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Neural circuit dynamics of drug-context
associative learning in the mouse
hippocampus

Yanjun Sun 1 & Lisa M. Giocomo 1

The environmental context associated with previous drug consumption is a
potent trigger for drug relapse. However, the mechanism by which neural
representations of context aremodified to incorporate information associated
with drugs of abuse remains unknown. Using longitudinal calcium imaging in
freely behaving mice, we find that unlike the associative learning of natural
reward, drug-context associations for psychostimulants and opioids are
encoded in a specific subset of hippocampal neurons. After drug conditioning,
these neurons weakened their spatial coding for the non-drug paired context,
resulting in an orthogonal representation for the drug versus non-drug con-
text that was predictive of drug-seeking behavior. Furthermore, these neurons
were selected based on drug-spatial experience and were exclusively tuned to
animals’ allocentric position. Together, this work reveals how drugs of abuse
alter the hippocampal circuit to encode drug-context associations and points
to the possibility of targeting drug-associated memory in the hippocampus.

A core challenge of long-term recovery from drug addiction is the
associatedhigh relapse rate, inwhichaperson returns todruguse after
a period of abstinence1. One of the strongest triggers for relapse in
both humans and animal models is re-exposure to a drug-associated
environmental context2–6. During repeated drug use, a given environ-
mental context is passively associatedwith the rewarding effects of the
drug, such that a previously neutral context may become a condi-
tioned stimulus that can reliably reinstate drug-seeking behavior7,8.
While mesolimbic dopamine broadcasts a general reward signal that
likely supports this process, converging evidence also suggests that
reward associative learning relies on multiple memory systems,
including the nucleus accumbens (NAc), amygdala, and hippocampus,
working in parallel to integrate the necessary sensorimotor
information5,9–15. In particular, the hippocampusmayplay a critical role
in drug associative learning and the reinstatement of drug seeking
behavior, by providing a neural representation of the spatial or con-
textual information associated with previous drug use16–23.

The hippocampus contains place cells that fire in one or few
restricted spatial locations in a given environment24,25. As a population,
place cells construct a map-like representation for the environmental
space25,26. Across different spatial environments, or contexts, place

cells can showuncorrelated activity, with placefields turningon, off, or
firing in a new spatial position. These changes in place field activity are
collectively referred to as place cell ‘remapping’, which encompasses
two phenomena: a change in the firing rate of a place field (rate
remapping) and a change in the spatial location of the place field
(global remapping)26–39. Importantly, place cell representations also
track the presence of reward, such as food or water, by clustering their
place fields near reward-associated locations, resulting in an over-
representation of reward locations36,40–46. These observations of
place cell remapping have lent significant support to the theory that
the hippocampus contains the neural representations needed to
encode the combination of sensory cues and internal states that define
a given spatial context38,47. However, it is unknown whether and how
hippocampal place cell representations remap in a maladaptive man-
ner to encode or maintain drug-context associations.

As drug-context associations require repeated drug exposures
over an extended period of time, following the activity of the same
individual neurons across days is critical for investigating howneurons
change their firing patterns over the course of drug-context learning.
Here, we used miniscopes to image calcium activity in freely moving
mice48–50 to examine the representation change of hippocampal place
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cells over the course of conditioned place preference (CPP)51,52. We
identified a subset of CA1 place cells that switched off their activity in
the saline-paired context after drug conditioning. This form of
remapping in a subset of place cells generalized across addictive drugs
(methamphetamine,morphine) butwasnot seen under natural reward
conditions. By focusing on the effects of methamphetamine (MA), a
psychostimulant that alters catecholaminergic signaling53, we found
this subset of place cells showed orthogonal activity patterns between
the two CPP contexts after drug conditioning, with the resulting
remapped pattern predictive of CPP behavior. Our work reveals a
potential mechanism in the hippocampus for encoding associations
between spatial contexts and addictive drugs via a sub-population of
hippocampal neurons.

Results
Imaging of CA1 cells in a conditioned place preference (CPP)
paradigm
To examine the effects of drug-context associations on the activity of
CA1 neurons, we performed in vivo single photon (1P) miniscope cal-
cium imaging in mice during a conditioned place preference
(CPP) paradigm (Fig. 1). The CPP apparatus consisted of two com-
partments,with distinct contexts defined by different colors and visual
cues (Fig. 1a, b). After two days of habituation, mice were allowed
access to both CPP contexts for the pre-baseline and baseline sessions
(day 1 = pre-baseline; day 2 = baseline) (Fig. 1b). An animal’s natural
context preference was determined on day 2 (baseline session)
(Fig. 1b). For conditioning (n = 3 sessions), saline injectionswerepaired
with the naturally preferred context, while methamphetamine (MA)
injections were paired with the naturally non-preferred context
(Fig. 1b). One and six days after the conditioning, two test sessions (test
1 and test 2, respectively) were performed to assess post-conditioning
place preference (Fig. 1b). Control (Ctrl) mice (n = 7 mice) underwent
the sameprotocol but saline injections were pairedwith both contexts
during the conditioning (Fig. 1b). In MA mice (n = 10 mice), we
observed significant place preference for theMA-paired context in the
test sessions (mean ± SEM, test 1: Ctrl vs. MA, −5.62 ± 43.28 vs.
147.80 ± 37.21 s; test 2: Ctrl vs. MA, 6.89 ± 28.67 vs. 204.10 ± 29.74 s,
n = 7 and 10, respectively; Fig. 1c, “Methods”).

We used Ai94; Camk2a-tTA; Camk2a-Cre transgenicmice (Fig. 1d)
to enable stable GCaMP6s expression in CA1 pyramidal neurons and
single cell tracking across multiple days, as demonstrated in the
maximum projected images and the colocalization analysis from dif-
ferent imaging sessions after alignment (Fig. 1e, Supplementary
Fig. 1a–d, Supplementary Movies 1–3). We extracted calcium signals,
using a CNMF-based method54, from aligned and temporally con-
catenated image data for each animal. This method has shown
improved cell registration from calcium signals48,55 (Fig. 1e, Supple-
mentary Fig. 1a). Calcium signalswere thenbinarized into deconvolved
spikes56, which we treated as calcium events (Supplementary Fig. 1e).

In both Ctrl and MA animals, we observed stable spatial repre-
sentations of CA1 place cells in both CPP contexts across days (median
correlation, Ctrl: preferred context, baseline (bsl) vs. test 1 = 0.57, bsl
vs. test 2 = 0.58; non-preferred context, bsl vs. test 1 = 0.56, bsl vs. test
2 = 0.51; n = 1680 place cells from7mice;MA: preferred context, bsl vs.
test 1 = 0.58, bsl vs. test 2 = 0.50; non-preferred context, bsl vs. test
1 = 0.54, bsl vs. test 2 = 0.52; n = 2882 place cells from 9 mice), with
place cells defined by their activity in the baseline session (Fig. 1b, f).
Across the two CPP contexts within the baseline session, we observed
signatures of both rate and global remapping for place cells (Fig. 1b).
For both Ctrl and MA mice, place cells showed similar inter-
compartment (between the left and right CPP contexts) spatial cor-
relations in the baseline session, with ~55% place cells showing sig-
natures of rate remapping (spatial correlation >0.4) (Fig. 1g). For rate
remapped place cells, we observed a ~43% change in peak calcium
event rates between place fields across the two contexts (Fig. 1h).

Previouswork has reported thatwhen animals are exposed todifferent
novel environments, place cell representations become increasingly
orthogonal between the environments as a function of experience37.
However, in Ctrl mice, inter-compartment spatial correlations of place
cells remained constant over baseline and test session (median cor-
relation: 0.43, 0.49, and0.46, for baseline, test 1, and test 2 inCtrlmice,
respectively), suggesting the observed rate remapping in the baseline
session is not due to insufficient experience in the CPP environment.
Together these data demonstrate that in baseline sessions, CA1 place
cells in both Ctrl and MA mice remap between the two contexts of a
CPP paradigm.

MA-conditioning results in a context-specific decrease in place
cell number
Wenext consideredwhetherMA-conditioning induced changes in CA1
place cells at the population level. We calculated the proportion of
place cells over time for each animal in a context-specific manner. In
Ctrlmice, the number of place cells remained the same across sessions
in both contexts (Fig. 2a). However, inMAmice, we found a significant
decrease in the number of place cells specifically in the saline-paired
context in the test sessions compared to baseline (mean ± SEM, base-
line: 0.53 ± 0.03, test 1: 0.39 ±0.03, test 2: 0.40±0.02, n = 9; Fig. 2b).
As the activity of place cells changes over time49, this decrease in place
cell number in MA mice could either reflect the loss of existing place
cells or the absence of the addition of new place cells. To examine
these possibilities, we defined four functional cell types based on how
their context-specific activity changed between baseline and test ses-
sions (Fig. 2c). Namely, cells with place fields in the preferred context
in baseline that lost their spatial tuning in the same context in both test
sessions were defined as disPCp (disappeared place cells in the pre-
ferred context; note the preferred context is equivalent to the saline-
paired context inMAmice). A similar definitionwas applied to disPCnp
for the non-preferred context (disappeared place cells in the non-
preferred context; note the non-preferred context is equivalent to the
MA-paired context inMAmice). Cells with no spatial tuning in baseline
but a place field in the preferred or non-preferred context for both test
sessions were defined as aPCp (appeared place cells in the preferred
context) and aPCnp (appeared place cells in the non-preferred con-
text), respectively (Fig. 2c). Quantifying the proportion of these four
cell types revealed that Ctrl mice showed a stable turnover rate of
place cells across the two contexts (mean ± SEM, disPCp vs. disPCnp:
0.11 ± 0.01 vs. 0.11 ± 0.01; aPCp vs. aPCnp: 0.09 ±0.01 vs. 0.09 ±0.01,
n = 7; Fig. 2d). However, in MA mice, the proportion of disPCp was
greater than disPCnp, while the proportion of aPCp was lower than
aPCnp (mean± SEM, disPCp vs. disPCnp: 0.18 ± 0.01 vs. 0.12 ± 0.01;
aPCp vs. aPCnp: 0.066 ± 0.007 vs. 0.10 ± 0.01, n = 9; Fig. 2d). This
result indicates that, in MA mice, more place cells disappeared and
fewer place cells appeared in the originally preferred (saline-paired)
context compared to the non-preferred (MA-paired) context. This
effect did not result from a change in the animals’ spatial coverage
across the two CPP contexts, or a running speed and head direction
sampling difference between baseline and test sessions (Supplemen-
tary Fig. 2a–f). These results thus suggest that MA conditioning
induced an overall loss of place fields specifically in the saline-paired
context.

Context-specific loss of place cells was specific to drug rewards
To compare the MA-induced place cell changes to what occurs during
natural reward learning, we performed sucrose conditioned place
preference (Sucrose CPP) while imaging hippocampal activity in a
separate cohort of mice (n = 8 mice) (Supplementary Fig. 3a). Pairing
sucrose with the naturally non-preferred context induced a significant
place preference shift in test sessions (Supplementary Fig. 3b) without
affecting the animals’ speed and head direction sampling (Supple-
mentary Fig. 2g). The degree of place preference shift in sucrose mice
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was comparable to that observed in MAmice (Supplementary Fig. 3c).
However, for sucrose mice, the number of place cells across sessions
remained stable in both contexts and the rate of place cell turnover did
not differ between the two contexts (mean± SEM, disPCp vs. disPCnp:
0.12 ± 0.009 vs. 0.11 ± 0.01; aPCp vs. aPCnp: 0.11 ± 0.007 vs.
0.13 ± 0.02, n = 8; Fig. 2e, g).

We next considered whether the changes we observed in place
cells in MA mice occurred in response to other addictive drugs. In a
separate cohort of mice, we performed morphine conditioned place
preference (MOCPP) while imaging hippocampal activity (n = 12mice)
(Supplementary Fig. 3d, e). In MO mice, between baseline and test
sessions, we observed a decrease in the number of place cells for the
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saline-paired context (mean± SEM, baseline: 0.48 ±0.04, test 1:
0.40 ±0.03, test 2: 0.39 ± 0.04, n = 10) as well as an unbalanced rate of
place cell turnover between the two contexts (mean ± SEM, disPCp vs.
disPCnp: 0.15 ± 0.01 vs. 0.12 ± 0.01; aPCp vs. aPCnp: 0.073 ±0.009 vs.
0.11 ± 0.01, n = 10; Fig. 2f, h). These place cell changes were consistent
with those observed in MA mice. In addition, experiments using a
conditioned place aversion protocol showed a distinct effect on place
cells compared to the CPP experiments, supporting the idea that drug-
induced place cell changes reflect the rewarding effects of the drug,
rather than drug withdrawal, a preference shift or the stereotyped
behavior observed during conditioning sessions (Supplementary
Figs. 2h–j, 3f–j). Together, these results indicate that the changes in
place cell activity observed in drug CPP are due to an association
between the rewarding effects of the drug and the corresponding
spatial context.

The activity of disPCp encodes the drug-context association
To further consider the relationship between changes in place cell
activity and drug-context associations,we focused onMACPP. First, to
examine whether the unbalanced rate of place cell turnover impacts
the accuracy of spatial coding, we trained aNaive Bayes classifier using
baseline data and examined the accuracy of position decoding using
test session data (Supplementary Fig. 4a, “Methods”). We found that
despite the context-specific loss of place cells in MAmice, Ctrl andMA
mice showed comparable overall decoding performance, andMAmice
showed comparable decoding accuracy between the preferred and
non-preferred contexts (Supplementary Fig. 4b–h).

Wenext consideredwhether the activity of the four functional cell
types (disPCp, disPCnp, aPCp, aPCnp) correlated with the CPP beha-
vior. We quantified an inter-compartment spatial correlation for
baseline and test sessions using each of the four functional cell types
(Fig. 3a). Strikingly, the spatial correlation difference of disPCp
(CorrDiff, baseline – test; Fig. 3a)was significantly positively correlated
with the behavioral CPP score in MA mice (Fig. 3b). This correlation
with behavior was not observed in Ctrlmice or for any other functional
cell type (Fig. 3b). Interestingly, the CorrDiff value for disPCp was
significantly higher than zero in MA mice (Fig. 3b), suggesting that
drug conditioning resulted in disPCp exhibiting more uncorrelated
inter-compartment representations for the two CPP contexts in test
sessions. To further characterize the correlation of disPCp with CPP
behavior, we quantified the type of activity change that disPCp
exhibited. First, in MA mice, 34 ± 3% of place cells with place fields in
the MA-paired context were disPCp. Furthermore, ~50% of disPCp
showed significant spatial tuning in the MA-paired context and this
percentage remained similar between baseline and test sessions
(Fig. 3c). Next, we split disPCp into two groups based on their activity
in the baseline session; Group 1 (48 ± 2%, n = 9): disPCpwith significant
place fields in both contexts in baseline (Fig. 3d); Group 2 (52 ± 2%):
disPCp with a significant place field only in the preferred (i.e., saline-

paired) context in baseline (Fig. 3e). Within Group 1, 76 ± 4% of disPCp
maintained their spatial tuning in theMA-paired context in at least one
of the test sessions, while the remaining 24 ± 4% lost their spatial
tuning (Fig. 3d). Within Group 2, 54± 5% of disPCp gained a new place
field in the MA-paired context in at least one of the test sessions, while
the remaining 46± 5% did not gain a new place field (Fig. 3e). These
quantifications indicate that the correlation between the CorrDiff
value for disPCp and CPP behavior likely reflects the cumulative result
of heterogeneous remapping patterns in disPCp. Finally, the spatial
stability (as measured within the baseline or test sessions) of MA
disPCp in the drug-paired context was not affected by drug-
conditioning (Fig. 3f). Together, these data suggest that drug-
context associations differentiate the spatial representations of
disPCp across the two CPP contexts, resulting in a cumulative
remapping pattern predictive of CPP behavior.

disPCp contribute to the encoding of MA-paired context after
conditioning
To assess the degree to which disPCp contribute to the encoding of
drug-context associations we applied a computational knockout (KO)
decoding analysis based on the aforementioned naive Bayes classifier
(Fig. 4a, Supplementary Fig. 4, “Methods”). In the KO decoding ana-
lyses, we computationally removed either disPCp or a random group
of neurons (sample-size matched) from the data set before feeding
them into the trained classifier for making predictions (Fig. 4a). We
performed two sets of computational KO decoding analyses to inves-
tigate the contribution of disPCp to encoding the CPP contexts before
and after drug conditioning. First, we trained thedecoder ononeof the
baseline sessions and then used the decoder to make the predictions
on the other baseline session. Second, we trained the decoder on one
of the test sessions and then used the decoder to make predictions
regarding the time spent in each CPP compartment on the other test
session. To directly visualize the contribution of disPCp to CPP beha-
vior (i.e., the time spent in each CPP compartment), we plotted the
reconstructed CPP time generated by the decoder for each individual
mouse as heatmaps for each CPP context (Fig. 4b–d). In Ctrl mice,
there was no significant difference in the reconstructed CPP time for
random versus disPCp KO in either the baseline (proportion of total
time in the non-preferred context, mean± SEM, disPCp KO:
0.47 ± 0.01; random KO: 0.47 ±0.01, n = 7) or the test analysis
(mean± SEM, disPCp KO: 0.50±0.02; random KO: 0.51 ± 0.02, n = 7;
Fig. 4c). Note, given the high decoding accuracy in both contexts
(Supplementary Fig. 4), the results from the random KO condition
largely recapitulated the true behavioral CPP time (Supplementary
Fig. 4i), withmore reconstructed time shown in the naturally preferred
context in baseline (left columnof Fig. 4c, d). InMAmice, therewas no
significant difference in the reconstructed CPP time for random versus
disPCp KO in the baseline analysis (proportion of total time in the MA
context,mean ± SEM, disPCpKO:0.46 ± 0.02; randomKO:0.44± 0.02,

Fig. 1 | Imaging of CA1 cells in a conditioned place preference (CPP) paradigm.
a Schematic of calcium imaging using a miniscope and illustration of the CPP box.
b Schematic of the CPP design and corresponding place cell examples from Ctrl
andMAmice. Each column is a cell with activity tracked across all the sessions. Both
firing ratemap (warmer colors indicate higherfiring rates) and rasterplot (reddots)
on top of the animal’s running trajectory (gray traces) are shown. c CPP scores for
Ctrl and MA mice (* t(15) = 2.68, p =0.017; *** t(15) = 4.59, p =0.0004, n = 7 and 10,
respectively, two-tailed unpaired t-test). The red data point was excluded from
further analysis due to aneutral effect toMA (i.e., a negativeCPP score).dHistology
of GRIN lens implantation. Green: GCaMP6, Blue: DAPI. Right, enlarged view of
GCaMP6-expressing CA1 pyramidal cells. Experiment replicated in 29 mice with
similar results. e Maximum intensity projections of CA1 imaging for indicated
sessions from a representative mouse. Yellow arrows point to representative
tracked neurons. Bottom right, CNMF-E spatial footprints of neurons. Character-
ization replicated in 54 mice, see Supplementary Fig. 1. f Long-term stability

(Pearson’s correlation) inCtrl (blue) andMA (orange)mice. Black bars showmedian
and interquartile range for all place cells from all mice (n = 1680 and 2882 cells,
respectively), circles indicate median for each mouse (n = 7 and 9). bsl: baseline.
g Inter-compartment rate map correlations of place cells in the baseline for Ctrl
(median: 0.46, n = 1680 cells from 7 mice) and MA mice (median: 0.43, n = 2882
cells from 9 mice). The red line (=0.4) separates rate vs. non-rate remapping place
cells. h Percentage change in peak Ca2+ event rates (peakER) for rate remapping
place cells across the two contexts in baseline. For each place cell, the value is
defined as abs(peakERleft−peakERright)/max(peakERleft, peakERright). Box plots show
values for all the rate remapping place cells from all mice (median: Ctrl = 42.5%,
MA= 43.2%, Z = −0.06, p =0.95,n = 932 and 1556 cells, respectively, two-tailed rank-
sum test), while circles indicate median for each mouse. For each box plot, the
center indicates median, the box indicates 25th and 75th percentiles. The whiskers
extend to the most extreme data points without outliers. ns: not significant.
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Fig. 2 | Drug-conditioning results in an unbalanced rate of place cell turnover
across the two CPP contexts. a The ratio of place cells over the total number of
neurons in Ctrl mice in the preferred (F(3, 6) = 1.21, p =0.34, n = 7 mice, repeated
measures ANOVA) and non-preferred context (F(3,6) = 0.85, p =0.49), respectively.
pre-bsl: pre-baseline, bsl: baseline. b Same as (a) but for MA mice (saline-paired
context: F(3,8) = 16.36, p <0.0001; MA-paired context: F(3,8) = 0.31, p =0.82, n = 9
mice, repeatedmeasures ANOVA; *** bsl vs. test 1: t(8) = 6.30, p = 2.34 × 10−4; bsl vs.
test 2: t(8) = 5.90, p = 3.64 × 10−4, n = 9 mice, two-tailed paired t-test). c Top: sche-
matic of disPCp, disPCnp, aPCp, and aPCnp. These functional cell types were
defined by their activity change in either context of the CPP apparatus. Gaussian
spots represent place fields with warm colors indicating a high firing rate. Bottom:
ratemaps of representative cells for each of the functional cell types.d Proportions
of functional cell types in Ctrl (disPCp vs. disPCnp: t(6) = 0.57, p =0.59; aPCp vs.
aPCnp: t(6) = 0.23, p =0.83, n = 7 mice) and MA mice (*** disPCp vs. disPCnp:

t(8) = 6.16, p = 2.7 × 10−4; ** aPCp vs. aPCnp: t(8) = −3.66, p =0.006, n = 9 mice, two-
tailed paired t-test). e Same as (a) but for sucrose mice (water-paired context:
F(3,7) = 0.084, p =0.97; sucrose-paired context: F(3,7) = 0.46, p =0.71, n = 8 mice,
repeated measures ANOVA). f Same as (a) but for morphine (MO) mice (saline-
paired context: F(3,9) = 6.56, p =0.0018;MO-paired context: F(3,9) = 0.62, p =0.61,
n = 10 mice, repeated measures ANOVA; ** bsl vs. test 1: t(9) = 3.5, p =0.0067; * bsl
vs. test 2: t(9) = 2.50, p =0.034, n = 10 mice, two-tailed paired t-test). g Same as (d)
but for sucrose mice (disPCp vs. disPCnp: t(7) = 0.44, p =0.67; aPCp vs. aPCnp:
t(7) = −1.28, p =0.24, n = 7 mice, two-tailed paired t-test). h Same as (d) but for MO
mice (** disPCp vs. disPCnp: t(9) = 3.78, p =0.004; aPCp vs. aPCnp: t(9) = −3.32,
p =0.0089, n = 10 mice, two-tailed paired t-test). For box plots throughout the
figure, the center indicatesmedian, the box indicates 25th and 75th percentiles. The
whiskers extend to the most extreme data points without outliers. Circles denote
data points for each mouse. For all figure panels, *p <0.05, **p <0.01, ***p <0.001.
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n = 9; Fig. 4d, left). Notably, however, in the test analysis, the recon-
structed CPP time captured the MA-induced place preference for the
randomKO, but this place preferencewas disrupted for the disPCp KO
(mean± SEM, disPCp KO: 0.50±0.01; random KO: 0.55 ± 0.01, n = 9;
Fig. 4d, right). This result was not due to the larger proportion of
disPCp in MA compared to Ctrl mice, as matching the proportion of

disPCp between MA and Ctrl mice by down-sampling replicated this
result (Supplementary Fig. 4j). Together, these results suggest that
disPCp in MA mice biased their encoding towards representing the
drug-paired context after drug conditioning.

The down-sampling result (Supplementary Fig. 4j) raises the
possibility that other factors may contribute to the biased encoding

Fig. 3 | The activity of disPCp encodes the drug-context association.
a Schematic for calculating inter-compartment correlation difference (CorrDiff)
between baseline and test (test 1 or test 2) sessions for each neuron. b CorrDiff
calculated using disPCp, but not other cell types, was significantly correlated with
behavioral CPP scores in MA mice (orange, bottom). This correlation was not seen
in Ctrl mice (blue, top). Each dot on the x-axis is a CorrDiff value for a mouse
calculated using the designated cell types indicated on top. Each mouse has two
CorrDiff values (baseline vs. test 1 and baseline vs. test 2). CorrDiff of disPCp inMA
mice was also significantly higher than zero (Z = 3.55, p = 3.86 × 10−4, n = 18 session
pairs, two-tailed sign-rank test against zero). c The proportion of disPCp showing
significant spatial tuning in the MA-paired context in MA mice (mean ± SEM, bsl:
0.48 ± 0.02; test 1: 0.47 ± 0.04; test 2: 0.45 ± 0.02; F(2,8) = 0.25, p =0.78, n = 9mice,
repeated measures ANOVA). bsl: baseline. For box plot, the center indicates

median, the box indicates 25th and 75th percentiles. The whiskers extend to the
most extreme data points without outliers. Circles denote data points for each
mouse. ns, not significant. d, e Categories of disPCp inMAmice with single neuron
examples. Each column is a cell with activity tracked from baseline to test sessions.
Top plots are rate maps with warmer colors indicating higher firing rates. Bottom
plots show the mouse’s trajectory (gray) and detected calcium events (red). Pink
box indicates the session and context in which the place cell was defined. Plots are
aligned such that the saline-paired context (naturally preferred context) is on the
left. f Spatial stability (Pearson’s correlation) of disPCp in the MA-paired context in
MA mice (p =0.20, n = 9 mice, two-tailed sign-rank test). Black bars show median
and interquartile range of values for all place cells from all mice, while circles
indicate median for each mouse.
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of disPCp, besides the loss of spatial tuning in the saline-paired
context. Indeed, the biased encoding of the drug-paired context by
disPCp was also reflected in the place cell metrics for disPCp in the
MA-paired context. In MA mice, disPCp place fields in the MA-paired
context had a decreased peak calcium event rate, increased spatial

information and a smaller field size between the baseline and test
sessions (Fig. 4e–g, orange plots). These effects were not seen in Ctrl
mice (Fig. 4e–g, blue plots). These results suggest that in addition to
losing their spatial tuning in the saline-paired context after MA
conditioning, disPCp may contribute to the encoding of drug-
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errors in the drug-paired context. jDecoding errors for Ctrl (blue) andMA (orange)
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Z = −3.59, p = 3.27 × 10−4, n = 18 sessions from 9 mice, two-tailed sign-rank test).
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context associations by sharpening their place fields in the MA-
paired context.

We next considered how much disPCp contributed to the
encoding of drug-context associations compared to other functionally
defined place cell types. We identified a fifth functional cell type that
retained spatial tuning in the saline-paired context for at least one test
session (termed rtPCp: retained place cells on the preferred side. Note
disPCp and rtPCp are mutually exclusive; Fig. 4h). We then compared
the contribution of disPCp versus rtPCp to the spatial coding of MA-
paired context after conditioning (Fig. 4h, i). We again trained the
naive Bayes decoder using data from the baseline session and exam-
ined the accuracy of position decoding in theMA-paired context using
data from the test sessions (Fig. 4i). In Ctrl mice, rtPCp and disPCp KO
showed comparable decoding errors (mean ± SEM: rtPCp KO,
9.95 ± 0.95 cm; disPCpKO, 10.09 ±0.94 cm,n = 14; Fig. 4j).However, in
MA mice, disPCp KO resulted in significantly larger decoding errors
than rtPCp KO, suggesting that disPCp contributedmore to the spatial
coding of the MA-paired context than rtPCp in test sessions (mean ±
SEM: rtPCp KO, 9.12 ± 0.54 cm; disPCp KO, 9.72 ± 0.62 cm, n = 18;
Fig. 4j). Together, compared to place cells similarly defined by their
activity in the saline-paired context in baseline (rtPCp), disPCp con-
tributed significantly more to the encoding of the drug-associated
context after drug conditioning.

disPCp in MAmice emerge in an experience-dependent manner
Wenext hypothesized that the recruitment of disPCp cells to represent
theMA-paired context depended on where those cells fired during the
baseline session. Specifically, if a cell fired at a location in baseline that
was subsequently visited during drug conditioning, we hypothesized
that this cell wasmore likely to be recruited as disPCp. As the center of
the CPP junction was not accessible during conditioning, we used
center-firing cells in the test session as a comparison group to test this
hypothesis (Fig. 5a, b). In baseline sessions, we observed a subset of
place cells that were selectively active in the junction between the two
CPP compartments (‘center-firing’ neurons) (Fig. 5b). As visiting the
junction location was not possible during the conditioning sessions, in
which the drug-context association took place, we hypothesized that
‘center-firing’ neurons in baseline would have a minimal contribution
to the encoding of drug-context associations, which could manifest as
a lower proportion of ‘center-firing’ neurons classified as disPCp inMA
mice. To test this hypothesis, we used a k-means method to group
neurons into temporally synchronized clusters using their calcium
signals in the baseline session (Fig. 5c, Supplementary Fig. 5, “Meth-
ods”). This clustering approach identified a ‘center cluster’ (i.e., center-
firing neurons), as well as four clusters with peak ensemble activity at
different spatial positions across the CPP compartments (Northeast
[NE], Northwest [NW], Southeast [SE], and Southwest [SW]) (Supple-
mentary Fig. 6a–c).

The proportion of neurons assigned to each cluster was roughly
equal across animals (Fig. 5d). While disPCp were equally distributed
across thefive clusters inCtrlmice, theywerenot equally distributed in
MA mice (Fig. 5e, f). In MA mice, this unequal distribution was visua-
lized by plotting the summed disPCp rate maps according to their
cluster assignment (Fig. 5e), which revealed a smaller proportion of
disPCp in the center cluster (mean± SEM, 0.12 ± 0.01) compared to all
other clusters (NW: 0.19 ± 0.01, SW: 0.19 ± 0.03, NE: 0.18 ± 0.02, SE:
0.22 ± 0.02) (Fig. 5f). This effect was not due to insufficient neural
activity during the conditioning sessions in MA mice (Supplementary
Fig. 6d), as during conditioning, center cluster neurons often remap-
ped such that they were maximally active in another spatial location
(Fig. 5b). We also did not observe any differences in the number of
traversals across the junction between baseline and test sessions
(Supplementary Fig. 6e) nor the running speed (Supplementary
Fig. 2d). As further validation of this result, we quantified the spatial
correlation of place cells in each cluster between spatial maps in

baseline and test sessions, as a higher proportion of disPCp decreases
this correlation value. As expected, in MA mice, center-clustered
neurons showedahigher spatialmapcorrelation compared to all other
clusters, consistent with a lower proportion for disPCp in the center
cluster compared to all other clusters (Fig. 5g). Interestingly, in MA
mice, the anatomical distribution across CA1 of each disPCp cluster
was intermingled (Fig. 5h), as demonstrated by the quantification of
the pair-wise intra- vs. inter-cluster distances within disPCp (Supple-
mentary Fig. 6f). Together, these results suggest that disPCp depend,
in part, on the spatial locations experienced during drug conditioning.

Drug-context associations primarily affect place cells that are
exclusively tuned to position
Previous studies have shown that neurons in the hippocampus and
medial entorhinal cortex can conjunctively respond to an animal’s
spatial position, head direction, and speed (i.e., exhibit mixed
selectivity)57–59 and that task learning impacts mixed-selective hippo-
campal place cells more than position coding only place cells58. To
examine whether drug-context associations influenced mixed-
selective versus position coding only place cells, we used a linear-
non-linear Poisson (LN) model57 (Fig. 6a). This approach has the addi-
tional benefit of accounting for potential correlations between spatial
variables and behavioral variables such as running speed or head
direction57,58. Using the LN model, we then classified place cells as
those that exclusively encoded position versus those that encoded
position (P) with speed (S) and/or head direction (HD) (i.e., showed
mixed selectivity, Fig. 6b, c)58. Consistent with previous studies58–61, we
identified position coding only (P) and mixed-selective CA1 place cells
(PS, PH, PHS), with very few CA1 cells tuned only to speed or head
direction (H, S, HS) (Fig. 6b–d and Supplementary Fig. 7). Consistent
with our previous analyses, we observed a decreased number of place
cells specifically in the saline-paired context in MA mice (Fig. 6d).
Interestingly, drug-context associative learning primarily decreased
the number of position coding only place cells (P) in the saline-paired
context, while the number of mixed-selective place cells (PS, PH, PHS)
did not change after drug conditioning (Fig. 6d). These effects were
not observed in either Ctrl or sucrose mice (Supplementary Fig. 7).
However, in sucrose mice, we observed an increase in the number of
position coding only place cells specifically in the sucrose-paired
context, which is consistent with previous works that observe place
cell over-representation of food reward44,46,62,63. This increase in the
number of position coding-only place cells in the sucrose-paired
context differed from our prior result that considered both position
coding only and mixed selective place cells together (Fig. 3e). Never-
theless, in both sets of analyses (Fig. 2e and Supplementary Fig. 7b),
MA and sucrose conditioning showed distinct impacts on place cells,
with only MA conditioning decreasing the number of place cells in the
saline-paired context. Thus together, the LN model-based approach
confirmed the different effects that drug versus sucrose conditioning
have on place cell coding. Moreover, the model revealed that both
drug-context and natural reward associative learning impacted place
cells dedicated to encoding the position of the animal more than
mixed selective place cells.

Discussion
Addiction is often viewed as a process of pathological learning. Here,
we investigated whether addictive substances could leverage neural
circuits of natural learning and memory to achieve maladaptive
learning, which may play a role in later drug-seeking behavior. We
report that a subset of CA1 place cells (disPCp) correspond to asso-
ciative learning betweendrug rewards and environmental context. The
emergence of disPCp was consistent across addictive drugs (i.e.,
methamphetamine and morphine) and not observed in response to
natural reward learning nor drug withdrawal. This functionally defined
cell class represented the drug-paired context by switching off their
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Fig. 5 | disPCp in MA mice emerge in an experience-dependent manner.
a Schematic illustrating an animal’s possible location in baseline, conditioning, and
test sessions.bTwoexample neurons that aremaximally active at the CPP junction.
Sessions organized as labeled in (a). Both rate map (warmer colors indicate higher
firing rates) and raster plot (red calcium events on top of gray running trajectory)
are shown for cell 1. c Top, the temporal correlationmatrix of calcium signals from
baseline of an example mouse, sorted by k-means derived temporal clusters. Bot-
tom, synchronized calcium activity for representative neurons from three different
clusters (colors correspond to the top panel). d The proportion of neurons
assigned to each cluster (F(4,75) = 1.77, p =0.14, one-way ANOVA, n = 16 mice from
Ctrl andMAgroups). Box plot: center indicatesmedian, box indicates 25th and 75th
percentiles, whiskers extend to the most extreme data points without outliers.
Outliers are shown in red plus symbol. SW, southwest; NW, northwest; SE, south-
east; NE, northeast. ns, not significant. e Summed ensemble rate maps of tempo-
rally clustered disPCp from an MA mouse. f disPCp showed a non-random
distribution across temporal clusters in MA (orange) but not Ctrl (blue) mice

(F(4,30) = 1.06, p =0.39 for Ctrl; F(4,40) = 3.01, p =0.029 for MA, one-way ANOVA,
n = 7 and9, respectively). InMAmice, the proportionof disPCp in the center cluster
was significantly lower compared to other clusters (NW vs. center, t(8) = 5.87,
p = 1.84 × 10−4; SW vs. center, t(8) = 1.95, p =0.043; NE vs. center, t(8) = 2.35,
p =0.023; SE vs. center, t(8) = 5.33, p = 3.50× 10−4, n = 9 mice, one-tailed paired t-
test). g Rate map correlation (Pearson’s) between baseline and test sessions for
neurons in center vs. other clusters inMAmice. The box plots show values from all
neurons in center (n = 740 cells) vs. other clusters (n = 3143 cells). Box plot: center
bar indicates median, box indicates 25th and 75th percentiles, whiskers extend to
the most extreme data points without outliers. Black dots are outliers. Circles
indicate mean for each session comparison (**p =0.0012, Z = 3.24, n = 18 session
comparisons from 9 mice, two-tailed sign-rank test). h Anatomical location of
disPCp from a representative mouse. Each filled dot is a centroid of one disPCp
neuron color coded fordifferent temporal clusters. Gray circles are the centroids of
other recorded CA1 neurons that were not disPCp.
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activity in the saline-paired context and sharpening their place coding
in the drug-paired context. These changes indisPCp activity resulted in
a more orthogonalized representation for the two CPP contexts, with
the degree to which disPCp remapped between the two contexts
correlated with CPP behavior. Further, drug conditioning primarily
impacted place cells tuned only to position, and not mixed selective
place cells. Together, this work reveals a sub-population of hippo-
campal CA1 place cells that encode drug-associated contextual infor-
mation, raising the possibility that future work may be able to target
the specific subset of neurons that encode memories of drug use64–66.

Previous works have shown that place cell activity can be modu-
lated by spatial locations with a high behavioral significance, such as
goal locations associated with rewards (e.g., food or water; for review,
see ref. 67). Several phenomenahave beenobserved regarding reward-
driven changes to hippocampal place cell coding features. First, place
cell firing fields often accumulate near locations associated with
reward44,46,62,63. The over-representation of reward locations by place
cells typically develops through experience, with the firing fields of
place cells gradually shifting closer to the reward or goal location over
behavioral trials or sessions35,36,68–70. This over-representation of
reward locations also reflects the activity of a small population of
hippocampal neurons dedicated to coding reward62. Second, studies
have reported elevated activity in existing place cells (i.e., out-of-field
firing activity) around reward or goal locations, which is not accom-
panied by an accumulation of placefields71–73. Consistentwith previous
observations of reward-associated changes in place cells, disPCp
developed with experience, and ultimately increased the relative

representation of the drug-paired context. Moreover, in the sucrose
CPP experiment, we observed an over-representation in the sucrose-
paired context in position coding only place cells. Of note, however, in
our work, the effect of drug conditioning on place cells (a decreased
number of place cells specifically in the saline-paired context) clearly
differed from the effect of natural reward conditioning on place cells.
Thus, our observations reflect place cell changes specific to learned
associations between the reward of a drug and an environmental
context, raising the possibility that addictive drugs may usurp the
normal hippocampalmachinery for learning reward or goal associated
locations within an environment8,74,75.

Our observation of a large number of place cells that exhibited
rate remapping across the two CPP contexts in baseline is consistent
withpreviousworks thathave shown thatplace cells canexhibit similar
place field locations across geometrically identical contexts or seg-
ments of linear tracks76–79. Under such conditions, place cells often
showhomotopicplace tuning (i.e., haveplacefields in similar locations
between contexts) with rate remapping, which could support firing
rate-based discrimination of different contexts. Interestingly, in the
current work, the representation of the two CPP contexts by disPCp
became more orthogonal after drug conditioning. One possibility is
that this orthogonalization could amplify the differences between the
two contexts and facilitate pattern separation, which could support
memory encoding and recall of the pairing between the drug and
corresponding spatial context. It will be of interest for future work to
consider to what degree this orthogonalization in the disPCp repre-
sentation reflects the distinctness or similarity between the two CPP
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contexts. An alternative interpretation is that disPCp represent a value-
based signal that facilitates a comparison between drug- and saline-
paired contexts. However, previous works have found little evidence
for the influence of value on hippocampal neural coding72,80–82. Thus a
more likely interpretation is that the disPCp provide a mechanism for
encoding drug-associated contextual information, which then goes on
to inform value coding in other brain regions and drive drug-seeking
behavior83,84.

Of note, while we observed different forms of remapping with
drug and saline-paired CPP, our measurements of long-term stability
of place cells remained relatively high (median stability values from all
conditions >0.5). This differs from previous studies using calcium
imaging in freely moving animals, which have reported more dynamic
and unstable place cell representations across days (stability
values ~ 0.2)49,85. One possibility is that the increased long-term place
cell stability we observed reflects the geometry or sensory complexity
of the CPP environment. Previous works have primarily investigated
long-term place cell stability using 1D linear tracks or 1D sensory
treadmills, while our mice were running freely in a two chamber 2D
environment, which could provide more sensory or landmark input to
support stable place maps over longer time periods.

Our observations of drug-driven changes to hippocampal place
cell representations almost certainly interface with other brain regions
to encode drug-associated contexts and drive drug-seeking behavior.
Given the biochemical nature ofMA andMO, directmonoamine inputs
from locus coeruleus44,86,87, VTA88–90, and raphe nuclei91,92 could all play
a role in the emergence of disPCp. Hippocampal representations of
drug-associated contexts then likely interface with regions like the
nucleus accumbens (NAc), one of the major efferent targets of the
hippocampal formation, with hippocampal-NAc circuit interactions
playing a key role in spatial context conditioning9,21,93. Notably, recent
work revealed that cocaine place conditioning increases the functional
drive from hippocampal CA1 neurons that encode cocaine-paired
locations to NAc medium spiny neurons17. Thus, one possibility is that
the disPCp route information directly to the NAc to encode drug-
associated spatial contexts,with this circuit then potentially provoking
future drug-seeking behavior94. Another possible long-range target of
disPCp are neurons in the lateral septum, a region that plays a critical
role in context-induced reinstatement of drug-seeking behaviors16,23.
Within the hippocampal formation, disPCp may route information to
the subiculum95, where electrical stimulation has been shown to
increase dopamine levels in NAc and trigger cocaine relapse that
resembles context-induced drug reinstatement20,90. Another potential
local efferent target is the medial entorhinal cortex, which innervates
the NAc96,97 and contains neurons that both encode the position and
orientation of an animal that are modulated by reward locations98,99.
Given the intermingled anatomical distribution of disPCp and col-
lateralization of CA1 neurons, it is likely that drug-associated infor-
mation encoded by disPCp is broadcast to multiple downstream
targets. Nevertheless, further investigation will be needed to identify
the full circuit mechanisms by which disPCp interact with known
reward circuitry to drive drug-seeking behavior.

Methods
Subjects
All procedures were conducted according to the National Institutes of
Health guidelines for animal care and use and approved by the Insti-
tutional Animal Care andUseCommittee at StanfordUniversity School
of Medicine. For imaging experiments, Ai94;Camk2a-tTA;Camk2a-Cre
(JAX id: 024115 and 005359) mice were used (n = 54 total mice in the
study). We did not observe obvious epileptiform events in calcium
activity or gross abnormal behavior in these mice100. Male and female
(Ctrl: 3 male and 4 female; MA: 6 male and 4 female; Sucrose: 4 male
and 4 female; Sucrose (ctrl): 1 male and 2 female; MO: 8 male and 4
female; CPA MO+ saline: 3 male and 3 female; CPA MO+naloxone: 5

male and 3 female) micewere group housed with same-sex littermates
until the time of surgery. At the time of surgery, mice were 8–12 weeks
old (19–28 g). After surgery mice were singly housed. Mice were kept
on a 12-h light/dark cycle and had ad libitum access to food and water
in their home cages at all times. All experiments were carried out
during the light phase. Due to a limited number of miniscopes and the
availability of transgenicmice, up to sixmicewere used as a cohort for
each batch of experiments.

GRIN lens implantation and baseplate placement
Mice were anesthetized with continuous 1–1.5% isoflurane and head
fixed in a rodent stereotax. A three-axis digitally controlled micro-
manipulator guided by a digital atlas was used to determine bregma
and lambda coordinates. To implant the gradient refractive index
(GRIN) lens above the CA1 regions of the hippocampus, a 1.8mm-
diameter circular craniotomy was made over the posterior cortex
(centered at−2.30mmanterior/posterior and +1.75mmmedial/lateral,
relative to bregma). The dura was then gently removed and the cortex
directly below the craniotomy aspirated using a 27- or 30-gauge blunt
syringe needle attached to a vacuum pump under constant irrigation
with sterile saline. The aspiration removed the corpus callosum above
the hippocampal imaging window but left the alveus intact. Excessive
bleeding was controlled using a hemostatic sponge that had been torn
into small pieces and soaked in sterile saline. As determined using the
Allen Brain Atlas (www.brain-map.org/), the unilateral cortical aspira-
tion impacted part of the anteromedial visual area but the procedure
left the primary visual area intact. The GRIN lens (0.25 pitch, 0.55 NA,
1.8mm diameter and 4.31mm in length, Edmund Optics) was then
slowly lowered with a stereotaxic arm to CA1 to a depth of −1.53mm
relative to the measurement of the skull surface at bregma. A skull
screwwas placedon the contralateral side of the skull surface. Both the
GRIN lens and skull screw were then fixed with cyanoacrylate and
dental cement. Kwik-Sil (World Precision Instruments) was used to
cover the lens at the end of surgery. Two weeks after the implantation
of the GRIN lens, a small aluminum baseplate was cemented to the
animal’s head on top of the existing dental cement. Specifically, Kwik-
Sil was removed to expose the GRIN lens. A miniscope was then fitted
into the baseplate and locked in position so that GCaMP6s expressing
neurons and visible landmarks, such as blood vessels were in focus in
the field of view. After the installation of the baseplate, the imaging
window was fixed for the long-term in respect to the miniscope used
during installation. Thus, for all imaging experiments, eachmouse had
a dedicated miniscope. When not imaging, a plastic cap was placed in
the baseplate to protect the GRIN lens from dust and dirt.

Methamphetamine andmorphine conditioned place preference
(MA or MO CPP)
After mice had fully recovered from the baseplate surgery, they were
handled and allowed to habituate to wearing the head-mounted min-
iscope by freely exploring an open arena for 20min every day for
1 week. If the animal still showedmuscle weakness (as indicated by the
difficulty in holding their heads up towards the end of each session) at
the end of the first week, they underwent an extra week of habituation.
In parallel, animals were also habituated to mock intraperitoneal
injections (needle poking) once a day for 4 days.

Conditioned place preference (CPP) sessions took place in a dif-
ferent room from the habituation sessions described in the previous
paragraph. This dedicated CPP room contained salient distal visual
cues, which were kept constant over the course of the entire experi-
ment. The CPP apparatus consisted of two 25 × 25 cm compartments
with distinct colors and visual cues (Fig. 1a). The two compartments
could be connected by a sliding door in the middle. The door opening
was 6.5 cm wide, so that the mouse could easily run between the two
compartments during miniscope recordings. The floors of the CPP
compartments were covered with ~500ml of bedding to facilitate
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exploration. Mice were first habituated for two days (20min/day) to
theCPP apparatuswith the door between theCPP compartments open
and the miniscope mounted. Each mouse had its own dedicated min-
iscope for the entire duration of the CPP experiment, which ensured
stable longitudinal recordings and facilitated image alignment across
different sessions. Before any experiments started, the image quality
for each animal was verified by adjusting the power of the excitation
light and the focal plane. These scope parameters then remained fixed
on the dedicated miniscope over the course of the entire CPP
experiment.

After the 2-day habituation, the pre-baseline session occur-
red on day 1, in which mice could run freely between the two
connected CPP compartments for 20min (with imaging). On day
2, the baseline session, the same experiment was repeated and
the behavioral data used to assess the animals’ naturally preferred
context (i.e., the compartment where the animal spent more
time). Prior to the experiments, we defined an exclusion thresh-
old, in which we would exclude any mouse that spent more than
75% of their total time in one compartment in the baseline ses-
sion; however, no mice reached this threshold. The subsequent
conditioning sessions (3 sets, 6 days of pairings) were performed
by confining the animal in one of the CPP compartments for
45 min immediately after a saline or drug administration. During
the 45min, we only imaged from the 15th–30th minute in each
mouse. For each set of conditioning sessions, saline was paired in
the preferred context on the first conditioning day and the drug
paired (MA at 2mg/kg or MO at 20mg/kg, injected intraper-
itoneally) in the non-preferred context on the second condition-
ing day. This conditioning design was trying to align drug pairings
with animals’ internal state and avoid potential ceiling effects for
the exploration time17,19,51,101–105. In addition, this design max-
imumly balanced animals’ spatial coverage between the two CPP
contexts, which is critical for place cell analyses (Supplementary
Fig. 2a). This conditioning process was repeated 3 times in total
such that each animal received 3 saline pairings and 3 drug
pairings. Similarly, in control (Ctrl) mice, saline was paired in
both CPP contexts, starting with the preferred context. Note that
for MA and MO mice, the naturally preferred context was
equivalent to the saline-paired context and the non-preferred
context was equivalent to the drug-paired context. Twenty-four
hours after the last conditioning session, animals were put back
into the CPP environment with the two compartments connected
again for 20min with imaging to assess their post-conditioning
preferences (defined as test 1). To assess whether any drug-
induced preference was long-lasting, we performed a 2nd post-
conditioning test (defined as test 2) 5 days after test 1. The
behavioral CPP score was defined as the time that the animal
spent in the drug-paired context of the CPP apparatus in a test
session minus the time it spent in the same context in the base-
line session.

Sucrose conditioned place preference (Sucrose CPP)
Sucrose CPP was performed as previously described106, with mod-
ifications. In brief, miceweremildly food restricted to ~90–95%of their
body weight. Baseline sessions were performed similar to baseline
sessions in MA CPP. To minimize the total length of food deprivation,
for animal welfare reasons, we accelerated our CPP protocol for the
conditioning by using two pairings per day (AM and PM) for 4 days (we
only imaged on the first three days). On each day, mice explored their
preferred context with drops of water for 20min (20μl per min at
random locations). Next, mice explored the non-preferred context
with drops of 20% sucrose solution for 20min (20μl per min at ran-
dom locations). Sucrose Ctrl mice received water in both contexts
during conditioning. One and three days after the conditioning, two
test sessions were performed to assess an animal’s preference change.

Morphine conditioned place aversion (CPA)
Morphine CPA was performed as previously described107. Baseline
sessions were performed similar to baseline sessions in MA CPP. To
establish morphine dependence, mice received a daily intraperitoneal
injection ofmorphine in their home cage for 5 consecutive days. Doses
escalated from 10, 20, 30, 40, and 50mg/kg. On the conditioning day,
mice received another 50mg/kgofmorphinefirst. Twohours after this
injection, mice received a single dose of naloxone (5mg/kg, i.p.) and
were put immediately into their naturally preferred context for 20min
(MO+ naloxone). For the control condition, mice received a saline
injection instead of naloxone (MO+ saline). Somatic withdraw signs
(jump and rearing) were manually quantified offline. One and three
days after the conditioning, two test sessionswere performed to assess
an animal’s preference change.

Histology
After the imaging experiment was concluded, mice were deeply
anesthetized with isoflurane and transcardially perfused with 5ml of
phosphate-buffered saline (PBS), followed by 25ml of 4%
paraformaldehyde-containing phosphate buffer. The brain was
removed and left in 4% paraformaldehyde overnight. The next day,
samples were transferred to 30% sucrose in PBS. At least 24 h later, the
brain was sectioned coronally into 40-µm-thick samples using a cryo-
stat. Sectionsweremounted and cover-slippedwith antifademounting
media with DAPI (Vectashield). Brain slice images were acquired using
a ZEISS Axio Imager 2 fluorescence microscope under ×10 or ×20
magnification for both DAPI and GFP channels.

Miniscope imaging data acquisition and initial batch processing
Technical details for the custom-constructed miniscopes and general
processing analyses are described in refs. 48, 50 and atminiscope.org.
Briefly, this head-mounted scope had a mass of about 3 g and a single,
flexible coaxial cable to carried power, control signals, and imaging
data to custom open source Data Acquisition (DAQ) hardware and
software. In our experiments, we used Miniscope V3, which had a
700μm×450μm field of view with a resolution of 752 pixels × 480
pixels (~1μmper pixel). Acquired datawas packaged by the electronics
to comply with the USB video class (UVC) protocol. The data was then
transmitted via a Super Speed USB to a PC running custom DAQ
software. The DAQ software was written in C++ and used Open Com-
puter Vision (OpenCV) libraries for image acquisition. Images were
acquired at ~30 frames per second (fps) and recorded to uncom-
pressed.avi files. The DAQ software also recorded the simultaneous
behavior of themouse through a high-definition webcam (Logitech) at
~30 fps, with time stamps applied to both video streams for offline
alignment.

Miniscope videos of individual sessions were first concatenated
and down-sampled by a factor of 2 using customMATLAB scripts, then
motion corrected using the NoRMCorre MATLAB package108. To align
miniscope videos across different sessions for the entire CPP experi-
ment, we applied an automatic 2D image registration method
(github.com/fordanic/image-registration) with rigid x–y translations
according to the maximum intensity projection images for each ses-
sion. The registered videos for each animal were then concatenated
together in chronological order to generate a combined data set for
extracting calcium activity. To extract the calcium activity from the
large combined data set (>10GB), we used the Sherlock HPC cluster
hosted by Stanford University to process the data across 8–12 cores
and 600–700GB of RAM. While processing this combined data set
required significant computing resources, it enhanced our ability to
track cells across sessions from different days (Fig. 1). This process
made it unnecessary to perform individual footprint alignment or cell
registration across sessions.

To extract an individual neuron’s calcium activity, we adopted a
methodof extended constrained non-negativematrix factorization for
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endoscopic data (CNMF-E)54. CNMF-E is based on the CNMF
framework109, which enables simultaneous denoising, deconvolving
and demixing of calcium imaging data. A key feature includes model-
ing the large, rapidly fluctuating background, allowing good separa-
tion of single-neuron signals from background, and separation of
partially overlapping neurons by taking a neuron’s spatial and tem-
poral information into account (see ref. 54 for details). After iteratively
solving a constrainedmatrix factorization problem, CNMF-E extracted
the spatial footprints of neurons and their associated temporal cal-
cium activity. Specifically, the first step of estimating a given neuron’s
temporal activity (a scaled version of dF/F, an oft-used metric in cal-
cium imaging studies) was to compute the weighted average of
fluorescence intensities after subtracting the temporal activity of other
neurons in the given neuron’s region of interest. A deconvolution
algorithm called OASIS56 was then applied to obtain the denoised
neural activity and deconvolved spiking activity, as illustrated in Sup-
plementary Fig. 1. These extracted calcium signals for the combined
data set were then split back into each session according to their
individual frame numbers.

The position and speed of the animal were determined by
applying a custom MATLAB script to the animal’s behavioral tracking
video. Time points at which the speed of the animal was lower than
2 cm/s were identified and excluded them from further analysis. We
then used linear interpolation to temporally align the position data to
the calcium imaging data.

To further validate the quality of cross-session alignment using
the image registration, we analyzed the maximum projected images
from each session after the registration with the colocalization ana-
lysis available via NIH ImageJ and the JACoP plugin110 (Supplementary
Fig. 1). In brief, the two images were background subtracted and a
threshold automatically applied based on the Coste’s approach. A
cytofluorogram was then plotted for each pixel pair based on their
intensity. A Pearson’s coefficient can then be derived by calculating
the best-fitting regression line on the cytofluorogram. To test the
statistical significance of the colocalization analysis, we used
the Coste’s approach to randomly shuffle pixel blocks for one of the
images 1000 times and obtained a distribution of concomitantly
calculated shuffled coefficients. The 95th percentile of the shuffled
distribution were then determined as the significant threshold
(Supplementary Fig. 1).

Position-matching for comparisons of cell activity across ses-
sions and CPP compartments
Analyses that compared hippocampal neuronal activity across dif-
ferent sessions (longitudinal comparisons) or across the two CPP
compartments within the same session (transverse comparisons)
could be influenced by biases in the animal’s spatial occupancy,
particularly due to the CPP-related shift in spatial preference. First,
we assessed the spatial coverage of animals in baseline and test
sessions. Spatial coverage was quantified as the percentage of spatial
bins (bin size = 1.8 × 1.8 cm) that an animal physically visited within
each session. We found most animals had stable spatial coverage
(>90%) across sessions and between the two CPP contexts, despite
the place preference change (Supplementary Fig. 3a). To further
circumvent the effect of differences in occupancy on our analyses,
we implemented a position-matched down-sampling protocol99

when performing longitudinal or transverse comparisons of place
cell activity. For down-sampling, we first binned the spatial arena into
1.8 × 1.8 cm non-overlapping bins. We then computed the number of
position samples (frames) observed in each spatial bin for the to-be-
matched sessions. Finally, the number of samples in each corre-
sponding spatial bin was down-sampled by randomly removing
position samples, and the corresponding neural activity, from the
session with greater occupancy (Supplementary Fig. 2b, c). Due to
the stochastic nature of the down-sampling process, we repeated this

procedure 50 times (unless otherwise specified) for each cell, and the
final value for each cell was calculated as the average of all 50
iterations. This final value was then used to obtain the reported
means or perform statistic comparisons. This protocol was applied
to our analyses for all the within-subject comparisons (both long-
itudinal and transverse). Specific details for each analysis are
described in the corresponding methods and figure legends.

Place cell analyses
Calculation of spatial rate maps. After we obtained the deconvolved
spiking activity of neurons, we extracted and binarized the effective
neuronal calcium events from the deconvolved spiking activity by
applying a threshold (3 × standard deviation of all the deconvolved
spiking activity for each neuron). The position data was sorted into
1.8 × 1.8 cm non-overlapping spatial bins. The spatial ratemap for each
neuron was constructed by dividing the total number of calcium
events by the animal’s total occupancy in a given spatial bin. The rate
mapswere smoothed using a 2D convolutionwith aGaussian filter that
had a standard deviation of 2.

Spatial information and identification of place cells. To quantify the
information content of a given neuron’s activity, we calculated spatial
information scores in bits/spike (each calcium event is treated as a
spike here) for each neuron according to the following formula111,

Bits=spike =
Xn
i = 1

Pi
λi
λ
log2

λi
λ
, ð1Þ

where Pi is the probability of the mouse occupying the i-th bin for the
neuron, λi is the neuron’s unsmoothed event rate in the i-th bin, while λ
is themean rate of the neuron across the entire session. Bins with total
occupancy time of <0.1 s were excluded from the calculation. To
identify place cells, the timing of calcium events for each neuron was
circularly shuffled 1000 times and spatial information (bits/spike)
recalculated for each shuffle. This generated a distribution of shuffled
information scores for each individual neuron. The value at the 95th %
of each shuffled distributionwas used as the threshold for classifying a
givenneuron as aplace cell, andweexcluded cellswith anoverallmean
calcium event rate <0.1 Hz. This threshold was roughly equal to the 5th
% of the mean event rate distribution for all neurons.

To avoid the potential influence of drug-induced change in
occupancy on identifying place cells, we classified place cells by
applying the position-matching protocol (described in the previous
section) in addition to the above shuffling procedure. Namely, the full
shuffling procedure was repeated for 20 times, each time on down-
sampled neural activity obtained to match the position occupancy of
the animal across the two CPP compartments. From these 20 repeti-
tions, we calculated a place cell agreement index (PCI) for each neuron
as

PCI =
X20
i = 1

indicatorðcelliter = i = place cellÞ=20, ð2Þ

where indicator() is a function that returns 1 when the equation inside
the parentheses holds, and 0 otherwise; i is the number of iterations
(iter). We chose PCI ≥0.3 as the threshold for classifying a neuron as a
place cell, based on both the visual inspection of place fields and the
resulting proportion of place cells (~70% of total neurons, union of the
place cells from both CPP compartments), which was similar to con-
ventional tetrode recordings from CA1112,113. Note that compared with
the regular shufflingmethod that does not performpositionmatching,
the current approach results in slightly fewer cells classified as place
cells. Although the place cells classified and used in the current study
were all obtained through this position matching method, the general
findings regarding the number of place cells described in the results
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(e.g., Fig. 2) are robust and remain the same even without position
matching.

Rate map spatial correlation, cross-session stability, mean, and
peak Ca2+ event rate. We applied the position matching protocol in
our measures of rate map spatial correlation, cross-session stability,
mean and peak Ca2+ event rate of place cells. For each matching
iteration, we first computed occupancy-matched rate maps across
different sessions or contexts (Supplementary Fig. 2b, c). Spatial cor-
relation or cross-session stability was calculated as the Pearson’s cor-
relation coefficient between the occupancy-matched rate maps. Mean
Ca2+ event rate was measured as the number of spikes in the
occupancy-matched rate maps divided by the summed matched-
occupancy time. Peak Ca2+ event rate was measured as the maximum
of the occupancy-matched rate map. Final values for these metrics
were obtained by averaging all the 50 matching iterations.

Quantification of place field size. We only measured place fields in
neurons classified as place cells in a given environment. To measure
the size of a given place field, the occupancy-matched rate map was
first binarized by applying a thresholdof 50% of the peak event rate for
the rate map. The place fields were then identified and extracted as
connected objects from the binarized rate map. For place cells with
more than one place field, we used the largest place field as the mea-
surement. Similarly, final values were obtained by averaging all the 50
matching iterations.

Reconstructing the mouse’s position using a naive Bayes
classifier
We used a naive Bayes classifier to estimate the probability of animal’s
location given the activity of all the recorded neurons. Speed filtered
(>2 cm/s), thresholded (3 × standard deviation of all the deconvolved
spiking activity for each neuron), and binarized deconvolved spike
activity (neuron.S in CNMF-E) from all neurons were first binned into
non-overlapping time bins of 0.8 s. This time bin width was selected
based on the overall decoding performance among all the bin width
tested ranging from 0.2 to 1.6 s. The M×N spike data matrix, where M
is the number of time bins and N is the number of neurons, was then
used to train the decoder with anM× 1 vectorized location labels. The
posterior probability of observing the animal’s position Y given neural
activity X can then be inferred from the Bayes rule as:

P
�
Y=y∣X1, X2 . . . , XN

�
=
P
�
X1, X2, . . . , XN∣Y=y

�
PðY= yÞ

P X1, X2, . . . , XN

� � , ð3Þ

where X = (X1, X2, … XN) is the activity of all neurons, y is one of the
spatial bins that the animal visited at a given time, and P(Y = y) is the
prior probability of the animal being in spatial bin y. We used an
empirical prior as it showed slightly better performance than a flat
prior. P(X1, X2, …, XN) is the overall firing probability for all neurons,
which can be considered as a constant and does not need to be esti-
mated directly. Thus, the relationship can be simplified to

P
�
Y=y∣X1,X2 . . . ,XN

� / PðY=yÞ
YN
i = 1

P
�
Xi∣Y= y

�
, ð4Þ

ŷ = argmax
y

PðY= yÞ
YN
i = 1

P
�
Xi∣Y=y

�
, ð5Þ

where ŷ is the animal’s predicted location, based on which spatial bin
has the maximum probability across all the spatial bins for a given
time. To estimate P(Xi | Y = y), we applied the built-in function of
MATLAB fitcnb() to fit a multinomial distribution using the bag-of-
tokens model with Laplace smoothing, which gave an estimation of

distribution parameter for each neuron Xi at the given spatial bin y as:

θ Xi∣Y=y
� �

=

PM
j= 1

�
Xi = Xi∣Y

ðjÞ = y
�
+ 1PN

k= 1

PM
j= 1

�
Xi =Xk∣Y

ðjÞ = y
�
+N

, ð6Þ

where, regardless of the Laplace smoothing, the numerator is the total
number of spikes of neuron Xi for the time bins that the animal is at
location y, and the denominator is the total number of spikes of all the
neurons for the time bins that the animals is at location y. In addition,
the above equation was weighted such that the normalized weights
within a location bin sum to the prior probability for that location bin.
Thismultinomial-basedmodel offers high decoding accuracy, which is
important as we are investigating the function of a small population of
neurons.

In addition, to reduce occasional erratic jumps in position
estimates, we implemented a 2-step Bayesian method by intro-
ducing a continuity constraint114, which incorporated information
regarding the decoded position in the previous time step and the
animal’s running speed to calculate the probability of the current
location y. The continuity constraint for all the spatial bins Y at
time t followed a 2D gaussian distribution centered at position
yt-1, which can be written as:

N yt�1,σ
2
t

� �
= c*exp

�∣∣yt�1 � Y∣∣2

2σ2
t

 !
, ð7Þ

σt =avt, ð8Þ

where c is a scaling factor and vt is the instantaneous speed of the
animal between time t−1 and t. vt is scaled by a, which is empirically
selected as 2.5. The final reconstructed position with 2-step Bayesian
method can be further written as:

ŷ2step = argmax
y

Nðyt�1,σ
2
t ÞPðY=yÞ

YN
i = 1

P
�
Xi∣Y= y

�
: ð9Þ

Decoded vectorized positions were then mapped back onto 2D
space. The decoding error was calculated as the mean Euclidean dis-
tance between the decoded position and the animal’s true position,
across all time bins. The overall improvement gained by implementing
the 2-step Bayesian method was only ~5–10%, which indicated that the
method did not introduce any direct information regarding the ani-
mal’s current location to the decoder.

To compare position decoding performance across mice, we
randomly down-sampled the number of neurons such that they
matched across all mice (n = 150). We performed this down-
sampling 50 times and trained the decoder and generated posi-
tion predictions for each iteration. The final result for a given
mouse was then calculated as the average decoding performance
across the 50 iterations. To examine the decoder’s performance
using shuffled data, we circularly shuffled the neural data 100
times, shifting the spike times by 5–95% of the total data length
randomly (i.e., 60–1140 s for a 20-min recording). The final result
was then calculated as the average decoding performance across
the 100 shuffles. To compare position decoding performance
between the two CPP compartments, data for both training and
predicting were matched for occupancy 50 times. The final result
for a given compartment was then calculated as the average
decoding performance across the 50 iterations.

For the knock-out (KO) decoding analyses, we replaced the neural
activity of cells that were ‘knocked out’ with vectors of zeroes. This
knock-out procedure was only applied to the data we used for pre-
dicting position locations, not for training, as ablating neurons directly
from the training data will result in the model learning to compensate
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for the missing information115. In addition, for the KO decoding ana-
lyses, the training data set was subject to the position matching pro-
tocol. The final result for each mouse was then calculated as the
averaged decoding performance across all of the position matching
iterations. For the random KO condition, we randomly selected the
same number of neurons as in the KO condition for each iteration. For
conditions in which the training and prediction data were both from
the baseline or test sessions, we used the sessionwith a lower time bias
between the two compartments as the training data, which allowed us
to use the session with the maximum amount of training data after
position matching between the two CPP compartments. As in the
regular decoding analysis, the KO decoding analysis provided recon-
structed/predicted positions for an animal based on the neural activ-
ity; the CPP time could then be reconstructed from this position result.
For KOanalyses in Fig. 4h–j, the decoderwas trainedusing the baseline
data, and rtPCp (retained place cells on the preferred side) were ran-
domly selected for KO to match the number of disPCp from the test
sessions data before making predictions. Both training and prediction
data were occupancy matched between the two compartments. We
then calculated the final decoding error for the predicted position by
averaging the decoding errors from all the position matching itera-
tions for each compartment.

Temporal clustering with k-means
Identification of temporal clusters. To cluster neurons according to
the temporal information of their calcium signals, we employed a
consensus k-means clustering method and calculated a consensus
matrix that measured how frequently two samples were clustered
together in multiple clustering runs with randomly sub-sampled data.
We used the denoised calcium trace (neuron.C in CNMF-E, Supple-
mentary Fig. 1e, blue trace) as a measure of neural activity and filtered
the signalwith a noise level thresholdof 2 x (neuron.C_raw– neuron.C)
for each neuron. We then computed the consensus matrix using sub-
sampled data from the baseline session for 100 iterations. For each
iteration, the calcium data from all the neurons was randomly sub-
sampled at 90% of the total frame length, and neurons were parti-
tioned into 5 groups (see determining optimal K below) using k-means
clustering by calculating the pair-wise Pearson’s correlation coefficient
from the sub-sampled calciumdata. In each k-means run, therewere 10
repeated clustering (replicates) using new initial cluster centroid
positions. A consensusmatrix was then obtained upon the completion
of all the iterations by calculating the frequency with which two neu-
rons were grouped together. Neuron pairs that showed the same
cluster assignment across the highest number of iterations had a high
consensus index value. On the other hand, neuron pairs that rarely
clustered together had a low consensus index value. The final cluster
was then determined using a hierarchical clustering method with
complete linkage on the consensus matrix.

Determining the optimal number of clusters (K). To estimate the
optimal K value, we chose to search from 3 to 9 clusters. As we esti-
mated the optimal K using either the localminima ormaxima from the
measurements described below, we expanded our K value search to
range from 2 to 10 clusters for calculating the optimal K value. To
determine the optimal K, we examined the performance of the
K-clustered consensus matrix by visualizing the heatmap reorganized
by linkage (Supplementary Fig. 5). The consensus matrix can also be
visualized by plotting it as a cumulative distribution function (CDF), as
shown in Supplementary Fig. 5b. In the case of perfect clustering, the
value of the consensus matrix will be either 0 or 1. Thus, the corre-
sponding CDF would follow a Bernoulli distribution and the curve
would be flat for intermediate values. Based on this principle, we
employed a metric called the Proportion of Ambiguous Clustering
(PAC) to estimate the optimal K116. PAC is defined as the fraction of
sample pairs with a consensus index value between [0.1, 0.9]. A low

PAC value indicates the CDF curve is flat in the middle, thus allowing
inference of the optimal K by identifying the lowest PAC (Supple-
mentaryFig. 5c). In addition to PAC,we also implemented a cophenetic
correlation based measurement to infer the optimal K117. This mea-
surement computes the Pearson’s correlation between the distance of
neuron pairs in the consensus matrix and the cophenetic distance of
neuron pairs obtained from the dendrogram tree used to reorder the
consensus matrix by linkage. Thus, the cophenetic correlation mea-
sures how faithfully the dendrogram tree represents the distance
between neuron pairs. A cophenetic correlation equal to 1 indicates a
perfect consensus matrix. We plotted the cophenetic correlation as a
function of K, with a range from 2 to 10, and selected the localmaxima
of cophenetic correlation as the optimal K (Supplementary Fig. 5d). As
shown in Supplementary Fig. 5e, f, measurements from both methods
gave similar inferences, pointing to the optimal K = 5.

Templatematchingmethod for sorting temporally definedclusters
according to their spatial firing patterns. To compare temporally
defined clusters across different animals, we took advantage of the
ensemble spatial firing patterns for each temporally defined cluster
and sorted them in into the following five groups: SW, southwest; SE,
southeast; NW, northwest; NE, northeast, and center. These directions
denoted the location of the peak in the ensemble activity in respect to
the CPP environment. For each cluster, the peak of the ensemble
activity in the two CPP compartments were always at a similar location
(Supplementary Fig. 6) except for the center cluster, which only has a
single peak at the junction between the two compartments. To per-
form unbiased and automated sorting, we developed a template
matching method and computed the Pearson’s correlation between
the ensemble spatial firing maps for each cluster and standard gaus-
sian templates for each direction (Supplementary Fig. 6). Each stan-
dard template contains two simulated Gaussian fields at homotopic
positions across the two compartments (Supplementary Fig. 6a). The
field akin to the CPP midline had a variance of 12.5 cm while the field
away from the midline had a variance of 25 cm. To avoid aberrant
matching performance, the center group, which can be unambigu-
ously identified, was held out during this matching process. The final
matching result gave a 4 × 4 correlation matrix (Supplementary
Fig. 6c), which we used to sort the ensemble activity of each cluster by
assigning it to the group with the highest correlation. In most animals,
temporal clusters fell into one of these non-overlapping groups with
an unambiguous ordering. Occasionally, group ordering with max-
imum summed correlation was used if there was ambiguity in the
group assignment.

Measuring paired-wise anatomical distances. To measure the
paired-wise anatomical distance for all disPCp in each mouse, we cal-
culated the Euclidian distance between the centroid locations of each
disPCp pair under the imaging window for each mouse. The centroid
location of the neuron was obtained from the CNMF-E framework
(neuron.centroid), denoting the center coordinates for each ROI
contour. For each disPCp, we quantified an averaged intra- vs. inter-
cluster distances based on the cluster assignment for all disPCp. The
final result for each cluster was averaged across all disPCp that
belonged to the same cluster. We expected that the inter-cluster dis-
tance would be larger than the intra-cluster distance, if functionally-
defined disPCp clusters are anatomically clustered.

Linear-non-linear Poisson (LN) model
The LN model is a generalized linear model (GLM) framework which
allows unbiased identification of functional cell types encoding mul-
tiplexed navigational variables. This framework was described in a
previous publication57 and here, we applied the same method to our
calcium imaging data in the hippocampus. Briefly, seven models were
built in the LN framework, including position (P), head direction (H),
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speed (S), position & head direction (PH), position & speed (PS), head
direction & speed (HS), and position & head direction & speed (PHS).
For each model, the dependence of spiking on the corresponding
variable(s) was quantified by estimating the spike rate (rt) of a neuron
during time bin t as an exponential function of the sum of variable
values (for example, the animal’s position at time bin t, indicated
through an ‘animal-state’ vector) projected onto a corresponding set
of parameters (Fig. 6a). This can be mathematically expressed as

r =
expðP

i
XT
i wiÞ

dt
ð10Þ

where r is a vector of firing rates for one neuron over T time points, i
indexes the variable (i∈ [P, H, S]), Xi is the designmatrix in which each
column is an animal-state vector xi for variable i at one time bin, wi is a
column vector of learned parameters that converts animal-state
vectors into a firing rate contribution, and dt is the time-bin width.

We used thresholded deconvolved spikes (neuron.S in CNMFe) as
the neuron spiking data with a time-bin width equal to 500ms. To
achieve sufficient training data for modeling, we concatenated the
data from two baseline sessions as a single session and the two test
sessions as a single session. The design matrix contained the animal’s
behavioral state, in which we binned position into 1.8 cm2 bins, head
direction into 20-degree bins, and speed into 2 cm/s bins. Each vector
in the design matrix denotes a binned variable value. All elements of
this vector are 0, except for a single element that corresponds to the
bin of the current animal-state. To learn the variable parameters wi, we
used the built-in fminunc function inMATLAB tomaximize the Poisson
log-likelihood of the observed spike train (n) given the model spike
number (r × dt) and under the prior knowledge that the parameters
shouldbe smooth.Model performance for each cell is computed as the
increase in Pearson’s correlation (between the predicted and the true
firing rates) of the model compared to the 95th % of shuffled correla-
tions (true firing rate was circularly shuffled for 500 times). Perfor-
mance was quantified through tenfold cross-validation, where each
fold is a random selection of 10% of the data. To determine the best-
fitted model for a given neuron, we used a heuristic forward-search
method that determines whether adding variables significantly
improves model performance (p < 0.05 for a one-sided sign-rank test,
n = 10 cross-validation folds).

Statistical analysis
All the analyses and statistical tests were performed using MATLAB
(2017b and 2020a). Data are presented as mean± SEM or median ±
interquartile range (IQR), as indicated. Parametric tests were used for
datasets with a normal distribution, as determined by the
Shapiro–Wilk test, which included an animal’s CPP score, running
speed, center time, and the proportions of cells. For statistical com-
parisons between groups, an unpaired t-test was used to compare two
groups for normally distributed results; otherwise, a Wilcoxon rank-
sum test was used. For statistical comparisons across more than two
groups, one-way ANOVA and related multiple comparison tests were
used. For paired statistical comparisons, a paired t-test was used if the
data followed a normal distribution; otherwise, a Wilcoxon sign-rank
test was used. All tests were two-tailed unless otherwise specified. All
the statistical tests were performed based on each animal or each
session, as indicated in the corresponding figure legend. In all
experiments, the level of statistical significance was defined
as p ≤0.05.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The datasets generated in the current study are available onMendeley
Data: https://doi.org/10.17632/p8gh7wk9z3.1 Sourcedata are provided
with this paper.

Code availability
Custom MATLAB code generated in this study is available at: https://
github.com/yanjuns/Sun_Giocomo_2022_NComms.
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