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Sliding nanomechanical resonators

Yue Ying1,2,6, Zhuo-Zhi Zhang 1,2,6, Joel Moser 3,4 , Zi-Jia Su1,2,
Xiang-Xiang Song 1,2 & Guo-Ping Guo 1,2,5

Themotionof a vibrating object is determinedby theway it is held. This simple
observation has long inspired string instrument makers to create new sounds
by devising elegant string clamping mechanisms, whereby the distance
between the clamping points is modulated as the string vibrates. At the
nanoscale, the simplest way to emulate this principle would be to controllably
make nanoresonators slide across their clamping points, which would effec-
tively modulate their vibrating length. Here, we report measurements of
flexural vibrations in nanomechanical resonators that reveal such a sliding
motion. Surprisingly, the resonant frequency of vibrations draws a loop as
a tuning gate voltage is cycled. This behavior indicates that sliding is accom-
panied by a delayed frequency response of the resonators, making their
dynamics richer than that of resonators with fixed clamping points. Our work
elucidates the dynamics of nanomechanical resonators with unconventional
boundary conditions, and offers opportunities for studying friction at the
nanoscale from resonant frequency measurements.

Clamping conditions govern the dynamics of all vibrational systems.
This principle can be intuitively understood by listening to string
instruments. For example, the distinctive timbre of the sitar, an
instrument from India, originates from themodulations of thedistance
between the clamping points of the strings as the strings vibrate1. At
the lower boundaryof the length scale, nanomechanical resonators are
also vibrational systems that are often described as scaled-down ver-
sions of string instruments. There, clamping can take multiple forms,
ranging from simple, fixed clamping2–6 to elaborate soft clamping
engineered tominimize dissipation inmicromachined resonators7–10. A
nanomechanical resonator sliding on its clamping points embodies a
different type of clamping conditions, thus far unexplored at the
nanoscale, and reminiscent of those of the sitar. Because it is difficult
to realize such a sliding resonator using micromachining, which is
better suited for monolithic devices, we consider instead resonators
made by transferring a thin membrane of few-layer graphene (FLG)
onto a pre-fabricated substrate11–13. Such two-dimensional (2-D) reso-
nators have attracted attention for their use as sensors14, parametric
resonators15, andplaygrounds for intermodal vibration engineering12,16.

Usually, they are clamped to their support firmly. However, the fact
that the membrane is simply deposited on top of its support gives it
the possibility to slide on it.

Here, we present measurements of an unconventional, yet robust
and controllable dynamics in FLG resonators. This dynamics features
vibrational resonant frequencies that draw a loop as a quasi-static
pulling force, induced by a gate voltage, is slowly increased and
decreased again. Moreover, the frequency loop can be controlled by
adjusting the rate at which and the range overwhich the gate voltage is
stepped. We demonstrate that such dynamics can be explained by a
sliding membrane, which breaks with the tradition of simply clamped
resonators with fixed boundary conditions and offers additional
vibrational degrees of freedom. The sliding occurs in response to the
quasi-static force that pulls themembrane into the trenchoverwhich it
is suspended, instead of simply stretching it as is commonly observed
in other nanomechanical resonators. As the membrane is pulled
inwards, the length of its suspended part effectively increases, which
modifies the resonant frequencies of flexural vibrations. The sliding is
slow on the scale of the time needed to measure the frequency
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response of the vibrationalmodes, so resonant frequencies can still be
estimated from the spectrumof the response. Interestingly, the sliding
is reversible –decreasing the pulling force makes the membrane slide
outwards. For a given vibrationalmode,wefind that the areawithin the
loop drawn by the resonant frequency in the space spanned by fre-
quency and gate voltage is a measure of the friction energy dissipated
as the membrane slides back and forth on its support. Our work may
thus represent a novel approach to quantifying nanoscale friction at
cryogenic temperatures.

Results
We study the dynamics of our resonators bymeasuring the resonant
frequencies of their vibrational modes. 2-D resonators are known
for the large tunability of their resonant frequencies3,16–19. This
tunability is ordinarily achieved by suspending the membrane over
a gate electrode and subjecting the membrane to a pulling force
with a dc voltage VG applied to the gate. In general, the resonant
frequency of a givenmode is simply determined by strain within and
the dimensions of the suspended membrane. In the presence of
nonzero VG, electrostatic pressure directly couples to strain owing
to the small bending rigidity of the membrane20. With the clamping
points fixed, VG is the sole frequency tuning knob. Our devices have
a similar structure (Fig. 1a, b). They are built on a substrate pat-
ternedwith a source and a drain electrode, andwith a gate electrode
at the bottom of a trench over which FLG can freely vibrate. FLG is
transferred onto this pre-patterned substrate. The part of FLG that
is suspended over the gate is the resonator, while the parts in
contact with source and drain are meant to clamp FLG to its

nonvibrating edges. We obtain the mechanical response of the
resonator by measuring an electromechanical current I as a func-
tion of the frequency f d of a driving force (see Methods). All our
measurements are carried out at a temperature of ≈300 mK in a
vacuum of ≈10�7 Torr. Figure 1c shows the resonant frequencies f ,
at which Iðf dÞ peaks, as a function of VG for two vibrational modes
hosted by the device pictured in Fig. 1a. Measurements are done by
sweeping f d at fixed VG, then stepping VG and sweeping f d again.
We observe that the dependences of f on VG are strongly asym-
metric with respect to VG =0. This behavior is unexpected, because
changes in resonant frequency are caused by changes in strain that
only depend on ∣VG∣ (ref. 20). We have verified that this asymmetry
exists whether f d is swept upwards or downwards, which allows us
to rule out bistabilities associated with mechanical nonlinearities21

as the origin of the asymmetry. We have also verified that the
dependence of the conductance of the device on VG is the same for
increasing and decreasing VG (Supplementary Information, Section
S1), which rules out hysteretic behaviors in our measurement
readout22. We then focus on the upper frequency branch in Fig. 1c,
whose asymmetry is more pronounced, and measure it upon
increasing and decreasing VG (Fig. 1d). There, we find the surprising
result that the two measurements are mirror images of each other,
f VG,!
� �

= f �VG, 
� �

, where ! and  indicate whether VG is
increased or decreased. This result shows that the direction along
which VG is stepped is key to understanding the dynamics of our
resonator23.

To elucidate the relationship between f and the stepping direc-
tion of VG, we measure the response of the resonator and its resonant
frequency f over narrow VG ranges in three consecutive stages.
Namely, having set VG = 20 V and verified that the response is stable,
we sweep f d and gradually step VG up to ≈30 V, which results in an
increase of f (stage 1 in Fig. 2a). We then immediately reverse the
stepping direction. Interestingly, instead of simply following the same
path, f first remains constant before decreasing along a shifted path
(stage 2 in Fig. 2a). Reversing the stepping direction again at VG = 25 V,
f remains constant again and then increases along the same path as in
stage 1 (stage 3 in Fig. 2a). The left panel in Fig. 2a shows the super-
imposed spectra from stages 1-3, revealing a closed frequency loop. To
our knowledge, such a phenomenon has not been reported in a
nanomechanical resonator thus far. This behavior does not depend on
any particularVG range.Wedemonstrate this in Fig. 2b,wherewe cycle
VG between 20V and 24, 26, 28, and 30 V, and obtain in each case a
frequency loop. Overlaying these loops in Fig. 2c makes it clear that
f ðVGÞ follows one path as VG increases and another, shifted path as VG

decreases. Moreover, reversing the direction of VG is always followed
by a plateau in f .

We also find that the shape of frequency loops can be tuned using
the rate at which VG is stepped. Figure 3 shows the response of the
resonator as a function of swept f d and stepped VG for different rates
dVG=dt, where t is time.Within a loop, the largestVG shift between the
two f ðVGÞ paths defines the width of the loop ΔVG. As shown in Fig. 3b,
4VG increases with dVG=dt nonlinearly –faster stepping rates yield
wider loops, and 4VG tends to saturate at large dVG=dt. More infor-
mation about the stepping rate dVG=dt can be found in Supplemen-
tary Information, Sections S2 and S3.

Thus far, frequency loops in nanomechanical resonators have
been accounted for by non-mechanical models. For example,
applying a dc voltage between source and drain in MoS2 resonators
and sweeping the voltage through a cycle produces a resonant
frequency loop, which results from changes in strain induced by a
phase transition24. Applying a magnetic field to CrI3 resonators and
sweeping the field up and down also yields a resonant frequency
loop due to magnetostriction25. In superconducting resonators,
applying a magnetic field creates a Lorentz force on vortices that
stresses the lattice, producing frequency loops as the field is swept
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Fig. 1 | Unconventional resonant frequency tuning spectra in few-layer gra-
phene (FLG) resonators. a Colorized scanning electron microscope (SEM) image
of the device. FLG (blue shaded stripe) is connected to source (S) and drain (D)
electrodes and is suspended over a gate electrode (G). Scale bar: 1 micrometer.
b Schematic of the device. A frequency-modulated voltage V SD =V0 cos 2πf dt +

�
ðf Δ=fmÞ sin 2πfmt� is applied between S and D, where f d is the drive frequency,
fm = 1:37 kHz is the modulation frequency, and f Δ=fm ≈ 75 (see Methods). A dc
voltageVG is applied toG.Adraincurrent I at frequency fm ismeasured.cResonant
frequency f of thefirst and second vibrationalmodes of the resonator shown in a as
a function of VG. d f as a function of increasing (upper panel) and decreasing VG

(lower panel). Arrows indicate the stepping direction of VG. The drive power is
−39dBm in c, d.
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up and down26. In these three examples, frequency loops signal an
unconventional coupling between field and strain, whose origin is a
hysteretic subsystem embedded within the resonator. In the
absence of a hysteretic process, and excluding any delayed
response caused by adsorption-desorption processes27, measuring
resonant frequencies over a certain range of VG should produce the

same result irrespective of whether VG is increased or decreased. In
nanoresonators that are purely mechanical, whose vibrations are
not coupled to any hysteretic subsystem, no frequency loop is
expected, and thus far, none has been found.

Understanding the behavior displayed by our resonators,
namely their intriguing resonant frequency dependence on VG,
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with decreasing VG. c Superimposed dependences of the resonant frequency f on
VG extracted from the four panels in b.
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calls for an unconventional model. Indeed, we can safely rule out
common mechanical phenomena that would also yield frequency
loops, such as conservative nonlinearities21,28, Euler instabilities21,
and viscoelasticity29 of graphene. Nonlinearities can be dis-
regarded because the shape of our frequency loops does not
depend on the amplitude of the driving force30 (Supplementary
Information, Section S4). Euler instabilities are observed in buck-
led beams31, while graphene resonators behave as membranes
instead. A viscoelastic graphene membrane, possibly caused by
fabrication residues, would not produce a resonant frequency
plateau as the stepping direction of VG is reversed (Supplementary
Information, Sections S5 and S6).

Amodel thatmay account for ourmeasurements, however, is one
that involves unconventional boundary conditions. Namely, we
assume that the membrane reversibly slides on the supporting sub-
strate in response to the electrostatic pulling force between the
membrane and thegate (Fig. 4a). In turn, this slidingmotionmodulates
the spring constant of the resonator simply by changing the length of
the suspended membrane, thereby modifying its strain, hence its
resonant frequency. We model the sliding motion with a spring and a
dashpot32 attached to each of the two supporting edges of the mem-
brane (Fig. 4b). Accordingly, the tension T at the edges of the sus-
pended membrane can be described by the Voigt-Kelvin constitutive
relationship:

T = kq+ c
dq
dt

, ð1Þ

where k and c are the spring constant of the spring and the damping
coefficient of the dashpot, respectively. q is the elongation of the
spring and dashpot system. The spring extends in response to an
increase in the pulling force, feeding extra length of membrane into
the suspended area (Fig. 4c). The suspended length increases over a
time scale set by the dashpot, which guarantees that f changes in

response to a change in VG with a delay:

f =
1
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ES
meffL

3
4
x2

L2
� 2

q
L
+ ϵ0

� �s
: ð2Þ

Here, E is Young’s modulus, S is the cross-sectional area of the
membrane, ϵ0 is the built-in strain, L is the length of the trench over
which graphene is suspended, x is the maximum displacement in the
direction perpendicular to the membrane and meff is the effective
mass of the vibrational mode. q and x can be determined by the
following equations (Supplementary Information, Section S7):

dq
dt

= � k
c
+ 2

ES
cL

� �
q+

1
4
ES

cL2
x2 +

ES
c
ϵ0, ð3Þ

d2x
dt2

=
C0V2

G tð Þ
2meff

� 8ES
meffL

1
4
x2

L2
� 2

q
L
+ ϵ0

� �
x: ð4Þ

Here, C 0 is the first derivative of the gate capacitance with respect to
displacement in the vertical direction. We use Eqs. (2–4) to calculate
the frequency loops shown in Fig. 4. Using realistic parameters, this
phenomenological model reproduces well the shape of frequency
loops in the experimental ranges of VG (the four leftmost panels in
Fig. 4d) and the two shifted paths that f ðVGÞ follows irrespective of
these ranges (the rightmost panel in Fig. 4d). Moreover, the model
reproduces the width of the frequency loops4VG as a function of rate
dVG=dt (Fig. 4e). Given that the mass of the resonator and the capa-
citance to gate can be estimated, three free parameters are needed to
reproduce the data. These are the membrane built-in strain
ϵ0 = 2:8× 10

�4, and the spring constant k =8:9× 102 kg s−2 and the
damping coefficient c= 5:3 × 105 kg s−1 of the spring and dashpot
system. Within our model, we find that the frequency loop area
� H

fdVG is proportional to sliding losses
H
c dq
dt dq. The ratio of the
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latter to the former is ≈1:01 × 10�24 kgm2 s−1 V−1 and does not depend
on the stepping rate dVG=dt (Supplementary Information, Sections S8
and S9). For one VG cycle between 20 and 30V, we estimate sliding
losses to be ≈4:83× 10�17 J, elongation q≈0:8 nm and damping force
cdq=dt ≈ 10�7 N (Supplementary Information, Sections S7 and S8).
From these, we estimate that losses per graphene unit cell amount to
≈6:09× 10�21 J, given the width of the membrane of ≈500 nm and
assuming that the supported membrane is fully in contact with the
substrate. We have observed frequency loops in two devices, referred
to as Device A and Device B. We present data from Device A here and
show data from Device B in Supplementary Information, Section S10.
Although a much larger c is estimated for Device B, the sliding losses
per graphene unit cell, 6.72 × 10�21 J, are close to those estimated for
Device A.

Discussion
The above analysis indicates that our work may contribute to the
research efforts on friction between 2-D materials and solid
surfaces33,34. First, the friction force we measure depends on the rate
dVG=dt, in a way that is reminiscent of the scanning rate dependence
of the friction force between graphite and the tip of an atomic force
microscope (AFM) probe35. Second, our estimate for sliding losses per
graphene unit cell is close to ≈10�20 J obtained from those same fric-
tion forcemicroscopy experiments35. This can be shownby integrating
the friction force over tip displacement in Fig. 3Aof ref. 35 anddividing
it by the number of graphene unit cells in contact with the tip during
the scan. Moreover, our estimate of the damping force divided by the
contact area of 5 × 105 nm2 (given by the product of the width of the
graphene flake W ≈ 500 nm multiplied by the length of the metal
contact Le ≈ 1 μm) yields a frictional shear stress τ ≈0:20 MPa (τ ≈0:17
MPa for Device B). This estimate is smaller than τ measured in
experiments where metal nanoparticles were pushed on the
adsorbate-coated surface of a graphite crystal with the tip of an AFM
probe36. In those experiments, the friction force F fr between a nano-
particle and graphite was found to scale linearly with the contact area
Ac of the nanoparticle, resulting in rather large shear stresses τ = F fr=Ac

ranging from several to hundreds of MPa (refs. 37, 38). This linear
scaling law and the correspondingly large τ values are understood to
originate from interfacial adsorbates, such as hydrocarbons, that hin-
der the sliding motion of two contacting surfaces37,38. In our devices,
the smaller estimate for τ hints at rather clean interfaces between FLG
and the electrode. The occurrence of such clean interfaces may be
rare, as fabrication residues are otherwise prone to introduce con-
tamination. It may explain why we observe frequency loops in some
but not all the devices we have fabricated (Supplementary Informa-
tion, Section S11). Systematic studies with devices of various dimen-
sions and controlled interface quality may shed light on the friction-
area scaling law38 in these systems. We believe that comparing our
estimatesmade at 300mKwith estimates from refs. 35, 36 obtained at
300K is meaningful. Indeed, friction forces measured between the tip
of anAFMprobe and atomicallyflatMoS2were found to increase upon
lowering temperature from 300K and reached a plateau near 220K
(ref. 39). However, in the case of an artificially roughened MoS2 sur-
face, a muchweaker temperature dependencewas found below 300K
(ref. 39). In both cases, nomeasurements were made below 100K. It is
not yet known how friction forces should behave in the case of FLG
deposited on electrodes at such low temperatures. Overall, our work
opens up possibilities for measuring frictional characteristics of 2-D
materials at cryogenic temperatures. It also invites future research on
friction based on 2-D mechanical resonators held by atomically flat
supports, in which case superlubricity40,41 may confer resonators
unusual properties.

Finally, we discuss the reversibility of the sliding motion.
Reversibility upon gate tuning is an important feature that is needed
in our model to explain our measured frequency loops. It

distinguishes our measurements from previously reported fre-
quency instabilities in nanotube resonators42,43. Here we discuss
a possible origin for the spring that makes sliding reversible.
Figure 5a shows an enlarged area surrounding the resonator. It
reveals the presence of two neighboring resonators, labelled as RL

and RR, on the left and right sides of it. The three resonators are
mechanically connected together because they are made of the
same FLG flake deposited over three parallel trenches. We surmise
that the dynamics of the resonator in the middle, which is the one
we investigate here, is directly influenced by the quasi-static dis-
placement of RL and RR according to the simple mechanism that
follows. As extra length is fed into the middle trench (Fig. 5b, state
(1) to state (2)), strain within RL and RR increases. The concomitant
in-plane sliding and out-of-plane displacement of RL and RR give rise
to a tension within the resonators (Fig. 5c). This tension acts as a
restoring force (Fig. 5b, state (2) to state (3) and back to state (1)). In
Supplementary Information, Section S12, we refine our sliding
model by considering the effect of RL and RR. Using our extended
model to account for our measured data, we estimate that
k ≈9:9× 102 kg s−2. This is close to k ≈8:9× 102 kg s−2 obtained with
the simpler model, which shows that the two models are consistent
with one another while the extended one provides insight into the
reversible sliding (both models yield similar values for k in Device B
as well).

In summary, we demonstrate that the resonant frequency of
nanomechanical resonators can be tuned along a loopby cycling a gate
voltage. This is a robust effect that is not limited to certain ranges of
gate voltages. This is also a subtle effect that we observe in certain
devices only. We propose a simplemechanicalmodel to account for it,
whereby the resonant frequency of the suspended resonator is
modulated by the sliding motion of the membrane on the substrate.
We estimate losses incurred as a result of this slidingmotion, which are
close to measured frictional dissipation between graphite and the tip
of an AFM probe. Our work opens up interesting possibilities for
studying friction between 2-D materials and their supporting sub-
strates from resonant frequency measurements of their vibrating
modes. Our work also offers new perspectives in nanomechanics.
Namely, because the sliding part of the membrane acts on the
dynamics of the suspended part in an otherwise continuous system,
our devicesmaybe thefirst realizationof compliantmechanismsat the
nanoscale. Further, while nanomechanical resonators have in common
to befirmly anchored to their support, our devices breakwith tradition
and feature sliding clamping areas that enable time-varying boundary
conditions. As such, our resonators havemuch in commonwith certain
musical instruments1 from Asia, e.g. the sitar, the tanpura, the guqin,
and the shamisen, whose distinctive timbres are related to the time-
dependent clamping configuration of their strings.

Methods
Sample fabrication
We use a highly resistive silicon wafer coated with a 1000-nm thick
silicon oxide layer as a substrate.We first deposit a 50 nm thick layer of
SiNx onto the substrate via low-pressure chemical vapor deposition
(LPCVD). Following electron beam lithography (EBL), a trench is
defined by a two-step etching process using fluorine-based plasma and
hydrofluoric acid, respectively. The total etching depth is approxi-
mately 170 nm. After a second EBL step, 3 nmof titanium and 20 nmof
gold are evaporated onto the substrate. Using the undercut formed by
the SiNx and SiO2 layers, the evaporated metal can be self-aligned to
form three electrodes. Two contacts serve as source and drain for
electrical contacts. An electrode in the trench serves as a gate for
electrical tuning. Finally, a few-layer graphene ribbon, exfoliated on a
polydimethylsiloxane (PDMS) stamp, is transferred onto the
trench44,45. The suspended part of the device investigated in the main
text (Device A) has a length of 1:82μm and a width of 0:52μm
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(measured from the SEM image). The additional device (DeviceB)has a
length of 1:98μmand awidth of 3:24μm (Supplementary Information,
Section S10).

Measurement setup
To detect themechanical resonance of the nanomechanical resonator,
a frequency modulation (FM) mixing technique46,47 is employed to
actuate and detect the mechanical vibrations. The FM signal has the
form V SDðtÞ=V0 cos 2πf dt + ðf Δ=fmÞ sin 2πfmt

� �
, where V0 is the

amplitude of the drive voltage, f d is the drive frequency, f Δ is the
deviation frequency (typically 103 kHz), and fm is the modulation
frequency (typically 1.37 kHz). This technique provides both a capaci-
tive force at f d that drives vibrations and a drain current I at frequency
fm. We use a lock-in amplifier to detect I at the drain electrode. The
transduced mixing current I is proportional to ∣∂Re½z�=∂f d∣, with Re½z�
the real part of the vibrational amplitude, thus allowing us to investi-
gate the mechanical vibrations of the resonator.

Data availability
The data that support the findings of this study are available in Zenodo
(https://doi.org/10.5281/zenodo.7049075).
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