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In-sensor reservoir computing system for
latent fingerprint recognition with deep
ultraviolet photo-synapses and
memristor array

Zhongfang Zhang1, Xiaolong Zhao 1 , Xumeng Zhang 2 , Xiaohu Hou1,
Xiaolan Ma1, Shuangzhu Tang2, Ying Zhang1, Guangwei Xu1, Qi Liu2 &
Shibing Long 1

Detection and recognition of latent fingerprints play crucial roles in identi-
fication and security. However, the separation of sensor, memory, and
processor in conventional ex-situ fingerprint recognition system seriously
deteriorates the latency of decision-making and inevitably increases the
overall computing power. In this work, a photoelectronic reservoir com-
puting (RC) system, consisting of DUV photo-synapses and nonvolatile
memristor array, is developed to detect and recognize the latent fingerprint
with in-sensor and parallel in-memory computing. Through the Ga-rich
design, we achieve amorphous GaOx (a-GaOx) photo-synapses with an
enhanced persistent photoconductivity (PPC) effect. The PPC effect, which
induces nonlinearly tunable conductivity, renders the a-GaOx photo-
synapses an ideal deep ultraviolet (DUV) photoelectronic reservoir, thus
mapping the complex input vector into a dimensionality-reduced output
vector. Connecting the reservoirs and a memristor array, we further
construct an in-sensor RC system for latent fingerprint identification. The
systemmaintains over 90% recognition accuracy for latent fingerprint within
15% stochastic noise level via the proposed dual-feature strategy. This work
provides a subversive prototype system of DUV in-sensor RC for highly
efficient recognition of latent fingerprints.

Fingerprint recognition is the preferred technique in biometrics which
measures and analyzes the characteristics of human identity1–3. Inmost
cases, latent fingerprints are not visible to the naked eye and require
visualization4,5. The extraction and recognition of fingerprints play
critical roles in personal identification, criminal investigation, and
biometric security6–8. The quasi-zero background on the Earth’s sur-
face and the strong absorption of deep ultraviolet (DUV) waveband by
organic residues endowDUV lightwith apromising capability todetect

and recognize latent fingerprints9–11. Nevertheless, the conventional
ex-situDUVfingerprint recognition systems feature separated sensors,
memory, and processor, which seriously deteriorate the latency of
decision-making and inevitably increase the overall computing power
(Fig. 1a)12–14. In addition, these systems utilize additional optical filters
for charge-coupled devices (CCDs) and complementary metal-oxide-
semiconductor (CMOS) image sensors, increasing the complexity of
the entire system for latent fingerprint identification15–17. Therefore, to
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simplify the system construction and enhance the processing effi-
ciency of the DUV fingerprint recognition system, it is urgent to
develop a new principle device and new computing architecture.

Inspired by the biological sensory systems, neuromorphic archi-
tectures bring innovative thoughts to improve the efficiency of DUV
fingerprint recognition because of their in-sensor and in-memory
computing merits, relying on artificial neural network (ANN) compu-
tational models. Among various ANN models, reservoir computing
(RC) only needs to train the output layer of the network and is
demonstrated to be suitable for processing complex spatiotemporal
data with the lowest computational cost18. Recently, emerging devices
have been developed for RC system to condense or process spatio-
temporal information with higher energy efficiency beyond CMOS
technology19–21. However, these RC techniques are based on electrical
stimuli and thus require complex circuits to support the information
transmission between the sensor and RC system, which induces extra
energy consumption and latency. Fortunately, a promising strategy of
in-sensor RC based on optoelectronic devices has been proposed for
temporal sensory information processing and verified with the assis-
tance of system simulation22,23. In order to fulfill the in-sensor applica-
tions, the optoelectronic devices should be marked by the properties
of nonlinearity response, short-term memory (STM), multiple states
and stability. Nevertheless, the waveband utilized in aboveworks is not
suitable for DUV detection. Ultra-wide bandgap semiconductors with
their bandgap immediately corresponding to the DUV region, provide
subversive scheme for filter-free DUV sensors24–28. Especially, gallium
oxide is currently regarded as the most promising material when
compressively considering the DUV sensitivity, physicochemical sta-
bility, workability, availability, and cost29–31. Moreover, its amorphous
counterpart (a-GaOx) exhibits obvious persistent photoconductivity
(PPC) effect32,33, catering to the implementation of DUV in-sensor RC
system. Therefore, designing an a-GaOx device with enhanced PPC
effect and performing system demonstration is crucial to promote the
DUV in-sensor RC system for latent fingerprint recognition.

In this work, we constructed a DUV in-sensor RC system based
on photo-synapses and memristor array, mimicking the biological
visual systems, for the highly efficient recognition of latent finger-
prints. By Ga-rich component design, we implemented a-GaOx DUV
sensors with enhanced PPC effect that illustrates nonlinearly adjus-
table conductivity, enabling the synaptic features, such as paired-
pulse facilitation (PPF) and STM. These features ensure the a-GaOx

photo-synapse as an expected DUV photoelectronic reservoir, which
maps the complex input vector into a dimensionality-reduced output
vector. Besides, the analogmemristor array stores the weights of the
output layer and enables parallel in-memory computing of feature
outputs from the photo-synapses. As a result, we demonstrate the
inputting, mapping, featuring, training, and recognition of finger-
print images based on a hardware DUV in-sensor RC system. By
adopting a dual-feature strategy, the recognition accuracy of fin-
gerprint images maintains over 90% even under 15% noise level,
demonstrating the robust anti-noise characteristics of the system.
This DUV in-sensor RC system will make a difference for highly effi-
cient latent fingerprint recognition in the future for criminal inves-
tigation and security.

Results
DUV in-sensor RC for latent fingerprint recognition
Inspired by the biological visual systems (Fig. 1b), a DUV in-sensor
RC system was configured for high-efficiency latent fingerprint
recognition based on photo-synapses and memristor array
(Fig. 1c). In the human visual perception system, sense and
transmission of external stimuli rely on parallel networks of
receptors (retina), neurons, and visual cortex in the brain, making
the compact system efficient for solving complex and unstruc-
tured real-world problems. The visual signals are received by the
retina and then transmitted along neurons and synapses to
the visual cortex that carries out memory, learning, and recogni-
tion functions for further processing. Therefore, different from
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Fig. 1 | Reservoir computing system based on photo-synapse and memristor
device array. aDataprocessingmodeof traditionalfingerprint recognition system,
realized by independent optical sensor, memory chip and processor. b Schematic
of the human visual recognition systemcomprising the retina, optical neurons, and
visual cortex in the humanbrain. c ProposedRC systemwith optical synapses as the
input layer of the reservoir and thememristor device array as the readout network.

The inset in the dashed box is the abstract photoelectronic RC system. The original
optical information is transmitted into the photoelectronic reservoir, where the
inputs are nonlinearly mapped into feature outputs based on the PPC effect. And
then, the memristor array receives the outputs of the reservoir and implements
readout training.
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the traditional architecture for latent fingerprint recognition, the
bio-inspired RC architecture is capable of sensing and processing
in parallel so as to ensure high efficiency and low power
dissipation34.

The RC system basically consists of a reservoir layer and
output readout layer, as shown in the dashed box of Fig. 1c. In an
RC system, it is required that the states of the reservoir should be
nonlinearly mapped by the temporal inputs and correlate to their
former states35, the weights of the readout layer are trained for
specific learning tasks, and the final outputs are normally based on
a linearly weighted combination of the reservoir feature outputs.
The PPC effect with nonlinearly tunable characteristics renders the
a-GaOx photo-synapses as ideal photoelectronic reservoirs, as
shown in the left panel of Fig. 1c. Memristors feature excellent
adjustable resistive state characteristics and naturally perform the
vector-matrix multiplication in an array structure, making it sui-
table to serve as readout layer36–38, as shown in the right panel of
Fig. 1c. Therefore, we built an in-sensor RC system for latent fin-
gerprint recognition based on DUV photo-synapse and memristor
array. The fabrication processes of the photo-synapse and details
of memristor array are shown in the Methods section and Sup-
plementary Information.

Carrier trapping in a-GaOx film and synaptic characteristics of
the a-GaOx DUV sensor
In our previous work39, the PPC effect in a-GaOx film has been sup-
pressed by a high-temperature annealing process to implement high
responsibility and swift response speed for high-speed DUV sensor
application. But, for photo-synapse application, the PPC effect, which
ensures the dynamically modulated conductivity, should be taken full
advantages to mimic the synaptic plasticity40,41.

To verify themechanismof the PPCeffect in the fabricated a-GaOx

film, Kelvin probe force microscopy (KPFM), which uncovers the
potential distribution of the object surface, has been performed with
negative and positive biasing (Supplementary Fig. 1). In the target
regions (5 × 5μm2), only themiddle parts (1 × 5μm2) were injectedwith
extrinsic electrons or holes. After the carrier injection, the dynamic
evolution of both the surface potential distributions and the relative
height in the target regionsweremeasured every 9min as presented in
Fig. 2a. The recovery of target-region potential in both situations takes
a long time, indicating the abundant electron and hole traps inside the
a-GaOx film. Since the potential recovery of the hole-injected region
lags obviously behind the situation of electron injection, the trapping
effect of holes rather than electrons contributesmore to the persistent
conductivity.

Fig. 2 | PPC effect and synaptic behavior of the a-GaOx DUV sensor. a KPFM
results of the a-GaOx surface after injecting electrons (toppanel) andholes (bottom
panel) by negative/positive biasing. The inset in each image indicates the potential
profile along the white dashed line. b XPS spectral fitting of the O1s peak of the
a-GaOx film with different oxygen contents (S1, S2, and S3). c The normalized
photoresponse I-t curves of the a-GaOx films with different oxygen contents (S1, S2,
and S3). d The macroscopic PPC and volatile STM effects observed in Ga2O3 pho-
toelectronic device under various DUV pulse widths (25ms, 50ms, and 100ms).

The response current ΔI is the difference between themaximum photocurrent and
the initial dark current. e PPF behavior of the a-GaOx photo-synapse induced by the
PPC effect. Taking ΔI1 as the response current of the first stimuli and ΔI2 of the
second, the PPF index is calculated as the ratio of ΔI2 to ΔI1. f Dependence of PPF
indexes varying with pulse intervals from 45ms to 1000ms, fitted by a double-
exponential function. Each pulse interval contains 10measurements. g Influence of
oxygen-vacancy-related traps on the generation, recombination, and regeneration
processes of photo-generated carriers in the a-GaOx photo-synapse.
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The typical calculation results demonstrate that the oxygen
vacancies, one of the intrinsic deficiencies in Ga2O3, could act as deep
donors42–44, and dominate the trapping phenomenon of none-
quilibrium carriers. In view of the potential associations between the
oxygen vacancy and hole trapping, we fabricated a-GaOx DUV sensors
with different O contents in the film, labeled S1, S2, and S3 (see
Methods section). X-ray photoelectric spectroscopy (XPS) character-
izations of O1speakof S1, S2, and S3 areperformed as shown in Fig. 2b.
The first peak OI is attributed to the lattice oxygen, and the second
peakOII is associated with the oxygen vacancies32,40,41. The highest OII/
OI ratio demonstrates the most abundant oxygen vacancies in the as-
sputtered a-GaOx S1 filmwith the lowest oxygen content. To testify the
effect of this component design, normalized time-dependent photo-
response curves were measured under a light pulse illumination of
25ms, as shown in Fig. 2c. Obviously, the a-GaOx sample S1 with the
highest OII component exhibits the most significant PPC effect.
Therefore, the deliberately enlarged PPC effect byGa-rich design turns
the sample S1 into an ideal photo-synapse. All following experiments
are based on the sample S1.

To further estimate the feasibility of nonlinear response char-
acteristics as a photoelectronic reservoir, the PPC effect of this a-GaOx

photo-synapse has been studied systematically. Figure 2d shows the
time-dependent photoresponse curves of the a-GaOx photo-synapse
under different light pulse widths (25ms, 50ms, and 100ms). The
decay process of the current after the removal of external light stimuli
reveals the enhancement of the PPC effect with increasing the light
pulse width. Concurrently, the intrinsic volatile characteristics of the
photocurrent imply the STM effect of the device. Obviously, a longer
illumination time leads to a higher reinforced PPC effect. Defining the
response current (ΔI) as the difference between maximum photo-
current and initial dark current, it always exhibits nonlinear dynamics
with the light pulse under various power densities, as shown in Sup-
plementary Fig. 2. Besides, it should be noted that a negative voltage
pulse strategy on the back gate was utilized to release the extra pho-
tocurrent caused by the PPC effect (Supplementary Fig. 3), to ensure
the repeatable operation of the device45.

In a biological neural system, the PPF as one typical function of the
synapse, demonstrates the ability to process continuous temporal
information. To validate the PPF effect, we applied consecutive light
stimuli on thedevice, exhibited in Fig. 2e.Duringoperation, thebiaswas
set at 1 V, the powerdensity ofDUVpulseswasfixed at 450nW/cm2, and
the pulse width was fixed at 25ms. Herein, a time-dependent photo-
response curve is depicted, revealing the real-time modulation of the
channel conductivity or synaptic weight. Even though the power den-
sity was the same for both stimuli, the ΔI of the latter stimulus was
obviously higher than that of the former, indicating the facilitation
effect of synaptic plasticity. Taking ΔI1 as the response current of the
first stimulus andΔI2 of the second, the PPF index, as a ratio ofΔI2 toΔI1,
is calculated to be 128.4% in this case. To demonstrate the dependence
of PPF on pulse interval, we then tested and extracted the PPF index
under various intervals, as shown in Fig. 2f. The results show that the
PPF index decreases exponentially with increasing pulse intervals, while
it keeps almost independent of the power density of the light pulse
(Supplementary Fig. 4). Moreover, the PPF index versus pulse interval
curve can be fitted by a double-exponential function:

PPF index = 1 +C1exp �4t
τ1

� �
+C2exp �4t

τ2

� �
ð1Þ

where C1 and C2 are the facilitation ranges, and τ1 and τ2 with fitted
values of 28.97ms and 279.91ms are the characteristic time constants
relative to a rapid and slow relaxation time, respectively46. As a
result, short pulse interval approaching to rapid relaxation constant
exhibits higher PPF index or facilitation efficiency, making the STM
generated by different inputs more distinguishable. In addition, the

photoresponse of the a-GaOx photo-synapse could always maintain
nonlinearity even under multi-bit pulse stimuli (Supplementary Fig. 5),
which plays an important role in classification and recognition tasks in
biological activities20,47. Therefore, this nonlinear relationship between
conductivity and external stimuli of the photo-synapse has the
potential to construct a feature space for nonlinear mapping. The
above-mentioned basic neuromorphic characterizations of the a-GaOx

device reveal its promising potential for serving as a photoelectronic
reservoir.

Figure 2g visualizes in detail the generating and trapping/
detrapping behavior of nonequilibrium carriers inside the a-GaOx

photo-synapse. Under DUV light stimulus (left panel), the photo-
generated electron-hole pairs increase in the active layer, while the
holes drift toward the electrode/GaOx interface and get captured by
oxygen-vacancy-related traps. After stimulus removal (middle panel),
the energy barrier in the detrapping process prolongs the annihilation
of photogenerated current48. Thus, during re-stimulus process (right
panel), the accumulated trapped holes lay a footstone of increasing
free electron concentration and lead to the PPF effect.

Nonlinear mapping of 4-bit inputs of the a-GaOx DUV reservoir
The feature extraction of the original image simplifies the recognition
process and improves the efficiency49. Owing to the nonlinear PPF of
synaptic plasticity, the inputs sequence of the a-GaOx photo-synapse
reservoir can be distinctly mapped into feature outputs. To assess the
capability of the feature mapping of the reservoir, we perform
the measurement of a 4-bit optical stream, which can be mimicked by
the corresponding 4-bit inputs within “0000” to “1111”, as shown in
Fig. 3a. Each periodical input waveform (25ms pulse width, 45ms
pulse interval) is considered asonebit, inwhich the “off” and “on” state
of the light pulse denote “0” and “1” in the basic binary image.

The configuration of the feature space of inputs/outputs is the
basis of readout training. Therefore, all the I-t characteristics of all 4-bit
inputs of pixel sequences havebeenmeasured and sampled for feature
values. To illustrate the feature sampling, the I-t curves of three
representative inputs of “0001” (in blue), “0011” (in red), and “1101” (in
purple) of the a-GaOx reservoir are exhibited in Fig. 3b. Although the
last pulses are all “1”, their decay processes after the input sequences
are different. Therefore, the final state of the reservoir not only relates
to the last input, but also depends on its real-time state, indicating the
lateral connections in such an a-GaOx reservoir

22,23. Based on the con-
spicuous difference, each pixel sequence can be featured by current
sampling to realize feature extraction. For accurate feature extraction,
sampling point 1 (SMP1) is defined as the average current value in the
sampling time (ST) section after a sampling delay (SD) from the last
pulse. Obviously, different SD and ST conditionswill lead to discrepant
SMP1 results, thus the optimal sampling section needs to be
determined.

The SMP1 value has a negative correlation with SD and ST due to
the fading effect of response current, as shown in Fig. 3c. Based on a
statistical analysis of 100 cycles for all input sequences, the reservoir
outputs with SD ranging from 0 to 20ms and ST from 10 to 30ms
show similar fluctuations for SMP1 evolution, as shown in Supple-
mentary Fig. 6. Apparently, the situation of 0ms SD and 10ms ST
presents a relatively larger SMP1 value, which will facilitate the dis-
tinction of all 16 input sequences. Therefore, this sampling condition is
utilized for current sampling and feature space configuration
throughout the following experiment, as shown in Fig. 3d. In addition,
similar statistical results (100 cycles for each input) based on 20 sto-
chastically selected devices further validate the reliability and repeat-
ability of the a-GaOx reservoir (Supplementary Fig. 7). Since there are
potential overlaps between SMP1 distributions of two certain inputs
(e.g., “1011” and “1101” in the dashed circle of Fig. 3d), a dual-feature
strategy, namely adding an additional SMP2 at the end of the 3rd pulse
region (see the dashed square), has been proposed to sharpen the

Article https://doi.org/10.1038/s41467-022-34230-8

Nature Communications |         (2022) 13:6590 4



output features. Consequently, the feature space based on nonlinear
photoresponse configures the classification process of the reservoir,
reducing the dimensionality of raw data from 4-bit digital inputs to 2
analog outputs that serve as the inputs of the linear readout layer50,51.
The energy consumption per pulse operation of the photoelectronic
reservoir can be estimated to be E = 20 nA × 1 V × 25ms=0.5 nJ, indi-
cating that the reservoir architecture possesses potential energy-
efficient characteristic.

Fingerprint recognition with fully-hardware DUV in-sensor RC
system
To verify the feasibility of DUV in-sensor RC for fingerprint recogni-
tion, we constructed a hardware system, composed of a photo-
synapse reservoir layer and a memristor readout layer, as shown in
Fig. 4a. The relationship between the mathematical model and the
physical hardware of this system has been illustrated (see Supple-
mentary Fig. 8). In such a system for DUV fingerprint recognition, the
images are first converted into DUV light pulses. And then, the pulse
signals are projected parallelly onto the a-GaOx photo-synapse
reservoir layer, generating single or dual feature outputs. After
receiving the outputs of reservoirs, a memristor array loading pre-
trained weights performs the in parallel in-memory readout process.
In the RC system, only the weights in the readout layer need to be
trained, reducing the training costs for DUV fingerprint recognition.
A photograph of the local hardware test board system with sensor
array, memristor array, and data interfaces is shown in Supplemen-
tary Fig. 9. To perform the training and recognition of fingerprint
images, 40 fingerprints of 5 people (8 for each) are chosen from the
Second Fingerprint Verification Competition (FVC 2002) database
(Supplementary Fig. 10). Preprocessing of the raw human fingerprint
images includes cropping, scaling, binarizing, and rejoining to 20 × 4
pixels in order to adapt the 4-bit light pulse input as shown in Fig. 4b.
Correspondingly, the reservoirs (20a-GaOx photo-synapses)

generate 20 pairs of feature outputs (SMP1 and SMP2) per image for
the training of the memristor array network. By simulating the
readout network training as shown in Fig. 4c, the dual-feature strat-
egy successfully achieves 100% accuracy after 100 training epochs,
demonstrating a much faster convergence rate than in the single-
feature situation (500 epochs). Thus, a dual-feature strategy is
employed, and only a dimensionality-reduced 40 × 5 weight matrix
needs to be trained for each fingerprint image. As an example, a
recognition accuracy for unseen fingerprint images has been simu-
lated to be around 92% based on this dual-feature strategy, where the
expanded sample amounts of the fingerprint images ensure the high
recognition accuracy (see Supplementary Fig. 11).

The memristor device with analog conductivity is deliberated to
enable the hardware realization of a fully connected readout network
(the characteristics of the memristors are shown in Supplementary
Fig. 12). As exhibited in Fig. 4d, e, both the colormaps and statistical
histogram of the 200 weights obtained by software simulation and
memristor hardware verification after the training are highly con-
sistent within tolerable error. Therefore, this hardware DUV in-sensor
RC systemperformsa remarkable accuracy forfingerprint recognition.
In addition, the considerable retention performance (more than
150min, as shown in Supplementary Fig. 13) of thememristor indicates
that once the offline training has been completed, the trained weights
of the local memristor array can be used for recognition for a
long time.

In thepractical DUVfingerprint recognition task, noises are always
inevitable. Here, stochastic noises with a varying scale from 1% to 20%
were introduced into the input images to mimic the potential optical
interference. This generates a new test set to verify the recognition
capability of this in-sensor RC system based on the a-GaOx photo-
synapse. Three situations, full-precision (double-precision floating-
point) simulation, limited-precision (32-bit fixed-point quantization)
simulation, and hardware experiment, are considered for comparison.

Fig. 3 | Nonlinearmapping of 4-bit inputs based on the a-GaOx reservoir. a 4-bit
inputs in the form of a binarized number and equivalent light pulses from “0000”
to “1111”. The pulse width is 25ms and pulse interval is 45ms here. b I-t photo-
response characteristics and input-output feature extraction strategy of three
representative inputs of “0001”, “0011”, and “1101”. c SMP1 versus increasing SDand

ST of the three representative inputs. Owing to the fadingmemory, the SMP1 value
has negative correlation with SD and ST. d The statistical results of the dual-feature
strategy (SMP1 and SMP2) in 100 repetitive cycles for the 16 inputs, depicted by a
box error diagram and normal distribution.
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As shown in Fig. 4f, recognition accuracies in all situations remain
comparable under ≤3% noise level and deteriorate asynchronously
with its increment. The limited resistive states of thememristor device
and the amplification of non-ideal factors (e.g., device-to-device and
cycle-to-cycle variations, discreteness of operations, etc.) under high-
level noise dominate the relatively quick deterioration in the hardware
situation. Therefore, the improvement of resistive states and uni-
formity of the memristor devices could further improve the system
robustness52. It is noteworthy that the recognition accuracy of the
hardware experiment still maintains above 90% under 15% noise level.
In summary, the fully-hardware DUV in-sensor RC system based on

a-GaOx photo-synapse has promising potential to be competent for
high-precision in-situ DUV fingerprint recognition tasks.

Discussion
In summary, we proposed a fully-hardware DUV in-sensor RC system
composed of a photo-synapse reservoir layer and amemristor readout
layer for latent fingerprint recognition. It is found that the oxygen-
vacancy-related hole traps dominate the PPC effect and induce the
nonlinear neuromorphic features of the a-GaOx DUV photo-synapse
for in-senor RC. As a result, the inputs of the reservoir can be non-
linearly mapped to dimensionality-reduced outputs, which constitute

Fig. 4 | Fingerprint recognition based on hardware DUV in-sensor RC system.
a Schematic of the proposed fully-hardware photoelectronic RC system for in-
sensor fingerprint recognition, including photo-synapse reservoir layer which
generates feature outputs, and memristor readout layer which performs network
training. b Preprocessing method of the fingerprint images, including cropping,
compressing, binarizing, and rejoining. c The evolution of the accuracy rates based
on single and dual features during readout network training. The training process

with dual features demonstrates a much faster convergence. d The colormaps and
e statistic histograms of the 40× 5 weights of the simulation and hardware
experiment, respectively. The actual conductance values read from hardware were
multiplied by a constant of 1.25 × 104 for better comparison with the simulated
weights. f Influenceof stochasticnoise on recognition accuracy rates forfingerprint
recognition of the RC system, implemented by full-precision simulation, limited-
precision simulation, and hardware experiment, respectively.
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the feature space. Acting as the readout network, memristor device
arraywith analog conductivity takes charge of the training of reservoir
outputs and parallel in-memory computing. Based on such a hardware
system, the high recognition accuracy of DUV fingerprint images
nearly matches the simulation results when adopting a dual-feature
strategy. The system achieves 100% recognition accuracy after 100
training epochs and maintains 90% accuracy even under 15% back-
ground noise level consistent with the anti-noise characteristics of
DUV light. This fully-hardware DUV in-sensor RC system provides a
prototype for efficient identification and security applications.

Methods
Device fabrication
After the first lithography process, the 208 nm a-GaOx thin film was
deposited onto the low-resistance p-type Si substrate with 300nm
SiO2byRF-magnetron sputtering at room temperature. Samples S1, S2,
and S3 were fabricated by sequentially increasing oxygen content.
Separated a-GaOx films were obtained after the lift-off process. The
rapid thermal annealing process of the a-GaOx thin films was per-
formed at 400 °C in ambient N2 for 1min. After another lithography
process, the source and drain electrodes consisting of Ti/Au (20/
50 nm) were deposited onto the a-GaOx thin film by electron beam
evaporation.

Film characterizations
The relative contents ofOI and OII in the a-GaOx film were determined
by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi). The
morphology of the a-GaOx film was characterized by atomic force
microscope (AFM, Bruker Dimension Icon). The potential distributions
of the samples were obtained by above AFM instrument under KPFM
mode. In the target regions (5 × 5μm2), only the middle parts
(1 × 5μm2) were injected. After the carrier injection, the surface
potential of the target region was scanned every 9min.

Device characterizations
The electronic and photoelectronic characteristics, including I–t pho-
toresponse curves, PPF effects, and reservoir feature outputs of the
a-GaOx photo-synapse, were measured at room temperature using an
Agilent B1500A Semiconductor Device Analyzer. An LED with a wave-
length of 254 nmwas used as themonochromatic light source, and the
light intensity was calibrated by an optical power meter (S401C and
PM100D). A shutter (Thorlab SHB-025T) was used to modulate the
pulse waveformof the DUV light source. During all themeasurements,
the bias was fixed at 1 V. All experiments for RCwere performed under
the optimal pulse condition of 25ms width and 45ms interval.

Statistics and reproducibility
Experiments were reproducible. All the error box figures depicted by
Origin software are unifiedwith the same standard: boxwith percentile
range from 25 to 75, whisker with outlier coefficient of 1.5,medianwith
solid line and mean with circle dot.

Memristor array fabrication
The above-mentioned 1K-bit array adopts the 0.18 µm standard tech-
nology of Semiconductor Manufacturing International Corporation
(SMIC). The memristor composed of TiN/TaOx/HfOy/TiN was stacked
by the following steps: First, the TiN layer was deposited by physical
vapor deposition as the bottom electrode. Next, the HfOy and TaOx

layers were successively stacked on the TiN layer by atomic layer
deposition. Finally, another TiN layer was deposited as the top elec-
trode using the same process as the bottom layer.

Basic memristor array operations
The current values of the reservoirs are transmitted to trans-
impedance amplifiers (TIAs) to convert them into voltage values,

which are then fed into the memristor array. Each differential pair in
thememristor array represents a single weight of the neural network.
Transistors are used for device addressing and crosstalk current
suppression. As for the training of thememristor array, we utilized an
offline trainingmethod to update theweight (conductance)matrix of
the array. Once the software simulation is completed, the weights of
the whole array (400memristor devices) are updated by referring to
the simulation results, column by column. To SET a selected column,
all source lines (in blue, in Fig. 4a) were floated, except the selected
one, which was grounded. All word lines (in red) were biased at the
same SET voltages. Each bit line (in black) was assigned with a dif-
ferent voltage based on the targeted conductance of the selected
memristor. For RESET operation, word lines of selected columns
were grounded, all source lines were biasedwith RESET voltages, and
each bit line was biased with a large voltage to allow sufficient RESET
current.

Network training
All the reservoir outputs were used to construct the input layer of a
fully-connected network: for the single-feature strategy, the network
size was 20 × 5; for the dual-feature strategy, the network size was
40 × 5. The fully-connected networkwas trained by theMATLABDeep-
learning Toolbox, utilizing the Softmax output function and the
logistic regression to supervise the learning. The stochastic noise was
made by the dot product of the MATLAB randn matrix and the
grayscale value throughout the whole image. The final noise was
obtained by the product of the noise level and the stochastic noise and
then added into the original images.

Data availability
All data needed to evaluate the conclusions in the paper are presented
in the paper and/or the Supplementary Information. The data that
support the plots within the paper and other findings of this study are
available from the corresponding authors upon reasonable request.

Code availability
All code used in this study is based on MATLAB scripts and toolboxes,
and available from the corresponding authors upon reasonable
request.
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