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MIR retrotransposons link the epigenome
and the transcriptome of coding genes in
acute myeloid leukemia

Aristeidis G. Telonis 1,2, Qin Yang1,2,3, Hsuan-Ting Huang1,2,3 &
Maria E. Figueroa 1,2

DNMT3A and IDH1/2 mutations combinatorically regulate the transcriptome
and the epigenome in acute myeloid leukemia; yet the mechanisms of this
interplay are unknown. Using a systems approach within topologically asso-
ciating domains, we find that genes with significant expression-methylation
correlations are enriched in signaling and metabolic pathways. The common
denominator across these methylation-regulated genes is the density in MIR
retrotransposons of their introns. Moreover, a discrete number of CpGs
overlapping enhancers are responsible for regulating most of these genes.
Established mouse models recapitulate the dependency of MIR-rich genes on
the balanced expression of epigenetic modifiers, while projection of leukemic
profiles onto normal hematopoiesis ones further consolidates the depen-
dencies of methylation-regulated genes on MIRs. Collectively, MIR elements
on genes and enhancers are susceptible to changes in DNA methylation
activity and explain the cooperativity of proteins in this pathway in normal and
malignant hematopoiesis.

Mutations in epigenetic modifiers, and specifically in the DNA methy-
lation pathway, are frequently seen in acute myeloid leukemia (AML),
resulting in epigenetic deregulation of key biological pathways.
DNA methyltransferase 3A (DNMT3A) and ten-eleven transloca-
tion methylcytosine dioxygenase 2 (TET2) are mutated in ~20% and
~10% of AML cases, respectively1. In addition, missense mutations in
isocitrate dehydrogenase 1 and 2 (herein IDH1/2) are seen in about 20%
of AMLs. These mutations, which are mostly mutually exclusive with
TET2 mutations, result in the production of the oncometabolite
2-hydroxyglutarate (2-HG), which functions as a competitive inhibitor
of TET proteins1–4. Previous studies have comprehensively studied the
specific methylation profiles associated with AML cases carrying dif-
ferent mutations; while mutations in DNMT3A may lead to DNA
hypomethylation, those in IDH1/2 or TET2 result in different degrees of
DNA hypermethylation due to loss of the demethylating function of
TET proteins or just TET2, respectively1,2,5.

In total, 10–15% of AML patients carry both DNMT3A and either
TET2 or IDH1/2 mutations (herein, double mutants)1,5–7 and exhibit a
methylation profile intermediate to that of either single mutant5. In
addition, DNMT3A-IDH1/2 double mutants uniquely present with
upregulation of KRAS signaling and apoptosis-associated genes, and
downregulation ofMYC targets compared to normal controls5. Murine
models of Dnmt3a knock-out (KO) or Idh2 R140Q knock-in mutations
recapitulate the epigenetic and expression signatures observed in
human cases5–7. Phenotypically, double mutant mice exhibit aug-
mented hematopoietic stem cell dysfunction and an increased
potential for development of myeloid malignancy6. However, the
mechanisms underlying this interplay and more specifically, how the
resulting changes in DNA methylation leads to subtype-specific tran-
scriptional programs, remain unclear.

More than 50% of the human genome is repetitive and repeat
elements are non-randomly distributed in the genome. Pluripotency
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and proliferation are characterized by the expression of short genes
with introns that are enriched in primate-specific Alu elements and
Mammalian interspersed repeats (MIRs)8,9. By contrast, differentiation
and tissue specification genes are depleted from Alu elements but can
be enriched in MIR elements9. Retrotransposons within genes can
regulate splicing or the recruitment of DNA-binding proteins10,11. In the
hematopoietic system, MIRs can act as insulators12 while Alu elements
are enriched in topologically associating domains (TAD) boundaries13.
Finally, retrotransposons may also serve as sites for epigenetic
regulation11,14.

Here, we show that repeat elementswithingenesmayhelp explain
the relationship between DNA methylation and expression in the
context of mutations in the DNA methylation pathway. We carry an
integrative analysis of transcriptomic and epigenomic data from our
previouslypublished5 and theTCGA1 cohorts.Wefind aprominent role
of MIR retrotransposons in introns that could act as the link between
these mutations and alterations in gene expression programs in nor-
mal and malignant hematopoiesis.

Results
DNA methylation status of a small set of CpGs within specific
TADs is correlated with expression of diverse proximal and
distal genes in human DNMT3A- or IDH1/2-mutant AML
We first explored the interplay between DNA methylation and gene
expression in AMLs with DNMT3A or IDH1/2 mutations. Given the
current understanding of 3D genome organization as well as the
well-recognized fact that correlation between cytosine methylation
status and expression of the nearest genes is for themost part weak,
especially when considering non-CpG island methylation15, we per-
formed this analysis by focusing onmethylation status within TADs.
TADs constitute physical and functional units within the genome,
characterized by a high probability of intra-regional interactions
that bring into proximity distal regions to exert functional regula-
tion. For this purpose, we performed an unbiased correlation ana-
lysis between the methylation status of individual CpGs (mCpGs)
and expression levels of genes within the same TAD. Given that the
major biological variation in TADs and TAD boundaries at themega-
base scale stems from differences in cell type16,17 and that although
malignant transformation is accompanied by extensive intra-TAD
rearrangements, TAD boundaries at the mega-base scale are largely
constant18, we performed HiC analysis of primary human CD34+

stem and progenitor cells to first define TAD boundaries in these
cells (average TAD size = 1.4 Mb; Supplementary Data 1), followed by
a correlation analysis of themCpG status and gene expression levels
within these boundaries. Two patient cohorts were included, our
previously published cohort5 (herein the Glass et al. cohort) and the
TCGA1. The two cohorts use different technologies to capture DNA
methylation that resulted in different representations of the CpG
dinucleotides (Supplementary Fig. 1a). We found a total 10,959 and
3549mCpGs with significant correlations (absolute rho > 0.5; FDR <
5%) to 2566 and 1138 genes in the Glass et al. and the TCGA cohorts,
respectively (Fig. 1a and Supplementary Data 2). The majority
(98.5% in Glass et al.; 63% in TCGA) of these correlations were
negative but with notable exceptions, like the expression of carni-
tine palmitoyltransferase 1B (CPT1B) Notably, across these correla-
tions, double mutant cases fall within an intermediate expression-
methylation range compared to the single mutants (Fig. 1b). Next,
we split the significant correlations into three groups based on the
distance between the gene and the mCpG: proximal (≤2 kb), inter-
mediate (>2 kb and ≤500 kb) or long-range (>500 kb) correlations.
We found that both positive and negative correlations were enri-
ched in proximal gene-mCpG pairs (Fig. 1c and Supplementary
Fig. 1b). Intermediate and long-range correlations were more likely
to include shared genes than with the proximal correlations (Sup-
plementary Fig. 1c). Of note, the number of significant correlations

for a given gene did not correlate with the number of tested mCpGs
for that gene (Supplementary Fig. 1d).

HOXB5 and the TAD containing the HOXB cluster stood out due
to its high number of significant correlations. In the Glass et al.
cohort, the expression of SNX11within this TAD was correlated with
mCpGs that were also significantly correlated with HOXB5 expres-
sion, despite the two genes being 468 kb apart (Fig. 1d). Further
genome-wide analyses showed that on average 1% of tested mCpGs
could explain the expression of an average of 36% of genes within a
given TAD. These overlaps prompted us to examine whether
expression of methylation-regulated genes within a given TAD may
be explained by a restricted subset of mCpGs within the TAD.
Analysis of all genes in a pair-wise manner showed that the same
subset of mCpGs is correlated with different genes in both the Glass
et al. and the TCGA cohorts, a finding that could not be explained by
the genes belonging to the same biological pathway (Fig. 1e and
Supplementary Data 3). Notably, in both cohorts, the mCpGs with
significant correlations were significantly enriched in enhancers,
underscoring a role for DNA methylation regulation of these key
regulatory elements (Fig. 1f).

Examining the molecular pathways of genes represented in these
correlations, we identified a strong enrichment in signaling and
metabolic pathways, including NOTCH, WNT and ERBB signaling,
fructose and mannose metabolism, amino and nucleotide sugar
metabolism, glycolysis/gluconeogenesis, and lipid metabolism path-
ways, such as glycerophospholipid metabolism, which included genes
likeDGKZ (Fig. 1g and Supplementary Data 3). These enrichments were
strongest in genes with proximal correlations. Network analysis illus-
trates the extent of the regulation identified through the correlation
analysis (Fig. 1h).

Spliceosome, ribosome, protein export and nucleotide excision
repair were identified as depleted from genes with high correlation to
mCpGs (Fig. 1g). We sought to validate this finding by exploring the
1000 genes with the weakest expression-methylation correlations
within each distance bin (herein,W sets). These geneswith theweakest
correlations were enriched in ribosomal genes and oxidative phos-
phorylation within the proximal but not in the intermediate or long-
range sets (Supplementary Data 3), which is suggestive of a stem cell
signature9.

Next, we compared methylation of individual mCpGs to methy-
lation at the level ofCpG islands (CpGi) by examining the correlationof
gene expressionwith themeanmethylation level across all CpG sites in
an individual CpGi (Supplementary Data 2). Eighty-nine percent of
CpGi with significant correlations contained at least one mCpG with a
significant correlation (Supplementary Fig. 1e). As expected given this
overlap, there was also significant overlap between genes correlated
with CpGi methylation and genes correlated with individual mCpGs
resulting in the same biological pathways being identified (Supple-
mentary Fig. 1f, g and Supplementary Data 3).

To determine whether the high methylation-expression corre-
lation of these genes was specific to AMLs with IDH1/2 or DNMT3A
mutations, we performed correlation analysis on the same gene-
mCpG pairs in AML samples without mutations in IDH1/2 or
DNMT3A. We compared the correlation coefficients of these gene-
mCpG pairs in theDNMT3A/IDH1/2 samples with the ones in theWT/
WT samples and found that these coefficients were significantly
lower in the WT/WT samples in both cohorts (p value < 10−4; Sup-
plementary Fig. 1h).

Collectively, these results show that in the context ofDNMT3A and
IDH1/2 mutations, the methylation status of a subset of CpGs is asso-
ciatedwith the expressionofmultiple proximal and distal geneswithin
any given TAD. Moreover, our findings implicate DNA methylation in
the regulation of expression of specific signaling, lipid and carbohy-
dratemetabolismgenes in theseAMLswhile other genes andpathways
are independent of DNA methylation status.
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Genes with coupled methylation and expression are GC rich,
evolutionary neutral and dense in MIR retrotransposons
As genes in signaling pathways and ribosomal genes exhibit specific
architectural properties9,19, we hypothesized that genes with significant
expression-methylation correlations would have biases in their archi-
tecture. To test this, we performed an analysis of the architecture and

density of repeat elements in our gene sets. Genes with intermediate
and long-range correlations, but not those in the proximal set, had
shorter introns and an overall higher exonic content (p value < 10−4 for
both cohorts; Kolmogorov–Smirnov test; Supplementary Data 4).
However, in both cohorts, all three gene sets had introns and exons
that were GC richer and evolutionary more neutral as compared to the
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background gene population. On the other hand, genes in the W sets
of both cohorts had the opposite architecture i.e., were GC poorer and
evolutionary more conserved than expected (p value < 10−4;
Kolmogorov–Smirnov test; Fig. 2a–c).

Analysis of retrotransposon content showed that introns, but not
exons, of all gene sets with significant correlations were enriched in
MIR elements (p value < 10−4 for both cohorts; Kolmogorov–Smirnov
test). On the other hand, the W sets showed no specific biases or were
even depleted from MIRs (Fig. 2d). We next examined Alu elements
and found that genes with proximal correlations were depleted from
Alu elements in both cohorts. Genes with intermediate and long-range
correlations were enriched in Alus, in the case of Glass et al., but
showed no significant biases in TCGA, though this difference may be
the result of the different platforms used to capture methylation sta-
tus (Fig. 2e).

Next, we examined the properties of those mCpGs that correlate
strongly with gene expression. Compared to all mCpGs tested, those
that are strongly correlated were significantly less evolutionary con-
served, independently of whether they were part of proximal, inter-
mediate or long-range correlations (Fig. 2f). In addition, they were
more likely to be part of MIR elements and less likely to overlap Alu or
L1 elements in the Glass et al. cohort (Fig. 2g).

Collectively, these findings demonstrate that architectural prop-
erties of genes and mCpGs play a role in driving the coupling of
expression and methylation in the context of IDH1/2 and DNMT3A
mutations, independently of the molecular pathways they are
involved in.

The presence ofMIR elements alone is insufficient to explain the
complexity of epigenetic regulation
Given the characteristic enrichment of MIR elements in genes with
high expression-methylation correlations, we explored whether
intronicMIRdensity alone canexplain this. Thus,wefirst examined the
methylation dependency of expression of MIR-dense genes with
respect to that of genes with comparable CpG density but with noMIR
elements (MIR-zero). We found that only with the proximal setting,
genes with the highest MIR density exhibited significantly higher
methylation dependency than the MIR-zero genes (Supplemen-
tary Fig. 2a).

We then investigated the properties of the specific MIRs that
overlap genes and mCpGs with significant correlations in more detail.
Previous researchhas shown thatMIRelements can act as insulators on
the human genome; theseMIRs have an intact B-box by definition and
tend to be closer than expected to TAD boundaries12. We examined
whether theMIRs overlapping themCpGs with significant correlations
can also serve as insulators. However, these MIRs did not show
enrichment in B-boxes and their distance to the closest TAD boundary
was longer than expected (Supplementary Fig. 2b, c). In addition,when
we intersected the known MIR insulators with the MIRs overlapping

mCpGs with significant correlations, we found no statistical enrich-
ments or depletions (Supplementary Fig. 2d).

Next, we asked whether the MIR elements enriched in our gene
sets with high expression-methylation correlations had expanded
during a specific evolutionary window. To test this, we analyzed the
divergence scores from the consensus sequence as an approximate for
evolutionary age20. We found that the MIRs overlapping the mCpGs
hadno significant biases in termsofdivergence scores (Supplementary
Fig. 2e) nor were they enriched in any specific MIR subfamilies (Sup-
plementary Fig. 2f).

Collectively, these data suggest that the MIR-driven epigenetic
regulation that our correlations reveal is a more general property
and not attributed to a specific subset of MIR elements defined by
their sequence. Furthermore, our data indicate that the contribu-
tion of MIR elements to epigenetic regulation of gene expression in
AML is more complex than simple MIR density or intronic sequence
information alone, and that an additional level of regulationmust be
involved.

DNA-binding protein complexes recruited to MIR elements can
bridge mCpGs with the correlated genes
Given that sequence information alone was insufficient to explain
the correlation between expression and methylation, we hypothe-
sized that an additional layer of regulation played a role in linking
the identified genes and mCpGs. Therefore, we next incorporated
information from ChIP-seq profiles of hematopoiesis- and
leukemia-relevant DNA-binding proteins and multiprotein com-
plexes (DBP/Cs)21,22 to explore whether specific DBP/Cs can bridge
the mCpG with the gene, serving as a bridge for epigenetic reg-
ulation of gene expression. We further hypothesized that since MIR
elements are enriched at both genes and mCpGs involved in these
correlations, they may play a role in facilitating this bridging
function of DBP/Cs.

To statistically evaluate enrichment of specific DBP/Cs in our
gene sets, we performed Monte–Carlo simulations by shuffling
these gene regions within the respective genomic space; thus, we
approximated a distribution of an expected number of DBP/C
binding sites and compared it with the number of peaks or sites at
hand (see Methods; Supplementary Data 5). By using ChIP-seq data
from 8 hematopoietic transcription factors in CD34+ cells21, we
found that RUNX1 is enriched at genes from all gene sets but is only
highly enriched in genes with intermediate- and long-range cor-
relations. Similar observations could be made for FLI1, whose
binding was enriched only in genes with intermediate-range cor-
relations (Fig. 3a). We further investigated the overlap of our gene
sets with DBP/C binding sites in K562 cells from ENCODE22. In this
dataset, genes with intermediate and long-range correlations were
enriched in 132 and 121 DBP/Cs, respectively; genes with proximal
correlations were enriched only in 4 DBP/Cs while the W set was

Fig. 1 | DNA methylation as a regulator of gene expression in signaling and
metabolic genes. a Volcano plots showing the statistical significance of each
mCpG-mRNA correlation vs. the correlation coefficient. b Examples of expression-
methylation correlations. The graph at the top-right corner depicts the position of
the mCpG with respect to the gene locus. The 5’-most as well as the closest tran-
scriptional start sites downstream and upstream to the mCpG are noted. Box plots
show the median (center), 25–75 percentile (box), and 5–95 percentile (whisker)
from n = 16, 9 and 11 DNMT3A, IDH1/2 and double mutant samples, respectively.
c Histograms of the distance between the mCpG and the gene for all pairs tested
(left) and for the significant positive (middle) and negative (right) correlations in
the Glass et al. cohort. Note the differences in the scales of the Y axes. Dashed lines
indicate the distance cutoffs for classifying correlations. Asterisks indicate sig-
nificant enrichments in the positive (n = 243; p value < 10−5) or negative (n = 15,904;
p value < 10−5) proximal correlations (one-sided Chi-squared test). d Circus plot of
the TAD containing the HOXB cluster illustrating the correlations of HOXB5 and of

SNX11with mCpGs in the Glass et al. cohort. The two tracks are symmetric; the top
visualizes the genes and the bottom the mCpGs. The Venn diagram shows the
number of mCpGs correlated with each gene. e Scatter plot of fold enrichment in
the mCpGs commonly correlated with two genes against the respective FDR (one-
sidedHypergeometric test). Eachdot represents a genepair, e.g.,HOXB5and SNX11.
f Bar plot showing the enrichment of enhancers in the mCpGs with significant
correlations (n = 10,959 for Glass et al. and n = 3549 for TCGA). Asterisks indicate p
value < 10−4 (one-sided Hypergeometric test). g Pathways significantly enriched or
depleted in the gene list ranked by correlation strength per GSEA. The full list of
pathways is included in Supplementary Data 3. h Visualization of lipid metabolism
genes with significant expression-methylation correlations. Two genes are con-
nected if they use or produce the samemetabolite. Genes are colored based on the
distance bin with green prevailing purple. Source data are provided as a Source
Data file.
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Fig. 2 | Antithetical architectureof introns of geneswith coupledvs. uncoupled
expression-methylation. aDescription of the information presented on the plots.
Specifically, plots show the difference between the cumulative distribution of the
background genes (dashed gray line) and the cumulative distribution of the
respective gene set. b–e Architectural parameters of the introns of the genes with
significant expression-methylation correlations at proximal (n = 413 for Glass et al.
and 347 for TCGA), intermediate (n = 1749 and 680) or long range (n = 1344 and
478), and of the 1000 genes with the weakest expression-methylation correlations,
i.e., theW gene sets. Plots show the difference between the cumulative distribution
of the background genes (dashed gray line) and the cumulative distribution of the
respective gene set. Positive values mean a shift of the distribution toward higher

valueswhile negative values indicate a shift of the distribution toward lower values.
Plots depict analyses of GC content (b), evolutionary conservation (c) and repeti-
tive element densities of MIR (d) and Alu (e) elements, for the genes with non-zero
respective densities. f Evolutionary conservation of the mCpGs that are correlated
with genes at proximal, intermediate, or long range. g Heatmap illustrating fold
enrichment of the mCpGs in repetitive elements. For b–f asterisks and crosses
indicate statistical significance at a p value threshold of 10−4 and 10−2, respectively,
per Kolmogorov–Smirnov tests (two-sided). For f, hypergeometric tests (one-
sided) were used and a p value threshold of 2 × 10−2. All p values are listed in
Supplementary Data 4. Source data are provided as a Source Data file.
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enriched in 53 (Fig. 3b). Once again, RUNX1 was found enriched in
genes with intermediate and long-range correlations but not in the
proximal or W sets. There was no DBP/C uniquely enriched in the
genes with proximal correlations, but we counted 81 DBP/Cs
enriched in genes with intermediate or long-range correlations but
not in the W set (Supplementary Data 5). Among these 81 proteins,
the three largest groups of proteins corresponded to GATA-type
zinc finger proteins, helix-loop-helix transcription factors and
RNA-binding proteins (Fig. 3b).

We focused on the genes with significant intermediate or long-
range correlations (henceforth, the genes with distal correlations, or
the D gene set) and the 81 DBP/Cs uniquely enriched in them. All 81
DBP/Cs have peaks in an average of 1187 genes with distal correlations,
covering 2332 genes (out of the 2363; 99%) (Fig. 3c). Each of these 81
DBP/Cs also binds an average of 545 mCpGs with significant correla-
tions, covering a total of 6521 mCpGs, i.e., 60% of the mCpGs with
significant correlations (Fig. 3d). Examining the binding of these 81
DPB/Cs onMIRelements, we identified 1177 genes (50%of theDgenes)
that contain at least oneMIR element bound by at least one of these 81
DBP/Cs, covering a total of 2669 MIRs (Fig. 3e).

To statistically evaluate the overlap between DBP/Cs with MIRs,
we performed Monte–Carlo simulations as above but restricted the
genomic areas of interests to the MIR elements overlapping the

respective gene sets. We found eight DBP/Cs with significant overlap
with MIR elements embedded in genes with significant expression-
methylation correlations, four of which were also enriched in the
analysis at the gene level, namely BCOR, ESRRA, PTBP1 and
SMARCA5 (Fig. 3f).

We then examined the potential bridging ofmCpGswith genes by
two DBP/Cs that physically interact, as previously done in similar
contexts23,24. Specifically, we used a human protein-protein interaction
(PPI)25 network to identify interactions between the DBP/Cs and
identified all PPIs where one protein binds to the mCpG and the other
to the gene (see Methods). We first asked whether there are PPIs
specifically enriched in the significant correlations as compared to the
background (i.e., all possible PPI pairs in the correlated mCpG-gene
pairs). We identified seven pairs significantly enriched in the correla-
tions, with the most significant being the interaction between THRA
binding at mCpGs with MEF2A binding at genes (Fig. 3g and Supple-
mentaryData 5). To evaluate the roleofMIRs, we repeated this analysis
but only focused on PPIs where the second DBP/C binds a MIR
embedded in the intronic space of the gene. We found 21 protein pairs
that were significantly enriched in the correlations. As above, the top
pair was THRA-MEF2A, with a fold enrichment that was two orders of
magnitude larger than the respective enrichment at the gene level.
THRA was found bound at the mCpG in an additional seven significant

Fig. 3 | Enrichment ofDNA-bindingproteins andmultiprotein complexes (DBP/
Cs) in genes with intermediate- and long-range correlations. a Heatmaps
showing the enrichment/depletion of transcription factor binding in CD34+ cells.
The value represents the Z-score of the observed overlap of ChIP-seq peaks with
reference to a simulated expected distribution (see Methods for details). Asterisks
indicate anabsoluteZ-scoregreater than 10.bBar plot showing thenumber ofDBP/
Cs from ENCODE significantly enriched (Z-score >10) in each gene set. Heatmap
showing the enrichment/depletion of selected DBP/Cs from ENCODE enriched in
the genes with intermediate- and long-range correlations but not in the ones with
proximal correlations. Asterisks and notations are same as in a. c, d Plots showing
the number of genes (c), mCpGs (d) or genes containing at least one MIR element
(e) that are bound by up to N transcription factors (x axis). This is shown in a
cumulative manner, e.g., up to 20 DBP/Cs bind a total of 393 unique genes with

significant intermediate or long-range correlations (c). Red dashed lines show the
number of all respective genes or mCpGs with significant correlations. f Plot
showing the Z-scores of ENCODE’s DBP/Cs (same as in b) in gene space (X axis)
against the respective in MIR space (Y axis). Red lines demarcate the significant
thresholds. The same protein can be seen twice as it refers to the analysis based on
different gene sets (marked by different colors). g, h Bar plots showing the
enrichment of the interactions between DBP/Cs in the mCpG-gene pairs with sig-
nificantmethylation-expression correlations (n = 16,142). The first proteinbinds the
mCpG and the second binds at the gene (g) or a MIR element within the intronic
space of the gene (h). For both plots, p values were calculated with a hypergeo-
metric test (one-sided), corrected to FDR and we show the significant results,
FDR < 5%. All Z-scores and DBP/C interaction pairs are included in Supplementary
Data 5. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34211-x

Nature Communications |         (2022) 13:6524 6



PPIs. Notably, many of these PPI pairs included at least one epigenetic
modifier, including EP300, HDAC1, HDAC2, HDAC3, KDM1A, NSD2,
DNMT1 and SIRT6 (Fig. 3h).

Given that MIR elements can be sites of epigenetic regulation
themselves, we hypothesized that the MIRs overlapping genes or
mCpGs with significant correlations would also exhibit biases in reg-
ulatory features. Using histone modification profiles from lineage-

CD34+CD38− cells26, we found no enrichment in histone marks in the
MIRs overlapping genes but significant enrichment of H3K27ac and
H3K4me1 in the MIRs overlapping the mCpGs (Supplementary Fig. 3),
in agreementwith theoverlapwith enhancersdescribed above (Fig. 1f).

Our results show that the genes with long-range coupled
expression-methylation within a TAD are enriched in DBP/Cs, includ-
ing RUNX1, FLI1 and GATA-type zinc finger proteins. Such proteins, by
themselves or as part of large protein complexes, particularly those
including proteins like BCOR and PTBP1, seem to be recruited to the
MIR elements embedded in the introns of these genes. These DBP/Cs
may act as the bridge between the gene and the respective mCpGs, as
they also have ChIP-seq peaks on almost a third of the mCpGs with
significant correlations.Wewere also able to identify potential bridges
facilitated by the physical interaction of two DBP/Cs and in this model,

MIRs can explain part of these DBP/C pairs. Collectively, our findings
argue that MIR retrotransposons can facilitate the epigenetic regula-
tion of gene expression as observed in these AML subtypes by
recruiting specific DNA-binding proteins.

Retrotransposons overlapping protein-coding genes and
enhancers are differentially methylated among human AML
subtypes
Given the differences in genomic architecture of mCpGs with high
methylation-expression correlations, we hypothesized that the
methylation status of retrotransposons may be differentially methy-
lated among AML subtypes. To test this, we first identified differen-
tially methylated mCpGs (DMCs) between IDH1/2- and DNMT3A-
mutant AMLs, since they represented the two extremes of our corre-
lation analysis, and then focused on cytosines that overlap MIR, Alu
and L1 elements. MIR elements were more likely to be differentially
methylated and they were 100% hypermethylated in the IDH1/2 sub-
type (Fig. 4a and Supplementary Data 2). Next, we looked at the rela-
tionship of these repeat element DMCs to both coding and non-coding
genes and observed that theseDMCsweremore likely to be annotated
to protein-coding genes (p value < 10−5 for all three families of repeats;
chi-squared test; Fig. 4b–d). Notably, DMCs at MIR, Alu and L1 ele-
ments were enriched in the proximal gene set (p value < 0.01; hyper-
geometric test) but not significantly overlapping with the negative
control W gene set, pointing to a role of these retroelements in
establishing relevantmethylation-expression correlations. L1 elements
were an exception, the DMCs of which were significantly depleted
from the W genes (Fig. 4e). We further intersected the DMCs with
active and poised enhancer regions identified in hematopoietic stem
and progenitor cells26 and found that the DMCs of all three families
were significantly enriched at enhancers (p value < 10−5; hypergeo-
metric test; Fig. 4f).

These results further argue that retrotransposons are sites of
epigenetic regulation and indicative of AML subtype differences, par-
ticularly those retrotransposons overlapping coding genes and/or
enhancers with a methylation-expression coupling.

Mutations in Dnmt3a or Idh2 affect the expression of genes with
specific retrotransposon content in mouse hematopoietic cells
Given the evolutionary concordance of MIR and Alu/B1 elements in
the human and murine genomes27, we took advantage of murine
models of Dnmt3a and Idh2 to test our hypothesis that mutations in
these genes would directly affect MIR-dense genes. We mined the
gene expression data for Dnmt3a KO, Idh2R140Q mutant, and double-
mutant samples, generated by Zhang et al.6 to explore the interaction
of the two mutations in a context with no additional confounding
mutations28.

Wefirst examined thedifferentially expressed (DE)genes between
single mutants and control samples. Genes significantly down-
regulated were enriched in signaling pathways and lipid metabolism
genes, while ribosomal genes were enriched in the upregulated set
(Supplementary Data 2 and 3). Introns of downregulated genes in both
single mutant genotypes were GC richer and evolutionary more neu-
tral than expected, while introns of upregulated genes were GC poorer
and evolutionary more conserved (Fig. 5a, b and Supplementary
Data 4).Meanwhile, introns of downregulated genes inboth genotypes
were also denser in MIRs and sparser in Alu elements (Fig. 5c, d).
Analysis of genes DE between double mutants and control samples
revealed that downregulated genes were enriched in cell cycle and
DNA replication pathways (Supplementary Data 3). Notably, introns of
these downregulated genes had no significant differences in GC con-
tent and MIR and Alu densities compared to control samples while
evolutionary conservation, was marginally significantly different
(Fig. 5a–d). With the exception of Alu density, similar observations
could be made for genes upregulated in the double mutants.
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Fig. 4 | DNA methylation changes on MIR, Alu and L1 elements. a Pie charts
showing the percentage of differentially methylated cytosines (DMCs) overlapping
the respective elements. b–d Pie charts showing the enrichment of protein-coding
genes around the DMCs with reference to all cytosines included in the analysis,
statistically evaluated with chi-squared tests. e Fold enrichment of the proximal or
W gene sets overlapping the DMCs of each repetitive element. f Fold enrichment in
enhancers overlapping the DMCs of each repetitive element. For e, f, p values are
noted on the figures, asterisks indicate enrichment or depletion with p value <10−5

per hypergeometric test (one-sided) for n = 3685, n = 10,162 and n = 1585 DMCs
overlapping MIR, Alu or L1 elements, respectively. Source data are provided as a
Source Data file.
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Fig. 5 |Mousemodels recapitulate thedependencyofMIR-rich genes onproper
Dnmt3a and/or Idh2 function.Difference between the cumulative distribution of
the background genes (dashed gray line) and the cumulative distribution of the up-
or downregulated genes after Dnmt3a KO (left column), Idh2 R140Q mutation
(middle column) or both Dnmt3a KO and Idh2 R140Q (right column) in GC content
(a), evolutionary conservation (b), MIR density (c) and Alu density (d). Positive

values mean a shift of the distribution toward higher values while negative values
indicate a shift of the distribution toward lower values. Asterisk and crosses indi-
cate statistical significance at a p value threshold of 10−4 and 10−2, respectively, per
Kolmogorov–Smirnov tests (two-sided). All p values are listed on Supplementary
Data 4. Source data are provided as a Source Data file.
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The above results argue for the importance of a common archi-
tecture and retrotransposon content of the genes affected by single
mutations in Idh2 or Dnmt3a. The observed reversal of architectural
biases in genes DE between the doublemutants as compared to either
single mutant suggests the dependency on a balance between
methylation and demethylation of the genes with this architecture.

AML subtypes align with expression trajectories of normal
human hematopoiesis that are biased for evolutionary con-
servation and GC and retrotransposon content
We hypothesized that the AML expression programs as we captured
through the correlations contain an underlying differentiation-specific
component. To test this, we aligned the AML expression data along
normal hematopoiesis expression trajectories. Using publicly available
expression profiles obtained from different stages of human
hematopoiesis29, we projected the leukemic samples onto the PCA space
defined by the normal samples (Fig. 6a). To statistically evaluate these
projections, we searched for significantly different distances amongst
each AML subtype along different stages of normal hematopoiesis, in a
fashion similar to examining for DE genes. We identified 44 and 62
normal cell types that were more distant to double mutants as com-
pared to DNMT3A-mutant and IDH1/2-mutant samples, respectively

(Fig. 6b, c and Supplementary Data 6). Normal cells that were furthest
from double mutants were enriched in hematopoietic stem cells (HSC)
andmegakaryocyte-erythroid progenitors (MEP) (Fig. 6d, e). Another 75
normal samples were also found to be closer to double mutants than to
IDH1/2-mutants (Fig. 6c) and these were enriched in mature myeloid
cells (Fig. 6f, g). We next examined the overlap between DE genes
amongst AML subtypes and genes DE in progenitor or mature blood
cells as compared to HSCs. We found a significant overlap between
genes upregulated in IDH1/2-mutant AMLs as compared to DNMT3A-
mutant with genes upregulated during normal differentiation, particu-
larly of the myeloid lineage, confirming the stemlike phenotype pre-
viously described for DNMT3A-mutant AMLs5 (Fig. 6h).

The above alignments prompted us to examine the architecture
of DE genes between the different stages of differentiation as com-
pared to HSCs (Supplementary Data 2 and 4). We observed that, in
general, introns of upregulated genes were more GC dense, evolu-
tionary more neutral, MIR-denser and Alu-sparser than expected, lar-
gely independent of cell type (Fig. 6i). In contrast, downregulated
genes mostly had the opposite architecture.

Collectively, our results argue that leukemic cells can be
projected on expression trajectories of normal hematopoiesis that
are comprised from expression differences of MIR-dense genes.

Fig. 6 | AML subtype differences can be projected on MIR-biased expression
trajectories of normal hematopoiesis. a PCA plot of the ranked-normalized
normal and AML expression profiles. For simplicity, only AML samples are plotted,
while ellipses are fitted to show the space occupied by each lineage. For each AML
subtype, the median projection per principal component was calculated and
plotted as a square. The exact coordinates of each sample are included in Sup-
plementary Data 6. Significance Analysis of Microarrays (SAM) plots showing the
statistically significant differences in the distances between Double and DNMT3A
(b) or IDH mutant samples (c). Each circle represents a normal sample. If the dif-
ference between the observed score and the expected, as calculated after random
permutations, is larger than the threshold delta corresponding to an FDR of 5%,
then the distance of theDNMT3Amutant samples (b) or the IDHmutant samples (c)
is significantly different than the distance of the double mutants. Samples that
exceed this threshold are colored orange, green or yellow. d–g Enrichment in cell

types on the samples significantly closer (n = 43 samples and n = 61 samples for
DNMT3A or IDH1/2 mutants, respectively) or further (n = 74 samples for IDH1/2
mutants) to the double mutants as compared to the single mutants. Colors match
the respective groups of b, c. Asterisks indicate statistical significance per hyper-
geometric test (one-sided). h Heatmap showing the overlap of differentially
expressed genes between IDH1/2 and DNMT3A AML mutants with the DE genes
across normal hematopoiesis. i Heatmap showing the architectural biases in the
differentially expressed gene of each cell type as compared to HSCs in normal
human hematopoiesis. Baso basophils, CMP common myeloid progenitor cells,
Eosin eosinophils, GMPgranulocyte-monocyte progenitor cells, Gran granulocytes,
HSC hematopoietic stem cell, Mega megakaryocytes, MEP megakaryocyte-
erythroid progenitor cells, Monomonocytes, NK natural killer cells, NKTNKT cells.
Source data are provided as a Source Data file.
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The interaction of both mutations in double mutant leukemic
samples results in these resembling more differentiated cell types
than either single mutant, arguing that these leukemias have
reached or have originated from a distinct MIR-defined
expression state.

Discussion
Mutations in AML that impact different components of the DNA
methylation pathway have been shown to have distinct and opposing
effects on gene expression and DNA methylation5–7,30–34. However, the
underlying effector genomic features driving the interplay between
cytosinemethylation and expression and resulting in these differences
were still unknown. In this study, we performed an unbiased correla-
tion analysis of gene expression and DNA methylation using TAD
coordinates to define functional genome compartments. Notably,
both genes and mCpGs involved in these significant correlations dis-
play distinct genomic architectural features and are dense in MIR
retrotransposons, a characteristic that was conserved across species.
Moreover, our data point to a potential role of MIR elements in the
recruitment of DBP/Cs to help link coding genes and regulatory CpGs.
Finally, normal hematopoiesis expression trajectories also involve
expression differences in MIR-dense genes. Our results point to a
mechanism involving MIR retrotransposons as main substrates or
recruiters of DNMT3A and TET2 that regulates normal HSC differ-
entiation and is hijacked by leukemic cells. A core finding of our study
is the observation that CpG methylation and gene expression are
linked through MIR retrotransposons, both because mCpGs are enri-
ched in MIR retrotransposons and enhancers, but also because the
gene bodies of methylation-dependent genes in turn are enriched in
MIR elements. This architectural linkage was independent of genomic
distance, but longer distances seem to additionally require the brid-
ging by DBP/Cs.

Methylation at CpG dinucleotides or islands is mostly known
for its negative effect on gene expression when overlapping pro-
moters, but recent research has shown methylation at enhancer
regions is equally, if not better, associated with gene expression35,36.
By analyzing enhancers from a panel of human cell types, Bell and
Vertino found that CpG islands within enhancers are hot spots for
genomic contacts and for DBP/C binding as well as less evolutionary
conserved than ones in promoters37. These observations agree with
our findings in the context of AML. Furthermore, enhancers’ CpG
methylation patterns are disrupted by TET2, IDH1/2 and DNMT3A
mutations in leukemia5,38. Within this context, our results in
DNMT3A and IDH1/2 AMLs describe a gene expression regulatory
landscape within TADs driven by epigenetic modifications at
enhancer regions that can be disrupted by mutations in epigenetic
modifiers.

Previous studies have shown that proliferation and stemness
are characterized by increased expression of retrotransposons
and short MIR-dense and Alu-dense genes9. However, as cells dif-
ferentiate, they express longer Alu-sparse and occasionally MIR-
dense genes9. The expression of both coding and non-coding
genes can indeed be regulated by retrotransposons9,11,39,40 and
these repeat elements play key roles beyond being sources of
genomic instability and mutations41–43. In this study, we build upon
those lines of evidence and argue that normal HSC differentiation
and AML require the proper utilization of MIR sequences as sites of
epigenetic regulation of gene expression. Furthermore, Colombo
et al. found that transposable elements, including Alu (MIRs were
not analyzed), were suppressed in leukemic stem cells as com-
pared to pre-leukemic stem cells by mechanisms involving post-
transcriptional regulation44. MIR and Alu elements have also been
found enriched in genes correlated with small non-coding RNA
levels45. Thus, it is intriguing to hypothesize an interplay between
epigenetics and non-coding RNAs targeting MIR sequences.

Examining proximal correlations with respect to distal (inter-
mediate and long-range) ones, we observed that although both
types contain genes enriched in MIR elements, the proximal cor-
relations contained Alu-sparse genes while the distal ones con-
tained Alu-dense genes. Based on prior observations of MIR and Alu
densities in differentiation9, we can postulate a synergist role of
these two retrotransposons as a mechanism to regulate distal
epigenetic-expression links. Indeed, we observed that in normal
hematopoiesis the establishment of cell identity through the
expression of differentiation and cell-type-specific genes requires
the selective expression of genes that are depleted from Alu ele-
ments but still enriched in MIR elements. We postulate that their
regulation happens through methylation of proximal mCpGs. Thus,
proximal correlations may capture the commitment on a specific
differentiation trajectory while distal correlations may be indicative
of interactions reflective of cellular stemness. However, despite
these overall trends, it is likely that a combination of genes regu-
lated through these two types of correlations may be required for
normal cell differentiation and during leukemogenesis.

AlthoughMIR elements appear to play a significant role in linking
DNA methylation and gene expression, we cannot rule out additional
effects of repeat elements’ DNA methylation on AML’s biology. For
instance,DMCsoverlappingAluandL1 elementsweremore likely to be
located at enhancers, which could impact processes like chromatin
domain formation or enhancer RNA production that are not directly
captured by our correlations.

Our study is impacted by the limitations in current technologies,
which do not capture the full spectrum of CpG methylation sites.
Particularly on repeat elements, the comprehensive evaluation of CpG
methylation is a challenging and currently unresolved problem in the
field that requires the development of new methodologies. However,
we believe that our study provides strong evidence for the need of
future studies to evaluate the full spectrum of epigenetic changes at
repeat elements in leukemia and likely other malignancies as well.
Furthermore, while our results on DBP/Cs as potential bridging
mechanisms are tantalizing, we cannot fully evaluate the impact of
DNA methylation on changes in the binding affinity of protein com-
plexes on DNA as a mechanism behind the epigenetic-transcriptomic
coupling. To evaluate such hypothesis, for each DNA-binding protein
analyzed, we would need data on the effect of methylation on its
binding affinity, its binding profile in IDH1/2 and DNMT3A single- or
double-mutant samples; data that exceed the scope of the
current study.

So, how does genome architecture and retrotransposons explain
the interaction of mutations in DNMT3A and IDH1/2? Spurred from
evidence on embryonic stem cells, Parry et al. put forward the
hypothesis that methylation turnover, i.e., a rapid methylation-
demethylation cycle on cytosines catalyzed by DNMT and TET
enzymes, is necessary for HSCs exiting from pluripotency and normal
hematopoietic differentiation46. Mutations in DNMT3A or TET2/IDH1/2
will disrupt the methylation turnover and proper gene expression;
however, mutations in both genes may restore the balance and con-
sequently expression of MIR-dense genes. This is observed in our
results in both human and mouse data: double mutants fall in an
intermediate state, between either single mutants. Thus, MIR retro-
transposons may not only act as bookmarks on the genome bridging
mCpGswith genes but also serve as the points on the genome at which
this methylation-demethylation cycle occurs in normal and malignant
hematopoiesis.

Methods
Expression and methylation data acquisition, processing and
filtering
For the Glass et al. AML cohort5, we downloaded the methylation and
expression data from Gene Expression Omnibus (GEO), accession
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numbers GSE98352 and GSE689147, respectively. Specifically, we used
themethylation calls directly fromGEO and filtered out cytosines with
a coverage less than 10 in any of the sample. All cytosines fell in CpG
dinucleotide context. For CpG islands, we averaged the methylation
levels of the mCpGs that overlapped the island and had the appro-
priate coverage. The expression datasets for the samples with
methylation calls were downloaded as CEL files from GEO, RMA and
quantile-normalized and the 50% most expressed protein-coding
genes were considered for downstream analyses.

For the TCGA cohort1, the level 3 RPKM RNA expression matrix
and level 3 DNA methylation matrix were downloaded from the GDC
portal (https://gdc.cancer.gov/about-data/publications/laml_2012;
accessed on January 15, 2020) andmutation calls were drawn from the
respective TCGA publication. Samples with IDH1, IDH2 or DNMT3A
mutations were considered; those with a co-occurring TET2mutations
were excluded. The top 50% most expressed genes were kept in
downstreamanalyses.We kept inour analysesmethylation probes that
had a methylation value of >0.3 in more than 3% of the samples.

For normal humanhematopoiesis, we downloaded theCEL files of
GSE2475929 from GEO, RMA-normalized them and kept the 75% most
expressed (sorted by average expression in the whole data matrix;
n = 9565). For our analyses, we grouped the 211 samples into 15 cell
types without distinguishing among stages of the same cell type (e.g.,
among naïve, effector or memory T cells).

Mouse expression data with accession code GSE600556 were
downloaded as sra files from GEO, mapped on the GRCm38 mouse
genome using STAR version 2.7.1a and FPKM values were calculated
using the rsem-calculate-expression command of RSEM version
1.2.2848,49. For our analyses, we kept genes with a median expression
value of at least 1 FPKM in the analyzed samples.

Genomic data acquisition and processing
We integrated information from multiple publicly available databases
andpublisheddatasets. For consistency across themultiple data types,
we used the hg19/GRCh37 human genome andgene annotations (exon
and intron ranges and gene types) from ENSEMBL. For mouse we used
mm10/GRCm38. Repetitive elements for human GRCh37 (version
4.0.5) and mouse GRCm38 (version 4.0.5) were downloaded from
RepeatMasker (http://repeatmasker.org/). Divergence scores were
defined as the sum of percentages of substitutions, insertions and
deletions. B-Boxes were defined as GTTCNANNC and were searched in
the genomic segments defined by the MIR elements in sense or anti-
sense orientation. Information on metabolic pathways was down-
loaded fromKEGG50. ENCODEDNA-binding protein ChIP-seq profiles22

for hg19/GRCh37 were downloaded from UCSC Genome Browser
using Table Browser (encRegTfbsClustered primary table; accessed on
20 August 2019) and filtered so that only experiments on K562 cells
were kept. Evolutionary conservation data, specifically conservation
scoring by phyloP for 45 vertebrate genomes51, were also downloaded
from the USCS Genome Browser (accessed on 11 October 2019).
Enhancer coordinates and histone mark ChIP-seq profiles were drawn
from the Adelman et al. study26, while ChIP-seq profiles from DBP/Cs
were drawn from the Beck et al. study21. Coordinates for CpG islands
(cpgIslandExt) were downloaded from the UCSC Genome Browser
using the Table Browser tool. Genome arithmetic (e.g., region inter-
section) was performed with bedtools version 2.28.052. Cross-checked
human protein-protein interactions normalized at the gene level were
downloaded from the PICKLE database version 3.3.

TAD identification
Mobilized peripheral blood CD34+ cells were purchased from Fred
Hutchinson Hematopoietic Cell Procurement Services. Hi-C was per-
formed in replicate on freshly thawedonemillionCD34+ cells using the
Arima-HiC Kit (Arima Genomics, A510008) following manufacturer’s
protocol for low input crosslinking and library preparation with Accel-

NGS 2S Plus DNA Library Kit (Swift Biosciences, 21024). Libraries were
sequenced on a NovaSeq 6000 (Illumina) in paired-end mode by the
Sylvester Comprehensive Cancer Center Onco-Genomics Shared
Resource. The resulting data were analyzedwith Juicer (Version: 1.5.6)53

on AWS (https://aws.amazon.com/) with default parameters. The two
replicates were analyzed separately. The two .hic files were combined
and the arrowhead function from Juicer was used for calling TAD
regions with 40K resolution (Supplementary Data 1). Overlapping
domains were merged into one consecutive TAD. These TADs were
subtracted from the whole genome and the remaining regions were
also considered as TADs for the purposes of our correlations. This
methodology split the human chromosomes into 3103 TADs.

Statistical analyses and data visualization
We used hypergeometric test when the statistical question could be
formulated as to evaluate over/under-enrichment in a sampling set
from a larger finite population without replacement. For instance, to
examine whether the mCpGs with significant correlations were more
likely to have a specific (discrete) characteristic, like overlap with a
ChIP-seq peak for a DNA-binding protein, an enhancer or a MIR ele-
ment. For this purpose, we counted the number of successes in the
selected set (e.g., number of mCpGs with significant correlations that
also overlap an enhancer) and compared it to the number of successes
in the whole (finite) population (e.g., the number of all mCpGs that
overlap enhancers). The hypergeometric test is based on a discrete
probability distribution that makes it appropriate for this type of
analyses with the null hypothesis being that there is no selection bias
from the background population.

We used a one-sample Kolmogorov–Smirnov test when our sta-
tistical question could be formulated as to examine whether a con-
tinuous variable in the selected set originates from the specific
distribution of the background set; with the null hypothesis being that
the distribution of the values in the selected does not differ from the
background one. For instance, we employed this test when we exam-
ined the density of MIR elements in the introns of genes with sig-
nificant correlations. Our null hypothesis in this case is that the genes
selected by the expression-methylation correlations had the sameMIR
density distribution as the background set, i.e., were chosen randomly.
Thus, the Kolmogorov–Smirnov test is appropriate to compare the
distribution of the values from the correlation set with respect to the
background cumulative distribution. We note that the test is non-
parametric and thus does not require the parameters to follow a spe-
cific distribution. In addition to retrotransposon content, we also used
this test when we tested for biases in GC content and evolutionary
conservation.

Spearman correlation coefficients and associated p values were
computed for each gene and mCpG (in the case of the Glass et al.
cohort) or methylation probes (in the case of TCGA data) within the
same TAD. Specifically, each gene, whose expression passed the cri-
teria described above, was correlatedwith all themCpGs (for the Glass
et al. cohort) or methylation probes (for the TCGA cohort) that both
overlapped, at least partially, with the same TAD. p values were then
corrected to FDR values and expression-methylation pairs with an
associated FDR < 5% were considered. Based on the location of the
mCpG with respect to the gene, i.e., the union of all its exons and
introns, correlations were classified as proximal, if the mCpG was
within the gene body or within a 2 kb window of the gene, as inter-
mediate, if the mCpG was not proximal to the gene but was within
500 kb and as long if the mCpG further than 500 kb from the gene.
DAVID54 was run on the genes with significant methylation-expression
correlations (i.e., the proximal gene set), with all the genes partici-
pating in the correlation analyses serving as the background. As an
orthogonal approach, we ranked genes based on the maximum
absolute correlation coefficient of all the proximal, intermediate- or
long-range mCpGs or methylation probes. This allowed us to perform
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Gene set enrichment analysis (GSEA)55. We also extracted the 1000
genes with the weakest correlations (i.e., the W gene set) at the prox-
imal, intermediate or long-range settings. For both DAVID and GSEA,
the Supplementary Data include all results for a threshold up to 10%
FDR. We used hypergeometric tests to evaluate the overlap of the
mCpGs with significant correlations with poised and active enhancers
from the Adelman et al. study26, with DBP/C binding sites from Beck
et al.21 and DBP/C binding sites from ENCODE22.

Differential expression analyses for the mouse data were done
with Significance Analysis for Microarrays56 (SAM; 5000 permutations
and 5% FDR threshold) after log2-transforming the data matrices. For
the Zhang et al. study (GSE60055), we used the MEP cells for our
analyses. For the single mutant genotypes, two replicates were ana-
lyzed in the original study; thus, for each gene we computed the
average of the two replicates and added it as a third pseudo-replicate.

Differential methylation analysis of retrotransposons was done
using the mCpGs that overlap each retrotransposon class separately,
with coverage more than 10 and non-zero methylation in more than
one of the samples in each class (e.g., IDH1/2mutants). As mapping by
Bismark discards reads with multiple alignments on the genome with
the same number of mismatches57, our approach only considered
sequencing reads that could be uniquely aligned in sequences that are
highly repetitive on the genome. Thus, we could not make assump-
tions on whether the data follow a specific distribution and therefore
used the non-parametric SAM (5000 permutations, FDR threshold of
5%). We used chi-squared tests to examine the distribution of the
DMCs in protein-coding genes, non-coding genes or in intergenic
space. We also used hypergeometric tests to examine the overlap of
DMCs with poised and active enhancers26.

All statistical analyses were conducted in python version 2.7.16 or
R version 3.6.1. We made use of the numpy (v. 1.16.5) and scipy (v.
0.19.1) packages in python and amap (v.0.8-18), circlize58 (v. 0.4.12),
data.table (v. 1.3.16), dendextend59 (v, 1.14.0), samr (v. 3.0) and
VennDiagram60 (v. 1.6.20) packages in R as well as Cytoscape ver-
sion 3.7.261.

Overlap of genes and MIR elements with DNA-binding proteins
To statistically evaluate whether DNA-binding proteins (DBP/C) from
Beck et al.21 or ENCODE22 were more likely to bind on genes with sig-
nificant correlations, we performed a Monte–Carlo simulation. Each
DBP/C was analyzed individually for each set of genes with proximal,
intermediate or long-range correlations or for each respectiveW set of
genes. In more detail, we first counted how many genes overlapped
with at least one DBP/C peak (to be called “observed” instances). Then,
we shuffled 1000 times the DBP/C sites within the genomic space
defined by the union of all genes that had participated in the correla-
tions. In each of the 1000 iterations, we counted the instances of
overlap with the specific gene set. After all iterations, we built a dis-
tribution of the expected number of overlaps with DBP/C sites. We
compared the observed number of instances with this distribution and
calculated the Z-score of the observed instances. We consider an
absolute Z-score >10 as statistically significant. We include all the cal-
culated Z-scores in Supplementary Data 5.

To evaluate the overlaps of MIR elements with DBP/Cs, we repe-
ated the above simulations but instead of genes we focused our
attention on the MIR elements embedded in the introns of the
respective gene sets. Thus, for each of the 1000 iterations and for each
of the “observed” instances, we counted the overlap of the DBP/Cs (or
their shuffledbindingpeaks)with the respectiveMIR elements.Z-score
calculations and significance thresholds were done in the same
manner.

Testing the genes’ architecture
We tested the architecture of gene sets as compared to the respective
background, i.e., all genes participating in the respective analysis (for

example, all genes that were expressed and considered for differential
expression). For exonic and intronic length, we counted the number of
bases in the unionof exons or introns, respectively. For GC content, we
counted G or C bases in the genes’ exons or introns and divided by the
exons’ or introns’ length, respectively. We calculated the evolutionary
conservation of a gene’s exons or introns as the median phyloP score
of all exonic or intronic bases, respectively. For repetitive elements
(e.g., Alu,MIR, L1, ERV elements), weestimated the fraction (density) of
a gene’s exons or introns overlapping with each respective repetitive
element. To evaluate statistically significant differences, we used
Kolmogorov–Smirnov test. For repetitive elements, we also used
Hypergeometric tests to evaluate whether the gene set under question
contained genes that were more likely to contain at least one instance
of each repetitive element as compared to the background gene
population. For both tests, our default p value threshold was 10−4 but
we also note cases were the p value was larger than 10−4 but lower than
10−2. The evolutionary conservation of themCpGsand their probability
of being part of a repetitive element or enhancer were tested
with Kolmogorov-Smirnov or hypergeometric tests, respectively,
against all mCpGs that participated in the correlations.

Distances among expression profiles
Weprojected the expression profiles from theGlass et al. study5 on the
samples from normal human hematopoiesis29. In detail, we first inter-
sected the two data matrices and kept the genes expressed in both
(n = 4839). Then, we rank-normalized the expression profiles with
higher expression values ranked highest.

We performed principal component analysis on the rank-
normalized matrix using only the normal samples. Then, we used the
computed eigenvectors to project the leukemic samples on the
reduced space. To aid the visualization, we fitted ellipses with the car
package in R, at 0.8 confidence level for each lineage or AML subtype.
We grouped: B, T, NK and NKT cells as “lymphoid”; basophils, den-
dritic, eosinophils, granulocytes and monocytes as “myeloid”; ery-
throid cells and megakaryocytes as “erythroid”; CMP, GMP and MEP
cells as “progenitor”.

Using the rank-normalized matrix, we also computed the Man-
hattan distance between each leukemic expression profile (sample)
and each normal one. This created a matrix of 211 rows (the normal
profiles) and 36 columns (the leukemic profiles) with the values being
theManhattan distances of the respective profiles.We normalized this
matrix so the median distance of each leukemic profile to all normal
profiles is zero. We used this matrix to perform SAM and compute
significantly different distances in the double mutants to each of the
single mutant groups separately. On the normal profiles that SAM
returned as significant, we used hypergeometric tests to look for
enrichments in specific cell types with reference to all 211 cells and all
15 cell types and corrected the resulting p values to FDR values.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The publicly available datasets analyzed during the current study
are available in the GEO repository under accession codes
GSE869525, GSE689147, GSE2475929, GSE600556, GSE10440426,
GSE4514421, the GDC portal (https://gdc.cancer.gov/about-data/
publications/laml_2012)1, the UCSC Genome Browser (http://
genome.ucsc.edu/)62 for the ENCODE (http://genome.ucsc.edu/
cgi-bin/hgTrackUi?hgsid=750328547_9j5VLyHWUZPZz7rzBYImG
9AyNaZC&c=chr11&g=encRegTfbsClustered)22 and phyloP scores
(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/phyloP46
way/vertebrate)51, RepeatMasker (https://www.repeatmasker.
org/)63, KEGG (https://www.genome.jp/kegg/)50 and PICKLE
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(http://pickle.gr/). The Hi-C data generated for this study were
deposited in GEO with accession code GSE188940. The remaining
data are available within the Article, Supplementary Information
or Source Data file. Source data are provided with this paper.

Code availability
All custom code used in this study is available at https://github.com/
atelonis/MIRs-IDH12-DNMT3A-AMLs_2022 and the corresponding DOI
is as follows: https://doi.org/10.5281/zenodo.7072736.
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