united attempt to generate, aggregate, share and utilize
large volumes of COVID-19-related data, ranging from simple dash-
boards, to models for populational-wide risk prediction6,7, early
detection and prognostication8–12, severity scoring13–15, long-term out-
come and mortality predictions16–19, is alarming.

Given the sustainedbelief in thepromiseofAI formedical imaging
and the undelivered promises of machine learning to help during the
pandemic, it is essential to summarize the lessons that can be learned

from this collective experience to prepare for the future. The purpose
of this work is to investigate howwe could better position ourselves to
leverage artificial intelligence for medical imaging to be useful in a
future pandemic. Based on current literature, we provide an evidence-
based roadmap for how machine learning technologies in medical
imaging can be used to battle ongoing and future pandemics. Speci-
fically, we focus in each section on the four most pressing issues,
namely: needfinding, dataset curation, model development and sub-
sequent evaluation, and post-deployment considerations (Fig. 1). For
each section, we highlight lessons that can be learned from the
shortcomings of prior studies and provide recommendations and
guidelines to address them.

Needfinding and planning
“At the root of designing useful tools is the concept of fulfilling a true
need20”. However, this needs-first principle may sometimes be lost in
the process when developing AI models for medicine and healthcare.
Likewise, the lack of alignment and understanding of the end user’s
needs has contributed significantly to the limited adaptationofCOVID-
19 AI tools in real-world settings. Instead of consulting clinicians to
identify a true need, many COVID-19models were developed based on
the availability of datasets. For instance, many medical imaging AI
models were developed specifically for COVID-19 detection using CT
and CXR, even though several radiology societies have suggested that
imaging tests should not be used independently to diagnose COVID-
1921,22. Even if these models can achieve high evaluation metrics, their
utility is limited in the absence of a genuine clinical need. Therefore, it
is crucially important for AI teams to work closely with clinicians and
conduct impact analysis on workflows to identify a true need in
healthcare settings that can be fulfilled by automation.

Once a clinical need is identified, it is just as essential to determine
a specific “action” to pair with the machine learning model’s output to
address this clinical need. Mostmedical image AI models are currently
evaluated based on how closely the model’s output matches recorded
diagnoses or outcomes23, instead of what matters most to healthcare
workers and patients - the ability to bring favorable change in care and
improve patient outcomes via a specific action. For example, a COVID-
19 model capable of identifying patients at high risk of progression to
severe COVID-19 can be paired with the action of administering anti-
viral therapies such as Ritonavir and Remdesevir24. Similarly, a model
that tracksCOVID-19 progressionusing time-seriesmedical images can
be paired with the action of discharging the patient or requiring sup-
plemental oxygen.

By determining a “decision-action” pair23, AI developers can
instead evaluate the model’s utility based on the estimated net benefit
in the context of the clinical need (see Model Building and Evaluation
section). In a healthcare system, many factors can influence the best
course of action, the net incremental value of taking this action, and
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whether the action is taken. Therefore, there is a need to clearly define
the care pathway for the patient, including the specifics of who is
interpreting the model’s output, who is taking action, and how many
patients this person can effectively take action for, to determine the
optimal decision-action pair. AI developers should continue to consult
physicians and healthcare providers to determine the decision-action
pair and to estimate the net utility of the action.

It is also crucial for AI developers to thoroughly consider the
real-world environment their AI models are intended to deploy at.
Many factors at the deployment site, including patient demo-
graphics, disease prevalence, clinical workflows, and availability of
relevant software or infrastructures, can significantly affect the
usability and reliability of the AI model. Take, for example, an AI
model that is intended to assist radiologists by highlighting abnor-
mal regions of the medical image. Without infrastructures to inte-
grate this model into the clinicians’ workflow or proper software to
overlay the model’s predicted abnormal regions on the original
image, the model’s utility is greatly limited. Furthermore, deep
learning models are known to be sensitive to distribution shifts,
which means that a model’s performance can be significantly
impacted if factors at the site of deployment cause input data to
deviate from the model’s training data. For instance, models devel-
oped without considering patient position and laterality for chest
x-rays or slice thickness and protocol for CT scans at the deployment
site might result in an unexpected drop in performance and limited
utility. Hence, just as important as identifying a genuine clinical need
and determining a prediction action pair, carefully considering
aspects at the site of deployment can oftenmitigate unexpected and
undesired outcomes.

Data curation
Curating representative and high-quality data is crucial for building
useful machine-learning models. Many medical image datasets were
publicly released to encourage other researchers to build COVID-19 AI
models. However, a recent systematic review revealed that the
majority of more than a hundred datasets the authors identified did
not pass their assessments for risk of bias25. These biases can cause the
machine learning models to learn spurious correlations between pre-
dictors and outcomes, and fail to generalize when deployed in hospi-
tals and clinics. For instance, patients with more severe cases of
COVID-19 typically get their chest X-rays acquired supine or recum-
bent in anterior-posterior [AP] projection, whereas healthier patients
get imaged while upright (posterior-anterior [PA] projection). Building
amodel using a dataset that includes images of patients in both AP and
PA projections can cause spurious correlations in predicting COVID-19
severity, long-term outcomes, or mortality based on the image pro-
jection rather than on semantic image features. These unexpected
correlations led to “shortcut learning26”, which undermined the mod-
el’s performance andmight have been anticipated if amedical imaging
specialist had been part of the multidisciplinary team designing
the model.

One of the most important yet challenging aspects of building
medical imaging AImodels is curating large-scale datasets with images
from various healthcare settings. Without large-scale data from mul-
tiple heterogeneous data sources, models can be biased towards
specific patient demographics or overfit certain imaging devices’
characteristics, leading to lower performance when deployed at a new
institution. However, annotating medical images is time-consuming
and cost-prohibitive at scale. Thus, most publicly available COVID-19

Fig. 1 | The four stages of building useful medical imaging AI models for
emerging infectious diseases. We provide recommendations and guidelines
for the four stages of medical imaging AI development process in each section of
this manuscript, namely: needfinding, dataset curation, model development and

subsequent evaluation, and post-deployment considerations. Each stage of
the development process should be considered when building medical imaging AI
for emerging infectious diseases.
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medical image datasets that met the criteria for proper risk and bias
assessment are relatively small, with only several hundred labeled
images25. Furthermore, datasets that contain more than a few thou-
sand imaging studies tend to be limited to a particular healthcare
system or country27,28, likely due to the lack of a standardized strategy
to preserve patient privacy when sharing data. To improve model
performance and generalizability, many studies splice together data
from multiple sources to create “remix datasets”. While this might
seem like a promising solution, models that appear promising in the
course of development can have lower performance when
deployed. For example, the machine learning model might learn to
identify the hospital instead of COVID-19 based on pixel distribution of
the hospitalʼs imaging hardware or the hospitalʼs watermark and may
predict COVID-19 solely based on identifying images from hospitals
with high COVID-19 prevalence. Additionally, different datasets might
have different standards for annotation (i.e., PCR test results vs. expert
opinion) or different tolerance for inter-rater variability, which can
increase uncertainty for the model. Therefore, ensuring label integrity
and standardization between different sites and datasets is essential.

Data-sharing frameworks that standardize or account for image
acquisition, de-identification, pre-processing, annotation, and quality
assurance fromdifferent hospitals while preserving patient privacy are
critical for developing useful models. One notable example is RSNA’s
RICORD29, a public COVID-19 databasewithmedical images assembled
from sites worldwide. This effort clearly defineddata inclusion criteria,
developed a data de-identification protocol (RSNA anonymizer), and
utilized a cloud-based data annotation tool (MD.ai) to standardize data
sharing while preserving patient privacy. Furthermore, multiple radi-
ologists were involved in the annotation process to ensure label
integrity and ascertain that labels were chosen with clinically-driven
goals. Additionally, RICORD requires all sites to provide a detailed
description of the data, imagingmetadata for each imaging exam, and
relevant patient medical data. RICORD is now hosted on the Medical
Imaging and Data Resource Center (MIDRC), a linked-data commons
explicitly built with AI in mind. Efforts such as RICORD and MIDRC
enable easy access to large-scale multi-institutional medical images
along with standardized and high-quality annotations, thereby pro-
viding more diverse and better representations of patient demo-
graphic and imaging acquisition methodology, which may help
mitigate potential confounders.

Model building and evaluation
Thorough and proper evaluation of AI models before deployment is
crucial. Without evaluations in different settings and populations,
irrational confidence in model’s performance can follow, which can
have deleterious consequences when themodel is deployed. On top of
evaluating models using heterogeneous data from multiple sites and
representative data that the models are expected to ingest during
deployment, it is also vital to evaluate AI models across different
demographic groups.Without representative data or the right training
objective, AImodels canbebiased against specificprotected attributes
such as age, gender, and race30. For example, in CheXclusion, the
authors showed that state-of-the-art deep learning models for Chest
X-rays are biased to demographic attributes31. In addition, Banerjee
et al. have shown that medical image AI models can be explicitly
trained to predict self-reported races with high accuracy—something
even medical experts cannot32. This indicates that medical imaging
models have the potential to use spurious correlations between
patient demographics and the outcome of interest as shortcuts for

prediction,whichwill render theprediction unreliableor evenoutright
harmful. Therefore, methods such as true positive rates, statistical
parity, group fairness, and equalized odds should always be con-
sidered for detecting algorithmic bias before deployment.

If algorithmic bias is detected for a model, AI developers should
collaborate with clinicians to identify the sources of bias and make
adjustments to improve the model33. Leveraging large-scale data from
multiple sources has been demonstrated as an effective strategy for
combating the risk of algorithmic bias31. However, sharing data across
different hospitals while preserving patient privacy might not always
be feasible. Alternatively, Obermeyer et al. found that biases are
sometimes attributed to label choice since the labels are often mea-
sured with errors that reflect structural inequalities. Specifically, the
model in their study uses health cost as a proxy for health severity, and
since historical data have exhibited reduced healthcare spending on
Black patients, the model learned to be biased against Black patients
who are as sick aswhite patients. Insteadofmodifying themodel or the
input data, changing the labels used to train the model could address
algorithmic bias in certain situations34. Other strategies to address
model bias35 include (1) pre-processing approaches such as over-
sampling of minority groups36, (2) in-processing approaches that add
explicit constraints in the loss function to minimize performance dif-
ference between subgroups37,38, and (3) post-processing approaches,
such as equalized odds to correct the outputs based on the individual’s
group39–41.

In the “Needfinding and planning” section, we emphasized the
importance of determining utility via themodel’s decision–action pair.
Knowing the specific actions associated with a model’s outputs allows
us to determine the model’s utility and tradeoff. Unfortunately, most
studies chosemodels based on evaluationmetrics such as AUROC and
accuracy, which are statistical abstractions that do not directly relate
to improvements in medical care42. Instead, models should also be
evaluated based on the estimated net incremental value or utility of
taking specific actions due to the model’s prediction. This allows AI
developers to determine directly if a particular action based on a
model’s output would bring more benefit or harm to the patient. One
way to define utility is by estimating the net dollar value of taking a
specific action based on the model’s prediction, including costs of
intervention, allocation of resources, and future patient health
expenses. Once the utility is defined, models can be evaluated using
the indifference curve—a line on the ROC plot that shows combina-
tions of sensitivity and specificity that result in the same utility23. Not
only should the indifference curve be used to choose the operating
point of amodel, it should also be used to choose themodel to deploy
in hospitals and clinics. As stated by Irwin and Irwin, “ROC curves show
what is feasible, indifference curves show what is desirable. Together
they showwhat should be chosen43”. It isworthnoting that amodel can
have lower AUROC, and yet an operating point with higher utility.
Other studies have shown that it is possible to incorporate utility
directly into model building and thus achieve tighter alignment to
patient outcomes44. While a study of net incremental value is not
necessary for AI publications, it is crucial to consider the net utility
when comparing models for deployment in real-world settings.

Although very few COVID-19 AI models failed to provide clinical
value solely due to their learning strategy, it is still important to
highlight learning strategies that could significantly benefit model
developments for future efforts. In situations where frameworks have
been set up to share labeled data across sites, we advocate that data
providers also share pertinent medical information to encourage the
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development of multimodal fusion models. It has been repeatedly
shown that patient medical history and laboratory data are typically
required to enable physicians to interpret medical images in the
appropriate clinical context45,46. For instance, many medical char-
acteristics have been linked to COVID-19 severity and long-term
outcomes47. Thus, building machine learning models without these
patient medical records could limit the capabilities of an AI model. In
fact, a systematic review has shown that medical image models that
fuse data from multiple modalities generally lead to increased per-
formancecompared to the performanceof singlemodalitymodels48–51.
Similarly, several COVID-19 medical imaging models incorporating
clinical variables have observed improvement in performances over
imaging-only models8,11.

If the appropriate data-sharing framework is unavailable, models
can still be trained across multiple institutions without explicitly
sharing data using federated learning - a collaborative machine learn-
ing paradigm. Instead of bringing data to themachine learningmodel,
the model is distributed and trained within the firewalls of each
institution52. Existing studies have already demonstrated that a feder-
ated learning framework can lead to nearly the same performance as
that of models that use centralized data or ensembling strategies53,54.
More recently, blockchain-based frameworks allowed decentralized
learning without a central coordinator, promoting equality in training
multicentric models55. Several software frameworks for enabling fed-
erated learning in real-world settings already exist, including NVIDIA
CLARA56, Intel OpenFL57, and Flower58. Furthermore, federated eva-
luation platforms, such as MLPerf59, allow developers to evaluate the
generalizability of their models across multiple sites while preserving
patient privacy.

While an abundance of medical images exists in most healthcare
institutions, training machine learning models using the traditional
supervised paradigm requires annotations by medical experts and
thus is cost-prohibitive at scale. Self-supervised pre-training strategies
allow machine learning models to obtain supervisory signals from the
data without explicit labels, thus allowing models to learn from all
available data even if some are not annotated60. Furthermore, after the
self-supervised pre-training stage, these models can be fine-tuned for
many downstream tasks with limited number of labels. Studies have
shown that medical image models pre-trained using self-supervised
learning are robust to distribution shift and require fewer labels during
supervised fine-tuning61,62. Recent studies have also demonstrated the
possibility of multimodal self-supervised learning for medical images
by leveraging the corresponding radiology reports, and have demon-
strated superior performance using only 1% of the training labels
compared to supervised models63,64. Yan et al. have further proposed
training self-supervised models with data from multiple healthcare
centers using Federated Learning and have shown improvement in
robustness and performance over models trained using data from a
single institution65.

Explainable artificial intelligence (AI) techniques, including sal-
iency maps, generative adversarial networks (GANs), and counter-
factual explanations (CE), can be used to identify spurious correlations
and confounders the model relies on to make predictions. For exam-
ple, by using saliency maps and GANs, DeGrave et al. found that
models rely on regions outside of the lung fields, such as laterality
markers, to make predictions on COVID-19 datasets. While prior work
has argued that saliency should not be used for explanation66, coun-
terfactual explanation techniques have been shown to reveal learned
correlations to the model’s prediction. By applying minimal but

meaningful perturbations of an input image to change the original
prediction of a model, CEs can provide explanations that are under-
standable by humans. In addition to detecting spurious correlations,
explainable AI techniques can also reveal human-subliminal signals
about the disease and give us a better chance of addressing challenges
posed by the pandemic. Lastly, slice discovery methods67,68, such as
Domino69, can identify and describe semantically meaningful subsets
of data on which the model performs poorly, thereby revealing spur-
ious correlations.

Post deployment considerations
Even after a model is thoroughly evaluated and deemed suitable for
deployment, several challenges can still impact the model’s ability to
bring favorable change for patients post-deployment. One such chal-
lenge is post-deployment distribution shift. Most medical image
models are trained on a static dataset curated from a specific label
definition, patient population, timeframe, scanner type, and protocol.
However, real-time changes in hospital workflowor disease prevalence
may alter the model’s input data distribution, causing models’ per-
formance to degrade. There are two major types of distribution shift:
concept shift and data shift21. Concept shift includes the arrival of a
novel class or class evolution, such as bacterial pneumonia vs COVID-
19pneumonia.Data shift canhavemany causes, includingnew imaging
modalities, new versions of software, or adjustments to data acquisi-
tion procedures. For example, if a COVID-19model is trained to predict
patient mortality with pre-vaccination COVID-19 patient data, it would
dangerously overestimate the risk of death in real-world data during
deployment after the vaccine was widely distributed. One way to
detect distribution shifts is by monitoring the model’s performance
longitudinally and checking for statistically significant performance
drops. While this method effectively detects label shifts, it is challen-
ging to implement in practice as it requires periodic data annotation. A
more tangible approach is based on detecting shifts in the input data
distribution. This can be done bymeasuring differences between real-
world and training data using two-sampled-test-based statistical
approaches70. Alternatively, methods for modeling predictive uncer-
tainty, such as Prior Networks71, can beused to detect data shifts in real
time. Hospitals should establish protocols and procedures for adjust-
ing the model as soon as a distribution shift is detected to maintain
optimal model performance and patient safety.

Another challenge is clearly outlining the role of physicians when
working with AI tools. Some existing literature has argued that the role
of radiologists in the AI era is to become educated consumers of AI
tools by identifying clinical needs for AI, evaluating AI tools before
deployment, and maintaining their expertise by avoiding overreliance
on technology72–74. Furthermore, it is crucial to educate clinicians
about the limitations of AI. This allows clinicians to help identify
potential distribution shifts, either by reporting conflicting diagnoses
between that made by the model and that made by themselves or by
noting changes in their medical practice75. Hospitals should also make
sure concerns about an AI tool’s functionality or factors that can
potentially change data or label distributions can be easily reported by
clinicians. In addition, educating radiologists on the limitations of AI
can prevent them from blind acceptance of the AIʼs output. Over-
reliance on AI tools can diminish the physician’s perspective and
diagnostic skills. Furthermore, a machine learning tool is typically
limited to the few diagnoses it is intended for. It is, therefore, still
important for radiologists to look for other abnormalities in the image
that the model cannot detect. In other words, clinicians should still
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make their independent diagnoses and use AI tools only as supple-
ments or aids.

Conclusions
While advancements in AI for medical imaging hold great promise in
improving healthcare, many overlooked aspects of the model devel-
opment process and use lifecycle have hindered large-scale deploy-
ment during the most critical time of the COVID-19 pandemic.
Independent of the choice of learning strategies or model archi-
tectures, many COVID-19 AI models were unfitting for use due to
shortcomings in needfinding, data curation, model evaluation, and
post-deployment considerations.Weurge researchers to bemindful of
the aforementioned potential biases and limitations currently hinder-
ing the deployment of medical imaging AI models. In addition, con-
siderable planning is necessary to prepare for future health crises,
including developing data-sharing frameworks and implementing AI
deployment infrastructures in hospitals. We hope this review will
inform the data science and healthcare community about strategies
for building useful medical imaging AI models for future infectious
diseases.
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