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Tempo: an unsupervised Bayesian algorithm
for circadian phase inference in single-cell
transcriptomics

Benjamin J. Auerbach 1 , Garret A. FitzGerald2 & Mingyao Li 3

The circadian clock is a 24 h cellular timekeeping mechanism that regulates
human physiology. Answering several fundamental questions in circadian
biology will require joint measures of single-cell circadian phases and tran-
scriptomes. However, no widespread experimental approaches exist for this
purpose. While computational approaches exist to infer cell phase directly
from single-cell RNA-sequencing data, existing methods yield poor circadian
phase estimates, and do not quantify estimation uncertainty, which is essential
for interpretation of results from very sparse single-cell RNA-sequencing data.
To address these unmet needs, we introduce Tempo, a Bayesian variational
inference approach that incorporates domain knowledge of the clock and
quantifies phase estimation uncertainty. Through simulations and analyses of
real data, we demonstrate that Tempo yields more accurate estimates of cir-
cadian phase than existing methods and provides well-calibrated uncertainty
quantifications. Tempowill facilitate large-scale studies of single-cell circadian
transcription.

The circadian molecular clock is a 24 h timekeeping mechanism
found in nearly every cell in humans1. The time of the clock, referred
to as circadian phase, is determined by the mRNA and protein
concentrations of the clock’s constituent genes, referred to as clock
or core clock genes2. Clock genes are organized in a transcriptional-
translational feedback loop that enables cells to maintain self-
sustained ~24 h oscillations in the concentrations of clock gene
mRNA. Clock gene proteins additionally interact with cell-type-
specific regulatory factors to drive rhythmic transcription of genes
referred to as clock-controlled genes (CCGs). It is partially through
these CCGs that circadian clocks generate rhythmic cellular beha-
viors, such as rhythms in hepatocyte glycogenesis3 and vascular
smooth muscle cell (SMC) contractility4. Though self-sustained,
circadian clocks additionally rely on environmental cues, referred
to as Zeitgebers (e.g., light), to update and optimize their timing via
a process referred to as entrainment5.

Many open questions in chronobiology require single-cell reso-
lution, such as the identification of cell-type-specific CCGs and the role
of circadian phase in gating cell fate decisions. As droplet-based single-
cell RNA-sequencing (scRNA-seq) measures genome-wide single-cell
transcriptomes at high throughput, it has become an attractive tool
with which to study many of these questions. Existing scRNA-seq stu-
dies of the clock have relied on time course designs6–8, in which cell
clocks are presumed to be entrained by an external rhythmic stimulus,
such as light. Assuming cell clocks are perfectly synchronized, sample
timing over the cycle of the stimulus can be used as a direct proxy for
the circadian phases of all cells in the sample. Nevertheless, this is a
limiting assumption, as previous studies suggest cell circadian phases
can differ by several hours within the same tissue in vivo and are
determined by biological variables such as spatial location9–12. Fur-
thermore, chronobiologists may be interested in studying circadian
transcriptional rhythms of cells in the absence of timing cues
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(e.g., unsynchronized cells in a dish). Breaking this assumption
requires single-cell measures of circadian phase. One approach is to
estimate cell circadian phases from gene expression directly, a task
referred to as unsupervised phase inference.

Several algorithms have been developed for the similar task of
unsupervised phase inference for cell cycle analysis using scRNA-seq
data13–16. However, the circadian cycle and cell cycle differ in two
notable ways. First, while hundreds of “core” genes are known to
oscillate over the cell cycle,many of which are highly expressed17,18, the
core circadian clock is only comprised of ~20 moderately expressed
genes2. Second, ~100–1000 CCGs6–8 oscillate in a cell-type-specific
manner over the circadian cycle and the identities of these genes are
often unknown ahead of time. Due to the moderate expression of
circadian clock genes and the challenge in identifying CCGs, existing
unsupervised phase inference methods perform poorly when tasked
with ordering cells over the circadian cycle. An optimal approach for
estimating circadian phase in scRNA-seq should thus identify CCGs de
novo and incorporate their information into phase estimates.

Existing unsupervised phase inference approaches were mainly
developed for scRNA-seq data generated by plate-based approaches
(e.g., Fluidigm C1). Relative to droplet-based techniques (e.g., 10X
Genomics Chromium), plate-based approaches tend to capture fewer
cells and more unique transcripts per cell19. As such, existing approa-
ches have three key limitations when applied to droplet-based scRNA-
seq data. First, existing approaches yield poor point estimates of cell
phase due to transcript likelihood distribution choices that do not
closely approximate the true generative distribution of droplet-based
scRNA-seq data. Second, existing approaches do not quantify the
uncertainty of phaseestimates. This becomes crucial for interpretation
of results from very sparse droplet-based scRNA-seq data. Third, run
times of existing approaches scale poorly with the number of cells,
making analysis of droplet-based scRNA-seq data untenable for many
applications.

To address these unmet needs, we developed Tempo, a Bayesian
variational inference approach, for circadian phase inference. Tempo
works well for both droplet-based and plate-based scRNA-seq data.
Tempo is fast, can incorporate domain knowledge, and yields uncer-
tainty quantifications for the estimated circadian phases. Using both
simulated data with ground-truths and real scRNA-seq data, we
demonstrate Tempo’s ability to achieve state-of-the-art cell phase
point estimates and well-calibrated cell phase uncertainty
quantifications.

Results
Overview of Tempo
Tempo assumes transcript counts of gene j in cell i, Xij , follow a
Negative Binomial distribution. The mean proportion of transcript
counts are presumed to follow a 24 h sinusoidal waveform, the gene
expression parameters of which are assumed to be shared by all cells.
Thus, the mean of transcript counts of gene j in cell i is influenced by
two factors: (1) gene-specific parameters, βj , describing the shape of
the sinusoid and (2) the cell’s circadian phase, θi. Given the observed
data,X, and prior knowledgeof all cell and geneparameters, P θ,βð Þ, we
seek the posterior distribution of the cell and gene parameters,
P θ,β∣Xð Þ. However, a closed-form solution for P θ,β,∣,Xð Þ is unknown
and estimation using sampling techniques is computationally bur-
densome. For a computationally efficient solution, Tempo instead
proposes an approximate posterior distribution q θ,βð Þ with differ-
entiable parameters describing its shape. Tempo estimates the true
posterior, P θ,β∣Xð Þ, by maximizing its similarity with the approximate
posterior, q θ,βð Þ, through a two-step iterative process (Fig. 1). As input,
Tempo requires the observed data, X, prior knowledge P θ,βð Þ, and a
list of core clock genes. Tempo uses this information to initialize a list
of cycling genes, which only includes the core clock genes at initi-
alization, and the approximate posterior, q θ,βð Þ. The approximate

posterior q θ,βð Þ is formulated such that only cycling genes contribute
information to the approximate posterior estimate of cell phases. In
Step 1, Tempo optimizes q θ,βð Þ to minimize its Kullback-Leibler (KL)
divergence with P θ,β∣Xð Þ using only information from the current
cycling genes. After this step, the marginal of q θ,βð Þ with respect to θ
can be considered a rough estimate of the cell circadian phase pos-
terior distributions based on only the current cycling genes. In Step 2,
Tempo uses the cell phase posterior distributions from Step 1 to
identify de novo cyclers. For the set of genes not currently identified as
cyclers, approximate gene parameter distributions are fit, conditioned
on the cell phase posterior distributions from Step 1. Tempo then
selects de novo cycling genes as those best described by phase varia-
tion and adds them to the set of current cycling genes. Steps 1 and 2 are
repeated until the core clock gene Bayesian evidence worsens or the
maximum number of iterations is exceeded. The final result of the
algorithm is the optimized approximate joint posterior distribution
q θ,βð Þ, which contains information about posterior cell phases and the
set of identified de novo cycling genes.

Evaluations of Tempo on simulated data
We first assessed Tempo’s performance on simulated scRNA-seq data
generated from Tempo’s Negative Binomial count model where sinu-
soidal gene parameters, including mesor, amplitude, and acrophase,
were estimated from a light-dark cycle time course scRNA-seq dataset.
This approachwasused to simulate scRNA-seq datasets collected from
either a single sample of unsynchronized cells or from cells sampled
every 4 h over a 24 h light-dark cycle time course (i.e., ZT0, ZT6, ZT12,
and ZT18). Details on the estimation of gene parameters and gen-
erative model used for simulations can be found in Methods.

Using these simulated scRNA-seq data, we first determined whe-
ther Tempo can accurately estimate circadian phase when considering
only the core clock genes as input. Tempo was run using a non-
informative prior over cell phases. Tomimic informative but imperfect
gene priors, core clock acrophase prior locations were shifted from
their true values. Shifts were drawn from standard normal distribu-
tions, scaled by 2 × 12

π (i.e., standard deviation of 2 h), and added to the
true acrophase values to yield acrophase prior locations. The prior
clock acrophase scales of the VonMises distributionwere set such that
the width of the 95% interval surrounding the prior acrophase loca-
tions was 4 h. Cell phase point estimate errors were visualized as
empirical cumulative distribution functions (eCDFs). For both unsyn-
chronized and time course datasets, and across a wide range of cell
numbers (500–5000 cells) and library sizes (3000–20,000 median
unique molecular identifiers (UMIs)), Tempo yields point estimate
error eCDFs slightly worse than the optimum (Fig. 2a and Supple-
mentary Figs. 1–9a). The optimum was obtained by computing the
maximum likelihood phases using the true generative model as the
likelihood model and considering all true cycling genes as input and
setting gene parameters to their true values. For comparison, we
analyzed the simulated data using existing unsupervised phase infer-
ence approaches with run time characteristics suitable for droplet-
based scRNA-seq, Cyclops20 and Cyclum16. Cyclops and Cyclum are
autoencoder neural network approaches that aim to find a circular
projection that maximizes the likelihood of the data. While Cyclops
and Cyclum have conceptual similarities, Cyclum uses transformed
counts of the individual genes as input, while Cyclops uses principal
components of the genes as input. As a baseline, we also included
PCA21, which aims to find orthogonal, linearprojections (i.e., principal
components) of the data that maximize its likelihood. Using the two
principal components that explain the most variation in the data, cell
phases can be estimated assuming points in this 2-D space lie along a
circle. To assess the effect of feature selection, competing methods
were run using two different input gene sets: first, using only the core
circadian clock genes, and second, using all genes with pseudobulk
UMI proportions, i.e., relative abundances, greater than 10−5. These
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competing approaches generally yielded non-random performance,
but demonstrated a stark decrease in performance for data with
smaller library sizes. As additional baselines, we also compared dif-
ferentmethods to twonaïve approaches: (1) drawing cell phases froma
circular uniform distribution, and (2) drawing cell phases from a sin-
gle point.

We further probed whether the uncertainty quantifications asso-
ciated with Tempo’s phase estimates using the core clock genes alone
were well-calibrated. We assessed the relationship between the con-
fidence of the approximate posterior’s credible interval and the cor-
responding fraction of intervals containing the true cell phase.
Credible intervals were computed using the Highest Density Region
approach22. Encouragingly, this analysis (Fig. 2b and Supplementary
Figs. 1–9b) suggests Tempo’s uncertainty quantifications are well-
calibrated for both unsynchronized and time course data. Tempo’s
credible intervals are slightly conservative, which reflects the propa-
gation of uncertainty from the gene parameters.

Given that Tempo can estimate cell phase from the core clock
genes alone, we next assessed the feasibility of de novo cycler detec-
tion and the potential use of de novo cyclers to improve cell phase
point estimates. Tempowas run on the simulated datasets considering
all genes as input so that de novo cyclers could be detected and
included into cell phase estimates. For comparison, Cyclops, Cyclum,
and PCA were run considering all genes as input. For both

unsynchronized and time course datasets, and across a range of
simulation settings, Tempo identifies de novo cycling genes with high
specificity and sensitivity (Fig. 2c and Supplementary Figs. 1–9c).
Notably, incorporatingdenovo cyclerswith core clockgenes improves
cell phase point estimates (Fig. 2d and Supplementary Figs. 1–9d). In
comparison, competing methods did not see a significant improve-
ment in point estimates when considering all genes as input. Phase
uncertainties remained well-calibrated, albeit more conservative,
when incorporating de novo cyclers (Fig. 2e and Supplementary
Figs. 1–9e). This suggests that de novo cycler detection can be a
valuable tool for circadian phase estimation.

We further assessed the stability of Tempo’s predictions. Tempo’s
results are stochastic due to the sampling required to compute the
objective function for both cell phase estimation and de novo cycler
detection. It is crucial to validate that the default number of samples
used to compute the objective function yields stable results. To assess
method stability, methods were run on the same simulated dataset
multiple times. For each method, the circular standard deviation
(reported in hours) of all cells was computed and visualized as a dis-
tribution. For comparison, circular standard deviation distributions
were also computed by randomly drawing cell phases from a circular
uniform distribution. Tempo’s median circular standard deviation was
less than 1 h for all simulation settings for which stability was evaluated
(Fig. 2f and Supplementary Figs. 1f, 2f and 7f). Of note, Cyclum and

Fig. 1 | Tempo model overview. As input, users supply a cell transcript count
matrix, list of cycling genes (e.g., circadian clockgenes), andprior knowledge about
the cell and geneparameters. Using the user-specified cycling genes, the count data
and prior knowledge, in Step 1 Tempo computes approximate posterior distribu-
tions of the cell circadian phases. Using these, in Step 2 Tempo identifies de novo

cycling genes with transcript counts that are well-explained by circadian phase
variation. Tempo repeats Steps 1 and 2 until either the Bayesian evidence of the
user-supplied cycling genes (e.g., circadian clock genes) worsens relative to pre-
vious iterations of the algorithmor is worse than random. Source data are provided
as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34185-w

Nature Communications |         (2022) 13:6580 3



Cyclops yielded highly unstable results for the simulation settings
evaluated.

Lastly, we evaluated how Tempo’s assumption of pure 24 h com-
ponent sinusoidal waveforms affects its performance on simulated
datawithmore realisticwaveforms. To assess this, simulateddatawere
generated using waveforms from a bulk aorta circadian time course
RNA microarray dataset sampled every 2 h over 48 h generated by
Zhang et al.23. JTKCycle24 was run on these data with a fixed period of
24 h, and genes with Benjamini-Hochberg q values <0.05 were con-
sidered true positive cyclers. In total, 4800 cells were simulated with a
median library size of 5000 UMIs. As a general measure of each gene’s
temporal signal, we computed the likelihood ratio of the true wave-
form over a flat waveform (Fig. 3a). Moreover, for each true cycling
gene we computed the strength of the 24 h sinusoidal component
relative to other sinusoidal components. We refer to this metric as the
circadian FFT fraction. Further details on the simulations and analysis
can be viewed inMethods. Our analyses suggest the waveforms of the
core circadian clock genes are among the most similar to pure 24 h
sinusoids (Fig. 3b). Tempo’s phase point estimates made based on the
core clock genes are largely unaffected when using their true wave-
forms, as errors closely mirror that of the theoretical optimum
(Fig. 3c). Moreover, cell phase uncertainties remain well-calibrated
(Fig. 3d). Running Tempowith de novo cycler detection, Tempo called
25 de novo cycling genes, all of which were true cyclers. The called de
novo cyclers were among the true cycling genes with the most tem-
poral signal (Fig. 3e). The waveforms of called de novo cyclers had
modestly stronger 24 h sinusoidal components than those of all true
cyclers (Fig. 3f). However, the waveforms of called cyclers had notably

less pure 24 h sinusoidal components than those of the core circadian
clock genes Dbp, Nr1d1, and Arntl. Undetected cycling genes with
similar temporal strength to that of the detected cycling genes
demonstrate similarly pure 24 h sinusoidal components (Supplemen-
tary Fig. 3g). This suggests that Tempo’s 24 h sinusoidal component
assumption likely does not strongly affect de novo cycler detection
sensitivity. On these data, incorporation of de novo cyclers improves
Tempo’s cell phase point estimates (Fig. 3h). For example, 62% of
estimates lie within 3 h of the true cell phase based on the clock alone;
this improves to 72% when incorporating de novo cyclers. However,
unlike the results on the data simulated with pure 24 h component
sinusoidal waveforms, results on these data suggest Tempo’s point
estimates incorporating de novo cyclers are suboptimal. Incorporation
of de novo cyclers yields uncertainty estimates that remain well-
calibrated (Fig. 3i). Altogether, these results suggest Tempo’s
assumption of 24 h component sinusoidal waveforms is reasonable for
estimating cell phase from the core circadian clock genes and for de
novo cycler detection. However, this assumption is suboptimal for
using de novo cyclers to improve phase estimates.

Tempo accurately estimates circadian phase from real scRNA-
seq data
While encouraged by Tempo’s performance on the simulated data,
Tempo’s likelihood distribution exactly matches the generative dis-
tribution of the simulated data. In this sense, Tempo’s superior per-
formance relative to other methods is, perhaps, unsurprising. We next
assessed whether the quality of Tempo’s circadian phase estimates
generalized to real droplet-based scRNA-seq data. We generated a

Fig. 2 | Results ona simulated scRNA-seq datasetof 1000 cells collected atCT0,
CT6, CT12, and CT18 with mean library size of 10,000 UMI. a Empirical cumu-
lative distribution function (eCDF) of the errors for each method’s cell phase point
estimates, where all methods were run using the true core clock genes as input.
b Calibration of Tempo’s uncertainty estimates when run using the true core clock
genes as input. c Tempo’s de novo cycler detection procedure. The x-axis repre-
sents themaximumaposteriori (MAP) fraction of sampleswith non-zero amplitude
for a given gene, and captures whether a gene is better described by sinusoidal or
flat variation over the circadian cycle. The y-axis statistic measures deviation of a
gene’s MAP amplitude from its expected MAP amplitude given its MAP mesor,

reported in terms of a Pearson residual. Large positive values indicate a gene has a
larger amplitude than expected given its mesor. Details of the Pearson residual
computation can be viewed in Supplementary Methods 8. d eCDF of the errors for
method cell phase point estimates, where methods were run considering all genes
as input. e Calibration of Tempo’s uncertainty estimates when run considering all
genes as input. f Method stability analysis. Methods were run five times (con-
sidering all genes as input) on the dataset. The circular standard deviation of pre-
dictions for each cell was computed and visualized as a distribution. Source data
are provided as a Source Data file.
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deeply sequenced scRNA-seq dataset using the 10X Genomics Chro-
mium platform from mouse aorta collected every 4 h (i.e., ZT0, ZT6,
ZT12, and ZT18) over a 24 h light-dark cycle. This high-quality dataset
yielded 18,863 vascular SMCs, 3135 fibroblasts, 288 endothelial cells,
and 287macrophageswithmedian library sizes of 13,646, 7412, 6846.5,
and 7389UMIs, respectively. To benchmark Tempo on this dataset, we
compared its performance with Cyclops, Cyclum, and PCA. To assess
the effect of feature selection, competingmethodswere run using two
different input gene sets: first, using only the core circadian clock
genes, and second, using all genes (with pseudobulk UMI proportions
greater than 10−5) to evaluate if including de novo cyclers helps cell
phase estimates. Tempo was run using a non-informative prior over
cell phases. Additional details on the initialization of the core clock
gene priors are provided in Methods. The resulting cell phase predic-
tions for each individual time point can be viewed in Fig. 4 and Sup-
plementary Figs. 10–13.

As a diagnostic tool, Tempo measures the Bayesian evidence of
core clock expression associated with the estimated parameters.
Tempo compares this relative to the evidence associated with random
parameters estimated on a permuted core clock count matrix, and
summarizes improvement over random via their ratio, also referred to
as the Bayes factor. Further details of this procedure can be viewed in
Supplementary Methods 6 and 7. Bayes factors greater than 1 indicate
improvement over random. This diagnostic tool suggests Tempo’s
predictions on these data were highly non-random. The Bayes factors
were 1017,896, 102257, 10110, and 10184 for the SMCs, fibroblasts, endothelial
cells, and macrophages, respectively.

For each cell type, we first compared the circadian phase point
estimates of individual cells to their sample collection phase in the
light-dark cycle. The distribution of the difference between the two
phases over all cells was visualized as an eCDF (Fig. 5a and Supple-
mentary Figs. 14–20a). For all cell types and input gene sets, Tempo’s

Fig. 3 | Tempo results on simulated scRNA-seq with realistic waveforms.
a Distribution of true cycler temporal signal strength, measured according to the
likelihood ratio test statistic (LRT) of the true waveform vs. a flat waveform.
b Distribution of true cycler 24h sinusoid component strength, measured
according to the circadian fast Fourier transform (FFT) fraction. c eCDFs of the
error of Tempo’s cell phase point estimates and d uncertainty calibration when run
with the core clock genes alone. e Distribution of de novo cycler temporal signal

strength. f Distribution of the strength of the 24h sinusoidal component for genes
called as de novo cyclers by Tempo. g Bivariate distributions of cycler temporal
strength and 24 h sinusoidal component strength for true cyclers detected or
undetected as de novo cyclers. h eCDFs of the error of Tempo’s cell phase point
estimates and i uncertainty calibration when run with the core clock genes and de
novo cyclers. Source data are provided as a Source Data file.
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point estimates demonstrate a substantial improvement over the
alternative approaches we analyzed (Table 1). Moreover, on these data
Tempo demonstrates well-calibrated uncertainties (Fig. 5b and Sup-
plementary Figs. 14–20b), suggesting its uncertainty quantification is
meaningful and can aid interpretation of results.

Phase inference methods were also applied to time course
droplet-based scRNA-seq data of 18,378 mouse hepatocytes from
Droin et al.6. Tempo’s predictions on these data were also better than
random, as the ratio of Tempo’s core clock expression Bayesian evi-
dence over random was 101761. On these sparser data (median library

size of 1965 UMIs), Tempo again demonstrates improved point esti-
mates over competing methods and well-calibrated uncertainties
(Supplementary Figs. 21 and 22a, b).

The above evaluations assume each cell’s circadian phase is equal
to its sample collection phase in the light-dark cycle. While we antici-
pate the true cell phase is close to the sample collection phase in
young, healthy mice, the collection phase may not exactly equal the
true circadian phase of individual cells if they are imperfectly syn-
chronized. As such, the point estimates were evaluated on light-dark
cycle data according to two additional criteria independent of single-

Fig. 4 | Density of method cell phase predictions for aorta SMCs at various
sample collection times, reported in terms of Zeitgeiber time (ZT). Tempo’s
densities represent the pseudobulk approximate posterior distributions at each
sample collection timepoint. Competingmethoddensities representmethodpoint

estimates. Vertical red lines represent the anticipated cell phase given the sample
collection time. aMethod cell phase predictions densities when run using only the
core clock genes. b Method cell phase predictions densities when run using all
genes as input. Source data are provided as a Source Data file.
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cell phase ground truths. First, the difference between cell phase
estimate distributions for any pair of sample collection phases should
equal the difference in the collection phases. Based on this rationale,
we calculated the expected relative shift in phase distributions across
pairs of sample collection times and their respective cells. As shown in
Fig. 5e and Supplementary Figs. 14–16e, 17–22d, Tempo recapitulated
the expected relative shift for all cell types. Alternative approaches
often did not capture the anticipated relative phase shift between
sample collection times, regardless of whether they were run with the
core clock genes or the full gene set. Second, the method with phase
estimates closest to the truth should best explain core clock expres-
sion, in terms of likelihood. Moreover, phase estimate parameters
should generalize to explaining the expression of clock gene tran-
scripts in unseen cells. As such, each method was evaluated for their
ability to explain core clock expression on a holdout set of cells, as
measured by the likelihood of core clock expression using the meth-
od’s cell phase estimates (Fig. 5c and Supplementary Figs. 14–16c).
Details of the computation of holdout cell core clock expression like-
lihood can be viewed in Methods. Tempo explained holdout clock
expression the best across all cell types evaluated. Intriguingly, for the
aorta SMCs and fibroblasts, Tempo explains core clock expression
better than sample collection phase. This suggests Tempo may
meaningfully identify out-of-phase cells collected over light-dark
cycles.

The stability of point estimates was assessed by running each
method five times on each dataset. For each method, the circular
standard deviation (reported in hours) of all cells was computed and
visualized as a distribution (Fig. 5d and Supplementary Figs. 14–16d,
17–22c). For comparison, circular standard deviation distributions
were also computed by randomly drawing cell phases from a circular
uniform distribution. Tempo’s median circular standard deviation was
less than 1 h for all datasets, with exception of the aorta endothelial
cells. For the endothelial cells, 27% of cells had circular standard
deviations <1 h (Supplementary Fig. 23a). Cells with higher posterior

certainty had more stable estimates (Supplementary Fig. 23b) than
cells with less certainty (Supplementary Fig. 23c). Relative to the SMCs
and fibroblasts, the endothelial cells hadmany fewer cells (18,863, 3135
fibroblasts, and 288 cells for SMCs, fibroblasts, and endothelial cells,
respectively). As such, Tempo’s relative instability on the endothelial
cells could be partially explained by the small cell counts. Nonetheless,
it was unexpected that the endothelial cell predictions were more
unstable than that of the macrophages, as the data for the two cell
types had similar technical characteristics; the data for the two cell
types had similar cell counts (288 and287 cells for endothelial cells and
macrophages, respectively) andmedian library sizes (6846.5 and 7389
UMI for endothelial cells and macrophages, respectively). Further
inspection suggested that stability differences between the two cell
types may be explained by weaker core circadian clock expression in
endothelial cells. Core clock gene transcripts were detected in a
smaller fraction of endothelial cells and had smaller pseudobulk
means, suggesting smaller mesors in endothelial cells (Supplementary
Fig. 23d, e). Moreover, clock gene transcripts exhibited smaller stan-
dard deviations (Supplementary Fig. 23f), suggesting smaller ampli-
tudes in endothelial cells. In general, Cyclop’s and Cyclum’s estimates
were unstable, and their circular standard deviation distributions
heavily overlapped with the circular uniform distribution for many of
the cell types and sets of input genes. However, Cyclum’s stability was
notably dataset dependent, as it showed good stability on the aorta
SMCs. As such, Cyclum’s stability may heavily depend on the dataset
characteristics and choice of hyperparameters.

Tempo identifies de novo cycling genes from real scRNA-
seq data
De novo cycling genes were called by Tempo for all real datasets. For
the real circadian light-dark cycle datasets 189, 109, 87, 28, and 117 de
novo cyclers were called for the aorta SMCs, aorta fibroblasts, aorta
endothelial cells, aorta macrophages, and liver hepatocytes, respec-
tively. The quality of these cyclers was assessed by two criteria. First,

Fig. 5 | Method results (considering all genes as input) on light-dark cycle aorta
smooth muscle cells. Treating the sample collection phase in the light-dark cycle
as the true cell circadian phases: a eCDF of the errors for each method’s cell phase
point estimates, b Calibration of Tempo’s uncertainty estimates. c Method out of
sample core clock gene likelihood analysis. LD corresponds to treating sample
collection times as the true cell phases. Out of sample core clock likelihoods were
computed for eachmethod, and reported in terms of standard deviations from the
median of a distribution of likelihoods associated with phase assignments drawn
froma randomuniformdistribution.dMethod stability analysis. Eachmethodswas

run five times on the dataset. The circular standard deviation of predictions for
each cell was computed and visualized as a distribution. e Method relative shift
analysis. Eachdot represents a pair of sample collection times in the light-dark cycle
(e.g., all six possible pairs of ZT0, ZT6, ZT12, ZT18), and conveys the relationship
between the expectedphase difference between apair of timepoints and the actual
phase difference for each method. As the phase difference is a circular random
variable, methods with points lying along either y = x or y = 24− x denote perfect
performance. Source data are provided as a Source Data file.
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for each cell type, we ran Step 2 of Tempo assuming the cell phases
were equal to their sample collection phase and called de novo
cyclers. When run in a fully unsupervised manner, Tempo’s de novo
cyclers should be enriched for cyclers that were called when cell
phases were fixed to their sample collection phase. Indeed, de novo
cyclers were enriched for these cyclers for all cell types evaluated
(Fig. 6a–e). Second, we expect that de novo cyclers detected from
cell types are enriched for cycling genes detected from bulk datasets
from the same tissue. Using the bulk aorta and liver datasets from
Zhang et al.23, genes with JTKCycle q values <0.05 were considered to
be true bulk cyclers. Strong enrichment was observed for the aortic
SMCs, aortic fibroblasts, and liver hepatocytes (Fig. 6f–j). While more
modest enrichment was observed for aortic macrophages (empirical
p value = 0.1165) and no enrichment for aortic endothelial cells
(empirical p value = 0.6759), these cell types compose a smaller
proportion of the tissue than SMCs and fibroblasts25. As such, we
would expect less concordance with the bulk aorta results for these
cell types. Altogether, these results suggest Tempo reliably identifies
de novo cycling genes in real circadian scRNA-seq data.

In contrast to its performance on the simulated data with only
24 h sinusoidal components, Tempo favored cell phase estimates
based on the core clock genes alone rather than those including de
novo cyclers for all real light-dark cycle cell type datasets. While
Tempo’s 24 h component sinusoidal assumption is adequate for
identifying de novo cyclers, these results suggest this assumption is
limiting for incorporating de novo cyclers to improve phase
estimates.

Discussion
Single-cell transcriptomics offers an unprecedented opportunity to
improve our understanding of circadian transcription. Nonetheless, its
impact has been limited by the assumption that sample collection
times reflect cell circadian phases. In lieu of widespread experimental
approaches that jointly measure single-cell phase and transcriptomes,
computational phase inference tools can be applied to estimate cell
phases from scRNA-seq directly. However, existing tools yield poor
phase estimates and do not quantify estimation uncertainty.

To address these challenges, we developed Tempo, a Bayesian
algorithm for single-cell phase inference from scRNA-seq data.
Through a combination of both simulated and real data analyses, we
demonstrate that Tempo yields state-of-the-art point estimates.
Moreover, Tempo empowers better phase estimate interpretation
through well-calibrated uncertainty quantifications and measurement
of improvement over randomphase assignments.While developed for
circadian phase inference, Tempo’s framework likely generalizes to
other cyclical processes, such as the cell cycle. Lastly, Tempo’s run
time characteristics are amenable to larger droplet-based scRNA-seq
datasets. Across all datasets analyzed, Tempo completed within 1 h
using a desktop CPU with a 3.2 GHz Intel Xeon W processor and
32GB RAM.

Given Tempo’s performance, we are encouraged by its immediate
potential for use in circadian research. More specifically, our tool may
make it possible to characterize circadian transcription parameters
using single samples of unsynchronized cell cultures. This experi-
mental paradigm can enable cost-effective circadian transcription
studies of human subjects and be used to study the role of cell-cell
interactions in circadian transcription. Further, our tool can help
researchers study circadian phase heterogeneity and its biological
determinants in tissue contexts (e.g., spatial location) from time
course data. Indeed, our analyses suggest Tempo meaningfully iden-
tifies out-of-phase cells in mouse aorta (Fig. 5c and Supplementary
Figs. 14–16c). Lastly, cell populations demonstrate cell-cell hetero-
geneity in circadian gene expression parameters, such as acrophase
and amplitude of clock genes etc. This Bayesian approach naturally
captures this biological variation and facilitate its interpretation.

Although Tempo has achieved several advances in unsupervised
phase inference, opportunities for future improvements exist. First, de
novo cyclers do not improve point estimates in real scRNA-seq data-
sets. While incorporating de novo cyclers improves point estimates in
simulated data, de novo cyclers decreased evidence of core clock
expression in the real scRNA-seq datasets we analyzed. Our simulated
analyses suggest this may be due, in part, to the assumption that the
expression means of CCGs follow 24h sinusoidal patterns across the
circadian cycle. Future efforts might rely on approaches that can
model more flexible CCG waveforms. Second, our method does not
explicitly model the contribution of technical effects to expression
variation. While less important for applications to single-sample
unsynchronized scRNA-seq data, this becomes more necessary for
data collected as multiple samples over time. Lastly, Tempo assumes
the sinusoidal parameters are shared by all input cells. Nonetheless,
parameters (e.g., gene amplitudes) may vary across subpopulations of
the input cells. As a Bayesian method, Tempo naturally handles such
situations by modeling additional variance in the gene and cell para-
meter estimates. However, a more ideal solution may be to use a
function to map continuous measures of cell state (i.e., a low-
dimensional embedding) to the sinusoidal parameters.

While we await widespread experimental approaches to pair
single-cell clock reporters with transcriptomics, it is important to keep
in mind that clock reporters with even zero measurement error will
contain phase uncertainty due to the inherent stochasticity of the
clock. Thus, single-cell reporter phases may be best used as prior
knowledge to unsupervised phase inference algorithms, such
as Tempo.

In summary, we developed Tempo, a Bayesian algorithm for cir-
cadian phase inference from scRNA-seq data. Tempo yields state-of
the-art point estimates of circadian phase, and well-calibrated uncer-
tainties. Well-calibrated uncertainties will enable investigators to
understand the robustness of cell phase estimates made from highly
sparse scRNA-seq data and to account for uncertainty in downstream
analyses. Further, the quality of Tempo’s phase estimates may make it

Table 1 | Comparison of method median phase error in hours

Method Gene set Aorta SMCs Aorta fibroblasts Aorta endothelial cells Aorta macrophages Liver hepatocytes

Tempo All 1.88 (0.03) 2.53 (0.36) 3.39 (0.4) 2.99 (0.01) 3.78 (0.39)

Cyclops All 5.73 (0.29) 5.84 (0.08) 5.65 (0.54) 5.35 (0.24) 4.66 (0.3)

Cyclops Core clock 4.62 (1.22) 4.17 (0.74) 5.72 (0.03) 4.08 (0.14) 4.26 (0.27)

Cyclum All 5.47 (0.44) 5.79 (0.13) 5.74 (0.23) 5.69 (0.31) 5.15 (0.53)

Cyclum Core clock 5.52 (0.35) 4.79 (0.69) 5.0 (0.45) 4.18 (0.31) 5.65 (0.42)

PCA All 5.69 (0.0) 6.0 (0.0) 5.84 (0.0) 5.64 (0.0) 5.75 (0.0)

PCA Core clock 3.39 (0.0) 3.99 (0.0) 5.58 (0.0) 4.41 (0.0) 5.91 (0.0)

Entries denote themean ofmedian phase errors across five independent runs for each method (in hours). Parenthetical values denote the standard deviation ofmedian phase errors across the five
runs (in hours). Of note, PCA is deterministic and its predictions do not differ between runs.
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Fig. 6 | Tempo called de novo cycler enrichment. Enrichment in called cyclers
when cell phase set to sample collection times for a aorta SMCs, b aorta fibroblasts,
c aorta endothelial cells, d aorta macrophages and e liver hepatocytes. Enrichment

in bulk cyclers (JTKCycle q value <0.05) for f aorta SMCs, g aorta fibroblasts,h aorta
endothelial cells, i aorta macrophages and j liver hepatocytes. Source data are
provided as a Source Data file.
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possible to identify out-of-phase cells from tissue collected over time
courses and to estimate circadian parameters from unsynchronized
cell populations using scRNA-seq.

Method
Ethical compliance
All research described in the manuscript adheres to relevant ethical
regulations. For the aorta data generated, Animal Care Protocol
#805035 was approved by the Institutional Animal Care and Use
Committee of the University of Pennsylvania.

Tempo model
Likelihoodmodel. As input, Tempo requires an n × p transcript count
matrix X, where n is the number of cells and p is the number of genes.
For gene j in cell i, the UMI count Xij is assumed to follow a Negative
Binomial (NB) distribution. The expected log proportion, log λij , of
gene j’s transcripts in cell i is defined by a sinusoid with four para-
meters: (1) the mesor, μj, which controls the mean of a gene’s pro-
portionover the circadian cycle, (2) the amplitude,Aj , or themaximum
deviation of the gene’s proportion from the mesor over the circadian
cycle, (3) the acrophase, ϕj, or the peak time of the gene’s proportion
over the circadian cycle, and (4) an indicator, Qj , describing whether
the gene has non-zero amplitude. These sinusoidal gene parameters
are assumed to be shared across all cells. As such, observed expression
differences across cells are explained by differences in (1) latent cell
phase, θi, (2) cell library size, Li, and (3) random variation described by
the Negative Binomial distribution.

The distribution of Xij is modeled as:

Xij ~ NB Liλij ,δij

� �
, ð1Þ

where:

E Xij

h i
= Liλij , ð2Þ

Var Xij

� �
=E Xij

h i
+ δij × E Xij

h i� �2 ð3Þ

and:

log λij
� �

=μj +QjAjcos θi � ϕj

� �
, ð4Þ

δij = gζ λij
� �

, ð5Þ

where gζ ðλijÞis a deterministic polynomial functionparameterized by ζ
(shared by all cells and genes) describing the relationship between
transcript proportion λij and the dispersion δij . Details on the estima-
tion of ζ can be found in Supplementary Methods 1.

Prior knowledge of gene and cell parameters. Prior knowledge may
be known about cell phases (e.g., based on single-cell clock gene
reporters or cell collection time); in this case, users can specify prior
knowledge about the phase of cell i as a Von Mises distribution (a
circular analog to the normal distribution):

PðθiÞ=VonMises θ locð Þ
i ,θ scaleð Þ

i

� �
ð6Þ

In the absence of prior knowledge about cell phases, Tempo uses
a non-informative Hyperspherical Uniform26 prior for each cell phase
by default.

For the gene parameters, prior knowledge about the mesor of
gene j can be specified as a normal distribution:

PðμjÞ=Normal μ locð Þ
j ,μ scaleð Þ

j

� �
ð7Þ

In practice, we use an empirical Bayesian approach to set μ locð Þ
j

equal to the log proportion of transcripts for each gene.
Prior knowledge about the acrophase of gene j may exist, (e.g.,

from bulk circadian transcriptomics data), in which case prior knowl-
edge can be specified in terms of a Von Mises distribution. In the case
of the core circadian clock genes, prior knowledge is typically known.
Otherwise, by default Tempo assumes a non-informative Hyper-
spherical Uniform prior.

The algorithm additionally requires the user to specify a reference
gene, the peak time of which defines the start of the circadian cycle. To
enforce this, the prior acrophase distribution of the reference gene is
set to a pointmass centered at0 radians. By default, the algorithmuses
the core circadian clock gene, Arntl, as the reference gene defining the
start of the cycle.

Prior knowledge about the amplitude of gene j is specified as a
transformed Beta distribution:

PðAjÞ=Beta A αð Þ
j ,A βð Þ

j

� �
× A maxð Þ � A minð Þ
� �

+A minð Þ ð8Þ

where A minð Þ and A maxð Þ denote the minimum and maximum possible
amplitude (which is shared by all genes). By default, Tempo sets
A αð Þ
j =A βð Þ

j = 1, which assumes a non-informative prior over the domain
of possible amplitude values.

Prior knowledge aboutwhether a gene j has non-zero amplitude is
specified in terms of a hierarchical Beta-Bernoulli:

PðγjÞ=Beta γ αð Þ
j ,γ βð Þ

j

� �
ð9Þ

PðQj ∣γjÞ=Bernoulli γj
� �

ð10Þ

where samples of γj denote the success probability of a gene having
non-zero amplitude and the user specifies the shape parameters of the
Beta distribution. For genes not part of the user-specified list of core
clock genes, Tempo sets γ αð Þ

j = γ βð Þ
j = 1, by default.

Approximate posterior inference. Using our prior knowledge of the
cell and gene parameters and the observed data, we seek the following
joint posterior distribution of our cell and gene parameters:

P θ,β∣Xð Þ / P X∣θ,βð ÞP θ,βð Þ= P X∣θ,βð ÞP θð ÞP βð Þ ð11Þ

whereθ is ann-dimensional vector containing thephase for each cell,β
is a p-dimensional vector containing the parameters for each gene (i.e.,
βj = ðμj,Aj ,ϕj ,Qj ,γjÞ), and:

P βð Þ=
Yp
j = 1

P βj

� �
=
Yp
j = 1

P μj

� �
P Aj

� �
P ϕj

� �
P γj

� �
P Qj ∣γj
� �

ð12Þ

and:

P θð Þ=
Yn
i = 1

P θi
� �

ð13Þ

No known analytic solution exists to P θ,β∣Xð Þ. Moreover, asymp-
totically exact estimation approaches, such as Markov-chain Monte
Carlo and full grid sampling, do not scale well to droplet-based scRNA-
seq datasets that can contain thousands (and sometimes tens of
thousands) of cells.
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For a computationally efficient solution to estimate P θ,β∣Xð Þ,
Tempo uses variational inference, an optimization-based approximate
Bayesian inference approach. In brief, Tempo uses the list of core clock
genes and prior knowledge to initialize an approximate joint posterior
distribution q θ,βð Þ with differentiable parameters describing its shape.
q θ,βð Þ is parameterized such that it includes a list of cycling genes and
only cycling genes contribute information to the estimate of θ. At
initialization, the cycling gene list only includes the user-supplied core
clock genes. Tempo optimizes q θ,βð Þ to approximate P θ,β∣Xð Þby
minimizing their KL divergence through an iterative two-step proce-
dure. In Step 1, Tempo estimates the cell phase distributions and gene
parameterdistributionsusingonly information fromthecurrent cycling
genes to minimize the KL divergence between the true joint posterior
distribution and the approximate joint posterior distribution. In Step 2,
Tempo identifies de novo cycling genes whose expression variation is
well-described by circadian variation. Approximate gene parameter
distributions are computed for current non-cycling genes conditional
on the cell phase distributions computed in Step 1 and conditional on
the non-cycling genes having non-zero amplitude (i.e., Qj is set to 1).
Tempo then identifies non-cycling genes with expression that is suffi-
ciently better explained by sinusoidal than flat variation and genes with
sufficiently high amplitude as de novo cycling genes. De novo cyclers
are then added to the cycling gene list. Steps 1 and 2 are repeated,
estimating the cell phase posterior distribution from the current cycling
genes and identifying de novo cyclers, until the algorithm’s stopping
criteria are met. The final results of the algorithm are a set of identified
cycling genes (the core clock genes and identified de novo cycling
genes), and the approximate posterior distributions of all gene and cell
parameters. Additional details of the initialization, generative process,
and iterative two-step optimization procedure of q θ,βð Þ can be viewed
in Supplementary Methods 2 and 3.

Generation of scRNA-seq data with only 24 h sinusoidal
components
Realistic gene expression parameters were first estimated from the
aorta SMC scRNA-seq dataset. Treating the light-dark sample collec-
tion time as the true cell phases, gene posterior distributions were
estimated using variational inference according to Tempo’s likelihood
model. Genes with high amplitudes (Pearson residuals greater than 2
for difference between actual and expected amplitude point esti-
mates) and cycler probability point estimates greater than 0.95 were
called as cycling genes, in addition to the annotated core clock genes.

Using the gene parameters estimated from real scRNA-seq, data
were simulated according to the following parameters: (1) the number
of cells; (2) the mean and standard deviation of log library size of the
cells; (3) the number of equally spaced cell phases; (4) the number of
flat genes; (5) the number of CCGs. Log library sizes were drawn from a
normal distribution. Discrete cell phases were drawn from a multi-
nomial distribution with uniform probabilities. Flat genes and CCGs,
and their respective sinusoidal parameters, were sampled with repla-
cement. Given these parameters, scRNA-seq datasets were generated
by sampling from our model generative distribution. To simulate
scRNA-seq data of unsynchronized cell cultures, cell phases were
drawn from 23 equally spaced phases over the circadian cycle. To
simulate light-dark cycle time courses, cell phases were drawn from
four equally spaced phases over the circadian cycle.

Generation of scRNA-seq with realistic waveforms
To generate simulated scRNA-seq data with realistic waveforms, we
used a bulk RNA arraymouse aorta dataset generated by Zhang et al.23.
This circadian time course sampled tissue every 2 h over 48 h, making
it ideal to measure gene waveforms with high fidelity.

JTKCycle24 was runon these datawith a 24 hperiod, and geneswith
Benjamini-Hochberg q values <0.05 were considered to be true cyclers;
genes with q values greater than 0.05 were considered to be true flat

genes.Within each timepoint, the proportions (i.e., relative abundance)
of each gene were computed. For true flat genes, values were fixed to
themedianvalue across all timepoints toproduceaflatmeanover time.
Cell library sizes were drawn from a log10 normal distribution, with
mean log10(5000) (i.e., mean library size of 5000 UMIs) and standard
deviation 0.5. Counts were then drawn from a Poisson distribution,
where the expected value was the gene’s proportion multiplied by the
library size. In total, 200 cells were simulated for each time point,
yielding 4800 simulated cells and 19,065 genes. These simulated data
contain ground truths for the cell phases.

As a general measure of temporal signal, for each gene we com-
puted the likelihood ratio test statistic (LRT) of their waveforms over a
flat waveform. The distribution of LRTs over all true cyclers can be
viewed in Fig. 6a.

To compute the strength of each gene’s 24 h sinusoidal compo-
nent, a Fast Fourier Transform (FFT) was run on the bulk gene pro-
portions at each time point. The strength of each gene’s 24 h sinusoidal
component was measured as the ratio of the 24 h sinusoidal compo-
nent’s amplitude relative to the sum of all sinusoidal component
amplitudes. We refer to this metric as the circadian FFT fraction. The
distribution of circadian FFT ratios over all true cyclers can be viewed
in Fig. 6b.

Optimal phase shifting procedure and computation of phase
estimation errors
Given the phase estimate of cell i made by method m, θ̂

mð Þ
i , we would

like to compute its error relative to the true cell phase, θi. However,
computing the phase error ofmethod estimates is not straightforward.
Cyclops, Cyclum, and PCA do not use information about which gene’s
peak defines the start of the circadian cycle. As such, the absolute
latent cell phase estimates of these methods are arbitrary, though the
relative ordering of the cells is not. To deal with this, eachmethodm’s
phase estimates are shifted by s(m) that produces the minimum total
error over all cells. s(m) is computed as:

s mð Þ = argmin
s mð Þ*

Xn
i = 1

arccos cos θ̂
mð Þ
i � s mð Þ*

� �� �
ð14Þ

The method phase prediction for each cell i, θ̂
mð Þ
i , is then shifted:

θ̂
m:shiftedð Þ
i = θ̂

mð Þ
i � s mð Þ ð15Þ

Given the true cells phases, θ, and method-specific shifted phase
estimates, θ̂

m:shiftedð Þ
, we compute the error (in hours) of the phase

point estimate made by method m for cell i, ϵ mð Þ
i :

ϵ mð Þ
i =

12
π
arccos cos θi � θ̂

m:shiftedð Þ
i

� �� �
ð16Þ

Simulated data circadian phase estimation
The acrophasepriors usedbyTempo for the simulated core clockgenes
were set as follows. First, the prior acrophase location was shifted from
the true acrophase value. This was done by drawing a shift from a
standard normal distribution, scaling the shift by 2 × 12

π , and then adding
the shift to the true acrophase value. Second, the prior acrophase scale
of the Von Mises distribution was set such that the width of the 95%
interval surrounding the prior acrophase location was 4 h. Tempo,
Cyclops, Cyclum, and PCA were run two times: first, considering all
genes as input, and, second, restricting the data to the core clock genes.

Simulated data model stability analysis
For the simulated datasets with results shown in Fig. 2 and Supple-
mentary Figs. 1 2, and 7, Tempo, Cyclops, Cyclum, and PCA were each
run five times. As a baseline method to compare against, five random
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cell phase predictions were also made for each cell by drawing from a
uniform distribution over [0, 2π]. Predictions from Tempo, Cyclops,
Cyclum, PCA, and the random method yielded a matrix θ̂, where θ̂

mð Þ
ik

denotes the phase point estimate for cell i method m and run k. For
each cell—method pair, the expected phase across runs for each cell,

E½θ̂ mð Þ
ik �, was computed using the SciPy27 circular mean function. The

stability (reported in hours) ofmethod j’s predictions for cell i, s mð Þ
i , was

then computed as follows:

s mð Þ
i =

12
π

×
1
5

X5

k = 1
arccos cos θ̂

mð Þ
ik �E½θ̂ mð Þ

ik �
� �� �

ð17Þ

Smoothed distributions (Gaussian kernel with bandwidth 0.2 for
non-PCA methods, 0.01 for PCA) of this stability metric can viewed in
Fig. 2f and Supplementary Figs. 1f, 2f and 7f.

Aorta data collection and data processing
Eight-week-old C57BL/6J male mice from the Jackson Laboratory were
entrained to a 12:12 light-dark cycle for 2 weeks in circadian boxes with
ventilation (20–22 °C, RH ~50%). At ZT0, ZT6, ZT12, or ZT18mice were
sacrificed (2 per time point). For each mouse, whole aorta was dis-
sected and cut into small pieces (~1mm), and cells were disassociated
with 1.5ml of enzyme cocktail (DNase—120U/ml (Worthington,
#LS006331), Liberase TM—4U/ml (Roche, #05401127001), hyalur-
onidase—60U/ml (Sigma-Aldrich, #H3506)) in a petri dish at 37 °C for
40min. A pipette (1ml) was used to dissociate aortic cells from the
tissue pieces every 10min during the incubation. Cell supernatant was
filtered through a 40 µm strainer and washed with RPMI1640 (Gibco,
#1187-085) containing 10% fetal bovine serum (FBS, HyClone,
#SH30071.03) to inactive the enzyme cocktail. Residual red blood cells
were lysed by incubating the cell suspension with Red Blood Cell
Lysing Buffer Hybri-Max (Sigma-Aldrich, #R7767) at RT for 1min. The
cells were washed two more times to remove debris with FACS buffer
(FBS 2%), EDTA (5mM, Invitrogen, #15575-038), HEPES (20mM, Gibco,
#15630-080), sodium pyruvate (1mM, Gibco, #11360-070) in 1x PBS
(Gibco, #14190-136), and resuspended in DMEM/F12 (Gibco, #11320-
033) media containing 10% FBS for further analysis. Cells from mice
sacrificed at the same time point were pooled to form single-cell sus-
pensions (4 suspensions in total). Single cells were then captured and
barcoded using the 10XGenomics Chromiumplatformand sequenced
using an Illumina NovaSeq S2 flow cell.

Cell barcode detection, read alignment, and transcript quantifi-
cation were performed using the 10X Genomics Cell Ranger pipeline.
CellswithUMI count less than 1000andmitochondrial fractiongreater
than 0.2 were discarded. In addition, cell doublets were detected by
the Scrublet program28 and discarded. A low-dimensional representa-
tion for the cells was obtained usingUMAP29 using z-score log1p library
size normalized counts of the aorta cell type markers from Pan et al.
Using the UMAP representation as input, cells were then clustered
using the ScanPy30 implementation of the Leiden algorithm31. This
yielded five clusters corresponding to vascular SMCs, fibroblasts,
macrophages, endothelial cells, and T cells. As only 34 T cells were
detected, they were not included in the analyses detailed in this
manuscript.

Light-dark cycle data circadian phase estimation
The acrophase priors used by Tempo for the core clock genes were set
as follows. For the aorta cell types, prior acrophase locations were set
to the estimated acrophases in bulk liver RNA-seq fromZhang et al. For
the hepatocytes from Droin et al.6, prior acrophase locations were set
to the estimated acrophases in bulk liver RNA-seq from Zhang et al.
The width of the prior acrophase 95% intervals were set to 2 h for both
the aorta and hepatocyte data.Arntlwas treated as the reference gene.

Light-dark cycle data out of sample clock likelihood analysis
Out of sample clock likelihoods were computed for each method for
the aorta SMCs (5000 train and 13,863 test cells) and aorta fibroblasts
(1500 train and 1635 test cells). For a given methodmwith training set
cell phase point estimates θ̂

m:trainð Þ
i and corresponding training set

gene parameter point estimates β m:trainð Þ, we compute the test set core
clock expression likelihood D mð Þ as follows:

D mð Þ =P X cc:testð Þ∣β m:trainð Þ,θ̂
m:testð Þ� �

ð18Þ

where θ̂
m:testð Þ

are the test set cell phase point estimates frommethod
m, and X cc:testð Þ is the test set core clock transcript count matrix gen-
erated according to:

β m:trainð Þ = μ m:trainð Þ
j ,A m:trainð Þ

j ,ϕ m:trainð Þ
j

� �
ð19Þ

X cc:testð Þ
ij ~ Poisson λ m:testð Þ

ij L
testð Þ
i

� �
ð20Þ

log λ m:testð Þ
ij

� �
=μ m:trainð Þ

j +A m:trainð Þ
j cos θ̂

m:testð Þ
i � ϕ m:trainð Þ

j

� �
ð21Þ

For Tempo,β m:trainð Þis computed during training. Cyclops, Cyclum,
and PCA do not explicitly estimate β m:trainð Þ during training, but
instead learn a mapping f(X trainð Þ, τ mð Þ) = θ̂

m:trainð Þ
i , where τ mð Þ repre-

sents the learned parameters of method m on the training data. For
Cyclops, Cyclum, and PCA, we find the point estimate β m:trainð Þ that
maximizes the expression likelihood under the following Poisson
GLM:

X trainð Þ
ij ~ Poisson λ m:trainð Þ

ij L
trainð Þ
i

� �
ð22Þ

log λ m:trainð Þ
ij

� �
=μ m:trainð Þ

j +A m:trainð Þ
j cos θ̂

m:trainð Þ
i � ϕ m:trainð Þ

j

� �
ð23Þ

As a lower bound on performance, method out of sample like-
lihoods were compared to a distribution of likelihoods associatedwith
a random phase inference method, where phases were drawn from a
random circular uniform distribution. To build this distribution, D mð Þ

was computed 50 times for the random circular uniform approach. To
contextualize how methods performed relative to this random
approach, the difference between method log likelihoods and the
median of the random log likelihood distribution were computed.
These differences were then scaled by the standard deviation of the
random log likelihood distribution, and are shown in Fig. 5c and Sup-
plementary Figs. 14–16c.

For additional context,method likelihoodswere also compared to
likelihoods associated with treating the cell sample collection phases
as the cell circadian phases, shown as the “LD” bar in Fig. 5c and Sup-
plementary Figs. 14–16c.

De novo cycler enrichment analysis
To assess whether de novo cyclers are enriched for a given gene set,
we first computed the number of de novo cyclers in the gene set.
Empirical null distributions were generated by sampling random
gene sets of the same size as the de novo cyclers, and then com-
puting the number of overlaps with the gene set of interest.
Empirical p values could then be computed using the empirical null
distribution. For both the enrichment of bulk tissue cyclers and
cycling genes identified when cell phases were fixed the sample
collection phase, the empirical null distributions were generated by
sampling 1000 random gene sets.
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Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw sequencing and UMI count matrices for the aorta light-dark cycle
time course scRNA-seq data generated were deposited to the Gene
Expression Omnibus under accession code “GSE206583”. Zipped
python AnnData.h5ad objects (containing UMI count matrices, cell
collection times etc.) for the aorta SMCs, fibroblasts, endothelial cells,
and macrophages are provided as Supplementary Datasets 1–4,
respectively. These .h5ad objects can also be viewed at https://www.
dropbox.com/sh/tl0ty163vyg265i/AAApt14eybExMMPK7VVDmfvga.
Themouse liver hepatocyte data fromDroin et al. canbe foundonGEO
with accession code “GSE145197”. All other relevant data supporting
the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author
upon reasonable request. Source data are provided with this paper.

Software availability
Tempo32 is provided as an open-source software package available at
https://github.com/bauerbach95/tempo. The analyses performed in
the manuscript used python version 3.8.5 and Tempo version
0.0.1.dev. Tempo additionally depends on anndata, numpy, pandas,
scanpy, sklearn, scipy, statsmodels, tqdm, and pytorch. For the ana-
lyses described in the manuscript, Tempo used version 0.7.5. of
anndata, 1.19.2 of numpy, 1.2.0 of pandas, 1.6.0 of scanpy, 0.23.2 of
sklearn, 1.5.2 of scipy, 0.12.1 of statsmodels, 4.55.1 of tqdm, and 1.9.1 of
pytorch. PCAwas runusing the implementation found in sklearn0.23.2
and using python 3.8.5. Cyclops and Cyclum were both run using the
implementation found in version 0.1 of the Cyclum python package
andusingpython3.7.9. The aorta data generatedwereprocessedusing
python. For this, python 3.8.5, scrublet 0.2.1, 0.7.5. of anndata, numpy
1.19.2, pandas 1.2.0, scanpy 1.6.0, sklearn 0.23.2, scipy 1.5.2, and stats-
models 0.12.1 were used.
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